1
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
2
|
Liu L, Gong D, Sun H, Feng F, Xu J, Sun X, Gong L, Yu Z, Fang T, Xu Y, Lyu R, Wang T, Wang W, Tian W, Qiu L, An G, Hao M. DNp73 enhances tumor progression and immune evasion in multiple myeloma by targeting the MYC and MYCN pathways. Front Immunol 2024; 15:1470328. [PMID: 39380995 PMCID: PMC11459316 DOI: 10.3389/fimmu.2024.1470328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Multiple myeloma (MM) is an incurable hematological malignancy with high chromosome instability and heavy dependence on the immunosuppressive bone marrow microenvironment. P53 mutations are adverse prognostic factors in MM; however, clinically, some patients without P53 mutations also exhibit aggressive disease progression. DNp73, an inhibitor of TP53 tumor suppressor family members, drives drug resistance and cancer progression in several solid malignancies. Nevertheless, the biological functions of DNp73 and the molecular mechanisms in myelomagenesis remain unclear. Methods The effects of DNp73 on proliferation and drug sensitivity were assessed using flow cytometry and xenograft models. To investigate the mechanisms of drug resistance, RNA-seq and ChIP-seq analyses were performed in MM cell lines, with validation by Western blot and RT-qPCR. Immunofluorescence and transwell assays were used to assess DNA damage and cell invasion in MM cells. Additionally, in vitro phagocytosis assays were conducted to confirm the role of DNp73 in immune evasion. Results Our study found that activation of NF-κB-p65 in multiple myeloma cells with different p53 mutation statuses upregulates DNp73 expression at the transcriptional level. Forced expression of DNp73 promoted aggressive proliferation and multidrug resistance in MM cells. Bulk RNA-seq analysis was conducted to assess the levels of MYCN, MYC, and CDK7. A ChIP-qPCR assay was used to reveal that DNp73 acts as a transcription factor regulating MYCN gene expression. Bulk RNA-seq analysis demonstrated increased levels of MYCN, MYC, and CDK7 with forced DNp73 expression in MM cells. A ChIP-qPCR assay revealed that DNp73 upregulates MYCN gene expression as a transcription factor. Additionally, DNp73 promoted immune evasion of MM cells by upregulating MYC target genes CD47 and PD-L1. Blockade of the CD47/SIRPα and PD-1/PD-L1 signaling pathways by the SIRPα-Fc fusion protein IMM01 and monoclonal antibody atezolizumab significantly restored the anti-MM activity of macrophages and T cells in the microenvironment, respectively. Discussion In summary, our study demonstrated for the first time that the p53 family member DNp73 remarkably induces proliferation, drug resistance, and immune escape of myeloma cells by directly targeting MYCN and regulating the MYC pathway. The oncogenic function of DNp73 is independent of p53 status in MM cells. These data contribute to a better understanding of the function of TP53 and its family members in tumorigenesis. Moreover, our study clarified that DNp73 overexpression not only promotes aggressive growth of tumor cells but, more importantly, promotes immune escape of MM cells through upregulation of immune checkpoints. DNp73 could serve as a biomarker for immunotherapy targeting PD-L1 and CD47 blockade in MM patients.
Collapse
Affiliation(s)
- Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dasen Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fangshuo Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jie Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rui Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Gobroad Healthcare Group, Beijing, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
3
|
Liu S, Ruan Y, Chen X, He B, Chen Q. miR-137: a potential therapeutic target for lung cancer. Front Cell Dev Biol 2024; 12:1427724. [PMID: 39247624 PMCID: PMC11377224 DOI: 10.3389/fcell.2024.1427724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a prevalent malignancy and the leading cause of cancer-related deaths, posing a significant threat to human health. Despite advancements in treatment, the prognosis for lung cancer patients remains poor due to late diagnosis, cancer recurrence, and drug resistance. Epigenetic research, particularly in microRNAs, has introduced a new avenue for cancer prevention and treatment. MicroRNAs, including miR-137, play a vital role in tumor development by regulating various cellular processes. MiR-137 has garnered attention for its tumor-suppressive properties, with studies showing its potential in inhibiting cancer progression. In lung cancer, miR-137 is of particular interest, with numerous reports exploring its role and mechanisms. A comprehensive review is necessary to consolidate current evidence. This review highlights recent studies on miR-137 in lung cancer, covering cell proliferation, migration, apoptosis, drug resistance, and therapy, emphasizing its potential as a biomarker and therapeutic target for lung cancer treatment and prognosis.
Collapse
Affiliation(s)
- Shuanshuan Liu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xu Chen
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bao He
- Department of Neurosurgery, The First People's hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Cao X, Xiang J, Zhang Q, Liu J, Zhou D, Xu Y, Xu P, Chen B, Bai H. Multidimensional role of adapalene in regulating cell death in multiple myeloma. Front Pharmacol 2024; 15:1415224. [PMID: 39175546 PMCID: PMC11338798 DOI: 10.3389/fphar.2024.1415224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Aims Multiple myeloma (MM) remains a challenging condition to cure, with persistent drug resistance negating the benefits of treatment advancements. The unraveling complexities in programmed cell death (PCD), inclusive of apoptosis, autophagy, and ferroptosis, have highlighted novel therapeutic avenues. Our study focuses on deciphering how adapalene (ADA), a small molecule compound, accelerates the demise of MM cells via targeting their compensatory survival mechanisms. Methods To assess the impact of ADA on MM, we employed flow cytometry and trypan blue exclusion assays to determine cell viabilities across MM cell lines and primary patient samples post-treatment. To delineate ADA's therapeutic targets and mechanisms, we conducted RNA sequencing (RNA-seq), gene set enrichment analysis (GSEA), molecular docking, and molecular dynamics simulations. We further designed pre-clinical trials emphasizing MM, exploring the efficacy of ADA as a standalone and in combination with bortezomib (BTZ). Results ADA elicited a dose-responsive induction of MM cell death. Building upon ADA's anti-MM capabilities as a single agent, we proposed that ADA-BTZ co-treatment might amplify this lethality. Indeed, ADA and BTZ together greatly potentiated MM cell death. ADA proved beneficial in restoring BTZ susceptibility in BTZ-resistant relapsed or refractory MM (RRMM) patient cells. Molecular simulations highlighted ADA's high affinity (-9.17 kcal/mol) for CD138, with MM-GBSA revealing a binding free energy of -27.39 kcal/mol. Detailed interaction analyses indicated hydrogen-bonding of ADA with CD138 at the Asp35 and Gln34 residues. Additionally, ADA emerged as a versatile instigator of both ferroptosis and apoptosis in MM cells. Furthermore, ADA disrupted activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway triggered by BTZ, fostering cell death in BTZ-resistant MM subsets. Conclusion ADA demonstrates a comprehensive capability to orchestrate MM cell death, exerting pronounced anti-MM activity while disrupting NF-κB-related drug resistance. ADA sensitization of MM cells to BTZ unravels its potential as a novel therapeutic drug for MM management.
Collapse
Affiliation(s)
- Xinya Cao
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Qi Zhang
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinwen Liu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongming Zhou
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Bai
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Kulig P, Łuczkowska K, Bakinowska E, Baumert B, Machaliński B. Epigenetic Alterations as Vital Aspects of Bortezomib Molecular Action. Cancers (Basel) 2023; 16:84. [PMID: 38201512 PMCID: PMC10778101 DOI: 10.3390/cancers16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Bortezomib (BTZ) is widely implemented in the treatment of multiple myeloma (MM). Its main mechanism of action is very well established. BTZ selectively and reversibly inhibits the 26S proteasome. More precisely, it interacts with the chymotryptic site of the 20S proteasome and therefore inhibits the degradation of proteins. This results in the intracellular accumulation of misfolded or otherwise defective proteins leading to growth inhibition and apoptosis. As well as interfering with the ubiquitin-proteasome complex, BTZ elicits various epigenetic alterations which contribute to its cytotoxic effects as well as to the development of BTZ resistance. In this review, we summarized the epigenetic alterations elicited by BTZ. We focused on modifications contributing to the mechanism of action, those mediating drug-resistance development, and epigenetic changes promoting the occurrence of peripheral neuropathy. In addition, there are therapeutic strategies which are specifically designed to target epigenetic changes. Herein, we also reviewed epigenetic agents which might enhance BTZ-related cytotoxicity or restore the sensitivity to BTZ of resistant clones. Finally, we highlighted putative future perspectives regarding the role of targeting epigenetic changes in patients exposed to BTZ.
Collapse
Affiliation(s)
- Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Estera Bakinowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
6
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of Non-Coding RNAs: Roles of miRNAs and lncRNAs in the Pathogenesis of Multiple Myeloma. Noncoding RNA 2023; 9:68. [PMID: 37987364 PMCID: PMC10660696 DOI: 10.3390/ncrna9060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman 11111, Sudan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Elkady MA, Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Hegazy M, Elballal MS, Mohammed OA, El-Husseiny HM, Midan HM, El-Dakroury WA, Zewail MB, Abdel Mageed SS, Doghish AS. miRNAs driving diagnosis, progression, and drug resistance in multiple myeloma. Pathol Res Pract 2023; 248:154704. [PMID: 37499518 DOI: 10.1016/j.prp.2023.154704] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Multiple myeloma (MM) is a tumor of transformed plasma cells. It's the second most common hematologic cancer after non-Hodgkin lymphoma. MM is a complex disease with many different risk factors, including ethnicity, race, and epigenetics. The microRNAs (miRNAs) are a critical epigenetic factor in multiple myeloma, influencing key aspects such as pathogenesis, prognosis, and resistance to treatment. They have the potential to assist in disease diagnosis and modulate the resistance behavior of MM towards therapeutic regimens. These characteristics could be attributed to the modulatory effects of miRNAs on some vital pathways such as NF-KB, PI3k/AKT, and P53. This review discusses the role of miRNAs in MM with a focus on their role in disease progression, diagnosis, and therapeutic resistance.
Collapse
Affiliation(s)
- Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
8
|
Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Hegazy M, Elballal MS, Mohammed OA, El-Husseiny HM, Midan HM, El-Dakroury WA, Zewail MB, Abdel Mageed SS, Moustafa YM, Mostafa RM, Elkady MA, Doghish AS. Decoding the role of miRNAs in multiple myeloma pathogenesis: A focus on signaling pathways. Pathol Res Pract 2023; 248:154715. [PMID: 37517169 DOI: 10.1016/j.prp.2023.154715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Multiple myeloma (MM) is a cancer of plasma cells that has been extensively studied in recent years, with researchers increasingly focusing on the role of microRNAs (miRNAs) in regulating gene expression in MM. Several non-coding RNAs have been demonstrated to regulate MM pathogenesis signaling pathways. These pathways might regulate MM development, apoptosis, progression, and therapeutic outcomes. They are Wnt/β-catenin, PI3K/Akt/mTOR, P53 and KRAS. This review highlights the impending role of miRNAs in MM signaling and their relationship with MM therapeutic interventions.
Collapse
Affiliation(s)
- Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | | | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
9
|
Papadimitriou MA, Soureas K, Papanota AM, Tsiakanikas P, Adamopoulos PG, Ntanasis-Stathopoulos I, Malandrakis P, Gavriatopoulou M, Sideris DC, Kastritis E, Avgeris M, Dimopoulos MA, Terpos E, Scorilas A. miRNA-seq identification and clinical validation of CD138+ and circulating miR-25 in treatment response of multiple myeloma. J Transl Med 2023; 21:245. [PMID: 37024879 PMCID: PMC10080848 DOI: 10.1186/s12967-023-04034-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Despite significant advancements in multiple myeloma (MM) therapy, the highly heterogenous treatment response hinders reliable prognosis and tailored therapeutics. Herein, we have studied the clinical utility of miRNAs in ameliorating patients' management. METHODS miRNA-seq was performed in bone marrow CD138+ plasma cells (PCs) of 24 MM and smoldering MM (sMM) patients to analyze miRNAs profile. CD138+ and circulating miR-25 levels were quantified using in house RT-qPCR assays in our screening MM/sMM cohort (CD138+ plasma cells n = 167; subcohort of MM peripheral plasma samples n = 69). Two external datasets (Kryukov et al. cohort n = 149; MMRF CoMMpass study n = 760) served as institutional-independent validation cohorts. Patients' mortality and disease progression were assessed as clinical endpoints. Internal validation was performed by bootstrap analysis. Clinical benefit was estimated by decision curve analysis. RESULTS miRNA-seq highlighted miR-25 of CD138+ plasma cells to be upregulated in MM vs. sMM, R-ISS II/III vs. R-ISS I, and in progressed compared to progression-free patients. The analysis of our screening cohort highlighted that CD138+ miR-25 levels were correlated with short-term progression (HR = 2.729; p = 0.009) and poor survival (HR = 4.581; p = 0.004) of the patients; which was confirmed by Kryukov et al. cohort (HR = 1.878; p = 0.005) and MMRF CoMMpass study (HR = 1.414; p = 0.039) validation cohorts. Moreover, multivariate miR-25-fitted models contributed to superior risk-stratification and clinical benefit in MM prognostication. Finally, elevated miR-25 circulating levels were correlated with poor survival of MM patients (HR = 5.435; p = 0.021), serving as a potent non-invasive molecular prognostic tool. CONCLUSIONS Our study identified miR-25 overexpression as a powerful independent predictor of poor treatment outcome and post-treatment progression, aiding towards modern non-invasive disease prognosis and personalized treatment decisions.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Aristea-Maria Papanota
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| |
Collapse
|
10
|
Hashemi M, Roshanzamir SM, Paskeh MDA, Karimian SS, Mahdavi MS, Kheirabad SK, Naeemi S, Taheriazam A, Salimimoghaddam S, Entezari M, Mirzaei S, Samarghandian S. Non-coding RNAs and exosomal ncRNAs in multiple myeloma: An emphasis on molecular pathways. Eur J Pharmacol 2023; 941:175380. [PMID: 36627099 DOI: 10.1016/j.ejphar.2022.175380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 01/08/2023]
Abstract
One of the most common hematological malignancies is multiple myeloma (MM) that its mortality and morbidity have increased. The incidence rate of MM is suggested to be higher in Europe and various kinds of therapeutic strategies including stem cell transplantation. However, MM treatment is still challenging and gene therapy has been shown to be promising. The non-coding RNAs (ncRNAs) including miRNAs, lncRNAs and circRNAs are considered as key players in initiation, development and progression of MM. In the present review, the role of ncRNAs in MM progression and drug resistance is highlighted to provide new insights for future experiments for their targeting and treatment of MM. The miRNAs affect proliferation and invasion of MM cells, and targeting tumor-promoting miRNAs can induce apoptosis and cell cycle arrest, and reduces proliferation of MM cells. Furthermore, miRNA regulation is of importance for modulating metastasis and chemotherapy response of tumor cells. The lncRNAs exert the same function and determine proliferation, migration and therapy response of MM cells. Notably, lncRNAs mainly target miRNAs in regulating MM progression. The circRNAs also target different molecular pathways in regulating MM malignancy that miRNAs are the most well-known ones. Furthermore, clinical application of ncRNAs in MM is discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Sadat Mahdavi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shokooh Salimimoghaddam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Abstract
Multiple myeloma (MM) remains incurable despite advances in current treatment. Patients with MM exhibit significant variations in their prognosis and survival. Recently, genetic abnormalities, such as chromosomal variations and gene mutations, have been increasingly recognized in MM. Therefore, better prognostic indicators of MM are required for the diagnosis and treatment of patients with MM. ncRNAs are non-protein-coding transcripts that regulate gene expression at the post-transcriptional level. Deregulation of ncRNAs affects cell cycle progression, cancer cell invasion and metastasis. The abnormal expression of these ncRNAs is also critical for the pathogenesis of several cancers, including MM. Hence, this review aims to discuss the recent findings on the role of regulatory ncRNAs and evaluate their potential value in MM.
Collapse
Affiliation(s)
- Songze Leng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Huiting Qu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
12
|
Fan C, Li Y. MiR-137-mediated negative relationship between LGR4 and RANKL modulated osteogenic differentiation of human adipose-derived mesenchymal stem cells. Genet Mol Biol 2022; 45:e20210322. [PMID: 36121915 PMCID: PMC9495020 DOI: 10.1590/1678-4685-gmb-2021-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNA-137 (miR-137) has recently emerged as an osteogenic regulator in several cell lines. This study aimed to identify the function of miR-137 on the crosstalk between leucine rich repeat containing G protein-coupled receptor 4 (LGR4) and receptor activator of nuclear factor-κB ligand (RANKL), thus unveiling the critical role of LGR4-RANKL interplay in the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hASCs). By examining the osteogenic capacity and possible downstream genes expression with miR-137 overexpression/knockdown, we found that miR-137 downregulated LGR4 while upregulating RANKL. According to the results of dual-luciferase reporter assay, LGR4 was validated as a direct target of miR-137. Surprisingly, a negative relationship between LGR4 and RANKL was confirmed by the knockdown of these two genes. Furthermore, RANKL inhibitor could alleviate or reverse the inhibitory effects on osteogenesis generated by LGR4 knockdown. Collectively, this study indicated that miR-137-induced a negative crosstalk between LGR4 and RANKL that could contribute to the osteogenic regulation of hASCs and provide more systematic and in-depth understanding of epigenetic modulation by miR-137.
Collapse
Affiliation(s)
- Cong Fan
- Peking University School and Hospital of Stomatology, Department of General Dentistry II, Beijing, China.,National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yulong Li
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| |
Collapse
|
13
|
Blocking glycine utilization inhibits multiple myeloma progression by disrupting glutathione balance. Nat Commun 2022; 13:4007. [PMID: 35817773 PMCID: PMC9273595 DOI: 10.1038/s41467-022-31248-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolites in the tumor microenvironment are a critical factor for tumor progression. However, the lack of knowledge about the metabolic profile in the bone marrow (BM) microenvironment of multiple myeloma (MM) limits our understanding of MM progression. Here, we show that the glycine concentration in the BM microenvironment is elevated due to bone collagen degradation mediated by MM cell-secreted matrix metallopeptidase 13 (MMP13), while the elevated glycine level is linked to MM progression. MM cells utilize the channel protein solute carrier family 6 member 9 (SLC6A9) to absorb extrinsic glycine subsequently involved in the synthesis of glutathione (GSH) and purines. Inhibiting glycine utilization via SLC6A9 knockdown or the treatment with betaine suppresses MM cell proliferation and enhances the effects of bortezomib on MM cells. Together, we identify glycine as a key metabolic regulator of MM, unveil molecular mechanisms governing MM progression, and provide a promising therapeutic strategy for MM treatment. The bone tumour microenvironment plays an essential role in multiple myeloma (MM) development. Here, the authors show that bone collagen degradation provides glycine to support MM progression through glutathione and purine synthesis.
Collapse
|
14
|
Liu LT, Wei XJ, Gong LX, Yu Z, Qiu LG, Hao M. [Establishment and comparison of three human multiple myeloma cell line transplantation models in mice]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:414-419. [PMID: 35680600 PMCID: PMC9250955 DOI: 10.3760/cma.j.issn.0253-2727.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 11/24/2022]
Abstract
Objective: To establish three types of xenotransplantation models using human myeloma cell lines ARP1, MM.1S, and NCI-H929 and to compare the proliferation, tumor load, and biological characteristics of the three types of cells after transplantation. Methods: Suspensions of human myeloma cell lines ARP1, MM.1S, and NCI-H929 were implanted into NOD/SCID mice by subcutaneous injection or tail vein injection. The survival of the mice was observed weekly, and the tumor load was measured. Flow cytometry was used to detect the proportion of CD138(+) cells in tumor tissue or the mouse bone marrow. CD138(+) cells and light chains were detected by immunofluorescence. Light chains in bone marow and peipheral blood were measured by ELISA, and bone disease was assessed by micro-CT. Results: Mice injected with ARP1, MM.1S, and NCI-H929 cells all formed tumors subcutaneously in about 2 weeks. Immunofluorescence detection supported plasma cell tumors. Kappa light chains were detected in the peripheral blood of ARP1 mice on day 20 after tail vein transplantation (8.2±1.0 ng/ml) . After 6 weeks of tail vein transplantation, mice in the ARP1 group showed signs of weight loss, mental depression, and dragging legs, and human CD138(+)CD38(+) cells were detected in the bone marrow (BM) . Furthermore, bortezomib (BTZ) treatment given once the tumor was established significantly reduced the tumor burden[ (5.7±0.2) % vs (21.3±2.1) %, P<0.01]. Human CD138(+)CD38(+) cells were not detected in the BM of the MM.1S or NCI-H929 groups. Conclusion: The results of this study suggest that the mouse models constructed by the three cell lines (ARP1, MM.1S, and NCI-H929) can be used as models for the pathogenesis and clinical research of MM.
Collapse
Affiliation(s)
- L T Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X J Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L X Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Z Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L G Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - M Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
15
|
Yu Z, Wei X, Liu L, Sun H, Fang T, Wang L, Li Y, Sui W, Wang K, He Y, Zhao Y, Huang W, An G, Meng F, Huang C, Yu T, Anderson KC, Cheng T, Qiu L, Hao M. Indirubin-3'-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine 2022; 78:103950. [PMID: 35344764 PMCID: PMC8958548 DOI: 10.1016/j.ebiom.2022.103950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still an incurable malignancy of plasma cells. Proteasome inhibitors (PIs) work as the backbone agent and have greatly improved the outcome in majority of newly diagnosed patients with myeloma. However, drug resistance remains the major obstacle causing treatment failure in clinical practice. Here, we investigated the effects of Indirubin-3'-monoxime (I3MO), one of the derivatives of Indirubin, in the treatment of MM. METHODS MM patient primary samples and human cell lines were examined. I3MO effects on myeloma treatment and the underling molecular mechanisms were investigated via in vivo and in vitro study. FINDINGS Our results demonstrated the anti-MM activity of I3MO in both drug- sensitive and -resistance MM cells. I3MO sensitizes MM cells to bortezomib-induced apoptosis. Mechanistically, I3MO acts as a multifaceted regulator of cell death, which induced DNA damage, cell cycle arrest, and abrogates NF-κB activation. I3MO efficiently down-regulated USP7 expression, promoted NEK2 degradation, and suppressed NF-κB signaling in MM. Our study reported that I3MO directly bound with and caused the down-regulation of PA28γ (PSME3), and PA200 (PSME4), the proteasome activators. Knockdown of PSME3 or PSME4 caused the inhibition of proteasome capacity and the overload of paraprotein, which sensitizes MM cells to bortezomib-mediated growth arrest. Clinical data demonstrated that PSME3 and PSME4 are over-expressed in relapsed/refractory MM (RRMM) and associated with inferior outcome. INTERPRETATION Altogether, our study indicates that I3MO is agent triggering proteasome inhibition and represents a promising therapeutic strategy to improve patient outcome in MM. FUNDINGS A full list of funding can be found in the acknowledgements.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Changjiang Huang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| |
Collapse
|
16
|
Dou X, Sun X, Huang H, Jiang L, Jin Z, Liu Y, Zou Y, Li Z, Zhu G, Jin H, Jiao N, Zhang L, Liu Z, Zhang L. Discovery of novel ataxia telangiectasia mutated (ATM) kinase modulators: Computational simulation, biological evaluation and cancer combinational chemotherapy study. Eur J Med Chem 2022; 233:114196. [DOI: 10.1016/j.ejmech.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
|
17
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
18
|
miRNA-seq and clinical evaluation in multiple myeloma: miR-181a overexpression predicts short-term disease progression and poor post-treatment outcome. Br J Cancer 2022; 126:79-90. [PMID: 34718359 PMCID: PMC8727627 DOI: 10.1038/s41416-021-01602-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/10/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite significant advances in multiple myeloma (MM) therapy, disease relapse and treatment resistance remain major obstacles in clinical management. Herein, we have studied the clinical utility of miRNAs in improving patients' risk-stratification and prognosis. METHODS miRNA-seq was performed in CD138+ plasma cells of MM, smoldering multiple myeloma (sMM) and monoclonal gammopathy of undetermined significance (MGUS) patients. The screening MM cohort consisted of 138 patients. miRNA levels of CD138+ plasma cells were quantified by RT-qPCR following 3'-end RNA polyadenylation. Disease progression and patients' death were used as clinical end-point events. Internal validation was conducted by bootstrap analysis. Clinical net benefit on disease prognosis was assessed by decision curve analysis. Kruykov et al. 2016 served as validation cohort (n = 151). RESULTS miRNA-seq highlighted miR-181a to be upregulated in MM vs. sMM/MGUS, and R-ISS III vs. I patients. Screening and validation cohorts confirmed the significantly higher risk for short-term progression and worse survival of the patients overexpressing miR-181a. Multivariate models integrating miR-181a with disease established markers led to superior risk-stratification and clinical benefit for MM prognosis. CONCLUSIONS CD138+ overexpression of miR-181a was strongly correlated with inferior disease outcome and contributed to superior prediction of MM patients early progression, supporting personalised prognosis and treatment decisions.
Collapse
|
19
|
Chen D, Yang X, Liu M, Zhang Z, Xing E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther 2021; 28:1256-1268. [PMID: 33402729 PMCID: PMC8636266 DOI: 10.1038/s41417-020-00291-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a malignant disease of plasma cells with complex pathology, causing significant morbidity due to its end-organ destruction. The outcomes of patients with myeloma have significantly improved in the past couple of decades with the introduction of novel agents, such as proteasome inhibitors, immunomodulators, and monoclonal antibodies. However, MM remains incurable and presents considerable individual heterogeneity. MicroRNAs (miRNAs) are short, endogenous noncoding RNAs of 19-22 nucleotides that regulate gene expression at the posttranscriptional level. Numerous studies have shown that miRNA deregulation is closely related to MM pathology, including tumor initiation, progression, metastasis, prognosis, and drug response, which make the complicated miRNA network an attractive and marvelous area of investigation for novel anti-MM therapeutic approaches. Herein, we mainly summarized the current knowledge on the roles of miRNAs, which are of great significance in regulating pathological factors involved in MM progressions, such as bone marrow microenvironment, methylation, immune regulation, genomic instability, and drug resistance. Meanwhile, their potential as novel prognostic biomarkers and therapeutic targets was also discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xinhong Yang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Min Liu
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| | - Enhong Xing
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| |
Collapse
|
20
|
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D, Vanden Berghe W. Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. Int J Mol Sci 2021; 22:12234. [PMID: 34830117 PMCID: PMC8618106 DOI: 10.3390/ijms222212234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Bart Cuypers
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Anne Schepers
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Herald Berghmans
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Jelle Verdonck
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
| | - Kris Laukens
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| |
Collapse
|
21
|
Wang PC, Chen ST, Yang ZM. Effects of Aurora kinase A on mouse decidualization via Stat3-plk1-cdk1 pathway. Reprod Biol Endocrinol 2021; 19:162. [PMID: 34715887 PMCID: PMC8557062 DOI: 10.1186/s12958-021-00847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decidualization is essential to the successful pregnancy in mice. The molecular mechanisms and effects of Aurora kinase A (Aurora A) remain poorly understood during pregnancy. This study is the first to investigate the expression and role of Aurora A during mouse decidualization. METHODS Quantitative real time polymerase chain reaction, western blotting and in situ hybridization were used to determine the expression of Aurora A in mouse uteri. Aurora A activity was inhibited by Aurora A inhibitor to explore the role of Aurora A on decidualization via regulating the Aurora A/Stat3/Plk1/Cdk1 signaling pathway. RESULTS Aurora A was strongly expressed at implantation sites compared with inter-implantation sites. Furthermore, Aurora A was also significantly increased in oil-induced deciduoma compared with control. Both Aurora A mRNA and protein were significantly increased under in vitro decidualization. Under in vitro decidualization, Prl8a2, a marker of mouse decidualization, was significantly decreased by TC-S 7010, an Aurora A inhibitor. Additionally, Prl8a2 was reduced by Stat3 inhibitor, Plk1 inhibitor and Cdk1 inhibitor, respectively. Moreover, the protein levels of p-Stat3, p-Plk1 and p-Cdk1 were suppressed by TC-S 7010. The protein levels of p-Stat3, p-Plk1 and p-Cdk1 were also suppressed by S3I-201, a Stat3 inhibitor). SBE 13 HCl (Plk1 inhibitor) could reduce the protein levels of p-Plk1 and p-Cdk1. Collectively, Aurora A could regulate Stat3/Plk1/Cdk1 signaling pathway. CONCLUSION Our study shows that Aurora A is expressed in decidual cells and should be important for mouse decidualization. Aurora A/Stat3/Plk1/Cdk1 signaling pathway may be involved in mouse decidualization.
Collapse
Affiliation(s)
- Peng-Chao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
22
|
Kalushkova A, Nylund P, Párraga AA, Lennartsson A, Jernberg-Wiklund H. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies. EPIGENOMES 2021; 5:epigenomes5040022. [PMID: 34968247 PMCID: PMC8715477 DOI: 10.3390/epigenomes5040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.
Collapse
Affiliation(s)
- Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
- Correspondence:
| | - Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157 Huddinge, Sweden;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| |
Collapse
|
23
|
Fan C, Ma X, Wang Y, Lv L, Zhu Y, Liu H, Liu Y. A NOTCH1/LSD1/BMP2 co-regulatory network mediated by miR-137 negatively regulates osteogenesis of human adipose-derived stem cells. Stem Cell Res Ther 2021; 12:417. [PMID: 34294143 PMCID: PMC8296522 DOI: 10.1186/s13287-021-02495-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/05/2021] [Indexed: 01/26/2023] Open
Abstract
Background MicroRNAs have been recognized as critical regulators for the osteoblastic lineage differentiation of human adipose-derived stem cells (hASCs). Previously, we have displayed that silencing of miR-137 enhances the osteoblastic differentiation potential of hASCs partly through the coordination of lysine-specific histone demethylase 1 (LSD1), bone morphogenetic protein 2 (BMP2), and mothers against decapentaplegic homolog 4 (SMAD4). However, still numerous molecules involved in the osteogenic regulation of miR-137 remain unknown. This study aimed to further elucidate the epigenetic mechanisms of miR-137 on the osteogenic differentiation of hASCs. Methods Dual-luciferase reporter assay was performed to validate the binding to the 3′ untranslated region (3′ UTR) of NOTCH1 by miR-137. To further identify the role of NOTCH1 in miR-137-modulated osteogenesis, tangeretin (an inhibitor of NOTCH1) was applied to treat hASCs which were transfected with miR-137 knockdown lentiviruses, then together with negative control (NC), miR-137 overexpression and miR-137 knockdown groups, the osteogenic capacity and possible downstream signals were examined. Interrelationships between signaling pathways of NOTCH1-hairy and enhancer of split 1 (HES1), LSD1 and BMP2-SMADs were thoroughly investigated with separate knockdown of NOTCH1, LSD1, BMP2, and HES1. Results We confirmed that miR-137 directly targeted the 3′ UTR of NOTCH1 while positively regulated HES1. Tangeretin reversed the effects of miR-137 knockdown on osteogenic promotion and downstream genes expression. After knocking down NOTCH1 or BMP2 individually, we found that these two signals formed a positive feedback loop as well as activated LSD1 and HES1. In addition, LSD1 knockdown induced NOTCH1 expression while suppressed HES1. Conclusions Collectively, we proposed a NOTCH1/LSD1/BMP2 co-regulatory signaling network to elucidate the modulation of miR-137 on the osteoblastic differentiation of hASCs, thus providing mechanism-based rationale for miRNA-targeted therapy of bone defect. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02495-3.
Collapse
Affiliation(s)
- Cong Fan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China. .,National Center of Stomatology, Beijing, China. .,National Clinical Research Center for Oral Diseases, Beijing, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China. .,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China. .,NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xiaohan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Prosthodontics, Beijing Stomatological Hospital Capital Medical University, Beijing, China
| | - Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China.,NMPA Key Laboratory for Dental Materials, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China.,NMPA Key Laboratory for Dental Materials, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
24
|
Liu L, Qu J, Dai Y, Qi T, Teng X, Li G, Qu Q. An interactive nomogram based on clinical and molecular signatures to predict prognosis in multiple myeloma patients. Aging (Albany NY) 2021; 13:18442-18463. [PMID: 34260414 PMCID: PMC8351694 DOI: 10.18632/aging.203294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
Although novel drugs and treatments have been developed and improved, multiple myeloma (MM) is still recurrent and difficult to cure. In the present study, the magenta module containing 400 hub genes was determined from the training dataset of GSE24080 through weighted gene co-expression network analysis (WGCNA). Then, using the least absolute shrinkage and selection operator (Lasso) analysis, a fifteen-gene signature was firstly selected and the predictive performance for overall survival (OS) was favorable, which was identified by Receiver Operating Characteristic (ROC) curves. The risk score model was constructed based on survival-associated fifteen genes from the Lasso model, which classified MM patients into high-risk and low-risk groups. Areas under the curve (AUC) of ROC curve and log-rank test showed that the high-risk group was correlated to the dismal survival outcome of MM patients, which was also identified in testing dataset of GSE9782. The calibration plot, the AUC value of the ROC curve and Concordance-index showed that the interactive nomogram with risk score could favorably predict the probability of multi-year OS of MM patients. Therefore, it may help clinicians make a precise therapeutic decision based on the easy-to-use tool of the nomogram.
Collapse
Affiliation(s)
- Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yuxin Dai
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinqi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J. Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. Int J Mol Sci 2021; 22:ijms22147350. [PMID: 34298969 PMCID: PMC8306710 DOI: 10.3390/ijms22147350] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a complex disease involving alterations of multiple processes, with both genetic and epigenetic features contributing as core factors to the disease. In recent years, it has become evident that non-coding RNAs (ncRNAs), an epigenetic factor, play a key role in the initiation and progression of cancer. MicroRNAs, the most studied non-coding RNAs subtype, are key controllers in a myriad of cellular processes, including proliferation, differentiation, and apoptosis. Furthermore, the expression of miRNAs is controlled, concomitantly, by other epigenetic factors, such as DNA methylation and histone modifications, resulting in aberrant patterns of expression upon the occurrence of cancer. In this sense, aberrant miRNA landscape evaluation has emerged as a promising strategy for cancer management. In this review, we have focused on the regulation (biogenesis, processing, and dysregulation) of miRNAs and their role as modulators of the epigenetic machinery. We have also highlighted their potential clinical value, such as validated diagnostic and prognostic biomarkers, and their relevant role as chromatin modifiers in cancer therapy.
Collapse
Affiliation(s)
- María J. Pajares
- Biochemistry Area, Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.J.P.); (S.G.)
- IDISNA Navarra’s Health Research Institute, 31008 Pamplona, Spain;
| | - Ester Alemany-Cosme
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
| | - Saioa Goñi
- Biochemistry Area, Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.J.P.); (S.G.)
| | - Eva Bandres
- IDISNA Navarra’s Health Research Institute, 31008 Pamplona, Spain;
- Immunology Unit, Department of Hematology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Cora Palanca-Ballester
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
- Epigenomics Core Facility, Health Research Institute la Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-961246709
| |
Collapse
|
26
|
Solimando AG, Da Vià MC, Leone P, Borrelli P, Croci GA, Tabares P, Brandl A, Di Lernia G, Bianchi FP, Tafuri S, Steinbrunn T, Balduini A, Melaccio A, De Summa S, Argentiero A, Rauert-Wunderlich H, Frassanito MA, Ditonno P, Henke E, Klapper W, Ria R, Terragna C, Rasche L, Rosenwald A, Kortüm MK, Cavo M, Ribatti D, Racanelli V, Einsele H, Vacca A, Beilhack A. Halting the vicious cycle within the multiple myeloma ecosystem: blocking JAM-A on bone marrow endothelial cells restores angiogenic homeostasis and suppresses tumor progression. Haematologica 2021; 106:1943-1956. [PMID: 32354870 PMCID: PMC8252928 DOI: 10.3324/haematol.2019.239913] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 12/26/2022] Open
Abstract
Interactions of malignant multiple myeloma (MM) plasma cells with the microenvironment control MM plasma-cell growth, survival, drug-resistance and dissemination. As microvascular density increases in the bone marrow in MM, we investigated whether bone marrow MM endothelial cells control disease progression via the junctional adhesion molecule-A (JAM-A). Membrane and cytoplasmic JAM-A levels were upregulated in MM endothelial cells in 111 patients with newly diagnosed MM and in 201 with relapsed/refractory MM compared to the levels in patients with monoclonal gammopathy of undetermined significance and healthy controls. Elevated membrane expression of JAM-A on MM endothelial cells predicted poor clinical outcome. Mechanistically, addition of recombinant JAM-A to MM endothelial cells increased angiogenesis, whereas inhibition of this adhesion molecule impaired angiogenesis and MM growth in two-dimensional and three-dimensional in vitro cell cultures and chorioallantoic membrane assays. To corroborate these findings, we treated MM-bearing mice with a JAM-A-blocking monoclonal antibody and demonstrated impaired MM progression, corresponding to decreased MM-related vascularity. These findings support the concept that JAM-A is an important mediator of MM progression through facilitating MM-associated angiogenesis. Elevated JAM-A expression on bone marrow endothelial cells is an independent prognostic factor for the survival of both patients with newly diagnosed MM and those with relapsed/refractory MM. Blocking JAM-A restricts angiogenesis in vitro, in utero and in vivo and represents a suitable druggable molecule to halt neo-angiogenesis and MM progression.
Collapse
Affiliation(s)
- Antonio G Solimando
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany; 2IRCCS Istituto Tumori Giovanni Paolo II of Bari, Italy; 3University of Bari Aldo Moro Medical School, Bari, Italy
| | - Matteo C Da Vià
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Patrizia Leone
- University of Bari Aldo Moro Medical School, Bari, Italy
| | - Paola Borrelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Giorgio A Croci
- Department of Pathology, University of Kiel/University Hospital Schleswig-Holstein, Kiel, Germany; Department of Pathophysiology and Transplantation, University of Milan and Fondazione IRCCS, Ca' Granda, Milan, Italy
| | - Paula Tabares
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany; 7Interdisciplinary Center for Clinical Research Laboratory, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Brandl
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany; 7Interdisciplinary Center for Clinical Research Laboratory, University Hospital of Würzburg, Würzburg, Germany
| | | | - Francesco P Bianchi
- Department of Biomedical Science and Human Oncology, University of Aldo Moro Medical School, Bari, Italy
| | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Aldo Moro Medical School, Bari, Italy
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy 10Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | | | | | | | - Erik Henke
- Institute of Anatomy and Cell Biology, Julius-Maximilians Universität Würzburg, Würzburg, Germany
| | - Wolfram Klapper
- Department of Pathology, University of Kiel/University Hospital Schleswig-Holstein, Kiel, Germany
| | - Roberto Ria
- University of Bari Aldo Moro Medical School, Bari, Italy
| | | | - Leo Rasche
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | - Martin K Kortüm
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Michele Cavo
- Institute of Hematology L. and A. Seràgnoli, Bologna, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Vito Racanelli
- University of Bari Aldo Moro Medical School, Bari, Italy
| | - Hermann Einsele
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Angelo Vacca
- University of Bari Aldo Moro Medical School, Bari, Italy
| | - Andreas Beilhack
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany; 7Interdisciplinary Center for Clinical Research Laboratory, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Lu Y, Guo G, Hong R, Chen X, Sun Y, Liu F, Zhang Z, Jin X, Dong J, Yu K, Yang X, Nan Y, Huang Q. LncRNA HAS2-AS1 Promotes Glioblastoma Proliferation by Sponging miR-137. Front Oncol 2021; 11:634893. [PMID: 34094916 PMCID: PMC8173206 DOI: 10.3389/fonc.2021.634893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
GBM (Glioblastoma multiform) is the most malignant tumor type of the central nervous system and has poor diagnostic and clinical outcomes. LncRNAs (Long non-coding RNAs) have been reported to participate in multiple biological and pathological processes, but their underlying mechanism remains poorly understood. Here, we aimed to explore the role of the lncRNA HAS2-AS1 (HAS2 antisense RNA 1) in GBM. GSE103227 was analyzed, and qRT-PCR was performed to measure the expression of HAS2-AS1 in GBM. FISH (Fluorescence in situ hybridization) was performed to verify the localization of HAS2-AS1. The interaction between HAS2-AS1 and miR-137 (microRNA-137) was predicted by LncBook and miRcode followed by dual-luciferase reporter assays, and the relationships among HAS2-AS1, miR-137 and LSD1 (lysine-specific demethylase 1) were assessed by WB (western blot) and qRT-PCR. Colony formation and CCK-8 (cell counting kit-8) assays were performed as functional tests. In vivo, nude mice were used to confirm the function of HAS2-AS1. HAS2-AS1 expression was upregulated in GBM cell lines, and HAS2-AS1 was localized mainly in the cytoplasm. In vitro, high HAS2-AS1 expression promoted proliferation, and knockdown of HAS2-AS1 significantly inhibited proliferation. Furthermore, HAS2-AS1 functioned as a ceRNA (competing endogenous RNA) of miR-137, leading to the disinhibition of its downstream target LSD1. The miR-137 level was downregulated by HAS2-AS1 overexpression and upregulated by HAS2-AS1 knockdown. In a subsequent study, LSD1 expression was negatively regulated by miR-137, while miR-137 reversed the LSD1 expression levels caused by HAS2-AS1. These results were further supported by the nude mouse tumorigenesis experiment; compared with xenografts with high HAS2-AS1 expression, the group with low levels of HAS2-AS1 exhibited suppressed proliferation and better survival. We conclude that lncRNA HAS2-AS1 promotes proliferation by functioning as a miR-137 decoy to increase LSD1 levels and thus might be a possible biomarker for GBM.
Collapse
Affiliation(s)
- Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang Liu
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Kai Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| |
Collapse
|
28
|
Taiana E, Gallo Cantafio ME, Favasuli VK, Bandini C, Viglietto G, Piva R, Neri A, Amodio N. Genomic Instability in Multiple Myeloma: A "Non-Coding RNA" Perspective. Cancers (Basel) 2021; 13:cancers13092127. [PMID: 33924959 PMCID: PMC8125142 DOI: 10.3390/cancers13092127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Genomic instability (GI) plays an important role in the pathobiology of multiple myeloma (MM) by promoting the acquisition of several tumor hallmarks. Molecular determinants of GI in MM are continuously emerging and will be herein discussed, with specific regard to non-coding RNAs. Targeting non-coding RNA molecules known to be involved in GI indeed provides novel routes to dampen such oncogenic mechanisms in MM. Abstract Multiple myeloma (MM) is a complex hematological malignancy characterized by abnormal proliferation of malignant plasma cells (PCs) within a permissive bone marrow microenvironment. The pathogenesis of MM is unequivocally linked to the acquisition of genomic instability (GI), which indicates the tendency of tumor cells to accumulate a wide repertoire of genetic alterations. Such alterations can even be detected at the premalignant stages of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) and, overall, contribute to the acquisition of the malignant traits underlying disease progression. The molecular basis of GI remains unclear, with replication stress and deregulation of DNA damage repair pathways representing the most documented mechanisms. The discovery that non-coding RNA molecules are deeply dysregulated in MM and can target pivotal components of GI pathways has introduced a further layer of complexity to the GI scenario in this disease. In this review, we will summarize available information on the molecular determinants of GI in MM, focusing on the role of non-coding RNAs as novel means to tackle GI for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.T.); (V.K.F.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Vanessa Katia Favasuli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.T.); (V.K.F.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (R.P.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (R.P.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.T.); (V.K.F.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
- Correspondence: (A.N.); (N.A.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
- Correspondence: (A.N.); (N.A.)
| |
Collapse
|
29
|
Peixoto da Silva S, Caires HR, Bergantim R, Guimarães JE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Semin Cancer Biol 2021; 83:283-302. [PMID: 33757848 DOI: 10.1016/j.semcancer.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Rui Bergantim
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, Hospital São João, 4200-319, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - José E Guimarães
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário, IUCSCESPU, 4585-116, Gandra, Paredes, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
30
|
Potential Role of microRNAs in inducing Drug Resistance in Patients with Multiple Myeloma. Cells 2021; 10:cells10020448. [PMID: 33672466 PMCID: PMC7923438 DOI: 10.3390/cells10020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis for newly diagnosed subjects with multiple myeloma (MM) has significantly progressed in recent years. However, most MM patients relapse and after several salvage therapies, the onset of multidrug resistance provokes the occurrence of a refractory disease. A continuous and bidirectional exchange of information takes place between the cells of the microenvironment and neoplastic cells to solicit the demands of cancer cells. Among the molecules serving as messengers, there are microRNAs (miRNA), a family of small noncoding RNAs that regulate gene expression. Numerous miRNAs are associated with drug resistance, also in MM, and the modulation of their expression or activity might be explored to reverse it. In this review we report the most recent studies concerning the relationship between miRNAs and chemoresistance to the most frequently used drugs, such as proteasome inhibitors, steroids, alkylating agents and immunomodulators. The experimental use of antagomirs or miRNA mimics have successfully been proven to counteract chemoresistance and display synergistic effects with antimyeloma drugs which could represent a fundamental moment to overcome resistance in MM treatment.
Collapse
|
31
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
32
|
The cross-talk between signaling pathways, noncoding RNAs and DNA damage response: Emerging players in cancer progression. DNA Repair (Amst) 2021; 98:103036. [PMID: 33429260 DOI: 10.1016/j.dnarep.2020.103036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The DNA damage response (DDR) pathway's primary purpose is to maintain the genome structure's integrity and stability. A great deal of effort has done to understand the exact molecular mechanisms of non-coding RNAs, such as lncRNA, miRNAs, and circRNAs, in distinct cellular and genomic processes and cancer progression. In this regard, the ncRNAs possible regulatory role in DDR via modulation of key components expression and controlling repair signaling pathway activation is validated. Therefore, in this article, we will discuss the latest developments of ncRNAs contribution in different aspects of DNA repair through regulation of ATM-ATR, P53, and other regulatory signaling pathways.
Collapse
|
33
|
Fuertes T, Ramiro AR, de Yebenes VG. miRNA-Based Therapies in B Cell Non-Hodgkin Lymphoma. Trends Immunol 2020; 41:932-947. [PMID: 32888820 DOI: 10.1016/j.it.2020.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Non-Hodgkin lymphoma (NHL) is a diverse class of hematological cancers, many of which arise from germinal center (GC)-experienced B cells. Thus GCs, the sites of antibody affinity maturation triggered during immune responses, also provide an environment that facilitates B cell oncogenic transformation. miRNAs provide attractive and mechanistically different strategies to treat these malignancies based on their potential for simultaneous modulation of multiple targets. Here, we discuss the scientific rationale for miRNA-based therapeutics in B cell neoplasias and review recent advances that may help establish a basis for novel candidate miRNA-based therapies for B cell-NHL (B-NHL).
Collapse
Affiliation(s)
- Teresa Fuertes
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Virginia G de Yebenes
- Universidad Complutense de Madrid School of Medicine, Department of Immunology, Ophthalmology and ENT, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
34
|
Weidle UH, Nopora A. Identification of MicroRNAs With In Vivo Efficacy in Multiple Myeloma-related Xenograft Models. Cancer Genomics Proteomics 2020; 17:321-334. [PMID: 32576578 PMCID: PMC7367608 DOI: 10.21873/cgp.20192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Multiple myeloma is a B-cell neoplasm, which can spread within the marrow of the bones forming many small tumors. In advanced disease, multiple myeloma can spread to the blood as plasma cell leukemia. In some cases, a localized tumor known as plasmacytoma is found within a single bone. Despite the approval of several agents such as melphalan, corticosteroids, proteasome inhibitors, thalidomide-based immuno-modulatory agents, histone deacetylase inhibitors, a nuclear export inhibitor and monoclonal antibodies daratuzumab and elatuzumab, the disease presently remains uncurable. MATERIALS AND METHODS In order to define new targets and treatment modalities we searched the literature for microRNAs, which increase or inhibit in vivo efficacy in multiple-myeloma-related xenograft models. RESULTS AND CONCLUSION We identified six up-regulated and twelve down-regulated miRs, which deserve further preclinical validation.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
35
|
miR-137: A Novel Therapeutic Target for Human Glioma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:614-622. [PMID: 32736290 PMCID: PMC7393316 DOI: 10.1016/j.omtn.2020.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miR)-137 is highly expressed in the brain and plays a crucial role in the development and prognosis of glioma. In this review, we aim to summarize the latest findings regarding miR-137 in glioma cell apoptosis, proliferation, migration, invasion, angiogenesis, drug resistance, and cancer treatment. In addition, we focus on the identified miR-137 targets and pathways in the occurrence and development of glioma. Finally, future implications for the diagnostic and therapeutic potential of miR-137 in glioma were discussed.
Collapse
|
36
|
Li J, Zou J, Wan X, Sun C, Chu Z, Hu Y. Roles of noncoding RNAs in drug resistance in multiple myeloma. J Cell Physiol 2020; 235:7681-7695. [PMID: 32324301 DOI: 10.1002/jcp.29726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Despite the administration of new effective drugs in recent years, relapse and drug resistance are still the main obstacles in multiple myeloma (MM) treatment, making MM an incurable disease. To overcome drug resistance in MM, it is critical to understand the underlying mechanisms of malfunctioning gene expression and develop novel targeted therapies. During the past few decades, with the discovery and characterization of noncoding RNAs (ncRNAs), the landscape of dysregulated ncRNAs of cancers as well as their biological and pathobiological functions in tumorigenesis and drug resistance have been recognized. Studies about ncRNAs improved the understanding of variations of drug response among individuals at a level distinguished from genetic polymorphism, and provided with new orientations for targeted therapies. In this review, we will summarize the emerging impact and underlying molecular mechanisms of the most relevant classes of ncRNAs in drug resistance of MM, and discuss the potential as well as strategies of treating ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Yu T, Du C, Ma X, Sui W, Yu Z, Liu L, Zhao L, Li Z, Xu J, Wei X, Zhou W, Deng S, Zou D, An G, Tai YT, Tricot G, Anderson KC, Qiu L, Zhan F, Hao M. Polycomb-like Protein 3 Induces Proliferation and Drug Resistance in Multiple Myeloma and Is Regulated by miRNA-15a. Mol Cancer Res 2020; 18:1063-1073. [PMID: 32312841 DOI: 10.1158/1541-7786.mcr-19-0852] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/27/2019] [Accepted: 04/16/2020] [Indexed: 02/02/2023]
Abstract
Multiple myeloma remains incurable due to the persistence of a minor population of multiple myeloma cells that exhibit drug resistance, which leads to relapsed and/or refractory multiple myeloma. Elucidating the mechanism underlying drug resistance and developing an effective treatment are critical for clinical management of multiple myeloma. Here we showed that promoting expression of the gene for polycomb-like protein 3 (PHF19) induced multiple myeloma cell growth and multidrug resistance in vitro and in vivo. PHF19 was overexpressed in high-risk and drug-resistant primary cells from patients. High levels of PHF19 were correlated with inferior survival of patients with multiple myeloma, in the Total Therapy 2 cohort and in the Intergroup Francophone du Myeloma (IFM) cohort. Enhancing PHF19 expression levels increased Bcl-xL, Mcl-1, and HIF-1a expression in multiple myeloma cells. PHF19 also bound directly with EZH2 and promoted the phosphorylation of EZH2 through PDK1/AKT signaling. miR-15a is a small noncoding RNA that targeted the 3'UTR of PHF19. We found that downregulation of miR-15a led to high levels of PHF19 in multiple myeloma cells. These findings revealed that PHF19 served a crucial role in multiple myeloma proliferation and drug resistance and suggested that the miR-15a/PHF19/EZH2 pathway made a pivotal contribution to multiple myeloma pathogenesis, offering a promising approach to multiple myeloma treatment. IMPLICATIONS: Our findings identify that PHF19 mediates EZH2 phosphorylation as a mechanism of myeloma cell drug resistance, providing a rationale to explore therapeutic potential of targeting PHF19 in relapsed or refractory patients with multiple myeloma.
Collapse
Affiliation(s)
- Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhao
- Department of Biophysics and Molecular Physiology, The University of Iowa, Roy J and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Zhongqing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jie Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wen Zhou
- Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Guido Tricot
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
38
|
Majidinia M, Mir SM, Mirza-Aghazadeh-Attari M, Asghari R, Kafil HS, Safa A, Mahmoodpoor A, Yousefi B. MicroRNAs, DNA damage response and ageing. Biogerontology 2020; 21:275-291. [PMID: 32067137 DOI: 10.1007/s10522-020-09862-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Ageing is a multifactorial and integrated gradual deterioration affecting the most of biological process of cells. MiRNAs are differentially expressed in the cellular senescence and play important role in regulating of genes expression involved in features of ageing. The perception of miRNAs functions in ageing regulation can be useful in clarifying the mechanisms underlying ageing and designing of therapeutic strategies. The preservation of genomic integrity through DNA damage response (DDR) is related to the process of cellular senescence. The recent studies have shown that miRNAs has directly regulated the expression of numerous proteins in DDR pathways. In this review study, DDR pathways, miRNA biogenesis and functions, current finding on DDR regulations, molecular biology of ageing and the role of miRNAs in these processes have been studied. Finally, a brief explanation about the therapeutic function of miRNAs in ageing regarding its regulation of DDR has been provided.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mostafa Mir
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Roghaieh Asghari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Stem Cell Center Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam. .,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Center Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Wu X, Xia J, Zhang J, Zhu Y, Wu Y, Guo J, Chen S, Lei Q, Meng B, Kuang C, Feng X, He Y, Shen Y, Li X, Qiu L, Li G, Zhou W. Phosphoglycerate dehydrogenase promotes proliferation and bortezomib resistance through increasing reduced glutathione synthesis in multiple myeloma. Br J Haematol 2020; 190:52-66. [PMID: 32037523 DOI: 10.1111/bjh.16503] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/28/2019] [Indexed: 12/27/2022]
Abstract
The serine synthesis pathway (SSP) is active in multiple cancers. Previous study has shown that bortezomib (BTZ) resistance is associated with an increase in the SSP in multiple myeloma (MM) cells; however, the underlying mechanisms of SSP-induced BTZ resistance remain unclear. In this study, we found that phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in the SSP, was significantly elevated in CD138+ cells derived from patients with relapsed MM. Moreover, high PHGDH conferred inferior survival in MM. We also found that overexpression of PHDGH in MM cells led to increased cell growth, tumour formation, and resistance to BTZ in vitro and in vivo, while inhibition of PHGDH by short hairpin RNA or NCT-503, a specific inhibitor of PHGDH, inhibited cell growth and BTZ resistance in MM cells. Subsequent mechanistic studies demonstrated PHGDH decreased reactive oxygen species (ROS) through increasing reduced glutathione (GSH) synthesis, thereby promoting cell growth and BTZ resistance in MM cells. Furthermore, adding GSH to PHGDH silenced MM cells reversed S phase arrest and BTZ-induced cell death. These findings support a mechanism in which PHGDH promotes proliferation and BTZ resistance through increasing GSH synthesis in MM cells. Therefore, targeting PHGDH is a promising strategy for MM therapy.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jiliang Xia
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jingyu Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yinghong Zhu
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yangbowen Wu
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiaojiao Guo
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shilian Chen
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qian Lei
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Bin Meng
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Chunmei Kuang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Shen
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Guancheng Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wen Zhou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Allen L, Dwivedi Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry 2020; 25:308-320. [PMID: 31740756 PMCID: PMC6974433 DOI: 10.1038/s41380-019-0597-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Childhood environment can have a profound impact on brain structure and function. Epigenetic mechanisms have been shown to play a critical role in adaptive and maladaptive processes by regulating gene expression without changing the genome. Over the past few years, early life stress (ELS) has been established as a major risk factor for major depression and suicidal behavior along with other psychiatric illnesses in adulthood. In recent years, the emergence of small noncoding RNAs as a mega controller of gene expression has gained attention for their role in various disease processes. Among various noncoding RNAs, microRNAs (miRNAs) are the most studied and well characterized and have emerged as a major regulator of neural plasticity and higher brain functioning. More recently, although limited in number, studies are focusing on how miRNAs can play a role in the maladaptive processes associated with ELS both at adolescent and adult age and whether these processes are critical in developing depression and suicidal behavior. In this review, we critically evaluate how postnatal ELS relates to abnormalities in miRNA expression and functions from both animal and human literature and draw connections from these findings to depression and suicidal behavior later in life.
Collapse
Affiliation(s)
- Lauren Allen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
41
|
Wu H, Wang X, Wu T, Yang S. miR-489 suppresses multiple myeloma cells growth through inhibition of LDHA-mediated aerobic glycolysis. Genes Genomics 2019; 42:291-297. [PMID: 31872383 DOI: 10.1007/s13258-019-00900-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dysregulation of miR-489 in human tumors has been widely reported. Lactate dehydrogenase isoform A (LDHA)-mediated aerobic glycolysis participates in proliferation of multiple myeloma (MM) cells. OBJECTIVE To investigate whether miR-489 induced MM growth inhibition via targeting to LDHA-mediated aerobic glycolysis. METHODS Expression of miR-489 in representative MM cell lines was determined via qRT-PCR (quantitative real-time polymerase chain reaction). MTT (3-(4, 5-di methyl thiazol-2-yl)-2, 5-di phenyl tetrazolium bromide) and colony formation assays were utilized to detect cell viability and proliferation. Effect of miR-489 on aerobic glycolysis was detected via glucose uptake, lactate and ATP production. Binding ability between miR-489 and LDHA was conducted via luciferase activity assay. RESULTS MiR-489 was down-regulated in representative MM cell lines. Gain-of functional assays indicated that over-expression of miR-489 decreased cell viability and inhibited cell proliferation of MM cells. Moreover, miR-489 inhibited aerobic glycolysis via decrease of glucose uptake, lactate and ATP production. LDHA was identified as target of miR-489, suggesting a negative correlation between miR-489 and LDHA in MM cells. Mechanically, the inhibition ability of miR-489 on proliferation of MM cells was through inhibition of LDHA-mediated aerobic glycolysis. CONCLUSIONS miR-489 inhibited MM tumor growth via LDHA-mediated glycolytic metabolism, suggesting potential therapeutic target ability of miR-489/LDHA for MM.
Collapse
Affiliation(s)
- Han Wu
- Department of Clinical Laboratory Medicine, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 368 Xiasha Road, Jianggan District, Hangzhou, 310018, Zhejiang, China.
| | - Xiuhong Wang
- Department of Clinical Laboratory Medicine, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 368 Xiasha Road, Jianggan District, Hangzhou, 310018, Zhejiang, China
| | - Tingting Wu
- Department of Clinical Laboratory Medicine, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 368 Xiasha Road, Jianggan District, Hangzhou, 310018, Zhejiang, China
| | - Su Yang
- Department of Clinical Laboratory Medicine, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 368 Xiasha Road, Jianggan District, Hangzhou, 310018, Zhejiang, China
| |
Collapse
|
42
|
Cheng Y, Shen X, Zheng M, Zou G, Shen Y. Knockdown Of lncRNA NCK-AS1 Regulates Cisplatin Resistance Through Modulating miR-137 In Osteosarcoma Cells. Onco Targets Ther 2019; 12:11057-11068. [PMID: 31908475 PMCID: PMC6924660 DOI: 10.2147/ott.s228199] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) have been proved to act crucial parts in the progress of human tumor. However, the role of lncRNAs in drug resistance of tumor cells remains to be further elucidated. The present study aimed to explore whether lncRNA NCK-AS1 could affect the cisplatin (DDP) resistance in human osteosarcoma cell and the underlying molecular mechanism. Methods The expression of NCK1-AS1 and miR-137 in osteosarcoma cells was detected by qRT-PCR. CCK-8 assay, colony formation assay, Western blotting, wound healing assay and transwell assay were employed to assess the cell proliferation, migration and invasion. In addition, CCK-8 assay, flow cytometry, qRT-PCR and resistance gene activity analysis were performed to assess the DDP sensitivity of osteosarcoma cells. The interaction between NCK1-AS1 and miR-137 was identified using a dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. Results The results revealed that NCK1-AS1 was significantly upregulated in osteosarcoma cells, as well as in DDP-resistant osteosarcoma cells. NCK1-AS1 silence inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas enhanced the sensitivity of osteosarcoma cells to DDP. Furthermore, NCK1-AS1 directly interacted with miR-137 and overexpression of miR-137 suppressed the proliferation, migration and invasion of osteosarcoma cells. Most importantly, miR-137 overexpression enhanced the sensitivity of osteosarcoma cells to DDP, and high expression of NCK1-AS1 reversed the influences of miR-137 overexpression on DDP-resistant cells. Conclusion In short, NCK1-AS1 knockdown enhanced DDP sensitivity of osteosarcoma cells by regulating miR-137, which may be a novel potential target for anti-DDP resistance in human osteosarcoma.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China.,Department of Orthopedics, Yancheng City No.1 People's Hospital, Yancheng 224005, People's Republic of China
| | - Xiaofei Shen
- Department of Orthopedics, Yancheng City No.1 People's Hospital, Yancheng 224005, People's Republic of China
| | - Minqian Zheng
- Department of Orthopedics, Yancheng City No.1 People's Hospital, Yancheng 224005, People's Republic of China
| | - Guoyou Zou
- Department of Orthopedics, Yancheng City No.1 People's Hospital, Yancheng 224005, People's Republic of China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| |
Collapse
|
43
|
Potential Relationship between Clinical Significance and Serum Exosomal miRNAs in Patients with Multiple Myeloma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1575468. [PMID: 31915680 PMCID: PMC6931021 DOI: 10.1155/2019/1575468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
This study evaluated the potential relationship between exosomal miRNAs and clinical symptoms in patients with multiple myeloma (MM). Forty-eight newly diagnosed myeloma patients and sixteen normal donors were enrolled in the study. The results showed that the relative expression levels of let-7c-5p, let-7d-5p, miR-140-3p, miR-185-5p, and miR-425-5p in the exosomes of MM patients were significantly lower than those of healthy controls. Furthermore, there were significant differences in the clinical characteristics of myeloma, such as kidney damage, while the expression levels of the same miRNA in exosomes and serum are not correlated. The expression of exosomal miRNA is related to the expression levels of clinical feature-related factors, such as creatinine, β2-microglobulin, β-CTX, and IL-6 in serum. Establishing this relationship could contribute to understanding the pathogenesis of MM.
Collapse
|
44
|
The Role and Function of microRNA in the Pathogenesis of Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11111738. [PMID: 31698726 PMCID: PMC6896016 DOI: 10.3390/cancers11111738] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, attention has been drawn to the role of non-coding regions of the genome in cancer pathogenesis. MicroRNAs (miRNAs) are small non-coding RNAs with 19–25 bases of length that control gene expression by destroying messenger RNA or inhibiting its translation. In multiple myeloma (MM), the expression of several miRNAs, such as miR-15a and miR-16, is markedly decreased and their target genes upregulated, suggesting their role as tumor-suppressing miRNAs. In contrast, miRNAs such as miR-21 and miR-221 are highly expressed and function as oncogenes (oncomiRs). In addition, several miRNAs, such as those belonging to the miR-34 family, are transcriptional targets of p53 and mediate its tumor-suppressive functions. Many miRNAs are associated with drug resistance, and the modulation of their expression or activity might be explored to reverse it. Moreover, miRNA expression patterns in either MM cells or serum exosomes have been shown to be good prognostic markers. miRNA regulation mechanisms have not been fully elucidated. Many miRNAs are epigenetically controlled by DNA methylation and histone modification, and others regulate the expression of epigenetic modifiers, indicating that miRNA and other epigenetic effectors are part of a network. In this review, we outlined the roles of miRNAs in MM and their potential to predict MM prognosis and develop novel therapies.
Collapse
|
45
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
46
|
Vlummens P, De Veirman K, Menu E, De Bruyne E, Offner F, Vanderkerken K, Maes K. The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:740. [PMID: 31475039 PMCID: PMC6704229 DOI: 10.3389/fgene.2019.00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. In normal plasma cell development, cells undergo programmed DNA breaks and translocations, a process necessary for generation of a wide repertoire of antigen-specific antibodies. This process also makes them vulnerable for the acquisition of chromosomal defects. Well-known examples of these aberrations, already seen at time of MM diagnosis, are hyperdiploidy or the translocations involving the immunoglobulin heavy chain. Over the recent years, however, novel aspects concerning genomic instability and its role in tumor development, disease progression and nascence of refractory disease were identified. As such, genomic instability is becoming a very relevant research topic with the potential identification of novel disease pathways. In this review, we aim to describe recent studies involving murine MM models focusing on the deregulation of processes implicated in genomic instability and their clinical impact. More specifically, we will discuss chromosomal instability, DNA damage and repair responses, development of drug resistance, and recent insights into the study of clonal hierarchy using different murine MM models. Lastly, we will discuss the importance and the use of murine MM models in the pre-clinical evaluation of promising novel therapeutic agents.
Collapse
Affiliation(s)
- Philip Vlummens
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fritz Offner
- Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
47
|
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139:1-15. [PMID: 31102709 DOI: 10.1016/j.freeradbiomed.2019.05.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
To protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Tang LJ, Sun GK, Zhang TJ, Wu DH, Zhou JD, Ma BB, Xu ZJ, Wen XM, Chen Q, Yao DM, Qian J, Ma JC, Lin J. Down-regulation of miR-29c is a prognostic biomarker in acute myeloid leukemia and can reduce the sensitivity of leukemic cells to decitabine. Cancer Cell Int 2019; 19:177. [PMID: 31333331 PMCID: PMC6617691 DOI: 10.1186/s12935-019-0894-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNA-29c (miR-29c) is abnormally expressed in several cancers and serves as an important predictor of tumor prognosis. Herein, we investigate the effects of abnormal miR-29c expression and analyze its clinical significance in acute myeloid leukemia (AML) patients. In addition, decitabine (DAC) has made great progress in the treatment of AML in recent years, but DAC resistance is still common phenomenon and the mechanism of resistance is still unclear. We further analyze the influences of miR-29c to leukemic cells treated with DAC. Methods Real-time quantitative PCR (RQ-PCR) was carried out to detect miR-29c transcript level in 102 de novo AML patients and 25 normal controls. miR-29c/shRNA-29c were respectively transfected into K562 cells and HEL cells. Cell viability after transfection was detected by cell counting Kit-8 assays. Flow cytometry was used to detect apoptosis. Results MiR-29c was significantly down-regulated in AML (P < 0.001). Low miR-29c expression was frequently observed in patients with poor karyotype and high risk (P = 0.006 and 0.013, respectively). Patients with low miR-29c expression had a markedly shorter overall survival (OS) than those with high miR-29c expression (P < 0.001). Multivariate analysis confirmed the independent prognostic value of low miR-29c expression in both the whole cohort as well as the cytogenetically normal AML (CN-AML) subset. Over-expression of miR-29c in K562 treated with DAC inhibited growth, while silencing of miR-29c in HEL promoted growth and inhibited apoptosis. MiR-29c overexpression decreased the half maximal inhibitory concentration (IC50) of DAC in K562, while miR-29c silencing increased the IC50 of DAC in HEL. The demethylation of the miR-29c promoter was associated with its up-regulated expression. Although miR-29c demethylation was also observed in DAC-resistant K562 (K562/DAC), miR-29c expression was down-regulated. MiR-29c transfection also promoted apoptosis and decreased the IC50 of DAC in K562/DAC cells. Conclusions Our results suggest that miR-29c down-regulation may act as an independent prognostic biomarker in AML patients, and miR-29c over-expression can increase the sensitivity of both non-resistant and resistant of leukemic cells to DAC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0894-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Juan Tang
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Guo-Kang Sun
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Ting-Juan Zhang
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of Kunshan City, 615 Zizhu Rd, Kunshan, 215300 People's Republic of China
| | - Jing-Dong Zhou
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Bei-Bei Ma
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Zi-Jun Xu
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Xiang-Mei Wen
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Qin Chen
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Dong-Ming Yao
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Jun Qian
- 2Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| | - Ji-Chun Ma
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| | - Jiang Lin
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| |
Collapse
|
49
|
Janz S, Zhan F, Sun F, Cheng Y, Pisano M, Yang Y, Goldschmidt H, Hari P. Germline Risk Contribution to Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:424. [PMID: 31139207 PMCID: PMC6518313 DOI: 10.3389/fgene.2019.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic instability, a well-established hallmark of human cancer, is also a driving force in the natural history of multiple myeloma (MM) - a difficult to treat and in most cases fatal neoplasm of immunoglobulin producing plasma cells that reside in the hematopoietic bone marrow. Long recognized manifestations of genomic instability in myeloma at the cytogenetic level include abnormal chromosome numbers (aneuploidy) caused by trisomy of odd-numbered chromosomes; recurrent oncogene-activating chromosomal translocations that involve immunoglobulin loci; and large-scale amplifications, inversions, and insertions/deletions (indels) of genetic material. Catastrophic genetic rearrangements that either shatter and illegitimately reassemble a single chromosome (chromotripsis) or lead to disordered segmental rearrangements of multiple chromosomes (chromoplexy) also occur. Genomic instability at the nucleotide level results in base substitution mutations and small indels that affect both the coding and non-coding genome. Sometimes this generates a distinctive signature of somatic mutations that can be attributed to defects in DNA repair pathways, the DNA damage response (DDR) or aberrant activity of mutator genes including members of the APOBEC family. In addition to myeloma development and progression, genomic instability promotes acquisition of drug resistance in patients with myeloma. Here we review recent findings on the genetic predisposition to myeloma, including newly identified candidate genes suggesting linkage of germline risk and compromised genomic stability control. The role of ethnic and familial risk factors for myeloma is highlighted. We address current research gaps that concern the lack of studies on the mechanism by which germline risk alleles promote genomic instability in myeloma, including the open question whether genetic modifiers of myeloma development act in tumor cells, the tumor microenvironment (TME), or in both. We conclude with a brief proposition for future research directions, which concentrate on the biological function of myeloma risk and genetic instability alleles, the potential links between the germline genome and somatic changes in myeloma, and the need to elucidate genetic modifiers in the TME.
Collapse
Affiliation(s)
- Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Pisano
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China.,Ministry of Education's Key Laboratory of Acupuncture and Medicine Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
50
|
Li Z, Wong KY, Calin GA, Chng WJ, Chan GCF, Chim CS. Epigenetic silencing of miR-340-5p in multiple myeloma: mechanisms and prognostic impact. Clin Epigenetics 2019; 11:71. [PMID: 31064412 PMCID: PMC6505104 DOI: 10.1186/s13148-019-0669-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background miR-340-5p, localized to 5q35, is a tumor suppressor miRNA implicated in multiple cancers. As a CpG island is present at the putative promoter region of its host gene, RNF130, we hypothesized that the intronic miR-340-5p is a tumor suppressor miRNA epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma. Results By pyrosequencing-confirmed methylation-specific PCR, RNF130/miR-340 was methylated in 8/15 (53.3%) myeloma cell lines but not normal plasma cells. Methylation correlated inversely with the expression of both miR-340-5p and RNF130. In completely methylated WL-2 and RPMI-8226R cells, 5-AzadC treatment led to demethylation and re-expression of miR-340-5p. In primary samples, RNF130/miR-340 methylation was detected in 4 (22.2%) monoclonal gammopathy of undetermined significance, 15 (23.8%) diagnostic myeloma, and 7 (23.3%) relapsed myeloma. RNF130/miR-340 methylation at diagnosis was associated with inferior overall survival (median 27 vs. 68 months; P = 3.944E−5). In WL-2 cells, overexpression of miR-340-5p resulted in reduced cellular proliferation [MTS, P = 0.002; verified in KMS-12-PE (P = 0.002) and RPMI-8226R (P = 2.623E−05) cells], increased cell death (trypan blue, P = 0.005), and enhanced apoptosis by annexin V-PI staining. Moreover, by qRT-PCR, overexpression of miR-340-5p led to repression of both known targets (CCND1 and NRAS) and bioinformatically predicted targets in MAPK signaling (MEKK1, MEKK2, and MEKKK3) and apoptosis (MDM4 and XIAP), hence downregulation of phospho-ERK1/2 and XIAP by Western blot. Furthermore, by qRT-PCR, in CD138-sorted primary samples (n = 37), miR-340-5p and XIAP were inversely correlated (P = 0.002). By luciferase assay, XIAP was confirmed as a direct target of miR-340-5p via targeting of the distal but not proximal seed region binding site. Conclusions Collectively, tumor-specific methylation-mediated silencing of miR-340-5p is likely an early event in myelomagenesis with adverse survival impact, via targeting multiple oncogenes in MAPK signaling and apoptosis, thereby a tumor suppressive miRNA in myeloma. Electronic supplementary material The online version of this article (10.1186/s13148-019-0669-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|