1
|
Ge C, Tong Q, Zheng S, Liu L, Tian L, Luo H. Mouse CD8+ T cell subsets differentially generate IL-17-expressing cells in the colon epithelium and lamina propria. Clin Exp Immunol 2025; 219:uxae120. [PMID: 39745881 PMCID: PMC11780888 DOI: 10.1093/cei/uxae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/06/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025] Open
Abstract
Colon-resident CD8+ T cells actively contribute to gut homeostasis and the pathogenesis of inflammatory bowel disease. However, their heterogeneity in generating IL-17-expressing CD8+ T cells, i.e. Tc17 cells, has not been thoroughly revealed. This study aims to characterize the abilities of mouse colonic intraepithelial (IE) and lamina propria (LP) CD8+ T cell subsets to differentiate into Tc17 cells. Using flow cytometry, we found that normal TCRβ+CD4-CD8αα+ cells (CD8αα T cells) and TCRβ+CD4-CD8αβ T cells, (CD8αβ T cells), either IE or LP, expressed abundant granzymes and IFN-γ but minute IL-17A. Under the in vitro Tc17-inducing condition, IE CD8αα T cells showed the weakest Tc17 differentiation ability and LP CD8αβ T cells exhibited the strongest Tc17 differentiation ability, whereas IE CD8αβ T cells and LP CD8αα T cells demonstrated moderate Tc17 differentiation abilities. The expression of IL-6 receptor, TGF-β receptor, TCR signaling indicators, CD161, and IL-23 receptor was low in IE CD8αα T cells, median in IE CD8αβ T cells and LP CD8αα T cells, but high in LP CD8αβ T cells. IE CD8αα T cells weakly induced the expression of chemokines, cytokines, and host defense mediators in colonic epithelial cells while LP CD8αβ T cells showed a robust up-regulatory effect. Furthermore, these colonic CD8+ T cell subsets also exhibited different abilities to generate Tc17 cells in inflamed colons. Collectively, LP CD8αβ T cells have the strongest Tc17 differentiation ability and might play a more significant role than the other subsets in Tc17-mediated immunity or inflammation in the colon.
Collapse
Affiliation(s)
- Cunjin Ge
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qiaoyun Tong
- Institute of Digestive Disease, Department of Gastroenterology of Yichang Central People’s Hospital, China Three Gorges University, Yichang City, Hubei Province, China
| | - Shihua Zheng
- Institute of Digestive Disease, Department of Gastroenterology of Yichang Central People’s Hospital, China Three Gorges University, Yichang City, Hubei Province, China
| | - Lei Liu
- Institute of Digestive Disease, Department of Gastroenterology of Yichang Central People’s Hospital, China Three Gorges University, Yichang City, Hubei Province, China
| | - Lugao Tian
- Institute of Digestive Disease, Department of Gastroenterology of Yichang Central People’s Hospital, China Three Gorges University, Yichang City, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Moreira-Souza ACA, Nanini HF, Rangel TP, da Silva SRB, Damasceno BP, Ribeiro BE, Cascabulho CM, Thompson F, Leal C, Santana PT, Rosas SLB, de Andrade KQ, Silva CLM, Vommaro RC, de Souza HSP, Coutinho-Silva R. P2X7 Receptor Modulation of the Gut Microbiota and the Inflammasome Determines the Severity of Toxoplasma gondii-Induced Ileitis. Biomedicines 2023; 11:biomedicines11020555. [PMID: 36831091 PMCID: PMC9952899 DOI: 10.3390/biomedicines11020555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
In mice, oral Toxoplasma gondii infection induces severe ileitis. The aim of the present study was to investigate the impact of the P2X7 receptor (P2X7) on the inflammatory response to T. gondii-induced ileitis. Cysts of the ME49 strain of T. gondii were used to induce ileitis. The infected mice were euthanized on day 8 and ileal tissue and peripheral blood were collected for histopathological and immunohistochemical analyses. Ileal contractility, inflammatory mediators, inflammasome activation, quantitative PCR analysis of gene expression, and fecal microbiota were assessed using appropriate techniques, respectively. The infected P2X7-/- mice had greater disease severity, parasitic burden, liver damage, and intestinal contractility than the infected wild-type (WT) mice. Infection increased serum IL-6 and IFN-γ and tissue caspase-1 but not NLRP3 in P2X7-/- mice compared to WT mice. Bacteroidaceae, Rikenellaceae, and Rhodospirillales increased while Muribaculaceae and Lactobacillaceae decreased in the infected WT and P2X7-/- mice. Bacteroidia and Tannerellaceae increased in the P2X7-/- mice with ileitis. By contrast, Clostridiales and Mollicutes were absent in the P2X7-/- mice but increased in the WT mice. P2X7 protects mice against T. gondii infection by activating the inflammasome and regulating the local and systemic immune responses. Specific gut bacterial populations modulated by P2X7 determine disease severity.
Collapse
Affiliation(s)
- Aline Cristina Abreu Moreira-Souza
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Hayandra Ferreira Nanini
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Thuany Prado Rangel
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Sthefani Rodrigues Batista da Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Beatriz Pêgo Damasceno
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Beatriz Elias Ribeiro
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Cynthia M. Cascabulho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Fabiano Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Camille Leal
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Patrícia Teixeira Santana
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Siane Lopes Bittencourt Rosas
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Kívia Queiroz de Andrade
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Claudia L. Martins Silva
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rossiane Claudia Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Heitor Siffert Pereira de Souza
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
- Correspondence: or (H.S.P.d.S.); (R.C.-S.); Tel.: +55-21-3938-2669 (H.S.P.d.S.); +55-21-3938-6565 (R.C.-S.)
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
- Correspondence: or (H.S.P.d.S.); (R.C.-S.); Tel.: +55-21-3938-2669 (H.S.P.d.S.); +55-21-3938-6565 (R.C.-S.)
| |
Collapse
|
3
|
Xu HL, Zou LL, Chen MB, Wang H, Shen WM, Zheng QH, Cui WY. Efficacy of probiotic adjuvant therapy for irritable bowel syndrome in children: A systematic review and meta-analysis. PLoS One 2021; 16:e0255160. [PMID: 34358238 PMCID: PMC8345868 DOI: 10.1371/journal.pone.0255160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Irritable bowel syndrome (IBS) affects children’s quality of life and learning. The purpose of this research was to systematically evaluate the efficacy of probiotic adjuvant therapy for IBS in children. Methods The Web of Science, PubMed, Cochrane Library, EMBASE and Clinical Trials databases were electronically searched for randomized controlled trials (RCTs) published prior to January 2021 exploring the use of probiotic adjuvant therapy for IBS in children. Strict screening and quality evaluations of the eligible articles were performed independently by 2 researchers. Outcome indexes were extracted, and a meta-analysis of the data was performed using RevMan 5.4.1 and STATA 16 software. Finally, the risk of bias in the included studies was assessed with the RCT bias risk assessment tool recommended in the Cochrane Handbook for Systematic Reviews of Interventions (5.1.0). Results A total of nine RCTs were included. In children, probiotics significantly reduced the abdominal pain score (I2 = 95%, SMD = -1.15, 95% (-2.05, -0.24), P = 0.01) and Subject’s Global Assessment of Relief (SGARC) score (I2 = 95%, MD = -3.84, 95% (-6.49, -1.20), P = 0.004), increased the rate of abdominal pain treatment success (I2 = 0%, RR = 3.44, 95% (1.73, 6.87), P = 0.0005) and abdominal pain relief (I2 = 40%, RR = 1.48, 95% (0.96, 2.28), P = 0.08), and reduced the frequency of abdominal pain (I2 = 2%, MD = -0.82, 95% (-1.57, -0.07), P = 0.03). However, we found that it might not be possible to relieve abdominal pain by increasing the daily intake of probiotics. Conclusions Probiotics are effective at treating abdominal pain caused by IBS in children, however, there was no significant correlation between abdominal pain and the amount of probiotics ingested. More attention should be given to IBS in children, and a standardized evaluation should be adopted.
Collapse
Affiliation(s)
- Hua-Lan Xu
- Department of ICU, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Li-Li Zou
- Department of Nursing, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Mao-bing Chen
- Department of Emergency, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Hua Wang
- Department of ICU, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
- * E-mail:
| | - Wen-Ming Shen
- Department of Emergency, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Qi-Han Zheng
- Department of Emergency, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Wei-Yan Cui
- Department of ICU, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| |
Collapse
|
4
|
Snyder LM, Denkers EY. From Initiators to Effectors: Roadmap Through the Intestine During Encounter of Toxoplasma gondii With the Mucosal Immune System. Front Cell Infect Microbiol 2021; 10:614701. [PMID: 33505924 PMCID: PMC7829212 DOI: 10.3389/fcimb.2020.614701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract is a major portal of entry for many pathogens, including the protozoan parasite Toxoplasma gondii. Billions of people worldwide have acquired T. gondii at some point in their life, and for the vast majority this has led to latent infection in the central nervous system. The first line of host defense against Toxoplasma is located within the intestinal mucosa. Appropriate coordination of responses by the intestinal epithelium, intraepithelial lymphocytes, and lamina propria cells results in an inflammatory response that controls acute infection. Under some conditions, infection elicits bacterial dysbiosis and immune-mediated tissue damage in the intestine. Here, we discuss the complex interactions between the microbiota, the epithelium, as well as innate and adaptive immune cells in the intestinal mucosa that induce protective immunity, and that sometimes switch to inflammatory pathology as T. gondii encounters tissues of the gut.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
5
|
Abstract
Gut mucosal immune cells play an essential role in health due to their ability to orchestrate host signaling events in response to exogenous antigens. These antigens may originate from microorganisms including viruses, commensal or pathogenic bacteria, or single-celled eukaryotes, as well as from dietary foodstuff-derived proteins or products. A critical technological capacity to understand host responses to antigens is the ability to efficiently isolate and functionally characterize immune cells from intestinal tissues. Additionally, after characterization, it is of paramount importance to understand the exact functions of these immune cells under different disease states or genetic variables. Here, we outline methods for immune cell isolation from murine small and large intestines with the goal of undertaking a functional analysis of isolated cell types using antibody array platforms.
Collapse
Affiliation(s)
- Joshua A Owens
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Postolache TT, Wadhawan A, Rujescu D, Hoisington AJ, Dagdag A, Baca-Garcia E, Lowry CA, Okusaga OO, Brenner LA. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front Psychiatry 2021; 12:665682. [PMID: 34177652 PMCID: PMC8226025 DOI: 10.3389/fpsyt.2021.665682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Within the general literature on infections and suicidal behavior, studies on Toxoplasma gondii (T. gondii) occupy a central position. This is related to the parasite's neurotropism, high prevalence of chronic infection, as well as specific and non-specific behavioral alterations in rodents that lead to increased risk taking, which are recapitulated in humans by T. gondii's associations with suicidal behavior, as well as trait impulsivity and aggression, mental illness and traffic accidents. This paper is a detailed review of the associations between T. gondii serology and suicidal behavior, a field of study that started 15 years ago with our publication of associations between T. gondii IgG serology and suicidal behavior in persons with mood disorders. This "legacy" article presents, chronologically, our primary studies in individuals with mood disorders and schizophrenia in Germany, recent attempters in Sweden, and in a large cohort of mothers in Denmark. Then, it reviews findings from all three meta-analyses published to date, confirming our reported associations and overall consistent in effect size [ranging between 39 and 57% elevation of odds of suicide attempt in T. gondii immunoglobulin (IgG) positives]. Finally, the article introduces certain links between T. gondii and biomarkers previously associated with suicidal behavior (kynurenines, phenylalanine/tyrosine), intermediate phenotypes of suicidal behavior (impulsivity, aggression) and state-dependent suicide risk factors (hopelessness/dysphoria, sleep impairment). In sum, an abundance of evidence supports a positive link between suicide attempts (but not suicidal ideation) and T. gondii IgG (but not IgM) seropositivity and serointensity. Trait impulsivity and aggression, endophenotypes of suicidal behavior have also been positively associated with T. gondii seropositivity in both the psychiatrically healthy as well as in patients with Intermittent Explosive Disorder. Yet, causality has not been demonstrated. Thus, randomized interventional studies are necessary to advance causal inferences and, if causality is confirmed, to provide hope that an etiological treatment for a distinct subgroup of individuals at an increased risk for suicide could emerge.
Collapse
Affiliation(s)
- Teodor T Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, United States
| | - Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Psychiatry, Saint Elizabeth's Hospital, Washington, DC, United States
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle, Halle, Germany
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Systems Engineering and Management, Air Force Institute of Technology, Dayton, OH, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Enrique Baca-Garcia
- Department of Psychiatry, Jimenez Diaz Foundation Hospital, Madrid, Spain.,Department of Psychiatry, Madrid Autonomous University, Madrid, Spain.,Department of Psychiatry, Rey Juan Carlos University Hospital, Móstoles, Spain.,Department of Psychiatry, General Hospital of Villalba, Madrid, Spain.,Department of Psychiatry, Infanta Elena University Hospital, Valdemoro, Spain.,Universidad Catolica del Maule, Talca, Chile.,Department of Psychiatry, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Olaoluwa O Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.,Michael E DeBakey VA Medical Center, Houston, TX, United States
| | - Lisa A Brenner
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Psychiatry & Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
7
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Jiang H, Dong J, Jiang S, Liang Q, Zhang Y, Liu Z, Ma C, Wang J, Kang W. Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats. Food Res Int 2020; 136:109316. [PMID: 32846524 DOI: 10.1016/j.foodres.2020.109316] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
Abstract
The prevalence of constipation increases rapidly with the increased pressure of some people's life, which seriously affects the quality of life in related patients. In this study, the improvement of functional constipation by Durio zibethinus Murr rind polysaccharide (DZMP) and the effects of DZMP on intestinal microbiota were investigated in a constipation model of Sprague-Dawley (SD) rats established by loperamide hydrochloride. Results showed that DZMP at 200 mg/kg could significantly (P < 0.05) increase the intestinal transit rate, motilin, gastrin, substance P levels and concentration of short-chain fatty acids (SCFAs), reduce the somatostatin levels and improve the gastrointestinal peristalsis of rats. Sequencing showed that the Lachnospiraceae-NK4A136-group in the rats given 200 mg/kg DZMP (16.07%) was significantly higher than that of the model group (10.13%), while the Desulfovibrio was lower (2.99%) than that of the model group (4.19%). Principal co-ordinates analysis (PcoA) revealed a significant difference in intestinal microbiota composition between the model group and the high-dose DZMP group (200 mg/kg). The results demonstrated that DZMP has a regulatory effect of treating functional constipation and regulating intestinal flora in rats.
Collapse
Affiliation(s)
- Huimin Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Shengjun Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| |
Collapse
|
9
|
Zhou C, Li J, Liu L, Tang Z, Wan F, Lan L. Expression and localization of MrgprD in mouse intestinal tract. Cell Tissue Res 2019; 377:259-268. [PMID: 30919047 PMCID: PMC6647478 DOI: 10.1007/s00441-019-03017-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
MrgprD, a Mas-related G protein-coupled receptor, is initially identified in sensory neurons of mouse dorsal root ganglia (DRG) and has been suggested to participate in somatosensation. However, MrgprD has recently been found to be expressed outside the nervous system such as in aortic endothelia cells and neutrophils. In this study, we used immunohistochemistry to detect the expression and localization of MrgprD in mouse intestinal tract. The immunoreactivity (IR) of MrgprD was found in the smooth muscle layers of small intestine, colon and rectum. In addition, MrgprD IR was colocalized with F4/80-positive macrophages and CD3-positive T lymphocytes resident in the lamina propria of intestinal mucosa. MrgprD was also found to be expressed in primary peritoneal macrophages and splenic T lymphocytes. Furthermore, the presence of MrgprD mRNA and its protein was detected in murine macrophage-like RAW 264.7 and human T lymphocyte Jurkat cell lines. Our study shows, for the first time, the expression and localization of MrgprD in the intestinal tract and in macrophages and T lymphocytes, indicating the potential roles of MrgprD in intestinal mobility and immunity.
Collapse
Affiliation(s)
- Chenxing Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu People’s Republic of China
| | - Jia Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu People’s Republic of China
| | - Lin Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu People’s Republic of China
| | - Zongxiang Tang
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu People’s Republic of China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu People’s Republic of China
| |
Collapse
|
10
|
Wang S, El-Fahmawi A, Christian DA, Fang Q, Radaelli E, Chen L, Sullivan MC, Misic AM, Ellringer JA, Zhu XQ, Winter SE, Hunter CA, Beiting DP. Infection-Induced Intestinal Dysbiosis Is Mediated by Macrophage Activation and Nitrate Production. mBio 2019; 10:e00935-19. [PMID: 31138751 PMCID: PMC6538788 DOI: 10.1128/mbio.00935-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Oral infection of C57BL/6J mice with Toxoplasma gondii results in a marked bacterial dysbiosis and the development of severe pathology in the distal small intestine that is dependent on CD4+ T cells and interferon gamma (IFN-γ). This dysbiosis and bacterial translocation contribute to the development of ileal pathology, but the factors that support the bloom of bacterial pathobionts are unclear. The use of microbial community profiling and shotgun metagenomics revealed that Toxoplasma infection induces a dysbiosis dominated by Enterobacteriaceae and an increased potential for nitrate respiration. In vivo experiments using bacterial metabolic mutants revealed that during this infection, host-derived nitrate supports the expansion of Enterobacteriaceae in the ileum via nitrate respiration. Additional experiments with infected mice indicate that the IFN-γ/STAT1/iNOS axis, while essential for parasite control, also supplies a pool of nitrate that serves as a source for anaerobic respiration and supports overgrowth of Enterobacteriaceae Together, these data reveal a trade-off in intestinal immunity after oral infection of C57BL/6J mice with T. gondii, in which inducible nitric oxide synthase (iNOS) is required for parasite control, while this host enzyme is responsible for specific modification of the composition of the microbiome that contributes to pathology.IMPORTANCEToxoplasma gondii is a protozoan parasite and a leading cause of foodborne illness. Infection is initiated when the parasite invades the intestinal epithelium, and in many host species, this leads to intense inflammation and a dramatic disruption of the normal microbial ecosystem that resides in the healthy gut (the so-called microbiome). One characteristic change in the microbiome during infection with Toxoplasma-as well as numerous other pathogens-is the overgrowth of Escherichia coli or similar bacteria and a breakdown of commensal containment leading to seeding of peripheral organs with gut bacteria and subsequent sepsis. Our findings provide one clear explanation for how this process is regulated, thereby improving our understanding of the relationship between parasite infection, inflammation, and disease. Furthermore, our results could serve as the basis for the development of novel therapeutics to reduce the potential for harmful bacteria to bloom in the gut during infection.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ayah El-Fahmawi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Longfei Chen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Megan C Sullivan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ana M Misic
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jodi A Ellringer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Zhou C, Qiu Y, Yang H, Xiao WD. Mechanism of differentiation and regulation of CD4 + intraepithelial lymphocytes: Relationship with inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2018; 26:1598-1604. [DOI: 10.11569/wcjd.v26.i27.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD4+ intraepithelial lymphocytes are a special type of lymphocytes located in the lower layer of the intestinal epithelium. According to the difference of cell phenotypes and functions, CD4+ intraepithelial lymphocytes can be divided into multiple subgroups, including Th1 cells, Th2 cells, and Th17 cells. The proliferation, differentiation, and apoptosis of CD4+ intraepithelial lymphocytes can be regulated by a variety of transcription factors, intestinal microbes, and nutrients. CD4+ intraepithelial lymphocytes play an important role in the pathogenesis of inflammatory bowel disease. In this article, we will review the mechanism of differentiation and regulation of CD4+ intraepithelial lymphocytes and their relationship with inflammatory bowel disease, with an aim to provide some new clues to the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Chao Zhou
- Department of General Surgery, Xinqiao Hospital Affiliated to the Army Medical University, Chongqing 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital Affiliated to the Army Medical University, Chongqing 400037, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital Affiliated to the Army Medical University, Chongqing 400037, China
| | - Wei-Dong Xiao
- Department of General Surgery, Xinqiao Hospital Affiliated to the Army Medical University, Chongqing 400037, China
| |
Collapse
|
12
|
Gonçalves P, Araújo JR, Di Santo JP. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:558-572. [PMID: 29462379 DOI: 10.1093/ibd/izx029] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/22/2022]
Abstract
Gut microbiota has a fundamental role in the energy homeostasis of the host and is essential for proper "education" of the immune system. Intestinal microbial communities are able to ferment dietary fiber releasing short-chain fatty acids (SCFAs). The SCFAs, particularly butyrate (BT), regulate innate and adaptive immune cell generation, trafficing, and function. For example, BT has an anti-inflammatory effect by inhibiting the recruitment and proinflammatory activity of neutrophils, macrophages, dendritic cells, and effector T cells and by increasing the number and activity of regulatory T cells. Gut microbial dysbiosis, ie, a microbial community imbalance, has been suggested to play a role in the development of inflammatory bowel disease (IBD). The relationship between dysbiosis and IBD has been difficult to prove, especially in humans, and is probably complex and dynamic, rather than one of a simple cause and effect relationship. However, IBD patients have dysbiosis with reduced numbers of SCFAs-producing bacteria and reduced BT concentration that is linked to a marked increase in the number of proinflammatory immune cells in the gut mucosa of these patients. Thus, microbial dysbiosis and reduced BT concentration may be a factor in the emergence and severity of IBD. Understanding the relationship between microbial dysbiosis and reduced BT concentration to IBD may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - João Ricardo Araújo
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1202, Paris, France
| | - James P Di Santo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| |
Collapse
|
13
|
Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez ME, Moran P, Rojas L, Portillo T, González E, Hernández E, Finlay BB, Ximenez C. Human Intestinal Microbiota: Interaction Between Parasites and the Host Immune Response. Arch Med Res 2017; 48:690-700. [PMID: 29290328 DOI: 10.1016/j.arcmed.2017.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
The human gut is a highly complex ecosystem with an extensive microbial community, and the influence of the intestinal microbiota reaches the entire host organism. For example, the microbiome regulates fat storage, stimulates or renews epithelial cells, and influences the development and maturation of the brain and the immune system. Intestinal microbes can protect against infection by pathogenic bacteria, viruses, fungi and parasites. Hence, the maintenance of homeostasis between the gut microbiota and the rest of the body is crucial for health, with dysbiosis affecting disease. This review focuses on intestinal protozoa, especially those still representing a public health problem in Mexico, and their interactions with the microbiome and the host. The decrease in prevalence of intestinal helminthes in humans left a vacant ecological niche that was quickly occupied by protozoa. Although the mechanisms governing the interaction between intestinal microbiota and protozoa are poorly understood, it is known that the composition of the intestinal bacterial populations modulates the progression of protozoan infection and the outcome of parasitic disease. Most reports on the complex interactions between intestinal bacteria, protozoa and the immune system emphasize the protective role of the microbiota against protozoan infection. Insights into such protection may facilitate the manipulation of microbiota components to prevent and treat intestinal protozoan infections. Here we discuss recent findings about the immunoregulatory effect of intestinal microbiota with regards to intestinal colonization by protozoa, focusing on infections by Entamoeba histolytica, Blastocystis spp, Giardia duodenalis, Toxoplasma gondii and Cryptosporidium parvum. The possible consequences of the microbiota on parasitic, allergic and autoimmune disorders are also considered.
Collapse
Affiliation(s)
- Oswaldo Partida-Rodríguez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Michael Smith Laboratories, University of Brithish Columbia, Vancouver, Canada
| | - Angélica Serrano-Vázquez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miriam E Nieves-Ramírez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Moran
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Liliana Rojas
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Tobias Portillo
- Unidad de Bioinformática, Bioestadística y Biología Computacional. Red de Apoyo a la Investigación Científica, Universidad Nacional Autónoma de México, Instituto Nacional De Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Enrique González
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Eric Hernández
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - B Brett Finlay
- Michael Smith Laboratories, University of Brithish Columbia, Vancouver, Canada
| | - Cecilia Ximenez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
14
|
Bonnart C, Feuillet G, Vasseur V, Cenac N, Vergnolle N, Blanchard N. Protease-activated receptor 2 contributes to Toxoplasma gondii
-mediated gut inflammation. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/01/2017] [Indexed: 02/02/2023]
Affiliation(s)
- C. Bonnart
- Institut de Recherche en Santé Digestive (IRSD); Université de Toulouse; INSERM, INRA, ENVT, UPS; Toulouse France
| | - G. Feuillet
- Institut de Recherche en Santé Digestive (IRSD); Université de Toulouse; INSERM, INRA, ENVT, UPS; Toulouse France
| | - V. Vasseur
- Centre de Physiopathologie de Toulouse Purpan (CPTP); Université de Toulouse; INSERM, CNRS, UPS; Toulouse France
| | - N. Cenac
- Institut de Recherche en Santé Digestive (IRSD); Université de Toulouse; INSERM, INRA, ENVT, UPS; Toulouse France
| | - N. Vergnolle
- Institut de Recherche en Santé Digestive (IRSD); Université de Toulouse; INSERM, INRA, ENVT, UPS; Toulouse France
| | - N. Blanchard
- Centre de Physiopathologie de Toulouse Purpan (CPTP); Université de Toulouse; INSERM, CNRS, UPS; Toulouse France
| |
Collapse
|
15
|
Hand TW. The Role of the Microbiota in Shaping Infectious Immunity. Trends Immunol 2016; 37:647-658. [PMID: 27616558 DOI: 10.1016/j.it.2016.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Humans are meta-organisms that maintain a diverse population of microorganisms on their barrier surfaces, collectively named the microbiota. Since most pathogens either cross or inhabit barrier surfaces, the microbiota plays a critical and often protective role during infections, both by modulating immune system responses and by mediating colonization resistance. However, the microbiota can also act as a reservoir for opportunistic microorganisms that can 'bloom', significantly complicating diseases of barrier surfaces by contributing to inflammatory immune responses. This review discusses our current understanding of the complex interactions between the host, its microbiota, and pathogenic organisms, focusing in particular on the intestinal mucosa.
Collapse
Affiliation(s)
- Timothy W Hand
- Richard King Mellon Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
16
|
Egan CE, Sodhi CP, Good M, Lin J, Jia H, Yamaguchi Y, Lu P, Ma C, Branca MF, Weyandt S, Fulton WB, Niño DF, Prindle T, Ozolek JA, Hackam DJ. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest 2016; 126:495-508. [PMID: 26690704 DOI: 10.1172/jci83356] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
The nature and role of the intestinal leukocytes in necrotizing enterocolitis (NEC), a severe disease affecting premature infants, remain unknown. We now show that the intestine in mouse and human NEC is rich in lymphocytes that are required for NEC development, as recombination activating gene 1–deficient (Rag1–/–) mice were protected from NEC and transfer of intestinal lymphocytes from NEC mice into naive mice induced intestinal inflammation. The intestinal expression of the lipopolysaccharide receptor TLR4, which is higher in the premature compared with full-term human and mouse intestine, is required for lymphocyte influx through TLR4-mediated upregulation of CCR9/CCL25 signaling. TLR4 also mediates a STAT3-dependent polarization toward increased proinflammatory CD3+CD4+IL-17+ and reduced tolerogenic Foxp3+ Treg lymphocytes (Tregs). Th17 lymphocytes were required for NEC development, as inhibition of STAT3 or IL-17 receptor signaling attenuated NEC in mice, while IL-17 release impaired enterocyte tight junctions, increased enterocyte apoptosis, and reduced enterocyte proliferation, leading to NEC. Importantly, TLR4-dependent Th17 polarization could be reversed by the enteral administration of retinoic acid, which induced Tregs and decreased NEC severity. These findings identify an important role for proinflammatory lymphocytes in NEC development via intestinal epithelial TLR4 that could be reversed through dietary modification.
Collapse
MESH Headings
- Animals
- Enterocolitis, Necrotizing/diet therapy
- Enterocolitis, Necrotizing/genetics
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/pathology
- Enterocytes/immunology
- Enterocytes/pathology
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diet therapy
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/immunology
- Infant, Newborn, Diseases/pathology
- Mice
- Mice, Knockout
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Tight Junctions/genetics
- Tight Junctions/immunology
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
Collapse
|
17
|
Jia H, Sodhi CP, Yamaguchi Y, Lu P, Martin LY, Good M, Zhou Q, Sung J, Fulton WB, Nino DF, Prindle T, Ozolek JA, Hackam DJ. Pulmonary Epithelial TLR4 Activation Leads to Lung Injury in Neonatal Necrotizing Enterocolitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:859-71. [PMID: 27307558 DOI: 10.4049/jimmunol.1600618] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
We seek to define the mechanisms leading to the development of lung disease in the setting of neonatal necrotizing enterocolitis (NEC), a life-threatening gastrointestinal disease of premature infants characterized by the sudden onset of intestinal necrosis. NEC development in mice requires activation of the LPS receptor TLR4 on the intestinal epithelium, through its effects on modulating epithelial injury and repair. Although NEC-associated lung injury is more severe than the lung injury that occurs in premature infants without NEC, the mechanisms leading to its development remain unknown. In this study, we now show that TLR4 expression in the lung gradually increases during postnatal development, and that mice and humans with NEC-associated lung inflammation express higher levels of pulmonary TLR4 than do age-matched controls. NEC in wild-type newborn mice resulted in significant pulmonary injury that was prevented by deletion of TLR4 from the pulmonary epithelium, indicating a role for pulmonary TLR4 in lung injury development. Mechanistically, intestinal epithelial TLR4 activation induced high-mobility group box 1 release from the intestine, which activated pulmonary epithelial TLR4, leading to the induction of the neutrophil recruiting CXCL5 and the influx of proinflammatory neutrophils to the lung. Strikingly, the aerosolized administration of a novel carbohydrate TLR4 inhibitor prevented CXCL5 upregulation and blocked NEC-induced lung injury in mice. These findings illustrate the critical role of pulmonary TLR4 in the development of NEC-associated lung injury, and they suggest that inhibition of this innate immune receptor in the neonatal lung may prevent this devastating complication of NEC.
Collapse
Affiliation(s)
- Hongpeng Jia
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Yukihiro Yamaguchi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Peng Lu
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Laura Y Martin
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Misty Good
- Division of Newborn Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15224; and
| | - Qinjie Zhou
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Jungeun Sung
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - William B Fulton
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Diego F Nino
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Thomas Prindle
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - John A Ozolek
- Division of Pediatric Pathology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287;
| |
Collapse
|
18
|
Okusaga O, Duncan E, Langenberg P, Brundin L, Fuchs D, Groer MW, Giegling I, Stearns-Yoder KA, Hartmann AM, Konte B, Friedl M, Brenner LA, Lowry CA, Rujescu D, Postolache TT. Combined Toxoplasma gondii seropositivity and high blood kynurenine--Linked with nonfatal suicidal self-directed violence in patients with schizophrenia. J Psychiatr Res 2016; 72:74-81. [PMID: 26594873 DOI: 10.1016/j.jpsychires.2015.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Toxoplasma gondii (T. gondii) chronic infection and elevated kynurenine (KYN) levels have been individually associated with non-fatal suicidal self-directed violence (NF-SSDV). We aimed to test the hypothesis that the association between T. gondii seropositivity and history of NF-SSDV would be stronger in schizophrenia patients with high plasma KYN levels than in those with lower KYN levels. We measured anti-T. gondii IgG antibodies and plasma KYN in 950 patients with schizophrenia, and used logistic regression to evaluate the relationship between NF-SSDV and KYN in patients who were either seropositive or seronegative for T. gondii. For those with KYN levels in the upper 25th percentile, the unadjusted odds ratio for the association between NF-SSDV history and KYN in T. gondii seropositive patients was 1.63 (95% CI 1.01 to 2.66), p = 0.048; the adjusted odds ratio was 1.95 (95% CI 1.15 to 3.30), p = 0.014. Plasma KYN was not associated with a history of NF-SSDV in T. gondii seronegative patients. The results suggest that T. gondii and KYN may have a nonlinear cumulative effect on the risk of NF-SSDV among those with schizophrenia. If confirmed by future longitudinal studies, this result is expected to have both theoretical and clinical implications for the prevention and treatment of suicidal behavior.
Collapse
Affiliation(s)
- Olaoluwa Okusaga
- Department of Psychiatry, University of Maryland-Baltimore School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Erica Duncan
- Mental Health Service, Atlanta Veterans Affairs Medical Center and Emory University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Patricia Langenberg
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lena Brundin
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University and the Van Andel Research Institute, Grand Rapids, MI, USA
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Ina Giegling
- Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Kelly A Stearns-Yoder
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, USA; Military and Veteran Microbiome Consortium of Research and Education (MVM CORE), Denver, CO, USA
| | - Annette M Hartmann
- Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Bettina Konte
- Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marion Friedl
- Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Lisa A Brenner
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, USA; Military and Veteran Microbiome Consortium of Research and Education (MVM CORE), Denver, CO, USA; Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher A Lowry
- Military and Veteran Microbiome Consortium of Research and Education (MVM CORE), Denver, CO, USA; Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Dan Rujescu
- Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Teodor T Postolache
- Department of Psychiatry, University of Maryland-Baltimore School of Medicine, Baltimore, MD, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, USA; Military and Veteran Microbiome Consortium of Research and Education (MVM CORE), Denver, CO, USA; Veterans Integrated Service Network (VISN) 5, Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD, USA.
| |
Collapse
|
19
|
Pathological changes in acute experimental toxoplasmosis with Toxoplasma gondii strains obtained from human cases of congenital disease. Exp Parasitol 2015; 156:87-94. [PMID: 26072201 DOI: 10.1016/j.exppara.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/18/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022]
Abstract
There is a lack of studies using Toxoplasma gondii strains isolated from human patients. Here, we present a pathological study of three strains obtained from human cases of congenital toxoplasmosis in Brazil using inbred mice after oral infection with 10 tissue cysts. Multiplex-nested PCR-RFLP of eleven loci revealed atypical genotypes commonly found in Brazil: toxodb #8 for TgCTBr5 and TgCTBr16 strains and toxodb #11 for the TgCTBr9 strain. BALB/c and C57BL/6 mice were evaluated for survival and histological changes during the acute phase of the disease. All mice inoculated with the non-virulent TgCTBR5 strain survived after 30 days, although irreversible tissue damage was found. In contrast, no mice were resistant to infection with the highly virulent TgCTBR9 strain. The TgCTBr16 strain resulted in 80% survival in mice. However, this strain presented low infectivity, especially by the oral route of infection. Despite being identified with the same genotype, TgCTBr5 and TgCTBr16 strains showed biological differences. Histopathologic analysis revealed liver and lungs to be the most affected organs, and the pattern of tissue injury was similar to that found in mice inoculated perorally with strains belonging to clonal genotypes. However, there was a variation in the intensity of ileum lesions according to T. gondii strain and mouse lineage. C57BL/6 mice showed higher susceptibility than BALB/c for histological lesions. Taken together, these results revealed that the pathogenesis of T. gondii strains belonging to atypical genotypes can induce similar tissue damage to those from clonal genotypes, although intrinsic aspects of the strains seem critical to the induction of ileitis in the infected host.
Collapse
|
20
|
Muñoz M, Eidenschenk C, Ota N, Wong K, Lohmann U, Kühl AA, Wang X, Manzanillo P, Li Y, Rutz S, Zheng Y, Diehl L, Kayagaki N, van Lookeren-Campagne M, Liesenfeld O, Heimesaat M, Ouyang W. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 2015; 42:321-331. [PMID: 25680273 DOI: 10.1016/j.immuni.2015.01.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 08/19/2014] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
T helper 1 (Th1) cell-associated immunity exacerbates ileitis induced by oral Toxoplasma gondii infection. We show here that attenuated ileitis observed in interleukin-22 (IL-22)-deficient mice was associated with reduced production of Th1-cell-promoting IL-18. IL-22 not only augmented the expression of Il18 mRNA and inactive precursor protein (proIL-18) in intestinal epithelial cells after T. gondii or Citrobacter rodentium infection, but also maintained the homeostatic amount of proIL-18 in the ileum. IL-22, however, did not induce the processing to active IL-18, suggesting a two-step regulation of IL-18 in these cells. Although IL-18 exerted pathogenic functions during ileitis triggered by T. gondii, it was required for host defense against C. rodentium. Conversely, IL-18 was required for the expression of IL-22 in innate lymphoid cells (ILCs) upon T. gondii infection. Our results define IL-18 as an IL-22 target gene in epithelial cells and describe a complex mutual regulation of both cytokines during intestinal infection.
Collapse
Affiliation(s)
- Melba Muñoz
- Institute of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin 12203, Germany
| | - Celine Eidenschenk
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Naruhisa Ota
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Kit Wong
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Uwe Lohmann
- Institute of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin 12203, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology and Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin 12203, Germany
| | - Xiaoting Wang
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Paolo Manzanillo
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Yun Li
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sascha Rutz
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Yan Zheng
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Lauri Diehl
- Pathology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Oliver Liesenfeld
- Institute of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin 12203, Germany
| | - Markus Heimesaat
- Institute of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin 12203, Germany
| | - Wenjun Ouyang
- Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
21
|
Cohen SB, Denkers EY. The gut mucosal immune response toToxoplasma gondii. Parasite Immunol 2015; 37:108-17. [DOI: 10.1111/pim.12164] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/09/2014] [Indexed: 12/23/2022]
Affiliation(s)
- S. B. Cohen
- Department of Microbiology and Immunology; College of Veterinary Medicine; Cornell University; Ithaca NY USA
| | - E. Y. Denkers
- Department of Microbiology and Immunology; College of Veterinary Medicine; Cornell University; Ithaca NY USA
| |
Collapse
|
22
|
Wilhelm CL, Yarovinsky F. Apicomplexan infections in the gut. Parasite Immunol 2014; 36:409-20. [PMID: 25201405 DOI: 10.1111/pim.12115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii and Cryptosporidium parvum are intracellular protozoan parasites that establish infection through the small intestinal bowel after the ingestion of contaminated food products. These Apicomplexan parasites have emerged as an important cause of chronic and fatal disease in immunodeficient individuals, in addition to being investigated as possible triggers of inflammatory bowel disease. T. gondii disseminates to the brain and other tissues after infection, whereas C. parvum remains localized to the intestine. In the following review, we will discuss the pathogenesis of these parasitic diseases in the small intestine, the site of initial invasion. Themes include the sequence of invasion, the structure of Th1 immunity provoked by these parasites and the contribution of intestinal microbiota to the development of the mucosal immune response.
Collapse
Affiliation(s)
- C L Wilhelm
- Departments of Immunology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | | |
Collapse
|
23
|
Cohen SB, Denkers EY. Border maneuvers: deployment of mucosal immune defenses against Toxoplasma gondii. Mucosal Immunol 2014; 7:744-52. [PMID: 24717355 DOI: 10.1038/mi.2014.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/13/2014] [Indexed: 02/04/2023]
Abstract
Toxoplasma gondii is a highly prevalent protozoan pathogen that is transmitted through oral ingestion of infectious cysts. As such, mucosal immune defenses in the intestine constitute the first and arguably most important line of resistance against the parasite. The response to infection is now understood to involve complex three-way interactions between Toxoplasma, the mucosal immune system, and the host intestinal microbiota. Productive outcome of these interactions ensures resolution of infection in the intestinal mucosa. Nonsuccessful outcome may result in emergence of proinflammatory damage that can spell death for the host. Here, we discuss new advances in our understanding of the mechanisms underpinning these disparate outcomes, with particular reference to initiators, effectors, and regulators of mucosal immunity stimulated by Toxoplasma in the intestine.
Collapse
Affiliation(s)
- S B Cohen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - E Y Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Benevides L, Cardoso CR, Milanezi CM, Castro-Filice LS, Barenco PVC, Sousa RO, Rodrigues RM, Mineo JR, Silva JS, Silva NM. Toxoplasma gondii soluble tachyzoite antigen triggers protective mechanisms against fatal intestinal pathology in oral infection of C57BL/6 mice. PLoS One 2013; 8:e75138. [PMID: 24086456 PMCID: PMC3782460 DOI: 10.1371/journal.pone.0075138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022] Open
Abstract
Toxoplasma gondii induces a potent IL-12 response early in infection that results in IFN-γ-dependent control of parasite growth. It was previously shown that T. gondii soluble tachyzoite antigen (STAg) injected 48 hr before intraperitoneal infection reduces lipoxin A4 and 5-lipoxygenase (5-LO)-dependent systemic IL-12 and IFN-γ production as well as hepatic immunopathology. This study investigated the ability of STAg-pretreatment to control the fatal intestinal pathology that develops in C57BL/6 mice orally infected with 100 T. gondii cysts. STAg-pretreatment prolonged the animals’ survival by decreasing tissue parasitism and pathology, mainly in the ilea. Protection was associated with decreases in the systemic IFN-γ levels and IFN-γ and TNF message levels in the ilea and with increased TGF-β production in this tissue, but protection was independent of 5-LO and IL-4. STAg-pretreatment decreased CD4+ T cell, NK cell, CD11b+ monocyte and CD11b+CD11c+ dendritic cell numbers in the lamina propria and increased CD8+ T cells in the intestinal epithelial compartment. In parallel, decreases were observed in iNOS and IL-17 expression in this organ. These results demonstrate that pretreatment with STAg can induce the recruitment of protective CD8+ T cells to the intraepithelial compartment and decrease proinflammatory immune mechanisms that promote intestinal pathology in T. gondii infection.
Collapse
Affiliation(s)
- Luciana Benevides
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristina R. Cardoso
- Department of Clinical Analyses Toxicology Bromatologics, Ribeirão Preto College of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiane M. Milanezi
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Paulo V. C. Barenco
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Romulo O. Sousa
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - José R. Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neide M. Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
- * E-mail:
| |
Collapse
|
25
|
Egan CE, Daugherity EK, Rogers AB, Abi Abdallah DS, Denkers EY, Maurer KJ. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model. PLoS One 2013; 8:e65247. [PMID: 23762326 PMCID: PMC3676479 DOI: 10.1371/journal.pone.0065247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease with a spectrum of presentations. The current study utilized a lithogenic diet model of NAFLD. The diet was fed to mice that are either resistant (AKR) or susceptible (BALB/c and C57BL/6) to hepatitis followed by molecular and flow cytometric analysis. Following this, a similar approach was taken in congenic mice with specific mutations in immunological genes. The initial study identified a significant and profound increase in multiple ligands for the chemokine receptor CCR2 and an increase in CD44 expression in susceptible C57BL/6 (B6) but not resistant AKR mice. Ccr2−/− mice were completely protected from hepatitis and Cd44−/− mice were partially protected. Despite protection from inflammation, both strains displayed similar histological steatosis scores and significant increases in serum liver enzymes. CD45+CD44+ cells bound to hyaluronic acid (HA) in diet fed B6 mice but not Cd44−/− or Ccr2−/− mice. Ccr2−/− mice displayed a diminished HA binding phenotype most notably in monocytes, and CD8+ T-cells. In conclusion, this study demonstrates that absence of CCR2 completely and CD44 partially reduces hepatic leukocyte recruitment. These data also provide evidence that there are multiple redundant CCR2 ligands produced during hepatic lipid accumulation and describes the induction of a strong HA binding phenotype in response to LD feeding in some subsets of leukocytes from susceptible strains.
Collapse
Affiliation(s)
- Charlotte E. Egan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Erin K. Daugherity
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Arlin B. Rogers
- Department of Pathology and Laboratory Medicine; University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Delbert S. Abi Abdallah
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Eric Y. Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kirk J. Maurer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Belkaid Y, Bouladoux N, Hand TW. Effector and memory T cell responses to commensal bacteria. Trends Immunol 2013; 34:299-306. [PMID: 23643444 PMCID: PMC3733441 DOI: 10.1016/j.it.2013.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 02/08/2023]
Abstract
Barrier surfaces are home to a vast population of commensal organisms that together encode millions of proteins; each of them possessing several potential foreign antigens. Regulation of immune responses to this enormous antigenic load represents a tremendous challenge for the immune system. Tissues exposed to commensals have developed elaborate systems of regulation including specialized populations of resident lymphocytes that maintain barrier function and limit potential responses to commensal antigens. However, in settings of infection and inflammation these regulatory mechanisms are compromised and specific effector responses against commensal bacteria can develop. This review discusses the circumstances controlling the fate of commensal specific T cells and how dysregulation of these responses could lead to severe pathological outcomes.
Collapse
Affiliation(s)
- Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, NIH, Bethesda 20892, USA.
| | | | | |
Collapse
|
27
|
Blum L, Mohanan S, Fabre M, Yafawi R, Appleton J. Intestinal infection with Trichinella spiralis induces distinct, regional immune responses. Vet Parasitol 2013; 194:101-5. [PMID: 23465441 PMCID: PMC3655129 DOI: 10.1016/j.vetpar.2013.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate differences between the small and large intestines (SI and LI) with regard to colonization and immunity during infection with Trichinella spiralis. In orally infected C57BL/6 mice, the gender ratios of worms differed among the SI, cecum, and LI. Mucosal mastocytosis developed in the SI but not in the LI, consistent with reduced IL-9 and IL-13 production by explants from the LI. Despite these differences, worms were cleared at the same rate from both sites. Furthermore, IL-10 production was reduced in the LI, yet it was instrumental in limiting local inflammation. Finally, passive immunization of rat pups with tyvelose-specific antibodies effectively cleared fist-stage larvae from all intestinal regions. We conclude that despite regional differences in immune responsiveness and colonization, immune mechanisms that clear T. spiralis operate effectively throughout the intestinal tract.
Collapse
Affiliation(s)
- L.K. Blum
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850, USA
| | - S. Mohanan
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850, USA
| | - M.V. Fabre
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850, USA
| | - R.E. Yafawi
- Weill Cornell Medical College-Qatar, Doha, Qatar
| | - J.A. Appleton
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
28
|
Wu W, Qiu HJ, Liu ZJ. Immunoregulatory effects of intraepithelial lymphocytes in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2013; 21:568-573. [DOI: 10.11569/wcjd.v21.i7.568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intraepithelial lymphocytes (IELs) are found in a wide variety of sites, especially in the mucosa of the intestine, respiratory tract, and genital tract. Intestinal IELs are located between intestinal epithelial cells (IECs) and the basement membrane. The ratio between IECs and IELs in the small intestine is 4-10:1, but is slightly lower in the large intestine. As the first guard of the intestine, IELs play a significant role in maintaining the integrity of the mucosa, immune surveillance and regulating the homeostasis on the intestinal mucosal surface. Recent studies have demonstrated that IELs are also involved in the pathogenesis of inflammatory bowel disease (IBD).
Collapse
|
29
|
Cagliani R, Pozzoli U, Forni D, Cassinotti A, Fumagalli M, Giani M, Fichera M, Lombardini M, Ardizzone S, Asselta R, de Franchis R, Riva S, Biasin M, Comi GP, Bresolin N, Clerici M, Sironi M. Crohn's disease loci are common targets of protozoa-driven selection. Mol Biol Evol 2013; 30:1077-87. [PMID: 23389767 DOI: 10.1093/molbev/mst020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies indicated that a few risk variants for autoimmune diseases are subject to pathogen-driven selection. Nonetheless, the proportion of risk loci that has been targeted by pathogens and the type of infectious agent(s) that exerted the strongest pressure remain to be evaluated. We assessed whether different pathogens exerted a pressure on known Crohn's disease (CD) risk variants and demonstrate that these single-nucleotide polymorphisms (SNPs) are preferential targets of protozoa-driven selection (P = 0.008). In particular, 19% of SNPs associated with CD have been subject to protozoa-driven selective pressure. Analysis of P values from genome-wide association studies (GWASs) and meta-analyses indicated that protozoan-selected SNPs display significantly stronger association with CD compared with nonselected variants. This same behavior was not observed for GWASs of other autoimmune diseases. Thus, we integrated selection signatures and meta-analysis results to prioritize five genic SNPs for replication in an Italian cohort. Three SNPs were significantly associated with CD risk, and combination with meta-analysis results yielded P values < 4 × 10(-6). The bona fide risk alleles are located in ARHGEF2, an interactor of NOD2, NSF, a gene involved in autophagy, and HEBP1, encoding a possible mediator of inflammation. Pathway analysis indicated that ARHGEF2 and NSF participate in a molecular network, which also contains VAMP3 (previously associated to CD) and is centered around miR-31 (known to be disregulated in CD). Thus, we show that protozoa-driven selective pressure had a major role in shaping predisposition to CD. We next used this information for the identification of three bona fide novel susceptibility loci.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics Laboratory, Scientific Institute IRCCS E Medea, Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Differentiation between Celiac Disease, Nonceliac Gluten Sensitivity, and Their Overlapping with Crohn's Disease: A Case Series. Case Reports Immunol 2013; 2013:248482. [PMID: 25374738 PMCID: PMC4207593 DOI: 10.1155/2013/248482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/23/2012] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) and nonceliac gluten sensitivity (NCGS) are two distinct conditions triggered by the ingestion of gliadin. Although symptoms of nonceliac gluten sensitivity may resemble those of celiac disease, due to the lack of objective diagnostic tests, NCGS is associated with overlapping symptomatologies of autoimmunities and Crohn's disease. Furthermore, a gluten-free diet is only recommended for those who meet the criteria for a diagnosis of CD. Unfortunately, that leaves many nonceliac gluten-sensitive people suffering unnecessarily from very serious symptoms that put them at risk for complications of autoimmune disorders that might be resolved with a gluten-free diet. Thus, a new paradigm is needed for aid in diagnosing and distinguishing among various gut-related diseases, including CD, NCGS (also known as silent celiac disease), and gut-related autoimmunities. Herein, we report three different cases: the first, an elderly patient with celiac disease which was diagnosed based on signs and symptoms of malabsorption and by a proper lab test; second, a case of NCGS which was initially misdiagnosed as lupus but was detected as NCGS by a proper lab test with its associated autoimmunities, including gluten ataxia and neuromyelitis optica; third, a patient with NCGS overlapping with Crohn's disease. The symptomatologies of all three patients improved significantly after 12 months of gluten-free diet plus other modalities.
Collapse
|
31
|
Immune response and immunopathology during toxoplasmosis. Semin Immunopathol 2012; 34:793-813. [PMID: 22955326 DOI: 10.1007/s00281-012-0339-3] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/21/2012] [Indexed: 12/18/2022]
Abstract
Toxoplasma gondii is a protozoan parasite of medical and veterinary significance that is able to infect any warm-blooded vertebrate host. In addition to its importance to public health, several inherent features of the biology of T. gondii have made it an important model organism to study host-pathogen interactions. One factor is the genetic tractability of the parasite, which allows studies on the microbial factors that affect virulence and allows the development of tools that facilitate immune studies. Additionally, mice are natural hosts for T. gondii, and the availability of numerous reagents to study the murine immune system makes this an ideal experimental system to understand the functions of cytokines and effector mechanisms involved in immunity to intracellular microorganisms. In this article, we will review current knowledge of the innate and adaptive immune responses required for resistance to toxoplasmosis, the events that lead to the development of immunopathology, and the natural regulatory mechanisms that limit excessive inflammation during this infection.
Collapse
|
32
|
Egan CE, Cohen SB, Denkers EY. Insights into inflammatory bowel disease using Toxoplasma gondii as an infectious trigger. Immunol Cell Biol 2011; 90:668-75. [PMID: 22064707 DOI: 10.1038/icb.2011.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oral infection of certain inbred mouse strains with the protozoan Toxoplasma gondii triggers inflammatory pathology resembling lesions seen during human inflammatory bowel disease, in particular Crohn's disease (CD). Damage triggered by the parasite is largely localized to the distal portion of the small intestine, and as such is one of only a few models for ileal inflammation. This is important because ileal involvement is a characteristic of CD in over two-thirds of patients. The disease induced by Toxoplasma is mediated by Th1 cells and the cytokines tumor necrosis factor-α and interferon-γ. Inflammation is dependent upon IL-23, also identified by genome-wide association studies as a risk factor in CD. Development of lesions is concomitant with emergence of E. coli that display enhanced adhesion to the intestinal epithelium and subepithelial translocation. Furthermore, depletion of gut flora renders mice resistant to Toxoplasma-triggered ileitis. Recent findings suggest complex CCR2-dependent interactions between lamina propria T cells and intraepithelial lymphocytes in fueling proinflammatory pathology in the intestine. The advantage of the Toxoplasma model is that disease develops rapidly (within 7-10 days of infection) and can be induced in immunodeficient mice by adoptive transfer of mucosal T cells from infected donors. We propose that Toxoplasma acts as a trigger setting into motion a series of events culminating in loss of tolerance in the intestine and emergence of pathogenic T cell effectors. The Toxoplasma trigger model is providing new leaps in our understanding of immunity in the intestine.
Collapse
Affiliation(s)
- Charlotte E Egan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|