1
|
Michail C, Rodrigues Lima F, Viguier M, Deshayes F. Structure and function of the lysine methyltransferase SETD2 in cancer: From histones to cytoskeleton. Neoplasia 2025; 59:101090. [PMID: 39591760 PMCID: PMC11626819 DOI: 10.1016/j.neo.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
SETD2 is known to be the unique histone methyltransferase responsible for the trimethylation of the lysine 36 of histone H3 thus generating H3K36me3. This epigenetic mark is critical for transcriptional activation and elongation, DNA repair, mRNA splicing, and DNA methylation. Recurrent SETD2-inactivating mutations and altered H3K36me3 levels are found in cancer at high frequency and numerous studies indicate that SETD2 acts as a tumor suppressor. Recently, SETD2 was further shown to methylate non-histone proteins particularly the cytoskeletal proteins tubulin and actin with subsequent impacts on cytoskeleton structure, mitosis and cell migration. Herein, we provide a review of the role of SETD2 in different cancers with special emphasis on the structural basis of the functions of this key lysine methyltransferase. Moreover, beyond the role of this enzyme in epigenetics and H3K36me3-dependent processes, we highlight the putative role of "non-epigenetic/H3K36me3" functions of SETD2 in cancer, particularly those involving the cytoskeleton.
Collapse
Affiliation(s)
- Christina Michail
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Mireille Viguier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| | - Frédérique Deshayes
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| |
Collapse
|
2
|
Zhu D, Chen F, Qiang H, Qi H. SPA inhibits hBMSC osteogenic differentiation and M1 macrophage polarization by suppressing SETD2 in acute suppurative osteomyelitis. Sci Rep 2024; 14:12728. [PMID: 38830934 PMCID: PMC11148074 DOI: 10.1038/s41598-024-63219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
To clarify the impact of SETD2 on macrophage function in pediatric patients with acute suppurative osteomyelitis and to elucidate the precise underlying mechanism. To gain insights into the potential functions of SETD2, a comprehensive study was conducted utilizing a co-culture model of human bone mesenchymal stem cells (hBMSCs) and bone marrow-derived macrophages (THP-1). A range of techniques were employed, including quantitative polymerase chain reaction, western blotting, ELISA, alkaline phosphatase activity assays, alizarin red S staining, luciferase reporter gene assays, and chromatin immunoprecipitation, to unravel the intricate interactions and molecular mechanisms involving SETD2 in this system. It was observed that SETD2 expression was reduced in THP-1 cells stimulated by staphylococcal protein A (SPA). Furthermore, the downregulation of SETD2 resulted in elevated M1 macrophage polarization and glycolysis, effects that were mitigated by SPA stimulation. Notably, SPA-stimulated THP-1 cells exhibited an increase in HIF-1α expression, which exhibited an inverse correlation with SETD2 levels. Moreover, it was discovered that SETD2 functioned as a catalyst for H3K36me3 and bound to the HIF-1α gene, which, in turn, regulated HIF-1α expression. Furthermore, the suppression of HIF-1α abrogated the consequences of SETD2 downregulation on glycolysis and M1 macrophage polarization. Lastly, the study demonstrated that M1 macrophage polarization serves as a mediator for BMP4's inhibitory effect on osteogenic differentiation of hBMSCs. This research has uncovered a previously unknown role of SETD2 in macrophages during osteomyelitis, revealing its significance in the pathogenesis of this condition. These findings suggest SETD2 as a novel target for the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Dongsheng Zhu
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China.
| | - Feng Chen
- Department of Pediatric, Luodian Hospital, Shanghai, China
| | - Hongjia Qiang
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China.
| | - Han Qi
- Department of Emergency Surgery, The Second People's Hospital of , Lianyungang, Jiangsu Province, China.
| |
Collapse
|
3
|
Wegner P, Drube J, Ziegler L, Strotmann B, Marquardt R, Küchler C, Groth M, Nieswandt B, Andreas N, Drube S. The Neurobeachin-like 2 protein (NBEAL2) controls the homeostatic level of the ribosomal protein RPS6 in mast cells. Immunology 2024; 172:61-76. [PMID: 38272677 DOI: 10.1111/imm.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The Beige and Chediak-Higashi (BEACH) domain-containing, Neurobeachin-like 2 (NBEAL2) protein is a molecule with a molecular weight of 300 kDa. Inactivation of NBEAL2 by loss-of-function mutations in humans as well as deletion of the Nbeal2 gene in mice results in functional defects in cells of the innate immune system such as neutrophils, NK-cells, megakaryocytes, platelets and of mast cells (MCs). To investigate the detailed function of NBEAL2 in murine MCs we generated MCs from wild type (wt) and Nbeal2-/- mice, and deleted Nbeal2 by CRISPR/Cas9 technology in the murine mast cell line MC/9. We also predicted the structure of NBEAL2 to infer its function and to examine potential mechanisms for its association with interaction partners by using the deep learning-based method RoseTTAFold and the Pymol© software. The function of NBEAL2 was analysed by molecular and immunological techniques such as co-immunoprecipitation (co-IP) experiments, western blotting, enzyme-linked immunosorbent assay and flow cytometry. We identified RPS6 as an interaction partner of NBEAL2. Thereby, the NBEAL2/RPS6 complex formation is probably required to control the protein homeostasis of RPS6 in MCs. Consequently, inactivation of NBEAL2 leads to accumulation of strongly p90RSK-phosphorylated RPS6 molecules which results in the development of an abnormal MC phenotype characterised by prolonged growth factor-independent survival and in a pro-inflammatory MC-phenotype.
Collapse
Affiliation(s)
- Philine Wegner
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Julia Drube
- Institut für Molekulare Zellbiologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Lisa Ziegler
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Birgit Strotmann
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Raphaela Marquardt
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Claudia Küchler
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Marco Groth
- CF Next-Generation Sequencing, Fritz Lipmann Institute, Jena, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Nico Andreas
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| | - Sebastian Drube
- Institut für Immunologie, Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
4
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
5
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Chantran Y, Valent P, Arock M. KIT Mutations and Other Genetic Defects in Mastocytosis: Implications for Disease Pathology and Targeted Therapies. Immunol Allergy Clin North Am 2023; 43:651-664. [PMID: 37758404 DOI: 10.1016/j.iac.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A KIT activating mutation (usually KIT D816V) is detected in neoplastic cells in greater than 90% of indolent patients with systemic mastocytosis (SM). In more advanced variants of SM, additional genetic defects can be found in several myeloid malignancy-related genes, which can be detected by applying next-generation sequencing. Currently, the techniques recommended to detect the KIT D816V mutation and quantify the mutational burden in peripheral blood, bone marrow, or other organs/tissues are allele specific-quantitative PCR or droplet digital PCR. These techniques are useful for diagnosis, prognostication, follow-up and monitoring of therapeutic efficacy of cytoreductive agents in patients with SM.
Collapse
Affiliation(s)
- Yannick Chantran
- Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Department of Biological Immunology, Saint-Antoine Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Health Environmental Risk Assessment (HERA) Team, Centre of Research in Epidemiology and Statistics (CRESS), Inserm / INRAE, Faculty of Pharmacy, Université de Paris, Paris, France
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria; Division of Hematology and Hemostaseology, Department of Internal Medicine, Medical University of Vienna
| | - Michel Arock
- Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France.
| |
Collapse
|
7
|
MacDonald CA, Qian H, Pundir P, Kulka M. Sodium butyrate supresses malignant human mast cell proliferation, downregulates expression of KIT and promotes differentiation. FRONTIERS IN ALLERGY 2023; 4:1109717. [PMID: 36970068 PMCID: PMC10036836 DOI: 10.3389/falgy.2023.1109717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Sodium butyrate (NaBu) is a class I histone deacetylase inhibitor (HDACi) that can impede the proliferation of transformed cells. Although some HDACi downregulate the expression of the stem cell factor receptor (KIT/CD117), the effect of NaBu on KIT expression and human mast cell proliferation requires further elucidation. In this study, we examined the effects of NaBu on three transformed human mast cell lines, HMC-1.1, HMC-1.2 and LAD2. NaBu (100 µM) inhibited the proliferation and metabolic activity of all three cell lines without significantly affecting their viability, suggesting that although the cells had ceased to divide, they were not yet undergoing apoptosis. Cell cycle analysis using the cell-permeant dye, propidium iodide, indicated that NaBu significantly blocked the cell cycle progression of HMC-1.1 and HMC-1.2 from G1 to G2/M phases. Furthermore, NaBu downregulated the expression of C-KIT mRNA and KIT protein expression in all three cell lines, but this effect was most significant in the HMC-1.1 and HMC-1.2, both of which harbour activating mutations in KIT, which proliferate more rapidly than LAD2. These data support earlier observations showing that human mast cell lines are sensitive to histone deacetylase inhibition. However, our data presents the novel observation that inhibition of cell proliferation by NaBu was not associated with a loss in cell viability but rather an arrest of the cell cycle. Higher concentrations of NaBu led to modest increases in histamine content, tryptase expression, and granularity. In conclusion, NaBu treatment of human mast cell lines led to a modest enhancement of the hallmarks of mature mast cells.
Collapse
Affiliation(s)
- Clayton A. MacDonald
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
- Correspondence: Marianna Kulka
| |
Collapse
|
8
|
Mancini M, Monaldi C, De Santis S, Papayannidis C, Rondoni M, Sartor C, Bruno S, Pagano L, Criscuolo M, Zanotti R, Bonifacio M, Tosi P, Arock M, Valent P, Cavo M, Soverini S. SETD2 non genomic loss of function in advanced systemic mastocytosis is mediated by an Aurora kinase A/MDM2 axis and can be therapeutically targeted. Biomark Res 2023; 11:29. [PMID: 36894973 PMCID: PMC9999558 DOI: 10.1186/s40364-023-00468-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The SETD2 tumor suppressor gene encodes a histone methyltransferase that safeguards transcription fidelity and genomic integrity via trimethylation of histone H3 lysine 36 (H3K36Me3). SETD2 loss of function has been observed in solid and hematologic malignancies. We have recently reported that most patients with advanced systemic mastocytosis (AdvSM) and some with indolent or smoldering SM display H3K36Me3 deficiency as a result of a reversible loss of SETD2 due to reduced protein stability. METHODS Experiments were conducted in SETD2-proficient (ROSAKIT D816V) and -deficient (HMC-1.2) cell lines and in primary cells from patients with various SM subtypes. A short interfering RNA approach was used to silence SETD2 (in ROSAKIT D816V cells), MDM2 and AURKA (in HMC-1.2 cells). Protein expression and post-translational modifications were assessed by WB and immunoblotting. Protein interactions were tested by using co-immunoprecipitation. Apoptotic cell death was evaluated by flow cytometry after annexin V and propidium iodide staining, respectively. Drug cytotoxicity in in vitro experiments was evaluated by clonogenic assays. RESULTS Here, we show that the proteasome inhibitors suppress cell growth and induce apoptosis in neoplastic mast cells by promoting SETD2/H3K36Me3 re-expression. Moreover, we found that Aurora kinase A and MDM2 are implicated in SETD2 loss of function in AdvSM. In line with this observation, direct or indirect targeting of Aurora kinase A with alisertib or volasertib induced reduction of clonogenic potential and apoptosis in human mast cell lines and primary neoplastic cells from patients with AdvSM. Efficacy of Aurora A or proteasome inhibitors was comparable to that of the KIT inhibitor avapritinib. Moreover, combination of alisertib (Aurora A inhibitor) or bortezomib (proteasome inhibitor) with avapritinib allowed to use lower doses of each drug to achieve comparable cytotoxic effects. CONCLUSIONS Our mechanistic insights into SETD2 non-genomic loss of function in AdvSM highlight the potential value of novel therapeutic targets and agents for the treatment of patients who fail or do not tolerate midostaurin or avapritinib.
Collapse
Affiliation(s)
- Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy.
| | - Cecilia Monaldi
- Dipartimento Di Medicina Specialistica, Diagnostica E Sperimentale, Università Di Bologna, Bologna, Italy
| | - Sara De Santis
- Dipartimento Di Medicina Specialistica, Diagnostica E Sperimentale, Università Di Bologna, Bologna, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | | | - Chiara Sartor
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento Di Medicina Specialistica, Diagnostica E Sperimentale, Università Di Bologna, Bologna, Italy
| | - Samantha Bruno
- Dipartimento Di Medicina Specialistica, Diagnostica E Sperimentale, Università Di Bologna, Bologna, Italy
| | - Livio Pagano
- Divisione Di Ematologia Geriatrica Ed Emopatie Rare, Fondazione Policlinico Universitario Agostino Gemelli - IRCCS - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marianna Criscuolo
- Dipartimento Di Diagnostica Per Immagini, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Radioterapia Oncologica Ed Ematologia, Roma, Italy
| | - Roberta Zanotti
- Section of Hematology, Multidisciplinary Outpatients Clinics for Mastocytosis, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Massimiliano Bonifacio
- Section of Hematology, Multidisciplinary Outpatients Clinics for Mastocytosis, Department of Medicine, University Hospital of Verona, Verona, Italy
| | | | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre Et Marie Curie University (UPMC), Paris, France
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute of Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento Di Medicina Specialistica, Diagnostica E Sperimentale, Università Di Bologna, Bologna, Italy
| | - Simona Soverini
- Dipartimento Di Medicina Specialistica, Diagnostica E Sperimentale, Università Di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Valent P, Akin C, Sperr WR, Horny HP, Arock M, Metcalfe DD, Galli SJ. New Insights into the Pathogenesis of Mastocytosis: Emerging Concepts in Diagnosis and Therapy. ANNUAL REVIEW OF PATHOLOGY 2023; 18:361-386. [PMID: 36270293 DOI: 10.1146/annurev-pathmechdis-031521-042618] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mastocytosis is a heterogeneous group of neoplasms defined by a numerical increase and accumulation of clonal mast cells (MCs) in various organ systems. The disease may present as cutaneous mastocytosis or systemic mastocytosis (SM). On the basis of histopathological and molecular features, clinical variables, and organ involvement, SM is divided into indolent SM, smoldering SM, SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia. Each variant is defined by unique diagnostic criteria and a unique spectrum of clinical presentations. A key driver of MC expansion and disease evolution is the oncogenic machinery triggered by mutant forms of KIT. The genetic background, additional somatic mutations, and comorbidities also contribute to the course and prognosis. Patients with SM may also suffer from mediator-related symptoms or even an MC activation syndrome. This article provides an update of concepts on the genetics, etiology, and pathology of mastocytosis, with emphasis on diagnostic criteria and new treatment concepts.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Voelker D, Bednarski JJ, Nieman E, Carter MC, Polk B. Hematopoietic KIT D816Y mutation presenting as in utero aggressive systemic mastocytosis with response to midostaurin. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 11:1323-1325.e1. [PMID: 36581075 DOI: 10.1016/j.jaip.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Dayne Voelker
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St Louis, Mo
| | - Jeffrey J Bednarski
- Department of Pediatrics, Division of Hematology-Oncology, Washington University School of Medicine, St Louis, Mo
| | - Elizabeth Nieman
- Departments of Medicine and Pediatrics, Division of Dermatology, School of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Brooke Polk
- Department of Pediatrics, Division of Pediatric Allergy and Pulmonary Medicine, Washington University, St Louis, Mo.
| |
Collapse
|
11
|
Sciumè M, De Magistris C, Galli N, Ferretti E, Milesi G, De Roberto P, Fabris S, Grifoni FI. Target Therapies for Systemic Mastocytosis: An Update. Pharmaceuticals (Basel) 2022; 15:ph15060738. [PMID: 35745657 PMCID: PMC9229771 DOI: 10.3390/ph15060738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic mastocytosis (SM) results from a clonal proliferation of abnormal mast cells (MCs) in extra-cutaneous organs. It could be divided into indolent SM, smoldering SM, SM with an associated hematologic (non-MC lineage) neoplasm, aggressive SM, and mast cell leukemia. SM is generally associated with the presence of a gain-of-function somatic mutation in KIT at codon 816. Clinical features could be related to MC mediator release or to uncontrolled infiltration of MCs in different organs. Whereas indolent forms have a near-normal life expectancy, advanced diseases have a poor prognosis with short survival times. Indolent forms should be considered for symptom-directed therapy, while cytoreductive therapy represents the first-line treatment for advanced diseases. Since the emergence of tyrosine kinase inhibitors (TKIs), KIT inhibition has been an attractive approach. Initial reports showed that only the rare KITD816V negative cases were responsive to first-line TKI imatinib. The development of new TKIs with activity against the KITD816V mutation, such as midostaurin or avapritinib, has changed the management of this disease. This review aims to focus on the available clinical data of therapies for SM and provide insights into possible future therapeutic targets.
Collapse
Affiliation(s)
- Mariarita Sciumè
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
- Correspondence: ; Tel.: +39-02-5503-3466
| | - Claudio De Magistris
- Department of Oncology and Oncohaematology, Università degli Studi di Milano, 20122 Milan, Italy; (C.D.M.); (N.G.)
| | - Nicole Galli
- Department of Oncology and Oncohaematology, Università degli Studi di Milano, 20122 Milan, Italy; (C.D.M.); (N.G.)
| | - Eleonora Ferretti
- Direzione Scientifica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giulia Milesi
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Pasquale De Roberto
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Federica Irene Grifoni
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| |
Collapse
|
12
|
Pharm.D. MA, Hoermann G, Sotlar K, Hermine O, Sperr WR, Hartmann K, Brockow K, Akin C, Triggiani M, Broesby-Olsen S, Reiter A, Gotlib J, Horny HP, Orfao A, Metcalfe DD, Valent P. Clinical Impact and Proposed Application of Molecular Markers, Genetic Variants and Cytogenetic Analysis in Mast Cell Neoplasms: Status 2022. J Allergy Clin Immunol 2022; 149:1855-1865. [DOI: 10.1016/j.jaci.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
13
|
Combined Inhibition of Polo-Like Kinase-1 and Wee1 as a New Therapeutic Strategy to Induce Apoptotic Cell Death in Neoplastic Mast Cells. Cancers (Basel) 2022; 14:cancers14030738. [PMID: 35159005 PMCID: PMC8833529 DOI: 10.3390/cancers14030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic mastocytosis (SM) is due to the pathologic accumulation of neoplastic mast cells in one or more extracutaneous organ(s). Although midostaurin, a multikinase inhibitor active against both wild-type and D816V-mutated KIT, improves organ damage and symptoms, a proportion of patients relapse or have resistant disease. It is well known that Aurora kinase A (AKA) over-expression promotes tumorigenesis, but its role in the pathogenesis of systemic mastocytosis (SM) has not yet been investigated. Evidence from the literature suggests that AKA may confer cancer cell chemo-resistance, inhibit p53, and enhance Polo-like kinase 1 (Plk1), CDK1, and cyclin B1 to promote cell cycle progression. In this study, we aimed to investigate the pathogenetic role of AKA and Plk1 in the advanced forms of SM. We demonstrate here, for the first time, that SM cell lines display hyper-phosphorylated AKA and Plk1. Danusertib (Aurora kinase inhibitor) and volasertib (Plk1 inhibitor) inhibited growth and induced apoptotic cell death in HMC-1.1 and -1.2 cells. Their growth-inhibitory effects were associated with cell cycle arrest and the activation of apoptosis. Cell cycle arrest was associated with increased levels of phospho-Wee1. Wee1 inhibition by MK1775 after 24 h treatment with danusertib or volasertib, when cells were arrested in G2 phase and Wee1, was overexpressed and hyper-activated, resulting in a significantly higher rate of apoptosis than that obtained from concomitant treatment with danusertib or volasertib + MK1775 for 48 h. In conclusion, Plk1 and AKA, alone or together with Wee1, are attractive therapeutic targets in neoplastic MCs. Repurposing Plk1 or AKA ± Wee1 inhibitors in advanced clinical development for other indications is a therapeutic strategy worthy of being explored, in order to improve the outcome of patients with advanced SM.
Collapse
|
14
|
Agopian J, Da Costa Q, Nguyen QV, Scorrano G, Kousteridou P, Yuan M, Chelbi R, Goubard A, Castellano R, Maurizio J, Teodosio C, De Sepulveda P, Asara JM, Orfao A, Hermine O, Dubreuil P, Brenet F. GlcNAc is a mast-cell chromatin-remodeling oncometabolite that promotes systemic mastocytosis aggressiveness. Blood 2021; 138:1590-1602. [PMID: 33974006 DOI: 10.1182/blood.2020008948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Systemic mastocytosis (SM) is a KIT-driven hematopoietic neoplasm characterized by the excessive accumulation of neoplastic mast cells (MCs) in various organs and, mainly, the bone marrow (BM). Multiple genetic and epigenetic mechanisms contribute to the onset and severity of SM. However, little is known to date about the metabolic underpinnings underlying SM aggressiveness, which has thus far impeded the development of strategies to leverage metabolic dependencies when existing KIT-targeted treatments fail. Here, we show that plasma metabolomic profiles were able to discriminate indolent from advanced forms of the disease. We identified N-acetyl-d-glucosamine (GlcNAc) as the most predictive metabolite of SM severity. High plasma levels of GlcNAc in patients with advanced SM correlated with the activation of the GlcNAc-fed hexosamine biosynthesis pathway in patients BM aspirates and purified BM MCs. At the functional level, GlcNAc enhanced human neoplastic MCs proliferation and promoted rapid health deterioration in a humanized mouse model of SM. In addition, in the presence of GlcNAc, immunoglobulin E-stimulated MCs triggered enhanced release of proinflammatory cytokines and a stronger acute response in a mouse model of passive cutaneous anaphylaxis. Mechanistically, elevated GlcNAc levels promoted the transcriptional accessibility of chromatin regions that contain genes encoding mediators of receptor tyrosine kinases cascades and inflammatory responses, thus leading to a more aggressive phenotype. Therefore, GlcNAc is an oncometabolite driver of SM aggressiveness. This study suggests the therapeutic potential for targeting metabolic pathways in MC-related diseases to manipulate MCs effector functions.
Collapse
Affiliation(s)
- Julie Agopian
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
- French Reference Center for Mastocytosis (CEREMAST), Paris, France
| | - Quentin Da Costa
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Quang Vo Nguyen
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Giulia Scorrano
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Paraskevi Kousteridou
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Min Yuan
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Rabie Chelbi
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
- Inovarion, Paris, France
| | - Armelle Goubard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Remy Castellano
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Julien Maurizio
- Centre d'Immunologie de Marseille-Luminy (CIML), INSERM U631, CNRS UMR 6102, Aix-Marseille Université, Marseille, France
| | - Cristina Teodosio
- Department of Immunohematology, Leiden University Medical Center, ZC Leiden, The Netherlands
| | - Paulo De Sepulveda
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Centro de Investigación Biomédica en Red Cáncer (CIBERONC), University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Spain; and
| | - Olivier Hermine
- French Reference Center for Mastocytosis (CEREMAST), Paris, France
- Institut Imagine, INSERM U1163, CNRS Equipe de Recherche Labelisée (ERL) 8654, Paris Université, Service d'Hématologie Clinique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrice Dubreuil
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
- French Reference Center for Mastocytosis (CEREMAST), Paris, France
| | - Fabienne Brenet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Unité Mixte de Recherche (UMR) 258 Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
- French Reference Center for Mastocytosis (CEREMAST), Paris, France
| |
Collapse
|
15
|
Precision Medicine in Systemic Mastocytosis. Medicina (B Aires) 2021; 57:medicina57111135. [PMID: 34833353 PMCID: PMC8623914 DOI: 10.3390/medicina57111135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Mastocytosis is a rare hematological neoplasm characterized by the proliferation of abnormal clonal mast cells (MCs) in different cutaneous and extracutaneous organs. Its diagnosis is based on well-defined major and minor criteria, including the pathognomonic dense infiltrate of MCs detected in bone marrow (BM), elevated serum tryptase level, abnormal MCs CD25 expression, and the identification of KIT D816V mutation. The World Health Organization (WHO) classification subdivides mastocytosis into a cutaneous form (CM) and five systemic variants (SM), namely indolent/smoldering (ISM/SSM) and advanced SM (AdvSM) including aggressive SM (ASM), SM associated to hematological neoplasms (SM-AHN), and mast cell leukemia (MCL). More than 80% of patients with SM carry a somatic point mutation of KIT at codon 816, which may be targeted by kinase inhibitors. The presence of additional somatic mutations detected by next generation sequencing analysis may impact prognosis and drive treatment strategy, which ranges from symptomatic drugs in indolent forms to kinase-inhibitors active on KIT. Allogeneic stem cell transplant (SCT) may be considered in selected SM cases. Here, we review the clinical, diagnostic, and therapeutic issues of SM, with special emphasis on the translational implications of SM genetics for a precision medicine approach in clinical practice.
Collapse
|
16
|
Bajusz D, Bognár Z, Ebner J, Grebien F, Keserű GM. Discovery of a Non-Nucleoside SETD2 Methyltransferase Inhibitor against Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms221810055. [PMID: 34576219 PMCID: PMC8471172 DOI: 10.3390/ijms221810055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Histone methyltransferases (HMTs) have attracted considerable attention as potential targets for pharmaceutical intervention in various malignant diseases. These enzymes are known for introducing methyl marks at specific locations of histone proteins, creating a complex system that regulates epigenetic control of gene expression and cell differentiation. Here, we describe the identification of first-generation cell-permeable non-nucleoside type inhibitors of SETD2, the only mammalian HMT that is able to tri-methylate the K36 residue of histone H3. By generating the epigenetic mark H3K36me3, SETD2 is involved in the progression of acute myeloid leukemia. We developed a structure-based virtual screening protocol that was first validated in retrospective studies. Next, prospective screening was performed on a large library of commercially available compounds. Experimental validation of 22 virtual hits led to the discovery of three compounds that showed dose-dependent inhibition of the enzymatic activity of SETD2. Compound C13 effectively blocked the proliferation of two acute myeloid leukemia (AML) cell lines with MLL rearrangements and led to decreased H3K36me3 levels, prioritizing this chemotype as a viable chemical starting point for drug discovery projects.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (Z.B.)
| | - Zsolt Bognár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (Z.B.)
| | - Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine, 1220 Vienna, Austria; (J.E.); (F.G.)
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, 1220 Vienna, Austria; (J.E.); (F.G.)
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (Z.B.)
- Correspondence:
| |
Collapse
|
17
|
Systemic Mastocytosis: Molecular Landscape and Implications for Treatment. Mediterr J Hematol Infect Dis 2021; 13:e2021046. [PMID: 34276915 PMCID: PMC8265368 DOI: 10.4084/mjhid.2021.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
Over the past decade, we have witnessed significant advances in the molecular characterization of systemic mastocytosis (SM). This has provided important information for a better understanding of the pathogenesis of the disease but has also practically impacted the way we diagnose and manage it. Advances in molecular testing have run in parallel with advances in therapeutic targeting of constitutive active KIT, the major driver of the disease. Therefore, assessing the molecular landscape in each SM patient is essential for diagnosis, prognosis, treatment, and therapeutic efficacy monitoring. This is facilitated by the routine availability of novel technologies like digital PCR and NGS. This review aims to summarize the pathogenesis of the disease, discuss the value of molecular diagnostic testing and how it should be performed, and provide an overview of present and future therapeutic concepts based on fine molecular characterization of SM patients.
Collapse
|
18
|
New Insights into the Pathogenesis of Systemic Mastocytosis. Int J Mol Sci 2021; 22:ijms22094900. [PMID: 34063170 PMCID: PMC8125314 DOI: 10.3390/ijms22094900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Mastocytosis is a type of myeloid neoplasm characterized by the clonal, neoplastic proliferation of morphologically and immunophenotypically abnormal mast cells that infiltrate one or more organ systems. Systemic mastocytosis (SM) is a more aggressive variant of mastocytosis with extracutaneous involvement, which might be associated with multi-organ dysfunction or failure and shortened survival. Over 80% of patients with SM carry the KIT D816V mutation. However, the KIT D816V mutation serves as a weak oncogene and appears to be a late event in the pathogenesis of mastocytosis. The management of SM is highly individualized and was largely palliative for patients without a targeted form of therapy in past decades. Targeted therapy with midostaurin, a multiple kinase inhibitor that inhibits KIT, has demonstrated efficacy in patients with advanced SM. This led to the recent approval of midostaurin by the United States Food and Drug Administration and European Medicines Agency. However, the overall survival of patients treated with midostaurin remains unsatisfactory. The identification of genetic and epigenetic alterations and understanding their interactions and the molecular mechanisms involved in mastocytosis is necessary to develop rationally targeted therapeutic strategies. This review briefly summarizes recent developments in the understanding of SM pathogenesis and potential treatment strategies for patients with SM.
Collapse
|
19
|
Reszka E, Jabłońska E, Wieczorek E, Valent P, Arock M, Nilsson G, Nedoszytko B, Niedoszytko M. Epigenetic Changes in Neoplastic Mast Cells and Potential Impact in Mastocytosis. Int J Mol Sci 2021; 22:2964. [PMID: 33803981 PMCID: PMC7999363 DOI: 10.3390/ijms22062964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Systemic mastocytosis (SM) is a hematologic neoplasm with abnormal accumulation of mast cells in various organ systems such as the bone marrow, other visceral organs and skin. So far, only little is known about epigenetic changes contributing to the pathogenesis of SM. In the current article, we provide an overview of epigenetic changes that may occur and be relevant to mastocytosis, including mutations in genes involved in epigenetic processes, such as TET2, DNMT3A and ASXL1, and global and gene-specific methylation patterns in neoplastic cells. Moreover, we discuss methylation-specific pathways and other epigenetic events that may trigger disease progression in mast cell neoplasms. Finally, we discuss epigenetic targets and the effects of epigenetic drugs, such as demethylating agents and BET-targeting drugs, on growth and viability of neoplastic mast cells. The definitive impact of these targets and the efficacy of epigenetic therapies in advanced SM need to be explored in future preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Ewa Jabłońska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michel Arock
- Department of Hematological Biology, Pitié-Sapêtrière Hospital, Sorbonne University, 75013 Paris, France;
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden;
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Invicta Fertility and Reproductive Center, Molecular Laboratory, Polna 64, 81-740 Sopot, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
20
|
Soverini S. Improving prognostication and management of systemic mastocytosis. Lancet Haematol 2021; 8:e164-e166. [PMID: 33508246 DOI: 10.1016/s2352-3026(20)30432-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Simona Soverini
- Institute of Hematology "L. e A. Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy.
| |
Collapse
|
21
|
Martelli M, Monaldi C, De Santis S, Bruno S, Mancini M, Cavo M, Soverini S. Recent Advances in the Molecular Biology of Systemic Mastocytosis: Implications for Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2020; 21:E3987. [PMID: 32498255 PMCID: PMC7312790 DOI: 10.3390/ijms21113987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, molecular characterization and management of patients with systemic mastocytosis (SM) have greatly benefited from the application of advanced technologies. Highly sensitive and accurate assays for KIT D816V mutation detection and quantification have allowed the switch to non-invasive peripheral blood testing for patient screening; allele burden has prognostic implications and may be used to monitor therapeutic efficacy. Progress in genetic profiling of KIT, together with the use of next-generation sequencing panels for the characterization of associated gene mutations, have allowed the stratification of patients into three subgroups differing in terms of pathogenesis and prognosis: i) patients with mast cell-restricted KIT D816V; ii) patients with multilineage KIT D816V-involvement; iii) patients with "multi-mutated disease". Thanks to these findings, new prognostic scoring systems combining clinical and molecular data have been developed. Finally, non-genetic SETD2 histone methyltransferase loss of function has recently been identified in advanced SM. Assessment of SETD2 protein levels and activity might provide prognostic information and has opened new research avenues exploring alternative targeted therapeutic strategies. This review discusses how progress in recent years has rapidly complemented previous knowledge improving the molecular characterization of SM, and how this has the potential to impact on patient diagnosis and management.
Collapse
Affiliation(s)
- Margherita Martelli
- Department of Experimental, Diagnostic and Specialty Medicine, Hematology/Oncology “L. e A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (C.M.); (S.D.S.); (S.B.); (M.M.); (M.C.); (S.S.)
| | | | | | | | | | | | | |
Collapse
|
22
|
Yang H, Cui W, Wang L. Epigenetic synthetic lethality approaches in cancer therapy. Clin Epigenetics 2019; 11:136. [PMID: 31590683 PMCID: PMC6781350 DOI: 10.1186/s13148-019-0734-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
The onset and development of malignant tumors are closely related to epigenetic modifications, and this has become a research hotspot. In recent years, a variety of epigenetic regulators have been discovered, and corresponding small molecule inhibitors have been developed, but their efficacy in solid tumors is generally poor. With the introduction of the first synthetic lethal drug (the PARP inhibitor olaparib in ovarian cancer with BRCA1 mutation), research into synthetic lethality has also become a hotspot. High-throughput screening with CRISPR-Cas9 and shRNA technology has revealed a large number of synthetic lethal pairs involving epigenetic-related synthetic lethal genes, such as those encoding SWI/SNF complex subunits, PRC2 complex subunits, SETD2, KMT2C, and MLL fusion proteins. In this review, we focus on epigenetic-related synthetic lethal mechanisms, including synthetic lethality between epigenetic mutations and epigenetic inhibitors, epigenetic mutations and non-epigenetic inhibitors, and oncogene mutations and epigenetic inhibitors.
Collapse
Affiliation(s)
- Haoshen Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
23
|
Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol 2019; 26:880-889. [PMID: 31582846 DOI: 10.1038/s41594-019-0298-7] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
The precise temporal and spatial coordination of histone lysine methylation dynamics across the epigenome regulates virtually all DNA-templated processes. A large number of histone lysine methyltransferase (KMT) enzymes catalyze the various lysine methylation events decorating the core histone proteins. Mutations, genetic translocations and altered gene expression involving these KMTs are frequently observed in cancer, developmental disorders and other pathologies. Therapeutic compounds targeting specific KMTs are currently being tested in the clinic, although overall drug discovery in the field is relatively underdeveloped. Here we review the biochemical and biological activities of histone KMTs and their connections to human diseases, focusing on cancer. We also discuss the scientific and clinical challenges and opportunities in studying KMTs.
Collapse
|
24
|
Yi JH, Lee GW, Do YR, Jung HR, Hong JY, Yoon DH, Suh C, Choi YS, Yi SY, Sohn BS, Kim BS, Oh SY, Park J, Jo JC, Lee SS, Oh YH, Kim SJ, Kim WS. Multicenter retrospective analysis of the clinicopathologic features of monomorphic epitheliotropic intestinal T-cell lymphoma. Ann Hematol 2019; 98:2541-2550. [DOI: 10.1007/s00277-019-03791-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022]
|
25
|
Relevant updates in systemic mastocytosis. Leuk Res 2019; 81:10-18. [PMID: 30978435 DOI: 10.1016/j.leukres.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
Abstract
Systemic Mastocytosis (SM) is a rare myeloproliferative neoplasm (MPN) that is characterized by a clonal proliferation of mast cells (MCs). The symptoms and clinical presentation of SM are the result of both MC proliferation as well as activation and degranulation, causing hyperactive and over-exaggerated hypersensitivity responses, as well as organ infiltration by pathogenic MCs. The clinical presentation and course of SM is varied and organ involvement can lead to significant morbidity and mortality in some cases. The subtypes of SM include indolent SM (ISM), smoldering SM (SSM), aggressive SM (ASM), SM with associated hematologic neoplasm (SM-AHN) and mast cell leukemia (MCL) and survival can range from normal in the case of ISM to months in MCL. The treatment of indolent forms of SM is largely focused on addressing symptom burden (B findings), while cytoreductive agents and more recently molecularly targeted agents are employed to reduce MC burden and reverse associated organ dysfunction (C findings). Although the pathogenesis of SM is multi-factorial, the acquisition of KIT D816 V is a relatively frequent mutational event and serves as the target of novel agents. The recent approval of midostaurin for the treatment of advanced SM has brought awareness to this disease and energized further drug development efforts. Expanding our understanding of the underlying molecular mechanisms of SM will continue to inform future therapeutic approaches.
Collapse
|
26
|
Wang S, Yuan X, Liu Y, Zhu K, Chen P, Yan H, Zhang D, Li X, Zeng H, Zhao X, Chen X, Zhou G, Cao S. Genetic polymorphisms of histone methyltransferase SETD2 predicts prognosis and chemotherapy response in Chinese acute myeloid leukemia patients. J Transl Med 2019; 17:101. [PMID: 30922329 PMCID: PMC6437967 DOI: 10.1186/s12967-019-1848-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND SETD2, the single mediator of trimethylation of histone 3 at position lysine 36, has been reported associated with initiation progression and chemotherapy resistance in acute myeloid leukemia (AML). Whether polymorphisms of SETD2 affect prognosis and chemotherapy response of AML remains elusive. METHODS Three tag single-nucleotide polymorphisms (tagSNPs) of SETD2 were genotyped in 579 AML patients by using Sequenom Massarray system. Association of the SNPs with complete remission (CR) rate after Ara-C based induction therapy, overall survival (OS) and relapse-free survival (RFS) were analyzed. RESULT Survival analysis indicated that SETD2 rs76208147 TT genotype was significantly associated with poor prognosis of AML (TT vs. CC + CT hazard ratio: HR = 1.838, 95% confidence interval (CI) 1.005-3.360, p = 0.048). After adjusting for the known prognostic factors including risk stratification, age, allo-SCT, WBC count and LDH count, rs76208147 TT genotype was still associated with OS in the multivariate analysis (TT vs. CC + CT HR = 1.923, 95% CI 1.007-3.675, p = 0.048). In addition, after adjusting by other clinical features, patients with rs4082155 allele G carries showed higher rate of complete remission which indicated by CR rate (AG + GG vs. AA odd ratio (OR) = 0.544, 95% CI 0.338-0.876, p = 0.012). CONCLUSIONS SETD2 genetic polymorphism is associated with AML prognosis and chemotherapy outcome, suggesting the possibility for development in AML diagnostics and therapeutics towards SETD2.
Collapse
Affiliation(s)
- Suwei Wang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China
| | - Xiaoqing Yuan
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yazhen Liu
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China
| | - Kewei Zhu
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China
| | - Peng Chen
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Daoyu Zhang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China
| | - Xi Li
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Gan Zhou
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, Hunan, 410078, People's Republic of China.
| | - Shan Cao
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China. .,Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| |
Collapse
|
27
|
Skucha A, Ebner J, Grebien F. Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Int J Mol Sci 2019; 20:ijms20051029. [PMID: 30818762 PMCID: PMC6429614 DOI: 10.3390/ijms20051029] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023] Open
Abstract
The non-redundant histone methyltransferase SETD2 (SET domain containing 2; KMT3A) is responsible for tri-methylation of lysine 36 on histone H3 (H3K36me3). Presence of the H3K36me3 histone mark across the genome has been correlated with transcriptional activation and elongation, but also with the regulation of DNA mismatch repair, homologous recombination and alternative splicing. The role of SETD2 and the H3K36me3 histone mark in cancer is controversial. SETD2 is lost or mutated in various cancers, supporting a tumor suppressive role of the protein. Alterations in the SETD2 gene are also present in leukemia patients, where they are associated with aggressive disease and relapse. In line, heterozygous SETD2 loss caused chemotherapy resistance in leukemia cell lines and mouse models. In contrast, other studies indicate that SETD2 is critically required for the proliferation of leukemia cells. Thus, although studies of SETD2-dependent processes in cancer have contributed to a better understanding of the SETD2⁻H3K36me3 axis, many open questions remain regarding its specific role in leukemia. Here, we review the current literature about critical functions of SETD2 in the context of hematopoietic malignancies.
Collapse
Affiliation(s)
- Anna Skucha
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| | - Jessica Ebner
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria.
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria.
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
28
|
Ungerstedt JS. Epigenetic Modifiers in Myeloid Malignancies: The Role of Histone Deacetylase Inhibitors. Int J Mol Sci 2018; 19:ijms19103091. [PMID: 30304859 PMCID: PMC6212943 DOI: 10.3390/ijms19103091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/18/2023] Open
Abstract
Myeloid hematological malignancies are clonal bone marrow neoplasms, comprising of acute myeloid leukemia (AML), the myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), the myeloproliferative neoplasms (MPN) and systemic mastocytosis (SM). The field of epigenetic regulation of normal and malignant hematopoiesis is rapidly growing. In recent years, heterozygous somatic mutations in genes encoding epigenetic regulators have been found in all subtypes of myeloid malignancies, supporting the rationale for treatment with epigenetic modifiers. Histone deacetylase inhibitors (HDACi) are epigenetic modifiers that, in vitro, have been shown to induce growth arrest, apoptotic or autophagic cell death, and terminal differentiation of myeloid tumor cells. These effects were observed both at the bulk tumor level and in the most immature CD34+38− cell compartments containing the leukemic stem cells. Thus, there is a strong rationale supporting HDACi therapy in myeloid malignancies. However, despite initial promising results in phase I trials, HDACi in monotherapy as well as in combination with other drugs, have failed to improve responses or survival. This review provides an overview of the rationale for HDACi in myeloid malignancies, clinical results and speculations on why clinical trials have thus far not met the expectations, and how this may be improved in the future.
Collapse
Affiliation(s)
- Johanna S Ungerstedt
- Department of Medicine, Huddinge, Karolinska Institutet, and Hematology Center, and Karolinska University Hospital, S-141 86 Stockholm, Sweden.
| |
Collapse
|
29
|
Chen ES. Targeting epigenetics using synthetic lethality in precision medicine. Cell Mol Life Sci 2018; 75:3381-3392. [PMID: 30003270 PMCID: PMC11105276 DOI: 10.1007/s00018-018-2866-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Technological breakthroughs in genomics have had a significant impact on clinical therapy for human diseases, allowing us to use patient genetic differences to guide medical care. The "synthetic lethal approach" leverages on cancer-specific genetic rewiring to deliver a therapeutic regimen that preferentially targets malignant cells while sparing normal cells. The utility of this system is evident in several recent studies, particularly in poor prognosis cancers with loss-of-function mutations that become "treatable" when two otherwise discrete and unrelated genes are targeted simultaneously. This review focuses on the chemotherapeutic targeting of epigenetic alterations in cancer cells and consolidates a network that outlines the interplay between epigenetic and genetic regulators in DNA damage repair. This network consists of numerous synergistically acting relationships that are druggable, even in recalcitrant triple-negative breast cancer. This collective knowledge points to the dawn of a new era of personalized medicine.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National University Health System (NUHS), Singapore, 119228, Singapore.
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|