1
|
Li H, Xu W, Hu X, Tian X, Li B, Du Y, Chen J. The surface protein GroEl of lactic acid bacteria mediates its modulation of the intestinal barrier in Penaeus vannamei. Int J Biol Macromol 2024; 278:134624. [PMID: 39134191 DOI: 10.1016/j.ijbiomac.2024.134624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The molecular chaperone GroEL, commonly found in various bacterial species, exhibits heightened expression levels in response to high temperatures and increased levels of oxygen free radicals. Limited literature currently exists on the probiotic role of GroEL in invertebrates. This study sought to explore how the surface protein GroEL from Lactobacillus plantarum Ep-M17 impacts the intestinal barrier function of Penaeus vannamei. Through pull-down and immunofluorescence assays, the interaction between GroEL and Act1 in the gastrointestinal tract of P. vannamei was confirmed. Results from bacterial binding assays demonstrated that rGroEL can bind to pathogens like Vibrio parahaemolyticus E1 (V. p-E1). In vitro experiments revealed that the administration of rGroEL significantly decreased the levels of inflammatory cytokines induced by pathogens while preserving the integrity of tight junctions between intestinal epithelial cells and reducing bacteria-induced apoptosis. Additionally, rGroEL notably lessened the intestinal loading of V. p-E1 in P. vannamei, downregulated immune-related gene expression, and upregulated BCL/BAX expression in the intestines following V. p-E1 challenge. Mechanistic investigations further showed that rGroEL treatment effectively suppressed the expression and phosphorylation of proteins involved in the NF-κB and PI3K-AKT-mTOR signalling pathways in the intestines of bacteria-infected P. vannamei. Furthermore, GroEL reinforces protection against bacterial infections by enhancing the phagocytic and anti-apoptotic capabilities of P. vannamei hemocytes. These results suggest that GroEL may impede the interaction between pathogens and the intestinal mucosa through its competitive binding characteristics, ultimately reducing bacterial infections.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Wenlong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiangrong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Hasankhani A, Bakherad M, Bahrami A, Shahrbabak HM, Pecho RDC, Shahrbabak MM. Integrated analysis of inflammatory mRNAs, miRNAs, and lncRNAs elucidates the molecular interactome behind bovine mastitis. Sci Rep 2023; 13:13826. [PMID: 37620551 PMCID: PMC10449796 DOI: 10.1038/s41598-023-41116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational systems biology approaches, to gain a deeper understanding of the molecular interactome involved in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein-Friesian cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits of mastitis. Functional enrichment analysis was conducted to understand the functional behavior of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based modules and constructed an integrated regulatory network based on the modules of interest. To enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, protein-protein interaction (PPI) network construction, screening of hub-hub RNAs, and target prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six modules showed strong associations with clinical characteristics of mastitis. Functional enrichment analysis revealed that the turquoise module was directly related to inflammation persistence and mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for the development of molecular diagnosis and biological therapies for mastitis.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Maryam Bakherad
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hossein Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | - Mohammad Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
3
|
Li X, Ma B, Zhang W, Song Z, Zhang X, Liao M, Li X, Zhao X, Du M, Yu J, He S, Yan H. The essential role of N6-methyladenosine RNA methylation in complex eye diseases. Genes Dis 2023; 10:505-520. [PMID: 37223523 PMCID: PMC10201676 DOI: 10.1016/j.gendis.2022.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
There are many complex eye diseases which are the leading causes of blindness, however, the pathogenesis of the complex eye diseases is not fully understood, especially the underlying molecular mechanisms of N6-methyladenosine (m6A) RNA methylation in the eye diseases have not been extensive clarified. Our review summarizes the latest advances in the studies of m6A modification in the pathogenesis of the complex eye diseases, including cornea disease, cataract, diabetic retinopathy, age-related macular degeneration, proliferative vitreoretinopathy, Graves' disease, uveal melanoma, retinoblastoma, and traumatic optic neuropathy. We further discuss the possibility of developing m6A modification signatures as biomarkers for the diagnosis of the eye diseases, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Wenfang Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zongming Song
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Xue Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xueru Zhao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Shikun He
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
4
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
5
|
Phosphatidylinositol 3-Kinase (PI3K) Orchestrates Aspergillus fumigatus-Induced Eosinophil Activation Independently of Canonical Toll-Like Receptor (TLR)/C-Type-Lectin Receptor (CLR) Signaling. mBio 2022; 13:e0123922. [PMID: 35695427 PMCID: PMC9426586 DOI: 10.1128/mbio.01239-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Eosinophilia is associated with various persisting inflammatory diseases and often coincides with chronic fungal infections or fungal allergy as in the case of allergic bronchopulmonary aspergillosis (ABPA). Here, we show that intranasal administration of live Aspergillus fumigatus conidia causes fatal lung damage in eosinophilic interleukin-5 (IL-5)-transgenic mice. To further investigate the activation of eosinophils by A. fumigatus, we established a coculture system of mouse bone marrow-derived eosinophils (BMDE) with different A. fumigatus morphotypes and analyzed the secretion of cytokines, chemokines, and eicosanoids. A. fumigatus-stimulated BMDE upregulated expression of CD11b and downregulated CD62L and CCR3. They further secreted several proinflammatory mediators, including IL-4, IL-13, IL-18, macrophage inflammatory protein-1α (MIP-1α)/CC chemokine ligand 3 (CCL3), MIP-1β/CCL4, and thromboxane. This effect required direct interaction and adherence between eosinophils and A. fumigatus, as A. fumigatus culture supernatants or A. fumigatus mutant strains with impaired adhesion elicited a rather poor eosinophil response. Unexpectedly, canonical Toll-like receptor (TLR) or C-type-lectin receptor (CLR) signaling was largely dispensable, as the absence of MYD88, TRIF, or caspase recruitment domain-containing protein 9 (CARD9) resulted in only minor alterations. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway in A. fumigatus-induced eosinophil activation. Correspondingly, we could show that phosphatidylinositol 3-kinase (PI3K) inhibitors successfully prevent A. fumigatus-induced eosinophil activation. The PI3K pathway in eosinophils may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders.
Collapse
|
6
|
Novel use of a chemically modified siRNA for robust and sustainable in vivo gene silencing in the retina. Sci Rep 2020; 10:22343. [PMID: 33339841 PMCID: PMC7749170 DOI: 10.1038/s41598-020-79242-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022] Open
Abstract
Despite efficient and specific in vitro knockdown, more reliable and convenient methods for in vivo knockdown of target genes remain to be developed particularly for retinal research. Using commercially available and chemically modified siRNA so-called Accell siRNA, we established a novel in vivo gene silencing approach in the rat retina. siRNA designed for knockdown of the house keeping gene Gapdh or four retinal cell type-specific genes (Nefl, Pvalb, Rho and Opn1sw) was injected into the vitreous body, and their retinal mRNA levels were quantified using real-time PCR. Intravitreal injection of siRNA for Gapdh resulted in approximately 40–70% reduction in its retinal mRNA levels, which lasted throughout a 9-day study period. Furthermore, all the selected retinal specific genes were efficiently down-regulated by 60–90% following intravitreal injection, suggesting injected siRNA penetrated into major retinal cell types. These findings were consistent with uniform distribution of a fluorescence-labeled siRNA injected into the vitreous body. Interestingly, gene silencing of Grin1, a core subunit of NMDA receptor, was accompanied by significant prevention from NMDA-induced retinal ganglion cell death. Thus, we provide single intravitreal injection of Accell siRNA as a versatile technique for robust and sustainable in vivo retinal gene silencing to characterize their biological functions under physiological and pathophysiological conditions.
Collapse
|
7
|
Liu X, You J, Peng X, Wang Q, Li C, Jiang N, Che C, Zhou Y, Zheng H, Zhang Z, Zhao G, Lin J. Mammalian Ste20-like kinase 4 inhibits the inflammatory response in Aspergillus fumigatus keratitis. Int Immunopharmacol 2020; 88:107021. [PMID: 33182037 DOI: 10.1016/j.intimp.2020.107021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Mammalian Ste20-like kinase 4 (MST4), a new member of the germinal-center kinase STE20 family, was recently demonstrated to be a negative regulator of inflammation. However, whether MST4 participates in the inflammatory response to fungal infection remains unknown. Our study investigated the role and molecular mechanisms of MST4 in mice cornea and corneal epithelial cells exposed to Aspergillus fumigatus (A. fumigatus). Protein level of MST4 was detected in mice corneas and human corneal epithelial cells (HCECs) by Western blot analysis. The MST4 protein level was significantly elevated in mice corneas infected with A. fumigatus and HCECs exposed to A. fumigatus. MST4 expression was also detected in mice corneas by immunofluorescence staining. Furthermore, we found recombinant MST4 inhibited proinflammatory cytokines expressions induced by A. fumigatus at both the mRNA and protein levels in mice corneas and HCECs. To further investigate the mechanism of MST4's anti-inflammatory effect in A. fumigatus keratitis, we verified recombinant MST4 can inhibit curdlan-mediated proinflammatory cytokines production in HCECs. Surprisingly, recombinant MST4 protein downregulated A. fumigatus-induced Dectin-1 expression in both mRNA and protein levels in mice corneas. Recombinant MST4 can inhibit the mRNA expression level of Dectin-1 which was induced by curdlan in HCECs. MST4 can also inhibit the expression of Dectin-1 in mRNA levels increased by Dectin-1 overexpression plasmid in HCECs. Moreover, A. fumigatus or curdlan significantly induced the phosphorylation of Syk, which was consequently suppressed by recombinant MST4. Finally, recombinant MST4 promotes HCECs proliferation, which contribute to cornea wound healing. Taken together, our results provide evidences that MST4 inhibits inflammatory signaling response in A. fumigatus keratitis by downregulating Dectin-1/p-Syk pathway and simultaneously promotes HCECs proliferation.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia You
- Department of Ophthalmology, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengye Che
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yifan Zhou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyue Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Hillmann P, Fabbro D. PI3K/mTOR Pathway Inhibition: Opportunities in Oncology and Rare Genetic Diseases. Int J Mol Sci 2019; 20:E5792. [PMID: 31752127 PMCID: PMC6888641 DOI: 10.3390/ijms20225792] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway has been implicated as a cancer target. Big pharma players and small companies have been developing small molecule inhibitors of PI3K and/or mTOR since the 1990s. Although four inhibitors have been approved, many open questions regarding tolerability, patient selection, sensitivity markers, development of resistances, and toxicological challenges still need to be addressed. Besides clear oncological indications, PI3K and mTOR inhibitors have been suggested for treating a plethora of different diseases. In particular, genetically induced PI3K/mTOR pathway activation causes rare disorders, known as overgrowth syndromes, like PTEN (phosphatase and tensin homolog) hamartomas, tuberous sclerosis complex (TSC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-related overgrowth spectrum (PROS), and activated PI3-Kinase delta syndrome (PI3KCD, APDS). Some of those disorders likeTSC or hemimegalencephaly, which are one of the PROS disorders, also belong to a group of diseases called mTORopathies. This group of syndromes presents with additional neurological manifestations associated with epilepsy and other neuropsychiatric symptoms induced by neuronal mTOR pathway hyperactivation. While PI3K and mTOR inhibitors have been and still are intensively tested in oncology indications, their use in genetically defined syndromes and mTORopathies appear to be promising avenues for a pharmacological intervention.
Collapse
Affiliation(s)
| | - Doriano Fabbro
- PIQUR Therapeutics, Hochbergerstrasse 60C, 4057 Basel, Switzerland
| |
Collapse
|
9
|
Gupta AK, Carviel J, Shear NH. A Stealthy Fungal Attack Requires an Equally Clandestine Approach to Onychomycosis Treatment. J Am Podiatr Med Assoc 2019; 109:374-378. [PMID: 31599670 DOI: 10.7547/17-080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Onychomycosis is a chronic fungal infection of the nail that is recalcitrant to treatment. It is unclear why normally effective antifungal therapy results in low cure rates. Evidence suggests that there may be a plethora of reasons that include the limited immune presence in the nail, reduced circulation, presence of commensal microbes, and fungal influence on immune signaling. Therefore, treatment should be designed to address these possibilities and work synergistically with both the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Aditya K. Gupta
- Mediprobe Research, Inc, London, Ontario, Canada
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Canada
| | | | - Neil H. Shear
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Mirkov I, Popov Aleksandrov A, Lazovic B, Glamoclija J, Kataranovski M. Usefulness of animal models of aspergillosis in studying immunity against Aspergillus infections. J Mycol Med 2019; 29:84-96. [DOI: 10.1016/j.mycmed.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
|
11
|
Sun Q, Li C, Lin J, Peng X, Wang Q, Jiang N, Xu Q, Zhao G. Celastrol ameliorates Aspergillus fumigatus keratitis via inhibiting LOX-1. Int Immunopharmacol 2019; 70:101-109. [PMID: 30798158 DOI: 10.1016/j.intimp.2019.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the effect of Celastrol (CLT) on Aspergillus fumigatus (A. fumigatus) keratitis. METHODS Primary peritoneal macrophages of C57BL/6 mice were pretreated with CLT before A. fumigatus hyphae stimulation. C57BL/6 mice were infected with A. fumigatus. Mice corneas were treated with CLT from 1 day post infection. Clinical score, PCR, ELISA and Western blot were used to test expression of anti-inflammatory mediators, proinflammatory mediators and Lectin-like oxidized low-density lipoprotein receptor 1(LOX-1). The protein levels of p38MAPK after pretreated with CLT in macrophages of C57BL/6 mice challenged with A. fumigatus were tested by Western blot. RESULTS C57BL/6 mice treated with CLT from 1 day post infection showed decreased disease, IL-1β, TNF-α, IL-10, TGF-β, MIP-2 and LOX-1 levels. CLT treatment markedly inhibiting mRNA and proteins levels of anti-inflammatory mediators, proinflammatory mediators and LOX-1 in macrophages of C57BL/6 mice compared with control group. CLT pretreatment before A. fumigatus stimulation obviously inhibiting protein levels of p38MAPK versus DMSO pretreated group in macrophages of C57BL/6 mice challenged with A. fumigatus. CONCLUSION These data provide evidences that CLT ameliorates A. fumigatus keratitis of C57BL/6 mice via inhibiting LOX-1. CLT pretreatment before A. fumigatus stimulation decreased levels of inflammation in macrophages of C57BL/6 mice, which may be regulated by p-p38MAPK.
Collapse
Affiliation(s)
- Qiaoqiao Sun
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
12
|
Li B, Xi P, Wang Z, Han X, Xu Y, Zhang Y, Miao J. PI3K/Akt/mTOR signaling pathway participates in Streptococcus uberis-induced inflammation in mammary epithelial cells in concert with the classical TLRs/NF-ĸB pathway. Vet Microbiol 2018; 227:103-111. [PMID: 30473339 DOI: 10.1016/j.vetmic.2018.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
Mammary epithelial cells (MECs) play an important role in debating Streptococcus uberis (S. uberis) infection. Toll like receptor (TLR) engagement leads to the recruitment of phosphatidylinositol 3 kinases (PI3K). In order to investigate the relationship of TLRs/NF-κB and PI3K/Akt/mTOR signaling pathways in S. uberis infection in MECs, we challenged MECs (EpH4-Ev) with S. uberis 0140 J and quantified the adaptor molecules in these two signaling pathways, as-well-as proinflammatory cytokines and cell damage. The results indicate that the host's responses to virulent S. uberis infection are complex. In MECs, both TLR2 and TLR4 are detecting S. uberis infection and TLR2 is the principal receptor. The role of the PI3K/Akt/mTOR pathway in inflammatory regulation is independent of the activation of TLRs/NF-κB. Cross-talk between PI3K/Akt/mTOR and TLRs/NF-κB signaling pathways promote inflammation. This study increases our understanding of the molecular defense mechanisms of MECs in S. uberis mastitis, and provides theoretical support for the prevention of this disease.
Collapse
Affiliation(s)
- Bin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanshu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Autophagy and LAP in the Fight against Fungal Infections: Regulation and Therapeutics. Mediators Inflamm 2018; 2018:6195958. [PMID: 29692681 PMCID: PMC5859860 DOI: 10.1155/2018/6195958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Phagocytes fight fungi using canonical and noncanonical, also called LC3-associated phagocytosis (LAP), autophagy pathways. However, the outcomes of autophagy/LAP in shaping host immune responses appear to greatly vary depending on fungal species and cell types. By allowing efficient pathogen clearance and/or degradation of inflammatory mediators, autophagy proteins play a broad role in cellular and immune homeostasis during fungal infections. Indeed, defects in autophagic machinery have been linked with aberrant host defense and inflammatory states. Thus, understanding the molecular mechanisms underlying the relationship between the different forms of autophagy may offer a way to identify drugable molecular signatures discriminating between selective recognition of cargo and host protection. In this regard, IFN-γ and anakinra are teaching examples of successful antifungal agents that target the autophagy machinery. This article provides an overview of the role of autophagy/LAP in response to fungi and in their infections, regulation, and therapeutic exploitation.
Collapse
|
14
|
Wang CC, Yang CJ, Wu LH, Lin HC, Wen ZH, Lee CH. Eicosapentaenoic acid reduces indoleamine 2,3-dioxygenase 1 expression in tumor cells. Int J Med Sci 2018; 15:1296-1303. [PMID: 30275755 PMCID: PMC6158658 DOI: 10.7150/ijms.27326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
Marine plants and animals have omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA is required for biological processes, but humans are unable to synthesize them and must be obtained from dietary sources. EPA has been used as an antitumor agent but the molecular mechanisms for the regulation of tumor microenvironment immunity by EPA are still unknown. The indoleamine 2,3-dioxygenase 1 (IDO) catalyzes conversion of tryptophan to kynurenine to induce immune evasion in tumor microenvironment. In this study, EPA inhibited the expression of IDO via downregulation of protein kinase B (Akt)/mammalian targets of rapamycin (mTOR) signaling pathway in tumor cells. Meanwhile, a significant decrease in kynurenine levels and increase in T cell survival were observed after tumor cells treated with EPA. The results demonstrated that EPA can activate host antitumor immunity by inhibiting tumor IDO expression. Therefore, our finding suggests that EPA can be enormous potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Chih-Chiang Wang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Li-Hsien Wu
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Han-Chen Lin
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Gupta AK, Carviel J, Shear NH. Onychomycosis and Chronic Fungal Disease: Exploiting a Commensal Disguise to Stage a Covert Invasion. J Cutan Med Surg 2017; 22:318-322. [PMID: 29191054 DOI: 10.1177/1203475417745827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Onychomycosis is a chronic fungal infection that is recalcitrant to treatment and often results in relapse. New evidence suggests that disease prognosis may be linked to pathogens manipulating host immune responses. Therefore, individuals with specific mutations, including those affecting pattern recognition receptors or the interleukin (IL)-17 and IL-22 pathways, may be more susceptible to infection. Moreover, it is recommended that those with a family history of immune mutations or predisposition to fungal disease be treated aggressively for onychomycosis prior to symptom progression. In addition, incorporating genetic testing and new investigational therapy such as IL-33 and interferon-γ may improve treatment outcome.
Collapse
Affiliation(s)
- Aditya K Gupta
- 1 Department of Medicine, University of Toronto School of Medicine, Toronto, Ontario, Canada.,2 Mediprobe Research, London, Ontario, Canada
| | | | - Neil H Shear
- 3 Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
17
|
Wang X, Yang X, Li Y, Wang X, Zhang Y, Dai X, Niu B, Wu J, Yuan X, Xiong A, Liu Z, Zhong N, Wu M, Li G. Lyn kinase represses mucus hypersecretion by regulating IL-13-induced endoplasmic reticulum stress in asthma. EBioMedicine 2016; 15:137-149. [PMID: 28024734 PMCID: PMC5233819 DOI: 10.1016/j.ebiom.2016.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022] Open
Abstract
In asthma, mucus hypersecretion is thought to be a prominent pathological feature associated with widespread mucus plugging. However, the current treatments for mucus hypersecretion are often ineffective or temporary. The potential therapeutic targets of mucus hypersecretion in asthma remain unknown. Here, we show that Lyn is a central effector of endoplasmic reticulum stress (ER stress) and mucous hypersecretion in asthma. In Lyn-transgenic mice (Lyn-TG) and wild-type (WT) C57BL/6J mice exposed to ovalbumin (OVA), Lyn overexpression attenuates mucus hypersecretion and ER stress. Interleukin 13 (IL-13) induced MUC5AC expression by enhancing ER stress in vitro. Lyn serves as a negative regulator of IL-13-induced ER stress and MUC5AC expression. We further find that an inhibitor of ER stress, which is likely involved in the PI3K p85α/Akt pathway and NFκB activity, blocked MUC5AC expression in Lyn-knockdown cells. Furthermore, PI3K/Akt signaling is required for IL-13-induced ER stress and MUC5AC expression in airway epithelial cells. The ER stress regulation of MUC5AC expression depends on NFκB in Lyn-knockdown airway epithelial cells. Our studies indicate not only a concept of mucus hypersecretion in asthma that involves Lyn kinase but also an important therapeutic candidate for asthma.
Collapse
Affiliation(s)
- Xing Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaoqiong Yang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yin Li
- The First Clinic College, Chongqing Medical University, Chongqing 401331, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| | - Xi Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| | - Bin Niu
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Juan Wu
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Anjie Xiong
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhigang Liu
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; State Key Laboratories of Respiratory Disease, Ghuangzhou Medical University, Guangdong 510120, China
| | - Nanshan Zhong
- State Key Laboratories of Respiratory Disease, Ghuangzhou Medical University, Guangdong 510120, China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND 58203-9037, United States.
| | - Guoping Li
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
18
|
Chen S, Gao R, Kobayashi M, Yu H, Yao C, Kapur R, Yoder MC, Liu Y. Pharmacological inhibition of AKT activity in human CD34 + cells enhances their ability to engraft immunodeficient mice. Exp Hematol 2016; 45:74-84. [PMID: 27645691 DOI: 10.1016/j.exphem.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/20/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022]
Abstract
Although practiced clinically for more than 40 years, the use of hematopoietic stem cell (HSC) transplantation remains limited by the inability to expand functional HSCs ex vivo. To determine the role of phosphoinositide 3-kinase (PI3K)/AKT signaling in human hematopoietic stem and progenitor cell (HSPC) maintenance, we examined the effect of genetic and pharmacological inhibition of AKT on human umbilical cord blood (UCB) CD34+ cells. We found that knock-down of AKT1 in human UCB CD34+ cells using short interfering RNAs targeting AKT1 enhances their quiescence and colony formation potential in vitro. We treated human UCB CD34+ cells with an AKT-specific inhibitor (AKTi) and performed both in vitro and in vivo stem and progenitor cell assays. We found that ex vivo treatment of human HSPCs maintains CD34 expression and enhances colony formation in serial replating assays. Moreover, pharmacological inhibition of AKT enhances the short-term repopulating potential of human UCB CD34+ cells in immunodeficient mice. Mechanistically, genetic and pharmacological inhibition of AKT activity promotes human HSPC quiescence. These preclinical results suggest a positive role for AKTi during ex vivo culture of human UCB HSPCs.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rui Gao
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hao Yu
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chonghua Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Reuben Kapur
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mervin C Yoder
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
19
|
Park H, Lee S, Shrestha P, Kim J, Park JA, Ko Y, Ban YH, Park DY, Ha SJ, Koh GY, Hong VS, Mochizuki N, Kim YM, Lee W, Kwon YG. AMIGO2, a novel membrane anchor of PDK1, controls cell survival and angiogenesis via Akt activation. J Cell Biol 2016; 211:619-37. [PMID: 26553931 PMCID: PMC4639856 DOI: 10.1083/jcb.201503113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
AMIGO2 is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation in endothelial cells, and inhibition of the interaction between PDK1–AMIGO2 results in impaired neovascularization, pathological angiogenesis, and tumor angiogenesis. The phosphoinositide 3-kinase–Akt signaling pathway is essential to many biological processes, including cell proliferation, survival, metabolism, and angiogenesis, under pathophysiological conditions. Although 3-phosphoinositide–dependent kinase 1 (PDK1) is a primary activator of Akt at the plasma membrane, the optimal activation mechanism remains unclear. We report that adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation. Loss of AMIGO2 in endothelial cells (ECs) led to apoptosis and inhibition of angiogenesis with Akt inactivation. Amino acid residues 465–474 in AMIGO2 directly bind to the PDK1 pleckstrin homology domain. A synthetic peptide containing the AMIGO2 465–474 residues abrogated the AMIGO2–PDK1 interaction and Akt activation. Moreover, it effectively suppressed pathological angiogenesis in murine tumor and oxygen-induced retinopathy models. These results demonstrate that AMIGO2 is an important regulator of the PDK1–Akt pathway in ECs and suggest that interference of the PDK1–AMIGO2 interaction might be a novel pharmaceutical target for designing an Akt pathway inhibitor.
Collapse
Affiliation(s)
- Hyojin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungwoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Pravesh Shrestha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jihye Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeongrim Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dae-Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Victor Sukbong Hong
- College of Natural Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Shi D, Li D, Yin Q, Qiu Y, Yan H, Shen Y, Lu G, Liu W. Silenced suppressor of cytokine signaling 1 (SOCS1) enhances the maturation and antifungal immunity of dendritic cells in response to Candida albicans in vitro. Immunol Res 2015; 61:206-18. [PMID: 25381480 PMCID: PMC4336647 DOI: 10.1007/s12026-014-8562-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are known to play an important role in initiating and orchestrating antimicrobial immunity. Given the fact that candidiasis appears often in immunocompromised patients, it seems plausible that DCs hold the key to new antifungal strategies. One possibility to enhance the potency of DC-based immunotherapy is to silence the negative immunoregulatory pathways through the ablation suppressor of cytokine signaling suppressor 1 (SOCS1). Here, we deliver small interfering RNA (siRNA) against SOCS1 into murine bone marrow DCs, and as a consequence, we investigate the maturation/action of DCs and the subsequent T cell response after exposure to C. albicans. Our results show that the maturation of DCs (i.e., expressions of CD80, CD40, CD86, and MHC II) are significantly increased in the silenced SOCS1 treatment group after exposure to C. albicans. As a result, suppression of the SOCS1 promotes the greatest expression of IFN-γ and IL-12, and reduces IL-4 secretions, which induce CD4+ cell Th1 differentiation but inactivate Th2 cell development. The responses of IL-6 and TNF-β consist of up-regulation in the presence of C. albicans, but this is not specific to SOCS1 silencing, suggesting that these cytokines are not regulated by the SOCS1 gene in fungal infections. We find Th17 differentiation is unchanged regardless of SOCS1 inhibition. The increase in phagocytosis and killing of C. albicans in SOCS1 gene-treated DCs indicate a role for this cytokine suppressor in innate immunity as well. In conclusion, our findings support the view that SOCS1 protein is a critical inhibitory molecule for controlling cytokine response and antigen presentation by DCs, thereby regulating the magnitude of innate and adaptive immunities by generating IFN-γ-production T cells (Th1)—but not Th17—from naïve CD4+ T cells. Our study demonstrates that SOCS1 siRNA can serve as a useful vehicle to modulate the function of DCs against C. albicans infection.
Collapse
Affiliation(s)
- Dongmei Shi
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 12 Jiang Wangmiao Street, Nanjing, 210042 Jiangsu People’s Republic of China
- Department of Dermatology, Jining No. 1 People’s Hospital, Shandong, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu People’s Republic of China
| | - Dongmei Li
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 12 Jiang Wangmiao Street, Nanjing, 210042 Jiangsu People’s Republic of China
- Department of Dermatology, Jining No. 1 People’s Hospital, Shandong, People’s Republic of China
- Georgetown University Medical Center, Washington, DC USA
| | - Qingxin Yin
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong People’s Republic of China
- Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Ying Qiu
- Department of Dermatology, Jining No. 1 People’s Hospital, Shandong, People’s Republic of China
| | - Hongxia Yan
- Department of Dermatology, Jining No. 1 People’s Hospital, Shandong, People’s Republic of China
| | - Yongnian Shen
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 12 Jiang Wangmiao Street, Nanjing, 210042 Jiangsu People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu People’s Republic of China
| | - Guixia Lu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 12 Jiang Wangmiao Street, Nanjing, 210042 Jiangsu People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu People’s Republic of China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 12 Jiang Wangmiao Street, Nanjing, 210042 Jiangsu People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu People’s Republic of China
| |
Collapse
|
21
|
Lee KS, Jeong JS, Kim SR, Cho SH, Kolliputi N, Ko YH, Lee KB, Park SC, Park HJ, Lee YC. Phosphoinositide 3-kinase-δ regulates fungus-induced allergic lung inflammation through endoplasmic reticulum stress. Thorax 2015; 71:52-63. [PMID: 26543090 PMCID: PMC4717427 DOI: 10.1136/thoraxjnl-2015-207096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022]
Abstract
Background Sensitisation with Aspergillus fumigatus (Af) is known to be associated with severe allergic lung inflammation, but the mechanism remains to be clarified. Phosphoinositide 3-kinase (PI3K)-δ and endoplasmic reticulum (ER) stress are suggested to be involved in steroid-resistant lung inflammation. We aimed to elucidate the role of PI3K-δ and its relationship with ER stress in fungus-induced allergic lung inflammation. Methods Using Af-exposed in vivo and in vitro experimental systems, we examined whether PI3K-δ regulates ER stress, thereby contributing to steroid resistance in fungus-induced allergic lung inflammation. Moreover, we checked expression of an ER stress marker in lung tissues isolated from patients with allergic bronchopulmonary aspergillosis. Results Af-exposed mice showed that ER stress markers, unfolded protein response (UPR)-related proteins, phosphorylated Akt, generation of mitochondrial reactive oxygen species (mtROS), eosinophilic allergic inflammation, and airway hyperresponsiveness (AHR) were increased in the lung. Similarly, glucose-regulated protein 78 was increased in lung tissues of patients with ABPA. A PI3K-δ inhibitor reduced Af-induced increases in ER stress markers, UPR-related proteins, allergic inflammation and AHR in mice. However, dexamethasone failed to reduce Af-induced allergic inflammation, AHR and elevation of ER stress. Administration of an ER stress inhibitor or a mtROS scavenger improved Af-induced allergic inflammation. The PI3K-δ inhibitor reduced Af-induced mtROS generation and the mtROS scavenger ameliorated ER stress. In primary cultured tracheal epithelial cells, Af-induced ER stress was inhibited by blockade of PI3K-δ. Conclusions These findings suggest that PI3K-δ regulates Af-induced steroid-resistant eosinophilic allergic lung inflammation through ER stress.
Collapse
Affiliation(s)
- Kyung Sun Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - Jae Seok Jeong
- Department of Immunology, Chonbuk National University Medical School, Jeonju, South Korea
| | - So Ri Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Seong Ho Cho
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yun Hee Ko
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Kyung Bae Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Suk Chul Park
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Hae Jin Park
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Yong Chul Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
22
|
Jiang N, Zhao G, Lin J, Hu L, Che C, Li C, Wang Q, Xu Q, Peng X. Indoleamine 2,3-Dioxygenase Is Involved in the Inflammation Response of Corneal Epithelial Cells to Aspergillus fumigatus Infections. PLoS One 2015; 10:e0137423. [PMID: 26361229 PMCID: PMC4567309 DOI: 10.1371/journal.pone.0137423] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO), which is mainly expressed in activated dendritic cells, is known as a regulator of immune responses. However, the role of IDO in immune responses against fungal corneal infection has not been investigated. To evaluate the regulatory mechanisms of IDO in fungal inflammation, we resorted to human corneal epithelial cells (HCECs), known as the first barrier of cornea against pathogenic microorganisms. We found that IDO was significantly up-regulated in corneal epithelium infected with Aspergillus fumigatus (A. fumigatus) and HCECs incubated with spores of A. fumigatus. Furthermore, IDO inhibitor (1-methyltryptophan, 1-MT) enhanced inflammatory cytokines IL-1β and IL-6 expression which were up-regulated by A. fumigatus spores infection. Dectin-1, as one of the important C-type lectin receptors, can identify β-glucan, and mediate fungal innate immune responses. In the present study, pre-treatment with curdlan, a Dectin-1 agonist, further enhanced IDO expression compared with A. fumigatus stimulation. While laminarin, the Dectin-1 specific inhibitor, partially inhibited IDO expression stimulated by A. fumigatus. Further studies demonstrated inhibition of IDO activity amplified the expressions of inflammatory cytokines IL-1β and IL-6 induced by activation of Dectin-1. These results suggested that IDO was involved in the immune responses of fungal keratitis. The activation of Dectin-1 may contribute to A. fumigatus spores-induced up-regulation of IDO.
Collapse
MESH Headings
- Animals
- Aspergillus fumigatus/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/microbiology
- Epithelium, Corneal/pathology
- Female
- Gene Expression
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Inflammation Mediators/metabolism
- Keratitis/diagnosis
- Keratitis/metabolism
- Keratitis/microbiology
- Lectins, C-Type/metabolism
- Mice
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- beta-Glucans/pharmacology
Collapse
Affiliation(s)
- Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
- * E-mail:
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Liting Hu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| |
Collapse
|
23
|
Chen SS, Sun LW, Brickner H, Sun PQ. Downregulating galectin-3 inhibits proinflammatory cytokine production by human monocyte-derived dendritic cells via RNA interference. Cell Immunol 2015; 294:44-53. [PMID: 25684095 PMCID: PMC4704704 DOI: 10.1016/j.cellimm.2015.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
Abstract
Galectin-3 (Gal-3), a β-galactoside-binding lectin, serves as a pattern-recognition receptor (PRR) of dendritic cells (DCs) in regulating proinflammatory cytokine production. Galectin-3 (Gal-3) siRNA downregulates expression of IL-6, IL-1β and IL-23 p19, while upregulates IL-10 and IL-12 p35 in TLR/NLR stimulated human MoDCs. Furthermore, Gal-3 siRNA-treated MoDCs enhanced IFN-γ production in SEB-stimulated CD45RO CD4 T-cells, but attenuated IL-17A and IL-5 production by CD4 T-cells. Addition of neutralizing antibodies against Gal-3, or recombinant Gal-3 did not differentially modulate IL-23 p19 versus IL-12 p35. The data indicate that intracellular Gal-3 acts as cytokine hub of human DCs in responding to innate immunity signals. Gal-3 downregulation reprograms proinflammatory cytokine production by MoDCs that inhibit Th2/Th17 development.
Collapse
Affiliation(s)
- Swey-Shen Chen
- Department of Immunology, The Institute of Genetics, San Diego, CA, USA; Department of Allergy, Inflammation and Vaccinology, IGE Therapeutics, Inc., San Diego, CA, USA; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Liang-Wu Sun
- Department of Immunology, The Institute of Genetics, San Diego, CA, USA; Department of Allergy, Inflammation and Vaccinology, IGE Therapeutics, Inc., San Diego, CA, USA
| | - Howard Brickner
- Department of Immunology, The Institute of Genetics, San Diego, CA, USA; Department of Allergy, Inflammation and Vaccinology, IGE Therapeutics, Inc., San Diego, CA, USA
| | - Pei-Qing Sun
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
24
|
Becker KL, Ifrim DC, Quintin J, Netea MG, van de Veerdonk FL. Antifungal innate immunity: recognition and inflammatory networks. Semin Immunopathol 2014; 37:107-16. [DOI: 10.1007/s00281-014-0467-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/06/2014] [Indexed: 11/29/2022]
|
25
|
IL-37 inhibits inflammasome activation and disease severity in murine aspergillosis. PLoS Pathog 2014; 10:e1004462. [PMID: 25375146 PMCID: PMC4223056 DOI: 10.1371/journal.ppat.1004462] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
Since IL-37 transgenic mice possesses broad anti-inflammatory properties, we assessed whether recombinant IL-37 affects inflammation in a murine model of invasive pulmonary aspergillosis. Recombinant human IL-37 was injected intraperitoneally into mice prior to infection and the effects on lung inflammation and inflammasome activation were evaluated. IL-37 markedly reduced NLRP3-dependent neutrophil recruitment and steady state mRNA levels of IL-1β production and mitigated lung inflammation and damage in a relevant clinical model, namely aspergillosis in mice with cystic fibrosis. The anti-inflammatory activity of IL-37 requires the IL-1 family decoy receptor TIR-8/SIGIRR. Thus, by preventing activation of the NLRP3 inflammasome and reducing IL-1β secretion, IL-37 functions as a broad spectrum inhibitor of the innate response to infection-mediated inflammation, and could be considered to be therapeutic in reducing the pulmonary damage due to non-resolving Aspergillus infection and disease. IL-37, firstly identified by in silico research in the year 2000, is a member of the IL-1 family. The biological properties of IL-37 are mainly those of down-regulating inflammation in models of septic shock, chemical colitis, cardiac ischemia and contact dermatitis. Whether and how IL-37 down-regulates the inflammation of infection, and its consequences, is not known. We observed that IL-37 limits inflammation and disease severity in murine invasive aspergillosis, an infection model in which cytokines of the IL-1 family have important roles. However, given that IL-1R1-deficient or caspase 1-deficient mice are resistant to lung inflammation during infection and that IL-1 signaling could drive the differentiation of antifungal inflammatory Th17 cells, the pro-inflammatory properties of IL 1-induced inflammation in aspergillosis is potentially dangerous for the host. IL-37 markedly reduced NLRP3-dependent neutrophil recruitment and steady state mRNA levels of IL-1β production and mitigated lung inflammation and damage in a relevant clinical model, namely aspergillosis in mice with cystic fibrosis. The anti-inflammatory activity of IL-37 requires the IL-1 receptor family decoy TIR-8/SIGIRR. Thus, IL-37 functions as a broad spectrum inhibitor of infection-mediated inflammation, and could be considered to be therapeutic in reducing the pulmonary damage due to non-resolving Aspergillus infection and disease.
Collapse
|
26
|
Borghi M, Renga G, Puccetti M, Oikonomou V, Palmieri M, Galosi C, Bartoli A, Romani L. Antifungal Th Immunity: Growing up in Family. Front Immunol 2014; 5:506. [PMID: 25360137 PMCID: PMC4197763 DOI: 10.3389/fimmu.2014.00506] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/28/2014] [Indexed: 12/25/2022] Open
Abstract
Fungal diseases represent an important paradigm in immunology since they can result from either the lack of recognition or over-activation of the inflammatory response. Current understanding of the pathophysiology underlying fungal infections and diseases highlights the multiple cell populations and cell-signaling pathways involved in these conditions. A systems biology approach that integrates investigations of immunity at the systems-level is required to generate novel insights into this complexity and to decipher the dynamics of the host–fungus interaction. It is becoming clear that a three-way interaction between the host, microbiota, and fungi dictates the types of host–fungus relationship. Tryptophan metabolism helps support this interaction, being exploited by the mammalian host and commensals to increase fitness in response to fungi via resistance and tolerance mechanisms of antifungal immunity. The cellular and molecular mechanisms that provide immune homeostasis with the fungal biota and its possible rupture in fungal infections and diseases will be discussed within the expanding role of antifungal Th cell responses.
Collapse
Affiliation(s)
- Monica Borghi
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Giorgia Renga
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | | | - Vasileios Oikonomou
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Melissa Palmieri
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Claudia Galosi
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Andrea Bartoli
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
27
|
Akagi R, Sasho T, Saito M, Endo J, Yamaguchi S, Muramatsu Y, Mukoyama S, Akatsu Y, Katsuragi J, Fukawa T, Takahashi K. Effective knock down of matrix metalloproteinase-13 by an intra-articular injection of small interfering RNA (siRNA) in a murine surgically-induced osteoarthritis model. J Orthop Res 2014; 32:1175-80. [PMID: 24848439 DOI: 10.1002/jor.22654] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/02/2014] [Indexed: 02/04/2023]
Abstract
This study investigated the effect of MMP-13 gene knock down on cartilage degradation by injecting small interfering RNA (siRNA) into knee joints in a mouse model of osteoarthritis (OA). OA was induced in male C57BL/6 mice by destabilization of medial meniscus (DMM) surgery. Change of Mmp13 expression over time was determined by qPCR analysis from 3 days to 6 weeks after surgery. Mmp13 and control chemically modified siRNA were injected into the knee joint 1 week after surgery and expression levels were assessed in synovium by qPCR 48 h later. Cartilage degradation was histologically assessed 8 weeks after DMM surgery according to OARSI recommendations. Mmp13 expression levels were elevated 1 week after surgery and peaked at 77 fold at 2 weeks compared to expression at 3 days. A 55% decrease of Mmp13 levels in cartilage was observed 48 h after injection of Mmp13 siRNA (p = 0.05). Significant reduction in the histological score at 8 weeks after surgery was observed in the Mmp13 siRNA-treated group compared to the control siRNA group (p < 0.001). Intra-articular injection of Mmp13 siRNA at the early phase of OA development resulted in effective knock down of Mmp13 expression and delay in cartilage degradation in vivo.
Collapse
Affiliation(s)
- Ryuichiro Akagi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba, Chiba, 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bozza S, Campo S, Arseni B, Inforzato A, Ragnar L, Bottazzi B, Mantovani A, Moretti S, Oikonomous V, De Santis R, Carvalho A, Salvatori G, Romani L. PTX3 Binds MD-2 and Promotes TRIF-Dependent Immune Protection in Aspergillosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2340-8. [DOI: 10.4049/jimmunol.1400814] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Mazzeo C, Gámez C, Rodriguez Marco A, de Zulueta A, Sanz V, Bilbao I, Ruiz-Cabello J, Zubeldia JM, del Pozo V. Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice. PLoS One 2014; 9:e91996. [PMID: 24637581 PMCID: PMC3956882 DOI: 10.1371/journal.pone.0091996] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/16/2014] [Indexed: 12/03/2022] Open
Abstract
Suppresors of cytokine signaling (SOCS) proteins regulate cytokine responses and control immune balance. Several studies have confirmed that SOCS3 is increased in asthmatic patients, and SOCS3 expression is correlated with disease severity. The objective of this study was to evaluate if delivering of SOCS3 short interfering RNA (siRNA) intranasally in lungs could be a good therapeutic approach in an asthma chronic mouse model. Our results showed that intranasal treatment with SOCS3-siRNA led to an improvement in the eosinophil count and the normalization of hyperresponsiveness to methacholine. Concomitantly, this treatment resulted in an improvement in mucus secretion, a reduction in lung collagen, which are prominent features of airway remodeling. The mechanism implies JAK/STAT and RhoA/Rho-kinase signaling pathway, because we found a decreasing in STAT3 phosphorylation status and down regulation of RhoA/Rho-kinase protein expression. These results might lead to a new therapy for the treatment of chronic asthma.
Collapse
Affiliation(s)
- Ma Paz Zafra
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Carla Mazzeo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Cristina Gámez
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | | | - Ana de Zulueta
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Veronica Sanz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Izaskun Bilbao
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares, and Universidad Complutense Madrid, Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares, and Universidad Complutense Madrid, Madrid, Spain
| | - Jose M. Zubeldia
- Allergy Section and Experimental Medicine Unit, Gregorio Marañón Hospital, Madrid, Spain
| | - Victoria del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- * E-mail:
| |
Collapse
|
30
|
A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist. PLoS Pathog 2014; 10:e1003936. [PMID: 24603878 PMCID: PMC3946377 DOI: 10.1371/journal.ppat.1003936] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/05/2014] [Indexed: 11/20/2022] Open
Abstract
The galactosaminogalactan (GAG) is a cell wall component of Aspergillus fumigatus that has potent anti-inflammatory effects in mice. However, the mechanisms responsible for the anti-inflammatory property of GAG remain to be elucidated. In the present study we used in vitro PBMC stimulation assays to demonstrate, that GAG inhibits proinflammatory T-helper (Th)1 and Th17 cytokine production in human PBMCs by inducing Interleukin-1 receptor antagonist (IL-1Ra), a potent anti-inflammatory cytokine that blocks IL-1 signalling. GAG cannot suppress human T-helper cytokine production in the presence of neutralizing antibodies against IL-1Ra. In a mouse model of invasive aspergillosis, GAG induces IL-1Ra in vivo, and the increased susceptibility to invasive aspergillosis in the presence of GAG in wild type mice is not observed in mice deficient for IL-1Ra. Additionally, we demonstrate that the capacity of GAG to induce IL-1Ra could also be used for treatment of inflammatory diseases, as GAG was able to reduce severity of an experimental model of allergic aspergillosis, and in a murine DSS-induced colitis model. In the setting of invasive aspergillosis, GAG has a significant immunomodulatory function by inducing IL-1Ra and notably IL-1Ra knockout mice are completely protected to invasive pulmonary aspergillosis. This opens new treatment strategies that target IL-1Ra in the setting of acute invasive fungal infection. However, the observation that GAG can also protect mice from allergy and colitis makes GAG or a derivative structure of GAG a potential treatment compound for IL-1 driven inflammatory diseases. Aspergillus fumigatus is an opportunistic pathogenic fungus that primarily causes infections in the immunocompromised host. It is known that Aspergillus employs various strategies to evade immune recognition by the host's immune system. Recently, galactosaminogalactan (GAG), a new component of the Aspergillus cell wall, was discovered to have potent anti-inflammatory effects in mice making them more susceptible to Aspergillosis. In the current study we found that this anti-inflammatory property of GAG was due to its capacity to induce the potent anti-inflammatory cytokine interleukin-1 Receptor antagonist. This cytokine interferes with IL-1 signalling and thereby can reduce IL-1–induced immune responses such as T-cell responses. We also found that the induction of this anti-inflammatory cytokine by GAG correlates with increased fungal burden, and mice deficient for this cytokine were protected against aspergillosis. Additionally, we show that the capacity of GAG to induce the natural regulator of IL-1 signalling could be used in the treatment of IL-1–mediated disease such as allergy and colitis. Our study provides new insights on the immunoregulatory activity of GAG and opens up possibilities to exploit the anti-inflammatory potential of GAG as a therapy for inflammatory diseases.
Collapse
|
31
|
High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9-TRIF pathway. Nat Commun 2013; 4:1852. [PMID: 23673637 DOI: 10.1038/ncomms2874] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/12/2013] [Indexed: 02/07/2023] Open
Abstract
CpG-rich oligodeoxynucleotides activate the immune system, leading to innate and acquired immune responses. The immune-stimulatory effects of CpG-rich oligodeoxynucleotides are being exploited as a therapeutic approach. Here we show that at high doses, CpG-rich oligodeoxynucleotides promote an opposite, tolerogenic response in mouse plasmacytoid dendritic cells in vivo and in a human in vitro model. Unveiling a previously undescribed role for TRIF and TRAF6 proteins in Toll-like receptor 9 (TLR9) signalling, we demonstrate that physical association of TLR9, TRIF and TRAF6 leads to activation of noncanonical NF-κB signalling and the induction of IRF3- and TGF-β-dependent immune-suppressive tryptophan catabolism. In vivo, the TLR9-TRIF circuit--but not MyD88 signalling--was required for CpG protection against allergic inflammation. Our findings may be relevant to an increased understanding of the complexity of Toll-like receptor signalling and optimal exploitation of CpG-rich oligodeoxynucleotides as immune modulators.
Collapse
|
32
|
Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA, Romani L, Latgé JP. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003716. [PMID: 24244155 PMCID: PMC3828178 DOI: 10.1371/journal.ppat.1003716] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/22/2013] [Indexed: 01/12/2023] Open
Abstract
α-(1,3)-Glucan is a major component of the cell wall of Aspergillus fumigatus, an opportunistic human fungal pathogen. There are three genes (AGS1, AGS2 and AGS3) controlling the biosynthesis of α-(1,3)-glucan in this fungal species. Deletion of all the three AGS genes resulted in a triple mutant that was devoid of α-(1,3)-glucan in its cell wall; however, its growth and germination was identical to that of the parental strain in vitro. In the experimental murine aspergillosis model, this mutant was less pathogenic than the parental strain. The AGS deletion resulted in an extensive structural modification of the conidial cell wall, especially conidial surface where the rodlet layer was covered by an amorphous glycoprotein matrix. This surface modification was responsible for viability reduction of conidia in vivo, which explains decrease in the virulence of triple agsΔ mutant. Aspergillus fumigatus is the predominant mold pathogen of humans, responsible for life-threatening systemic infections in patients with depressed immunity. Because of its external localization and specific composition, the fungal cell wall represents a target for recognition by and interaction with the host immune cells. In A. fumigatus, α-(1,3)-glucan is a key component of the extracellular matrix, which encloses the cell wall β-(1,3)-glucan-chitin fibrillar core. Interestingly, the deletion of the genes responsible for α-(1,3)-glucan synthesis resulted in a mutant that exhibited wild type phenotype in vitro; while the altered cell wall organization resulted in this fungus being avirulent in vivo. This study confirms that any modification in the cell wall components is associated with compensatory reactions developed by the fungus to counteract stress on the cell wall that may result in unexpected fungal response when challenged with the host immune system.
Collapse
Affiliation(s)
- Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, Paris, France
- * E-mail:
| | - Silvia Bozza
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), University of Jena, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), Jena, Germany
| | | | - Viviane Balloy
- Unité de Défence Innée et Inflammation, Institut Pasteur, Inserm U874, Paris, France
| | | | - Robert W. Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Michel Chignard
- Unité de Défence Innée et Inflammation, Institut Pasteur, Inserm U874, Paris, France
| | - Axel A. Brakhage
- Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), University of Jena, Jena, Germany
| | - Luigina Romani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
33
|
Wang Q, Franks HA, Lax SJ, El Refaee M, Malecka A, Shah S, Spendlove I, Gough MJ, Seedhouse C, Madhusudan S, Patel PM, Jackson AM. The ataxia telangiectasia mutated kinase pathway regulates IL-23 expression by human dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3246-55. [PMID: 23460736 DOI: 10.4049/jimmunol.1201484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Little is known of the regulation of IL-23 secretion in dendritic cells (DC) despite its importance for human Th17 responses. In this study, we show for first time, to our knowledge, that the ataxia telangiectasia mutated (ATM) pathway, involved in DNA damage sensing, acts as an IL-23 repressor. Inhibition of ATM with the highly selective antagonist KU55933 markedly increased IL-23 secretion in human monocyte-derived DC and freshly isolated myeloid DC. In contrast, inhibiting the closely related mammalian target of rapamycin had no effect on IL-23. Priming naive CD4(+) T cells with ATM-inhibited DC increased Th17 responses over and above those obtained with mature DC. Although ATM blockade increased the abundance of p19, p35, and p40 mRNA, IL-12p70 secretion was unaffected. To further examine a role for ATM in IL-23 regulation, we exposed DC to low doses of ionizing radiation. Exposure of DC to x-rays resulted in ATM phosphorylation and a corresponding depression of IL-23. Importantly, ATM inhibition with KU55933 prevented radiation-induced ATM phosphorylation and abrogated the capacity of x-rays to suppress IL-23. To explore how ATM repressed IL-23, we examined a role for endoplasmic reticulum stress responses by measuring generation of the spliced form of X-box protein-1, a key endoplasmic reticulum stress transcription factor. Inhibition of ATM increased the abundance of X-box protein-1 mRNA, and this was followed 3 h later by increased peak p19 transcription and IL-23 release. In summary, ATM activation or inhibition, respectively, inhibited or augmented IL-23 release. This novel role of the ATM pathway represents a new therapeutic target in autoimmunity and vaccine development.
Collapse
Affiliation(s)
- Qunwei Wang
- Host:Tumour Interactions Group, Academic Unit of Clinical Oncology, University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rizzetto L, Giovannini G, Bromley M, Bowyer P, Romani L, Cavalieri D. Strain dependent variation of immune responses to A. fumigatus: definition of pathogenic species. PLoS One 2013; 8:e56651. [PMID: 23441211 PMCID: PMC3575482 DOI: 10.1371/journal.pone.0056651] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Neuroscience, Pharmacology and Child’s Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Gloria Giovannini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Michael Bromley
- National Aspergillosis Centre and Mycology Reference Centre, University Hospital of South Manchester, University of Manchester, Manchester, United Kingdom
- School of Translational Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Paul Bowyer
- National Aspergillosis Centre and Mycology Reference Centre, University Hospital of South Manchester, University of Manchester, Manchester, United Kingdom
- School of Translational Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Luigina Romani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Duccio Cavalieri
- Department of Neuroscience, Pharmacology and Child’s Health (NEUROFARBA), University of Florence, Florence, Italy
- Innovation and Research Center, Edmund Mach Fondation, San Michele all’Adige (TN), Italy
- * E-mail:
| |
Collapse
|
35
|
Murakami Y, Hoshi M, Imamura Y, Arioka Y, Yamamoto Y, Saito K. Remarkable role of indoleamine 2,3-dioxygenase and tryptophan metabolites in infectious diseases: potential role in macrophage-mediated inflammatory diseases. Mediators Inflamm 2013; 2013:391984. [PMID: 23476103 PMCID: PMC3588179 DOI: 10.1155/2013/391984] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/28/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper, current knowledge about the role of IDO1 and its metabolites during various infectious diseases is presented. Particularly, the regulation of type I interferons (IFNs) production via IDO1 in virus infection is discussed. This paper offers insights into new therapeutic strategies in the modulation of viral infection and several immune-related disorders.
Collapse
Affiliation(s)
- Yuki Murakami
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-Ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Carvalho A, Cunha C, Iannitti RG, De Luca A, Giovannini G, Bistoni F, Romani L. Inflammation in aspergillosis: the good, the bad, and the therapeutic. Ann N Y Acad Sci 2013; 1273:52-9. [PMID: 23230837 DOI: 10.1111/j.1749-6632.2012.06754.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillosis includes a spectrum of diseases caused by different Aspergillus spp. New insights into the cellular and molecular mechanisms of resistance and immune tolerance to the fungus in infection and allergy have been obtained in experimental settings. The fact that virulence factors, traditionally viewed as fungal attributes, are contingent upon microbial adaptation to various environmental stresses encountered in the human host implies that the host and fungus are jointly responsible for pathogenicity. Ultimately, despite the occurrence of severe aspergillosis in immunocompromised patients, clinical evidence indicates that aspergillosis also occurs in the setting of a heightened inflammatory response, in which immunity occurs at the expense of host damage and pathogen eradication. Thus, targeting pathogenicity rather than microbial growth, tolerance rather than resistance mechanisms of defense may pave the way to targeted anti-inflammatory strategies in difficult-to-treat patients. The challenge now is to translate promising results from experimental models to the clinic.
Collapse
Affiliation(s)
- Agostinho Carvalho
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Xu HY, Chen ZW, Hou JC, Du FX, Liu JC. Jolkinolide B induces apoptosis in MCF-7 cells through inhibition of the PI3K/Akt/mTOR signaling pathway. Oncol Rep 2012; 29:212-8. [PMID: 23129237 DOI: 10.3892/or.2012.2113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/17/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to explore the molecular mechanisms of jolkinolide B (JB), which is extracted from the root of Euphorbia fischeriana Steud. In this study, we found that JB, a diterpenoid from the traditional Chinese medicinal herb, strongly inhibited the PI3K/Akt/mTOR signaling pathway. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MCF-7 human breast cancer cells. Our results showed significant induction of apoptosis in MCF-7 cells incubated with JB. The viability of the MCF-7 cells was assessed by MTT assay. Flow cytometry was used to detect apoptosis and cell cycle analysis. Transmission electron microscopy (TEM) analysis was used to observe cell morphology. MCF-7 cells were subcutaneously inoculated into nude mice to study the in vivo antitumor effects of JB. The growth of MCF-7 cells was inhibited and arrested in the S phase by JB. The data showed significantly decreased tumor volume and weight in nude mice inoculated with MCF-7 cells. In addition, treatment with JB was able to induce downregulation of cyclinD1, cyclinE, mTOR, p-PI3K and p-Akt, and upregulation of PTEN and p-eIF4E. Collectively, JB-induced apoptosis of MCF-7 cells occurs through the PI3K/Akt/mTOR signaling pathway. Furthermore, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.
Collapse
Affiliation(s)
- Hui-Yu Xu
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | | | | | | | | |
Collapse
|
38
|
Carvalho A, Cunha C, Bozza S, Moretti S, Massi-Benedetti C, Bistoni F, Aversa F, Romani L. Immunity and tolerance to fungi in hematopoietic transplantation: principles and perspectives. Front Immunol 2012; 3:156. [PMID: 22707953 PMCID: PMC3374351 DOI: 10.3389/fimmu.2012.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/25/2012] [Indexed: 12/30/2022] Open
Abstract
Resistance and tolerance are two complementary host defense mechanisms that increase fitness in response to low-virulence fungi. Resistance is meant to reduce pathogen burden during infection through innate and adaptive immune mechanisms, whereas tolerance mitigates the substantial cost of resistance to host fitness through a multitude of anti-inflammatory mechanisms, including immunological tolerance. In experimental fungal infections, both defense mechanisms are activated through the delicate equilibrium between Th1/Th17 cells, which provide antifungal resistance, and regulatory T cells limiting the consequences of the ensuing inflammatory pathology. Indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme in the tryptophan catabolism, plays a key role in induction of tolerance against fungi. Both hematopoietic and non-hematopoietic compartments contribute to the resistance/tolerance balance against Aspergillus fumigatus via the involvement of selected innate receptors converging on IDO. Several genetic polymorphisms in pattern recognition receptors influence resistance and tolerance to fungal infections in human hematopoietic transplantation. Thus, tolerance mechanisms may be exploited for novel diagnostics and therapeutics against fungal infections and diseases.
Collapse
Affiliation(s)
- Agostinho Carvalho
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cunha C, Aversa F, Bistoni G, Casagrande A, Rodrigues F, Romani L, Carvalho A. Immunogenetic profiling to predict risk of invasive fungal diseases: where are we now? Immunol Invest 2012; 40:723-34. [PMID: 21985302 DOI: 10.3109/08820139.2011.586395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Invasive fungal diseases remain nowadays life-threatening conditions affecting multiple clinical settings. The onset of these diseases is dependent on numerous factors, of which the "immunocompromised" phenotype of the patients is the more often acknowledged. However, and despite comparable immune dysfunction, not all patients are ultimately susceptible to disease, suggesting that additional risk factors, likely of genetic nature, may also be important. In the last years, genetic variants in several immune-related genes have also been proposed as major determinants of the susceptibility pattern of high-risk patients to invasive fungal diseases. Altogether, these findings highlighted the crucial significance of the individual genetic make-up in defining susceptibility to infection, providing a compelling rationale for the introduction of the immunogenetic profile as a risk prediction measure that may ultimately help to guide clinicians in the use of prophylaxis and preemptive fungal therapy in high-risk patients.
Collapse
Affiliation(s)
- Cristina Cunha
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia,Via del Giochetto, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
TLR3 essentially promotes protective class I-restricted memory CD8⁺ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 2011; 119:967-77. [PMID: 22147891 DOI: 10.1182/blood-2011-06-362582] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aspergillus fumigatus is a model fungal pathogen and a common cause of severe infections and diseases. CD8⁺ T cells are present in the human and murine T-cell repertoire to the fungus. However, CD8⁺ T-cell function in infection and the molecular mechanisms that control their priming and differentiation into effector and memory cells in vivo remain elusive. In the present study, we report that both CD4⁺ and CD8⁺ T cells mediate protective memory responses to the fungus contingent on the nature of the fungal vaccine. Mechanistically, class I MHC-restricted, CD8⁺ memory T cells were activated through TLR3 sensing of fungal RNA by cross-presenting dendritic cells. Genetic deficiency of TLR3 was associated with susceptibility to aspergillosis and concomitant failure to activate memory-protective CD8⁺ T cells both in mice and in patients receiving stem-cell transplantations. Therefore, TLR3 essentially promotes antifungal memory CD8⁺ T-cell responses and its deficiency is a novel susceptibility factor for aspergillosis in high-risk patients.
Collapse
|
41
|
Nakajima H, Kubo T, Semi Y, Itakura M, Kuwamura M, Izawa T, Azuma YT, Takeuchi T. A rapid, targeted, neuron-selective, in vivo knockdown following a single intracerebroventricular injection of a novel chemically modified siRNA in the adult rat brain. J Biotechnol 2011; 157:326-33. [PMID: 22079868 DOI: 10.1016/j.jbiotec.2011.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 12/29/2022]
Abstract
There has been a dramatic expansion of the literature on RNA interference and with it, increasing interest in the potential clinical utility of targeted inhibition of gene expression and associated protein knockdown. However, a critical factor limiting the experimental and therapeutic application of RNA interference is the ability to deliver small interfering RNAs (siRNAs), particularly in the central nervous system, without complications such as toxicity and inflammation. Here we show that a single intracerebroventricular injection of Accell siRNA, a new type of naked siRNA that has been modified chemically to allow for delivery in the absence of transfection reagents, even into differentiated cells such mature neurons, leads to neuron-specific protein knockdown in the adult rat brain. Following in vivo delivery, targeted Accell siRNAs were incorporated successfully into various types of mature neurons, but not glia, for 1 week in diverse brain regions (cortex, striatum, hippocampus, midbrain, and cerebellum) with an efficacy of delivery of approximately 97%. Immunohistochemical and Western blotting analyses revealed widespread, targeted inhibition of the expression of two well-known reference proteins, cyclophilin-B (38-68% knockdown) and glyceraldehyde 3-phosphate dehydrogenase (23-34% knockdown). These findings suggest that this novel procedure is likely to be useful in experimental investigations of neuropathophysiological mechanisms.
Collapse
Affiliation(s)
- Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka 5988531, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Management of invasive aspergillosis in high-risk patients remains challenging. There is an increasing demand for novel therapeutic strategies aimed at enhancing or restoring antifungal immunity in immunocompromised patients. In this regard, modulation of specific innate immune functions and vaccination are promising immunotherapeutic strategies. Recent findings have also provided a compelling rationale for assessment of the contribution of the individual genetic profile to the immunotherapy outcome. Altogether, integration of immunological and genetic data may contribute to the optimization of therapeutic strategies exerting control over immune pathways, ultimately improving the management of fungal infections in high-risk settings.
Collapse
Affiliation(s)
- A Carvalho
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
43
|
Friend or foe: using systems biology to elucidate interactions between fungi and their hosts. Trends Microbiol 2011; 19:509-15. [DOI: 10.1016/j.tim.2011.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/20/2022]
|
44
|
Systems biology of infectious diseases: a focus on fungal infections. Immunobiology 2011; 216:1212-27. [PMID: 21889228 DOI: 10.1016/j.imbio.2011.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/06/2011] [Indexed: 12/21/2022]
Abstract
The study of infectious disease concerns the interaction between the host species and a pathogen organism. The analysis of such complex systems is improving with the evolution of high-throughput technologies and advanced computational resources. This article reviews integrative, systems-oriented approaches to understanding mechanisms underlying infection, immune response and inflammation to find biomarkers of disease and design new drugs. We focus on the systems biology process, especially the data gathering and analysis techniques rather than the experimental technologies or latest computational resources.
Collapse
|
45
|
Abstract
Over the past two decades much has been learned about the immunology of invasive fungal infection, especially invasive candidiasis and invasive aspergillosis. Although quite different in their pathogenesis, the major common protective host response is Th1 mediated. It is through Th1 cytokine production that the effector cells, phagocytes, are activated to kill the fungus. A more thorough understanding of the pathogenesis of disease, the elicited protective Th1 immune response, the T cell antigen(s) which elicit this response, and the mechanism(s) whereby one can enhance, reconstitute, or circumvent the immunosuppressed state will, hopefully, lead to the development of a vaccine(s) capable of protecting even the most immunocompromised of hosts.
Collapse
Affiliation(s)
- James Isami Ito
- Division of Infectious Diseases, City of Hope, 1500E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
46
|
Bauer R, Mezger M, Blockhaus C, Schmitt AL, Kurzai O, Einsele H, Loeffler J. 40-O -[2-Hydroxyethyl]rapamycin modulates human dendritic cell function during exposure to Aspergillus fumigatus. J Basic Microbiol 2011; 52:269-76. [DOI: 10.1002/jobm.201100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Indexed: 11/11/2022]
|
47
|
Carvalho A, Cunha C, Romani L. Immunity and tolerance to infections in experimental hematopoietic transplantation. Best Pract Res Clin Haematol 2011; 24:435-42. [PMID: 21925096 DOI: 10.1016/j.beha.2011.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Resistance and tolerance are two types of host defense mechanisms that increase fitness in response to fungi. Several genetic polymorphisms in pattern recognition receptors, most remarkably Toll-like receptors (TLRs), have been described to influence resistance and tolerance to aspergillosis in distinct clinical settings. TLRs on dendritic cells pivotally contribute in determining the balance between immunopathology and protective immunity to the fungus. Epithelial cells also contribute to this balance via selected TLRs converging on indoleamine-2,3-dioxygenase (IDO). Studies in experimental hematopoietic transplantation confirmed the dichotomy of pathways leading to resistance and tolerance to the fungus providing new insights on the relative contribution of the hematopoietic/nonhematopoietic compartments.
Collapse
Affiliation(s)
- Agostinho Carvalho
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, Perugia, Italy
| | | | | |
Collapse
|
48
|
Wang Q, Franks HA, Porte J, El Refaee M, Shah S, Crooks J, Patel PM, Jackson AM. Novel approach for interleukin-23 up-regulation in human dendritic cells and the impact on T helper type 17 generation. Immunology 2011; 134:60-72. [PMID: 21718315 DOI: 10.1111/j.1365-2567.2011.03467.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interleukin-23 (IL-23) is important for T helper type 17 (Th17) responses and strategies to regulate IL-23 in human dendritic cells (DC) are limited. This study describes a novel means to control IL-23 secretion by conditioning DC with a phosphatidyl inositol 3-kinase inhibitor Wortmannin (WM). Treatment of monocyte-derived DC with WM increased Toll-like receptor (TLR) -dependent IL-23 secretion 10-fold and IL-12p70 twofold, but IL-27 was unaffected. The effect of WM was restricted to TLR3/4 pathways, did not occur through TLR2, TLR7/8 or Dectin-1, and was characterized by increased p19, p35 and p40 transcription. These responses were not solely dependent on phosphatidyl inositol 3-kinase as the alternative inhibitor LY294002 did not modulate IL-23 production. The normal patterns of activation of mitogen-activated protein kinase pathways were unaffected by WM-conditioning but IL-23 secretion required p38, ERK and JNK pathways. Importantly, this effect was manifest in populations of blood DC. Conditioning freshly isolated myeloid DC with WM before TLR3 or TLR4 triggering resulted in high levels of IL-23 secretion and an absence of IL-12p70. These WM-conditioned myeloid DC were highly effective at priming Th17 responses from naive CD4(+) T cells. Our findings provide a novel means to generate IL-23-rich environments and Th17 responses and suggest as yet unidentified regulatory factors, identification of which will provide new approaches to control IL-23-dependent immunity in infectious disease, autoimmunity and malignancy.
Collapse
Affiliation(s)
- Qunwei Wang
- Academic Unit of Clinical Oncology, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Volling K, Thywissen A, Brakhage AA, Saluz HP. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell Microbiol 2011; 13:1130-48. [PMID: 21501368 DOI: 10.1111/j.1462-5822.2011.01605.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell death is a critical component of innate immunity and often determines the progression and outcome of infections. The opportunistic human pathogen Aspergillus fumigatus can manipulate the immune system either by inducing or by inhibiting host cell apoptosis dependent on its distinct morphological form. Here, we show that conidia of Aspergillus ssp. inhibit apoptosis of macrophages induced via the intrinsic (staurosporine) and extrinsic (Fas ligand) pathway. Hence, mitochondrial cytochrome c release and caspase activation were prevented. We further found that the anti-apoptotic effect depends on both host cell de novo protein synthesis and phagocytosis of conidia by macrophages. Moreover, sustained PI3K/Akt signalling in infected cells is an important determinant to resist apoptosis. We demonstrate that pigmentless pksP mutant conidia of A. fumigatus failed to trigger protection against apoptosis and provide evidence that the sustained survival of infected macrophages depends on the presence of the grey-green conidial pigment consisting of dihydroxynaphthalene-melanin. In conclusion, we revealed a novel potential function of melanin in the pathogenesis of A. fumigatus. For the first time, we show that melanin itself is a crucial component to inhibit macrophage apoptosis which may contribute to dissemination of the fungus within the host.
Collapse
Affiliation(s)
- Katrin Volling
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
50
|
Hasenberg M, Behnsen J, Krappmann S, Brakhage A, Gunzer M. Phagocyte responses towards Aspergillus fumigatus. Int J Med Microbiol 2011; 301:436-44. [PMID: 21571589 DOI: 10.1016/j.ijmm.2011.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The saprophytic fungus Aspergillus fumigatus is a mold which is ubiquitously present in the environment. It produces large numbers of spores, called conidia that we constantly inhale with the breathing air. Healthy individuals normally do not suffer from true fungal infections with this pathogen. A normally robust resistance against Aspergillus is based on the presence of a very effective immunological defense system in the vertebrate body. Inhaled conidia are first encountered by lung-resident alveolar macrophages and then by neutrophil granulocytes. Both cell types are able to effectively ingest and destroy the fungus. Although some responses of the adaptive immune system develop, the key protection is mediated by innate immunity. The importance of phagocytes for defense against aspergillosis is also supported by large numbers of animal studies. Despite the production of aggressive chemicals that can extracellularly destroy fungal pathogens, the main effector mechanism of the innate immune system is phagocytosis. Very recently, the production of extracellular neutrophil extracellular traps (NETs) consisting of nuclear DNA has been added to the armamentarium that innate immune cells use against infection with Aspergillus. Phagocyte responses to Aspergillus are very broad, and a number of new observations have added to this complexity in recent years. To summarize established and newer findings, we will give an overview on current knowledge of the phagocyte system for the protection against Aspergillus.
Collapse
Affiliation(s)
- Mike Hasenberg
- Otto-von-Guericke University Magdeburg, Institute for Molecular and Clinical Immunology, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|