1
|
Bordini J, Lenzi C, Frenquelli M, Morabito A, Pseftogas A, Belloni D, Mansouri L, Tsiolas G, Perotta E, Ranghetti P, Gandini F, Genova F, Hägerstrand D, Gavriilidis G, Keisaris S, Pechlivanis N, Davi F, Kay NE, Langerak AW, Pospisilova S, Scarfò L, Makris A, Psomopoulos FE, Stamatopoulos K, Rosenquist R, Campanella A, Ghia P. IκBε deficiency accelerates disease development in chronic lymphocytic leukemia. Leukemia 2024; 38:1287-1298. [PMID: 38575671 DOI: 10.1038/s41375-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The NFKBIE gene, which encodes the NF-κB inhibitor IκBε, is mutated in 3-7% of patients with chronic lymphocytic leukemia (CLL). The most recurrent alteration is a 4-bp frameshift deletion associated with NF-κB activation in leukemic B cells and poor clinical outcome. To study the functional consequences of NFKBIE gene inactivation, both in vitro and in vivo, we engineered CLL B cells and CLL-prone mice to stably down-regulate NFKBIE expression and investigated its role in controlling NF-κB activity and disease expansion. We found that IκBε loss leads to NF-κB pathway activation and promotes both migration and proliferation of CLL cells in a dose-dependent manner. Importantly, NFKBIE inactivation was sufficient to induce a more rapid expansion of the CLL clone in lymphoid organs and contributed to the development of an aggressive disease with a shortened survival in both xenografts and genetically modified mice. IκBε deficiency was associated with an alteration of the MAPK pathway, also confirmed by RNA-sequencing in NFKBIE-mutated patient samples, and resistance to the BTK inhibitor ibrutinib. In summary, our work underscores the multimodal relevance of the NF-κB pathway in CLL and paves the way to translate these findings into novel therapeutic options.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Cell Movement
- Cell Proliferation
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- NF-kappa B/metabolism
- Piperidines/pharmacology
- I-kappa B Proteins/genetics
- I-kappa B Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
Collapse
Affiliation(s)
| | - Chiara Lenzi
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Alessia Morabito
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Athanasios Pseftogas
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Daniela Belloni
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - George Tsiolas
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | | | - Francesca Gandini
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Daniel Hägerstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sofoklis Keisaris
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | - Frederic Davi
- Institution Université Pierre et Marie Curie & Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | - Sarka Pospisilova
- University Hospital Brno, Brno, Czech Republic
- Masaryk University, Brno, Czech Republic
| | - Lydia Scarfò
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonios Makris
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Campanella
- IRCSS Ospedale San Raffaele, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Paolo Ghia
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Myers MA, Arnold BJ, Bansal V, Balaban M, Mullen KM, Zaccaria S, Raphael BJ. HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data. Genome Biol 2024; 25:130. [PMID: 38773520 PMCID: PMC11110434 DOI: 10.1186/s13059-024-03267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.
Collapse
Affiliation(s)
- Matthew A Myers
- Department of Computer Science, Princeton University, Princeton, USA
| | - Brian J Arnold
- Center for Statistics and Machine Learning, Princeton University, Princeton, USA
| | - Vineet Bansal
- Princeton Research Computing, Princeton University, Princeton, NJ, USA
| | - Metin Balaban
- Department of Computer Science, Princeton University, Princeton, USA
| | - Katelyn M Mullen
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Zaccaria
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
| | | |
Collapse
|
3
|
Navrkalova V, Plevova K, Radova L, Porc J, Pal K, Malcikova J, Pavlova S, Doubek M, Panovska A, Kotaskova J, Pospisilova S. Integrative NGS testing reveals clonal dynamics of adverse genomic defects contributing to a natural progression in treatment-naïve CLL patients. Br J Haematol 2024; 204:240-249. [PMID: 38062779 DOI: 10.1111/bjh.19191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 01/11/2024]
Abstract
Large-scale next-generation sequencing (NGS) studies revealed extensive genetic heterogeneity, driving a highly variable clinical course of chronic lymphocytic leukaemia (CLL). The evolution of subclonal populations contributes to diverse therapy responses and disease refractoriness. Besides, the dynamics and impact of subpopulations before therapy initiation are not well understood. We examined changes in genomic defects in serial samples of 100 untreated CLL patients, spanning from indolent to aggressive disease. A comprehensive NGS panel LYNX, which provides targeted mutational analysis and genome-wide chromosomal defect assessment, was employed. We observed dynamic changes in the composition and/or proportion of genomic aberrations in most patients (62%). Clonal evolution of gene variants prevailed over the chromosomal alterations. Unsupervised clustering based on aberration dynamics revealed four groups of patients with different clinical behaviour. An adverse cluster was associated with fast progression and early therapy need, characterized by the expansion of TP53 defects, ATM mutations, and 18p- alongside dynamic SF3B1 mutations. Our results show that clonal evolution is active even without therapy pressure and that repeated genetic testing can be clinically relevant during long-term patient monitoring. Moreover, integrative NGS testing contributes to the consolidated evaluation of results and accurate assessment of individual patient prognosis.
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jakub Porc
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Karol Pal
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitka Malcikova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
4
|
Myers MA, Arnold BJ, Bansal V, Mullen KM, Zaccaria S, Raphael BJ. HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548855. [PMID: 37502835 PMCID: PMC10370020 DOI: 10.1101/2023.07.13.548855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Multi-region DNA sequencing of primary tumors and metastases from individual patients helps identify somatic aberrations driving cancer development. However, most methods to infer copy-number aberrations (CNAs) analyze individual samples. We introduce HATCHet2 to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 introduces a novel statistic, the mirrored haplotype B-allele frequency (mhBAF), to identify mirrored-subclonal CNAs having different numbers of copies of parental haplotypes in different tumor clones. HATCHet2 also has high accuracy in identifying focal CNAs and extends the earlier HATCHet method in several directions. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 50 prostate cancer samples from 10 patients reveals previously-unreported mirrored-subclonal CNAs affecting cancer genes.
Collapse
Affiliation(s)
- Matthew A. Myers
- Department of Computer Science, Princeton University, Princeton, USA
| | - Brian J. Arnold
- Center for Statistics and Machine Learning, Princeton University, Princeton, USA
| | - Vineet Bansal
- Princeton Research Computing, Princeton University, Princeton, NJ, USA
| | - Katelyn M. Mullen
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Zaccaria
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | | |
Collapse
|
5
|
Robbe P, Ridout KE, Vavoulis DV, Dréau H, Kinnersley B, Denny N, Chubb D, Appleby N, Cutts A, Cornish AJ, Lopez-Pascua L, Clifford R, Burns A, Stamatopoulos B, Cabes M, Alsolami R, Antoniou P, Oates M, Cavalieri D, Gibson J, Prabhu AV, Schwessinger R, Jennings D, James T, Maheswari U, Duran-Ferrer M, Carninci P, Knight SJL, Månsson R, Hughes J, Davies J, Ross M, Bentley D, Strefford JC, Devereux S, Pettitt AR, Hillmen P, Caulfield MJ, Houlston RS, Martín-Subero JI, Schuh A. Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features. Nat Genet 2022; 54:1675-1689. [PMID: 36333502 PMCID: PMC9649442 DOI: 10.1038/s41588-022-01211-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Pauline Robbe
- Department of Oncology, University of Oxford, Oxford, UK
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kate E Ridout
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Helene Dréau
- Department of Oncology, University of Oxford, Oxford, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Nicholas Denny
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Niamh Appleby
- Department of Oncology, University of Oxford, Oxford, UK
| | - Anthony Cutts
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | | | - Ruth Clifford
- Department of Haematology, University Hospital Limerick, Limerick, Ireland
- Limerick Digital Cancer Research Centre, School of Medicine,University of Limerick, Limerick, Ireland
| | - Adam Burns
- Department of Oncology, University of Oxford, Oxford, UK
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC)- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maite Cabes
- Oxford Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Reem Alsolami
- Department of Medical Laboratory Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Doriane Cavalieri
- Department of Haematology, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anika V Prabhu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ron Schwessinger
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Daisy Jennings
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | | | - Martí Duran-Ferrer
- Biomedical Epigenomics Group, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Samantha J L Knight
- Oxford University Clinical Academic Graduate School, University of Oxford Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Jim Hughes
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James Davies
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mark Ross
- Illumina Cambridge Ltd., Cambridge, UK
| | | | - Jonathan C Strefford
- Cancer Genomics, Cancer Sciences, Faculty of Medicine, Group University of Southampton, Southampton, UK
| | - Stephen Devereux
- King's College Hospital, NHS Foundation Trust, London, UK
- Kings College London, London, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | - Mark J Caulfield
- Genomics England, London, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - José I Martín-Subero
- Human Technopole, Milan, Italy
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Jiménez I, Tazón-Vega B, Abrisqueta P, Nieto JC, Bobillo S, Palacio-García C, Carabia J, Valdés-Mas R, Munuera M, Puigdefàbregas L, Parra G, Esteve-Codina A, Franco-Jarava C, Iacoboni G, Terol MJ, García-Marco JA, Crespo M, Bosch F. Immunological and genetic kinetics from diagnosis to clinical progression in chronic lymphocytic leukemia. Biomark Res 2021; 9:37. [PMID: 34016160 PMCID: PMC8138982 DOI: 10.1186/s40364-021-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mechanisms driving the progression of chronic lymphocytic leukemia (CLL) from its early stages are not fully understood. The acquisition of molecular changes at the time of progression has been observed in a small fraction of patients, suggesting that CLL progression is not mainly driven by dynamic clonal evolution. In order to shed light on mechanisms that lead to CLL progression, we investigated longitudinal changes in both the genetic and immunological scenarios. METHODS We performed genetic and immunological longitudinal analysis using paired primary samples from untreated CLL patients that underwent clinical progression (sampling at diagnosis and progression) and from patients with stable disease (sampling at diagnosis and at long-term asymptomatic follow-up). RESULTS Molecular analysis showed limited and non-recurrent molecular changes at progression, indicating that clonal evolution is not the main driver of clinical progression. Our analysis of the immune kinetics found an increasingly dysfunctional CD8+ T cell compartment in progressing patients that was not observed in those patients that remained asymptomatic. Specifically, terminally exhausted effector CD8+ T cells (T-betdim/-EomeshiPD1hi) accumulated, while the the co-expression of inhibitory receptors (PD1, CD244 and CD160) increased, along with an altered gene expression profile in T cells only in those patients that progressed. In addition, malignant cells from patients at clinical progression showed enhanced capacity to induce exhaustion-related markers in CD8+ T cells ex vivo mainly through a mechanism dependent on soluble factors including IL-10. CONCLUSIONS Altogether, we demonstrate that the interaction with the immune microenvironment plays a key role in clinical progression in CLL, thereby providing a rationale for the use of early immunotherapeutic intervention.
Collapse
Affiliation(s)
- Isabel Jiménez
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Bárbara Tazón-Vega
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Pau Abrisqueta
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Juan C Nieto
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sabela Bobillo
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Carles Palacio-García
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Júlia Carabia
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Magdalena Munuera
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lluís Puigdefàbregas
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Genís Parra
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra, 08002, Barcelona, Spain
| | - Anna Esteve-Codina
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra, 08002, Barcelona, Spain
| | - Clara Franco-Jarava
- Servei d'Immunologia, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Gloria Iacoboni
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - María José Terol
- Department of Hematology, Clínic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Marta Crespo
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Francesc Bosch
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
7
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
8
|
Locher M, Jukic E, Bohn JP, Untergasser G, Steurer M, Cramer CA, Schwendinger S, Vogi V, Verdorfer I, Witsch-Baumgartner M, Nachbaur D, Gunsilius E, Wolf D, Zschocke J, Steiner N. Clonal dynamics in a composite chronic lymphocytic leukemia and hairy cell leukemia-variant. Genes Chromosomes Cancer 2020; 60:287-292. [PMID: 33277788 PMCID: PMC7984250 DOI: 10.1002/gcc.22925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Composite lymphoma is the rare simultaneous manifestation of two distinct lymphomas. Chronic lymphocytic leukemia (CLL) has a propensity for occurring in composite lymphomas, a phenomenon that remains to be elucidated. We applied cytogenetics, droplet digital polymerase chain reaction, and massively parallel sequencing to analyze longitudinally a patient with CLL, who 3 years later showed transformation to a hairy cell leukemia-variant (HCL-V). Outgrowth of the IGHV4-34-positive HCL-V clone at the expense of the initially dominant CLL clone with trisomy 12 and MED12 mutation started before CLL-guided treatment and was accompanied by a TP53 mutation, which was already detectable at diagnosis of CLL. Furthermore, deep sequencing of IGH showed a composite lymphoma with presence of both disease components at all analyzed timepoints (down to a minor clone: major clone ratio of ~1:1000). Overall, our analyses showed a disease course that resembled clonal dynamics reported for malignancies with intratumoral heterogeneity and illustrate the utility of deep sequencing of IGH to detect distinct clonal populations at diagnosis, monitor clonal response to therapy, and possibly improve clinical outcomes.
Collapse
Affiliation(s)
- Maurus Locher
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emina Jukic
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan-Paul Bohn
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerold Untergasser
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Steurer
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Simon Schwendinger
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Vogi
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Irmgard Verdorfer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - David Nachbaur
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Eberhard Gunsilius
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Medical Clinic III, Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Normann Steiner
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Hotinski AK, Best OG, Thurgood LA, Lower KM, Kuss BJ. A biclonal case of chronic lymphocytic leukaemia with discordant mutational status of the immunoglobulin heavy chain variable region and bimodal CD49d expression. Br J Haematol 2020; 192:e77-e81. [PMID: 33278845 DOI: 10.1111/bjh.17257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Anya K Hotinski
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Oliver G Best
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Lauren A Thurgood
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Karen M Lower
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Bryone J Kuss
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia.,Haematology and Genetic Pathology, Flinders Medical Centre, Bedford Park, South Australia
| |
Collapse
|
10
|
Epigenome-wide analysis reveals functional modulators of drug sensitivity and post-treatment survival in chronic lymphocytic leukaemia. Br J Cancer 2020; 124:474-483. [PMID: 33082556 PMCID: PMC7852668 DOI: 10.1038/s41416-020-01117-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
Background Chronic lymphocytic leukaemia (CLL) patients display a highly variable clinical course, with progressive acquisition of drug resistance. We sought to identify aberrant epigenetic traits that are enriched following exposure to treatment that could impact patient response to therapy. Methods Epigenome-wide analysis of DNA methylation was performed for 20 patients at two timepoints during treatment. The prognostic significance of differentially methylated regions (DMRs) was assessed in independent cohorts of 139 and 163 patients. Their functional role in drug sensitivity was assessed in vitro. Results We identified 490 DMRs following exposure to therapy, of which 31 were CLL-specific and independent of changes occurring in normal B-cell development. Seventeen DMR-associated genes were identified as differentially expressed following treatment in an independent cohort. Methylation of the HOXA4, MAFB and SLCO3A1 DMRs was associated with post-treatment patient survival, with HOXA4 displaying the strongest association. Re-expression of HOXA4 in cell lines and primary CLL cells significantly increased apoptosis in response to treatment with fludarabine, ibrutinib and idelalisib. Conclusion Our study demonstrates enrichment for multiple CLL-specific epigenetic traits in response to chemotherapy that predict patient outcomes, and particularly implicate epigenetic silencing of HOXA4 in reducing the sensitivity of CLL cells to therapy.
Collapse
|
11
|
SOHO State of the Art Updates and Next Questions: Clonal Evolution in Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:779-784. [PMID: 33039357 DOI: 10.1016/j.clml.2020.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an indolent disease with a long-lasting clinical course, with indication for treatment only when symptomatic. Its clinical heterogeneity is widely reported, with some patients requiring treatment soon after diagnosis because of development of cytopenia or bulky lymphadenopathy, and others showing a stable or a slowly progressive disease not requiring treatment for decades. Longitudinal sampling of peripheral blood, with accessible tumor cells and circulating tumor DNA, enabled the analysis of disease growing dynamics and the characterization of clonal evolution. Here we describe the main known features of CLL genomics and its shaping upon treatment, which can lead to progression, treatment refractoriness, or transformation into an aggressive lymphoma.
Collapse
|
12
|
Clara-Trujillo S, Gallego Ferrer G, Gómez Ribelles JL. In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go? Int J Mol Sci 2020; 21:E5747. [PMID: 32796596 PMCID: PMC7460836 DOI: 10.3390/ijms21165747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
In hematological malignancies, leukemias or myelomas, malignant cells present bone marrow (BM) homing, in which the niche contributes to tumor development and drug resistance. BM architecture, cellular and molecular composition and interactions define differential microenvironments that govern cell fate under physiological and pathological conditions and serve as a reference for the native biological landscape to be replicated in engineered platforms attempting to reproduce blood cancer behavior. This review summarizes the different models used to efficiently reproduce certain aspects of BM in vitro; however, they still lack the complexity of this tissue, which is relevant for fundamental aspects such as drug resistance development in multiple myeloma. Extracellular matrix composition, material topography, vascularization, cellular composition or stemness vs. differentiation balance are discussed as variables that could be rationally defined in tissue engineering approaches for achieving more relevant in vitro models. Fully humanized platforms closely resembling natural interactions still remain challenging and the question of to what extent accurate tissue complexity reproduction is essential to reliably predict drug responses is controversial. However, the contributions of these approaches to the fundamental knowledge of non-solid tumor biology, its regulation by niches, and the advance of personalized medicine are unquestionable.
Collapse
Affiliation(s)
- Sandra Clara-Trujillo
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Gloria Gallego Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - José Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| |
Collapse
|
13
|
Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and Epigenomic Alterations in Chronic Lymphocytic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:149-177. [PMID: 31977296 DOI: 10.1146/annurev-pathmechdis-012419-032810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic lymphocytic leukemia is a common disease in Western countries and has heterogeneous clinical behavior. The relevance of the genetic basis of the disease has come to the forefront recently, with genome-wide studies that have provided a comprehensive view of structural variants, somatic mutations, and different layers of epigenetic changes. The mutational landscape is characterized by relatively common copy number alterations, a few mutated genes occurring in 10-15% of cases, and a large number of genes mutated in a small number of cases. The epigenomic profile has revealed a marked reprogramming of regulatory regions in tumor cells compared with normal B cells. All of these alterations are differentially distributed in clinical and biological subsets of the disease, indicating that they may underlie the heterogeneous evolution of the disease. These global studies are revealing the molecular complexity of chronic lymphocytic leukemia and provide new perspectives that have helped to understand its pathogenic mechanisms and improve the clinical management of patients.
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; ,
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematology Department, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematopathology Section, Laboratory of Pathology, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
14
|
Nfkbie-deficiency leads to increased susceptibility to develop B-cell lymphoproliferative disorders in aged mice. Blood Cancer J 2020; 10:38. [PMID: 32170099 PMCID: PMC7070037 DOI: 10.1038/s41408-020-0305-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant NF-κB activation is a hallmark of most B-cell malignancies. Recurrent inactivating somatic mutations in the NFKBIE gene, which encodes IκBε, an inhibitor of NF-κB-inducible activity, are reported in several B-cell malignancies with highest frequencies in chronic lymphocytic leukemia and primary mediastinal B-cell lymphoma, and account for a fraction of NF-κB pathway activation. The impact of NFKBIE deficiency on B-cell development and function remains, however, largely unknown. Here, we show that Nfkbie-deficient mice exhibit an amplification of marginal zone B cells and an expansion of B1 B-cell subsets. In germinal center (GC)-dependent immune response, Nfkbie deficiency triggers expansion of GC B-cells through increasing cell proliferation in a B-cell autonomous manner. We also show that Nfkbie deficiency results in hyperproliferation of a B1 B-cell subset and leads to increased NF-κB activation in these cells upon Toll-like receptor stimulation. Nfkbie deficiency cooperates with mutant MYD88 signaling and enhances B-cell proliferation in vitro. In aged mice, Nfkbie absence drives the development of an oligoclonal indolent B-cell lymphoproliferative disorders, resembling monoclonal B-cell lymphocytosis. Collectively, these findings shed light on an essential role of IκBε in finely tuning B-cell development and function.
Collapse
|
15
|
Raponi S, Del Giudice I, Marinelli M, Wang J, Cafforio L, Ilari C, Piciocchi A, Messina M, Bonina S, Tavolaro S, Bordyuh M, Mariglia P, Peragine N, Mauro FR, Chiaretti S, Molica S, Gentile M, Visentin A, Trentin L, Rigolin GM, Cuneo A, Diop F, Rossi D, Gaidano G, Guarini A, Rabadan R, Foà R. Genetic landscape of ultra-stable chronic lymphocytic leukemia patients. Ann Oncol 2019; 29:966-972. [PMID: 29365086 DOI: 10.1093/annonc/mdy021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) has a heterogeneous clinical course. Beside patients requiring immediate treatment, others show an initial indolent phase followed by progression and others do not progress for decades. The latter two subgroups usually display mutated IGHV genes and a favorable FISH profile. Patients and methods Patients with absence of disease progression for over 10 years (10-34) from diagnosis were defined as ultra-stable CLL (US-CLL). Forty US-CLL underwent extensive characterization including whole exome sequencing (WES), ultra-deep sequencing and copy number aberration (CNA) analysis to define their unexplored genetic landscape. Microarray analysis, comparing US-CLL with non-US-CLL with similar immunogenetic features (mutated IGHV/favorable FISH), was also carried out to recognize US-CLL at diagnosis. Results WES was carried out in 20 US-CLL and 84 non-silent somatic mutations in 78 genes were found. When re-tested in a validation cohort of 20 further US-CLL, no recurrent lesion was identified. No clonal mutations of NOTCH1, BIRC3, SF3B1 and TP53 were found, including ATM and other potential progression driving mutations. CNA analysis identified 31 lesions, none with known poor prognostic impact. No novel recurrent lesion was identified: most cases showed no lesions (38%) or an isolated del(13q) (31%). The expression of 6 genes, selected from a gene expression profile analysis by microarray and quantified by droplet digital PCR on a cohort of 79 CLL (58 US-CLL and 21 non-US-CLL), allowed to build a decision-tree capable of recognizing at diagnosis US-CLL patients. Conclusions The genetic landscape of US-CLL is characterized by the absence of known unfavorable driver mutations/CNA and of novel recurrent genetic lesions. Among CLL patients with favorable immunogenetics, a decision-tree based on the expression of 6 genes may identify at diagnosis patients who are likely to maintain an indolent disease for decades.
Collapse
Affiliation(s)
- S Raponi
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - I Del Giudice
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - M Marinelli
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - J Wang
- Division of Life Science and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - L Cafforio
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - C Ilari
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - A Piciocchi
- GIMEMA Data Centre, GIMEMA Foundation, Rome, Italy
| | - M Messina
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - S Bonina
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - S Tavolaro
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - M Bordyuh
- Department of Systems Biology, Columbia University, New York, USA; Department of, Biomedical Informatics, Columbia University, New York, USA
| | - P Mariglia
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - N Peragine
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - F R Mauro
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - S Chiaretti
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - S Molica
- Department of Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, Catanzaro, Italy
| | - M Gentile
- Hematology Uni, Department of Hemato-Oncology, Ospedale Annunziata, Cosenza, Italy
| | - A Visentin
- Hematology Sectio, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - L Trentin
- Hematology Sectio, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - G M Rigolin
- Hematology Sectio, Azienda Ospedaliero Universitaria Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - A Cuneo
- Hematology Sectio, Azienda Ospedaliero Universitaria Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - F Diop
- Division of Hematolog, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - D Rossi
- Department of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Institute of Oncology Research, Bellinzona, Switzerland
| | - G Gaidano
- Division of Hematolog, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - A Guarini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - R Rabadan
- Department of Systems Biology, Columbia University, New York, USA; Department of, Biomedical Informatics, Columbia University, New York, USA
| | - R Foà
- Hematolog, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy.
| |
Collapse
|
16
|
Ramassone A, D'Argenio A, Veronese A, Basti A, Soliman SHA, Volinia S, Bassi C, Pagotto S, Ferracin M, Lupini L, Saccenti E, Balatti V, Pepe F, Rassenti LZ, Innocenti I, Autore F, Marzetti L, Mariani-Costantini R, Kipps TJ, Negrini M, Laurenti L, Visone R. Genetic dynamics in untreated CLL patients with either stable or progressive disease: a longitudinal study. J Hematol Oncol 2019; 12:114. [PMID: 31744508 PMCID: PMC6862808 DOI: 10.1186/s13045-019-0802-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 01/30/2023] Open
Abstract
Clonal evolution of chronic lymphocytic leukemia (CLL) often follows chemotherapy and is associated with adverse outcome, but also occurs in untreated patients, in which case its predictive role is debated. We investigated whether the selection and expansion of CLL clone(s) precede an aggressive disease shift. We found that clonal evolution occurs in all CLL patients, irrespective of the clinical outcome, but is faster during disease progression. In particular, changes in the frequency of nucleotide variants (NVs) in specific CLL-related genes may represent an indicator of poor clinical outcome.
Collapse
Affiliation(s)
- Alice Ramassone
- Unit of General Pathology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Andrea D'Argenio
- Unit of General Pathology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Angelo Veronese
- Unit of General Pathology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Alessio Basti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Shimaa Hassan AbdelAziz Soliman
- Unit of General Pathology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sara Pagotto
- Unit of General Pathology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio Chieti-Pescara, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Saccenti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Veronica Balatti
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center at the Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Felice Pepe
- Unit of General Pathology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio Chieti-Pescara, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Laura Z Rassenti
- Department of Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA.,Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA, USA
| | - Idanna Innocenti
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Francesco Autore
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Renato Mariani-Costantini
- Unit of General Pathology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio Chieti-Pescara, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Thomas J Kipps
- Department of Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA.,Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA, USA
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca Laurenti
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Rosa Visone
- Unit of General Pathology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio Chieti-Pescara, Chieti, Italy. .,Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
17
|
Developmental subtypes assessed by DNA methylation-iPLEX forecast the natural history of chronic lymphocytic leukemia. Blood 2019; 134:688-698. [PMID: 31292113 DOI: 10.1182/blood.2019000490] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 12/26/2022] Open
Abstract
Alterations in global DNA methylation patterns are a major hallmark of cancer and represent attractive biomarkers for personalized risk stratification. Chronic lymphocytic leukemia (CLL) risk stratification studies typically focus on time to first treatment (TTFT), time to progression (TTP) after treatment, and overall survival (OS). Whereas TTFT risk stratification remains similar over time, TTP and OS have changed dramatically with the introduction of targeted therapies, such as the Bruton tyrosine kinase inhibitor ibrutinib. We have shown that genome-wide DNA methylation patterns in CLL are strongly associated with phenotypic differentiation and patient outcomes. Here, we developed a novel assay, termed methylation-iPLEX (Me-iPLEX), for high-throughput quantification of targeted panels of single cytosine guanine dinucleotides from multiple independent loci. Me-iPLEX was used to classify CLL samples into 1 of 3 known epigenetic subtypes (epitypes). We examined the impact of epitype in 1286 CLL patients from 4 independent cohorts representing a comprehensive view of CLL disease course and therapies. We found that epitype significantly predicted TTFT and OS among newly diagnosed CLL patients. Additionally, epitype predicted TTP and OS with 2 common CLL therapies: chemoimmunotherapy and ibrutinib. Epitype retained significance after stratifying by biologically related biomarkers, immunoglobulin heavy chain mutational status, and ZAP70 expression, as well as other common prognostic markers. Furthermore, among several biological traits enriched between epitypes, we found highly biased immunogenetic features, including IGLV3-21 usage in the poorly characterized intermediate-programmed CLL epitype. In summary, Me-iPLEX is an elegant method to assess epigenetic signatures, including robust classification of CLL epitypes that independently stratify patient risk at diagnosis and time of treatment.
Collapse
|
18
|
Myers MA, Satas G, Raphael BJ. CALDER: Inferring Phylogenetic Trees from Longitudinal Tumor Samples. Cell Syst 2019; 8:514-522.e5. [PMID: 31229560 DOI: 10.1016/j.cels.2019.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Longitudinal DNA sequencing of cancer patients yields insight into how tumors evolve over time or in response to treatment. However, sequencing data from bulk tumor samples often have considerable ambiguity in clonal composition, complicating the inference of ancestral relationships between clones. We introduce Cancer Analysis of Longitudinal Data through Evolutionary Reconstruction (CALDER), an algorithm to infer phylogenetic trees from longitudinal bulk DNA sequencing data. CALDER explicitly models a longitudinally observed phylogeny incorporating constraints that longitudinal sampling imposes on phylogeny reconstruction. We show on simulated bulk tumor data that longitudinal constraints substantially reduce ambiguity in phylogeny reconstruction and that CALDER outperforms existing methods that do not leverage this longitudinal information. On real data from two chronic lymphocytic leukemia patients, we find that CALDER reconstructs more plausible and parsimonious phylogenies than existing methods, with CALDER phylogenies containing fewer tumor clones per sample. CALDER's use of longitudinal information will be advantageous in further studies of tumor heterogeneity and evolution.
Collapse
Affiliation(s)
- Matthew A Myers
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| | - Gryte Satas
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA; Department of Computer Science, Brown University, Providence, RI 02912, USA
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
19
|
Gruber M, Bozic I, Leshchiner I, Livitz D, Stevenson K, Rassenti L, Rosebrock D, Taylor-Weiner A, Olive O, Goyetche R, Fernandes SM, Sun J, Stewart C, Wong A, Cibulskis C, Zhang W, Reiter JG, Gerold JM, Gribben JG, Rai KR, Keating MJ, Brown JR, Neuberg D, Kipps TJ, Nowak MA, Getz G, Wu CJ. Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature 2019; 570:474-479. [PMID: 31142838 PMCID: PMC6630176 DOI: 10.1038/s41586-019-1252-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 05/01/2019] [Indexed: 01/01/2023]
Abstract
How the genomic features of a patient's cancer relate to individual disease kinetics remains poorly understood. Here we used the indolent growth dynamics of chronic lymphocytic leukaemia (CLL) to analyse the growth rates and corresponding genomic patterns of leukaemia cells from 107 patients with CLL, spanning decades-long disease courses. We found that CLL commonly demonstrates not only exponential expansion but also logistic growth, which is sigmoidal and reaches a certain steady-state level. Each growth pattern was associated with marked differences in genetic composition, the pace of disease progression and the extent of clonal evolution. In a subset of patients, whose serial samples underwent next-generation sequencing, we found that dynamic changes in the disease course of CLL were shaped by the genetic events that were already present in the early slow-growing stages. Finally, by analysing the growth rates of subclones compared with their parental clones, we quantified the growth advantage conferred by putative CLL drivers in vivo.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Clone Cells/drug effects
- Clone Cells/pathology
- Cohort Studies
- Disease Progression
- Evolution, Molecular
- Female
- High-Throughput Nucleotide Sequencing
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Recurrence
- Reproducibility of Results
Collapse
Affiliation(s)
- Michaela Gruber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Internal Medicine I, Division of Haematology and Haemostaseology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | | | | | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Laura Rassenti
- Department of Medicine, University of California at San Diego Moores Cancer Center, La Jolla, CA, USA
| | | | | | - Oriol Olive
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Reaha Goyetche
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jing Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alicia Wong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johannes G Reiter
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA
| | - Jeffrey M Gerold
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA
| | - John G Gribben
- Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - Kanti R Rai
- Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| | | | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Thomas J Kipps
- Department of Medicine, University of California at San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA
- Department of Mathematics and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Condoluci A, Rossi D. Genetic mutations in chronic lymphocytic leukemia: impact on clinical treatment. Expert Rev Hematol 2019; 12:89-98. [DOI: 10.1080/17474086.2019.1575130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Adalgisa Condoluci
- Division of Hematology, Oncology Institute of Southern Switzerland and Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland and Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| |
Collapse
|
21
|
Spina V, Rossi D. Overview of non-coding mutations in chronic lymphocytic leukemia. Mol Oncol 2019; 13:99-106. [PMID: 30520556 PMCID: PMC6322188 DOI: 10.1002/1878-0261.12416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most frequent leukemia type in which the genetic alterations influencing the clinico‐biological course are not entirely understood. CLL has a heterogeneous course, with some patients showing an indolent course and others experiencing an aggressive course. Whole‐genome sequencing and whole‐exome sequencing studies identified recurrently mutated genes in CLL and profiled its clonal evolution patterns. However, more recent whole‐genome sequencing studies also identified variants in non‐coding sequences of the CLL genome, revealing important lesions outside the protein‐coding regions. Here we describe the most representative non‐coding lesion of the CLL genome, including lesions in the 3′‐UTR region of NOTCH1 which result in the truncation of the NOTCH1 protein PEST domain, and non‐coding mutations in an enhancer region on chromosome 9p13 which result in reduced expression of the PAX5 transcription factor. In addition, we describe the role of microRNA in CLL, in particular the miR15a/miR16‐1 microRNA recurrently affected by deletions of chromosome 13q14. Together, new findings in non‐coding genome genetic lesions provide a more complete portrait of the genomic landscape of CLL with clinical implications.
Collapse
Affiliation(s)
- Valeria Spina
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland.,Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
22
|
Tschumper RC, Shanafelt TD, Kay NE, Jelinek DF. Role of long non-coding RNAs in disease progression of early stage unmutated chronic lymphocytic leukemia. Oncotarget 2019; 10:60-75. [PMID: 30713603 PMCID: PMC6343752 DOI: 10.18632/oncotarget.26538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Predicting disease progression in chronic lymphocytic leukemia (CLL) remains challenging particularly in patients with Rai Stage 0/I disease that have an unmutated immunoglobulin heavy chain variable region (UM IGHV). Even though patients with UM IGHV have a poor prognosis and generally require earlier treatment, not all UM IGHV patients experience more rapid disease progression with some remaining treatment free for many years. This observation suggests biologic characteristics other than known prognostic factors influence disease progression. Alterations in long non-coding RNA (lncRNA) expression levels have been implicated in diagnosis and prognosis of various cancers, however, their role in disease progression of early Rai stage UM CLL is unknown. Here we use microarray analysis to compare lncRNA and mRNA profiles of Rai 0/I UM IGHV patients who progressed in <2 years relative to patients who had not progressed for >5 years. Over 1,300 lncRNAs and 940 mRNAs were differentially expressed (fold change ≥ 2.0; p-value ≤ 0.05). Of interest, the differentially expressed lncRNAs T204050, NR_002947, and uc.436+, have known associated genes that have been linked to CLL. Thus, our study reveals differentially expressed lncRNAs in progressive early stage CLL requiring therapy versus indolent early Rai stage UM CLL. These lncRNAs have the potential to impact relevant biological processes and pathways that influence clinical outcome in CLL.
Collapse
Affiliation(s)
| | - Tait D Shanafelt
- Department of Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Neil E Kay
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Diane F Jelinek
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia. Leukemia 2018; 33:390-402. [PMID: 30038380 DOI: 10.1038/s41375-018-0215-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 11/09/2022]
Abstract
Genomic analyses of chronic lymphocytic leukemia (CLL) identified somatic mutations and associations of clonal diversity with adverse outcomes. Clonal evolution likely has therapeutic implications but its dynamic is less well studied. We studied clonal composition and prognostic value of seven recurrently mutated driver genes using targeted next-generation sequencing in 643 CLL patients and found higher frequencies of mutations in TP53 (35 vs. 12%, p < 0.001) and SF3B1 (20 vs. 11%, p < 0.05) and increased number of (sub)clonal (p < 0.0001) mutations in treated patients. We next performed an in-depth evaluation of clonal evolution on untreated CLL patients (50 "progressors" and 17 matched "non-progressors") using a 404 gene-sequencing panel and identified novel mutated genes such as AXIN1, SDHA, SUZ12, and FOXO3. Progressors carried more mutations at initial presentation (2.5 vs. 1, p < 0.0001). Mutations in specific genes were associated with increased (SF3B1, ATM, and FBXW7) or decreased progression risk (AXIN1 and MYD88). Mutations affecting specific signaling pathways, such as Notch and MAP kinase pathway were enriched in progressive relative to non-progressive patients. These data extend earlier findings that specific genomic alterations and diversity of subclones are associated with disease progression and persistence of disease in CLL and identify novel recurrently mutated genes and associated outcomes.
Collapse
|
24
|
Insight into origins, mechanisms, and utility of DNA methylation in B-cell malignancies. Blood 2018; 132:999-1006. [PMID: 30037886 DOI: 10.1182/blood-2018-02-692970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding how tumor cells fundamentally alter their identity is critical to identify specific vulnerabilities for use in precision medicine. In B-cell malignancy, knowledge of genetic changes has resulted in great gains in our understanding of the biology of tumor cells, impacting diagnosis, prognosis, and treatment. Despite this knowledge, much remains to be explained as genetic events do not completely explain clinical behavior and outcomes. Many patients lack recurrent driver mutations, and said drivers can persist in nonmalignant cells of healthy individuals remaining cancer-free for decades. Epigenetics has emerged as a valuable avenue to further explain tumor phenotypes. The epigenetic landscape is the software that powers and stabilizes cellular identity by abridging a broad genome into the essential information required per cell. A genome-level view of B-cell malignancies reveals complex but recurrent epigenetic patterns that define tumor types and subtypes, permitting high-resolution classification and novel insight into tumor-specific mechanisms. Epigenetic alterations are guided by distinct cellular processes, such as polycomb-based silencing, transcription, signaling pathways, and transcription factor activity, and involve B-cell-specific aspects, such as activation-induced cytidine deaminase activity and germinal center-specific events. Armed with a detailed knowledge of the epigenetic events that occur across the spectrum of B-cell differentiation, B-cell tumor-specific aberrations can be detected with improved accuracy and serve as a model for identification of tumor-specific events in cancer. Insight gained through recent efforts may prove valuable in guiding the use of both epigenetic- and nonepigenetic-based therapies.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW We review the genetic foundations of different rare lymphomas to examine their shared origins. These data indicate the potential application of genomics to improve the diagnosis and treatment of these rare diseases. RECENT FINDINGS Next generation sequencing technologies have provided an important window into the genetic underpinnings of lymphomas. A growing body of evidence indicates that although some genetic alterations are specific to certain diseases, others are shared across different lymphomas. Many such genetic events have already demonstrated clinical utility, such as BRAF V600E that confers sensitivity to vemurafenib in patients with hairy cell leukemia. SUMMARY The rareness of many lymphoma subtypes makes the conduct of clinical trials and recruitment of significant numbers of patients impractical. However, a knowledge of the shared genetic origins of these rare lymphomas has the potential to inform 'basket' clinical trials in which multiple lymphoma subtypes are included. These trials would include patients based on the presence of alterations in targetable driver genes. Such approaches would be greatly strengthened by a systematic assessment of significant patient numbers from each subtype using next generation sequencing.
Collapse
|
26
|
Nadeu F, Clot G, Delgado J, Martín-García D, Baumann T, Salaverria I, Beà S, Pinyol M, Jares P, Navarro A, Suárez-Cisneros H, Aymerich M, Rozman M, Villamor N, Colomer D, González M, Alcoceba M, Terol MJ, Navarro B, Colado E, Payer ÁR, Puente XS, López-Otín C, López-Guillermo A, Enjuanes A, Campo E. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia 2018; 32:645-653. [PMID: 28924241 PMCID: PMC5843898 DOI: 10.1038/leu.2017.291] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
Genome studies of chronic lymphocytic leukemia (CLL) have revealed the remarkable subclonal heterogeneity of the tumors, but the clinical implications of this phenomenon are not well known. We assessed the mutational status of 28 CLL driver genes by deep-targeted next-generation sequencing and copy number alterations (CNA) in 406 previously untreated patients and 48 sequential samples. We detected small subclonal mutations (0.6-25% of cells) in nearly all genes (26/28), and they were the sole alteration in 22% of the mutated cases. CNA tended to be acquired early in the evolution of the disease and remained stable, whereas the mutational heterogeneity increased in a subset of tumors. The prognostic impact of different genes was related to the size of the mutated clone. Combining mutations and CNA, we observed that the accumulation of driver alterations (mutational complexity) gradually shortened the time to first treatment independently of the clonal architecture, IGHV status and Binet stage. Conversely, the overall survival was associated with the increasing subclonal diversity of the tumors but it was related to the age of patients, IGHV and TP53 status of the tumors. In conclusion, our study reveals that both the mutational complexity and subclonal diversity influence the evolution of CLL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor
- Clonal Evolution/genetics
- DNA Copy Number Variations
- Disease Progression
- Female
- Follow-Up Studies
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Middle Aged
- Mutation/genetics
- Neoplasm Staging
- Prognosis
- Proportional Hazards Models
- Signal Transduction
- Young Adult
Collapse
Affiliation(s)
- F Nadeu
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - G Clot
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - J Delgado
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - D Martín-García
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - T Baumann
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - I Salaverria
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - S Beà
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - M Pinyol
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Unitat de Genòmica, IDIBAPS, Barcelona, Spain
| | - P Jares
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - A Navarro
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - M Aymerich
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - M Rozman
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - N Villamor
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - D Colomer
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - M González
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Biología Molecular e Histocompatibilidad, Hospital Universitario, Salamanca, Spain
| | - M Alcoceba
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Biología Molecular e Histocompatibilidad, Hospital Universitario, Salamanca, Spain
| | - M J Terol
- Unidad de Hematología, Hospital Clínico Universitario, Valencia, Spain
| | - B Navarro
- Unidad de Hematología, Hospital Clínico Universitario, Valencia, Spain
| | - E Colado
- Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - ÁR Payer
- Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - X S Puente
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - C López-Otín
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - A López-Guillermo
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
- Medical School, Universitat de Barcelona, Barcelona, Spain
| | - A Enjuanes
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Unitat de Genòmica, IDIBAPS, Barcelona, Spain
| | - E Campo
- Lymphoid Neoplasms Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
- Medical School, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Agathangelidis A, Ljungström V, Scarfò L, Fazi C, Gounari M, Pandzic T, Sutton LA, Stamatopoulos K, Tonon G, Rosenquist R, Ghia P. Highly similar genomic landscapes in monoclonal B-cell lymphocytosis and ultra-stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica 2018; 103:865-873. [PMID: 29449433 PMCID: PMC5927998 DOI: 10.3324/haematol.2017.177212] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/07/2018] [Indexed: 01/07/2023] Open
Abstract
Despite the recent discovery of recurrent driver mutations in chronic lymphocytic leukemia, the genetic factors involved in disease onset remain largely unknown. To address this issue, we performed whole-genome sequencing in 11 individuals with monoclonal B- cell lymphocytosis, both of the low-count and high-count subtypes, and 5 patients with ultra-stable chronic lymphocytic leukemia (>10 years without progression from initial diagnosis). All three entities were indistinguishable at the genomic level exhibiting low genomic complexity and similar types of somatic mutations. Exonic mutations were not frequently identified in putative chronic lymphocytic leukemia driver genes in all settings, including low-count monoclonal B-cell lymphocytosis. To corroborate these findings, we also performed deep sequencing in 11 known frequently mutated genes in an extended cohort of 28 monoclonal B-cell lymphocytosis/chronic lymphocytic leukemia cases. Interestingly, shared mutations were detected between clonal B cells and paired polymorphonuclear cells, strengthening the notion that at least a fraction of somatic mutations may occur before disease onset, likely at the hematopoietic stem cell level. Finally, we identified previously unreported non-coding variants targeting pathways relevant to B-cell and chronic lymphocytic leukemia development, likely associated with the acquisition of the characteristic neoplastic phenotype typical of both monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Andreas Agathangelidis
- Strategic Research Program on CLL and B-cell Neoplasia Unit, Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lydia Scarfò
- Strategic Research Program on CLL and B-cell Neoplasia Unit, Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | - Claudia Fazi
- Strategic Research Program on CLL and B-cell Neoplasia Unit, Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | - Maria Gounari
- Strategic Research Program on CLL and B-cell Neoplasia Unit, Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy.,Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Ghia
- Strategic Research Program on CLL and B-cell Neoplasia Unit, Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| |
Collapse
|
28
|
Brazdilova K, Plevova K, Skuhrova Francova H, Kockova H, Borsky M, Bikos V, Malcikova J, Oltova A, Kotaskova J, Tichy B, Brychtova Y, Mayer J, Doubek M, Pospisilova S. Multiple productive IGH rearrangements denote oligoclonality even in immunophenotypically monoclonal CLL. Leukemia 2017; 32:234-236. [PMID: 28937682 PMCID: PMC5770588 DOI: 10.1038/leu.2017.274] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- K Brazdilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - K Plevova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - H Skuhrova Francova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - H Kockova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Borsky
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - V Bikos
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - J Malcikova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - A Oltova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - J Kotaskova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - B Tichy
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Y Brychtova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - J Mayer
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Doubek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - S Pospisilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
29
|
Rodríguez-Vicente AE, Bikos V, Hernández-Sánchez M, Malcikova J, Hernández-Rivas JM, Pospisilova S. Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons. Oncotarget 2017; 8:71234-71248. [PMID: 29050359 PMCID: PMC5642634 DOI: 10.18632/oncotarget.19525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
The rapid progress in next-generation sequencing technologies has significantly contributed to our knowledge of the genetic events associated with the development, progression and treatment resistance of chronic lymphocytic leukemia patients. Together with the discovery of new driver mutations, next-generation sequencing has revealed an immense degree of both intra- and inter-tumor heterogeneity and enabled us to describe marked clonal evolution. Advances in immunogenetics may be implemented to detect minimal residual disease more sensitively and to track clonal B cell populations, their dynamics and molecular characteristics. The interpretation of these aspects is indispensable to thoroughly examine the genetic background of chronic lymphocytic leukemia. We review and discuss the recent results provided by the different next-generation sequencing techniques used in studying the chronic lymphocytic leukemia genome, as well as future perspectives in the methodologies and applications.
Collapse
Affiliation(s)
- Ana E Rodríguez-Vicente
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom.,IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Vasilis Bikos
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - María Hernández-Sánchez
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jitka Malcikova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Medical Faculty MU and University Hospital, Brno, Czech Republic
| | - Jesús-María Hernández-Rivas
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain.,Hematology Department, Hospital Universitario, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Medical Faculty MU and University Hospital, Brno, Czech Republic
| |
Collapse
|
30
|
Abstract
MOTIVATION A tumor arises from an evolutionary process that can be modeled as a phylogenetic tree. However, reconstructing this tree is challenging as most cancer sequencing uses bulk tumor tissue containing heterogeneous mixtures of cells. RESULTS We introduce P robabilistic A lgorithm for S omatic Tr ee I nference (PASTRI), a new algorithm for bulk-tumor sequencing data that clusters somatic mutations into clones and infers a phylogenetic tree that describes the evolutionary history of the tumor. PASTRI uses an importance sampling algorithm that combines a probabilistic model of DNA sequencing data with a enumeration algorithm based on the combinatorial constraints defined by the underlying phylogenetic tree. As a result, tree inference is fast, accurate and robust to noise. We demonstrate on simulated data that PASTRI outperforms other cancer phylogeny algorithms in terms of runtime and accuracy. On real data from a chronic lymphocytic leukemia (CLL) patient, we show that a simple linear phylogeny better explains the data the complex branching phylogeny that was previously reported. PASTRI provides a robust approach for phylogenetic tree inference from mixed samples. AVAILABILITY AND IMPLEMENTATION Software is available at compbio.cs.brown.edu/software. CONTACT braphael@princeton.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gryte Satas
- Department of Computer Science, Brown University, Providence, RI, USA
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| |
Collapse
|
31
|
Whole-genome sequencing of chronic lymphocytic leukaemia reveals distinct differences in the mutational landscape between IgHV mut and IgHV unmut subgroups. Leukemia 2017; 32:332-342. [PMID: 28584254 PMCID: PMC5808074 DOI: 10.1038/leu.2017.177] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/18/2017] [Accepted: 05/17/2017] [Indexed: 01/02/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) consists of two biologically and clinically distinct subtypes defined by the abundance of somatic hypermutation (SHM) affecting the Ig variable heavy-chain locus (IgHV). The molecular mechanisms underlying these subtypes are incompletely understood. Here, we present a comprehensive whole-genome sequencing analysis of somatically acquired genetic events from 46 CLL patients, including a systematic comparison of coding and non-coding single-nucleotide variants, copy number variants and structural variants, regions of kataegis and mutation signatures between IgHVmut and IgHVunmut subtypes. We demonstrate that one-quarter of non-coding mutations in regions of kataegis outside the Ig loci are located in genes relevant to CLL. We show that non-coding mutations in ATM may negatively impact on ATM expression and find non-coding and regulatory region mutations in TCL1A, and in IgHVunmut CLL in IKZF3, SAMHD1,PAX5 and BIRC3. Finally, we show that IgHVunmut CLL is dominated by coding mutations in driver genes and an aging signature, whereas IgHVmut CLL has a high incidence of promoter and enhancer mutations caused by aberrant activation-induced cytidine deaminase activity. Taken together, our data support the hypothesis that differences in clinical outcome and biological characteristics between the two subgroups might reflect differences in mutation distribution, incidence and distinct underlying mutagenic mechanisms.
Collapse
|
32
|
Ghamlouch H, Nguyen-Khac F, Bernard OA. Chronic lymphocytic leukaemia genomics and the precision medicine era. Br J Haematol 2017; 178:852-870. [DOI: 10.1111/bjh.14719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hussein Ghamlouch
- Institut National De La Santé Et De La Recherche Médicale (INSERM) U1170; Villejuif France
- Gustave Roussy; Villejuif France
- Université Paris Saclay; Paris France
- Equipe Labellisée Ligue Nationale Contre Le Cancer; Paris France
| | - Florence Nguyen-Khac
- INSERM U1138; Université Pierre et Marie Curie-Paris 6; Service d'Hématologie Biologique; Hôpital Pitié-Salpêtrière; APHP; Paris France
| | - Olivier A. Bernard
- Institut National De La Santé Et De La Recherche Médicale (INSERM) U1170; Villejuif France
- Gustave Roussy; Villejuif France
- Université Paris Saclay; Paris France
- Equipe Labellisée Ligue Nationale Contre Le Cancer; Paris France
| |
Collapse
|
33
|
The mutational signature of chronic lymphocytic leukemia. Biochem J 2016; 473:3725-3740. [DOI: 10.1042/bcj20160256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/23/2016] [Indexed: 01/14/2023]
Abstract
Advances in next-generation sequencing technologies continue to unravel the cancer genome, identifying key biological pathways important for disease pathogenesis and clinically relevant genetic lesions. These studies have provided unprecedented resolution of the cancer genome, facilitating significant advances in the ability to detect many cancers, and predict patients who will develop an aggressive disease or respond poorly to treatment. The mature B-cell neoplasm chronic lymphocytic leukaemia remains at the forefront of these genomic analyses, largely due its protracted natural history and the accessibility to suitable material for study. We now possess a comprehensive view of the genomic copy number mutational landscape of the disease, as well as a detail description of clonal evolution, and the molecular mechanisms that drive the acquisition of genomic lesions and more broadly, genomic complexity. Here, recent genomic insights with associated biological and clinical implications will be reviewed.
Collapse
|