1
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
2
|
Wang Z, Nie K, Liang Y, Niu J, Yu X, Zhang O, Liu L, Shi X, Wang Y, Feng X, Zhu Y, Wang P, Cheng G. A mosquito salivary protein-driven influx of myeloid cells facilitates flavivirus transmission. EMBO J 2024; 43:1690-1721. [PMID: 38378891 PMCID: PMC11066113 DOI: 10.1038/s44318-024-00056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.
Collapse
Affiliation(s)
- Zhaoyang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Kaixiao Nie
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yan Liang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jichen Niu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Oujia Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100086, China
| | - Long Liu
- Institute of Virology, Hubei University of Medicine, Shiyan, 442000, China
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xuechun Feng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
3
|
Mishra AK, Rodriguez M, Torres AY, Smith M, Rodriguez A, Bond A, Morrissey MA, Montell DJ. Hyperactive Rac stimulates cannibalism of living target cells and enhances CAR-M-mediated cancer cell killing. Proc Natl Acad Sci U S A 2023; 120:e2310221120. [PMID: 38109551 PMCID: PMC10756302 DOI: 10.1073/pnas.2310221120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
The 21kD GTPase Rac is an evolutionarily ancient regulator of cell shape and behavior. Rac2 is predominantly expressed in hematopoietic cells where it is essential for survival and motility. The hyperactivating mutation Rac2E62K also causes human immunodeficiency, although the mechanism remains unexplained. Here, we report that in Drosophila, hyperactivating Rac stimulates ovarian cells to cannibalize neighboring cells, destroying the tissue. We then show that hyperactive Rac2E62K stimulates human HL60-derived macrophage-like cells to engulf and kill living T cell leukemia cells. Primary mouse Rac2+/E62K bone-marrow-derived macrophages also cannibalize primary Rac2+/E62K T cells due to a combination of macrophage hyperactivity and T cell hypersensitivity to engulfment. Additionally, Rac2+/E62K macrophages non-autonomously stimulate wild-type macrophages to engulf T cells. Rac2E62K also enhances engulfment of target cancer cells by chimeric antigen receptor-expressing macrophages (CAR-M) in a CAR-dependent manner. We propose that Rac-mediated cell cannibalism may contribute to Rac2+/E62K human immunodeficiency and enhance CAR-M cancer immunotherapy.
Collapse
Affiliation(s)
- Abhinava K. Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Melanie Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Alba Yurani Torres
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Morgan Smith
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Anthony Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Meghan A. Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Denise J. Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
4
|
Wang Z, Chen C, Su Y, Ke N. Function and characteristics of TIM‑4 in immune regulation and disease (Review). Int J Mol Med 2022; 51:10. [PMID: 36524355 PMCID: PMC9848438 DOI: 10.3892/ijmm.2022.5213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
T‑cell/transmembrane immunoglobulin and mucin domain containing 4 (TIM‑4) is a phosphatidylserine receptor that is mainly expressed on antigen‑presenting cells and is involved in the recognition and efferocytosis of apoptotic cells. TIM‑4 has been found to be expressed in immune cells such as natural killer T, B and mast cells and to participate in multiple aspects of immune regulation, suggesting that TIM‑4 may be involved in a variety of immune‑related diseases. Recent studies have confirmed that TIM‑4 is also abnormally expressed in a variety of malignant tumor cells and is closely associated with the occurrence and development of tumors and the tumor immune microenvironment. The present study aimed to describe the expression and functional characteristics of TIM‑4 in detail and to comprehensively discuss its role in pathophysiological processes such as infection, allergy, metabolism, autoimmunity and tumor immunity. The current review provided a comprehensive understanding of the functions and characteristics of TIM‑4, as well as novel ideas for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Ziyao Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chen Chen
- Department of Radiology, The First People's Hospital of Chengdu, Chengdu, Sichuan 610095, P.R. China
| | - Yingzhen Su
- Kunming University School of Medicine, Kunming University School, Kunming, Yunnan 650124, P.R. China
| | - Nengwen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Nengwen Ke, Department of Pancreatic Surgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
5
|
Nguyen NH, Chen M, Chak V, Balu-Iyer SV. Biophysical Characterization of Tolerogenic Lipid-Based Nanoparticles Containing Phosphatidylcholine and Lysophosphatidylserine. J Pharm Sci 2022; 111:2072-2082. [PMID: 35108564 PMCID: PMC11075660 DOI: 10.1016/j.xphs.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022]
Abstract
Autoimmune conditions, allergies, and immunogenicity against therapeutic proteins are initiated by the unwanted immune response against self and non-self proteins. The development of tolerance induction approaches can offer an effective treatment modality for these clinical conditions. We recently showed that oral administration of lipidic nanoparticles containing phosphatidylcholine (PC) and lysophosphatidylserine (Lyso-PS) converted an immunogen to a tolerogen and induced immunological tolerance towards several antigens. While the biophysical properties such as lamellar characteristics of this binary lipid system are critical for stability, therapeutic delivery, and mechanism of tolerance induction, such information has not been thoroughly investigated. In the current study, we evaluated the lamellar phase properties of PC/Lyso-PS system using orthogonal biophysical methods such as fluorescence (steady-state, anisotropy, PSvue, and Laurdan), dynamic light scattering, and differential scanning calorimetry. The results showed that Lyso-PS partitioned into the PC bilayers and led to changes in the particles' lamellar phase properties, lipid-packing, and lipid-water dynamics. Additionally, the biophysical characteristics of PC/Lyso-PS system are different from the well-studied PC/double-chain phosphatidylserine (PS) system. Notably, the incorporation of Lyso-PS significantly reduced the hydrodynamic diameter of PC particles. Results from the in vivo uptake study and intestinal loop assay utilizing flow cytometry analysis also indicated that the uptake of Lyso-PS-containing nanoparticles by immune cells in the gut and Peyer's patches is significantly higher than that of double-chain PS due to the differential transport through microfold cells. It was also found that the acyl chain mismatch between PC and Lyso-PS is critical for the miscibility and particle stability. Collectively, the results suggest that these biophysical characteristics likely influence the in vivo behaviors and contribute to the oral tolerance property of PC/Lyso-PS system.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Manlin Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Vincent Chak
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
6
|
Chow A, Schad S, Green MD, Hellmann MD, Allaj V, Ceglia N, Zago G, Shah NS, Sharma SK, Mattar M, Chan J, Rizvi H, Zhong H, Liu C, Bykov Y, Zamarin D, Shi H, Budhu S, Wohlhieter C, Uddin F, Gupta A, Khodos I, Waninger JJ, Qin A, Markowitz GJ, Mittal V, Balachandran V, Durham JN, Le DT, Zou W, Shah SP, McPherson A, Panageas K, Lewis JS, Perry JSA, de Stanchina E, Sen T, Poirier JT, Wolchok JD, Rudin CM, Merghoub T. Tim-4 + cavity-resident macrophages impair anti-tumor CD8 + T cell immunity. Cancer Cell 2021; 39:973-988.e9. [PMID: 34115989 PMCID: PMC9115604 DOI: 10.1016/j.ccell.2021.05.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Immune checkpoint blockade (ICB) has been a remarkable clinical advance for cancer; however, the majority of patients do not respond to ICB therapy. We show that metastatic disease in the pleural and peritoneal cavities is associated with poor clinical outcomes after ICB therapy. Cavity-resident macrophages express high levels of Tim-4, a receptor for phosphatidylserine (PS), and this is associated with reduced numbers of CD8+ T cells with tumor-reactive features in pleural effusions and peritoneal ascites from patients with cancer. We mechanistically demonstrate that viable and cytotoxic anti-tumor CD8+ T cells upregulate PS and this renders them susceptible to sequestration away from tumor targets and proliferation suppression by Tim-4+ macrophages. Tim-4 blockade abrogates this sequestration and proliferation suppression and enhances anti-tumor efficacy in models of anti-PD-1 therapy and adoptive T cell therapy in mice. Thus, Tim-4+ cavity-resident macrophages limit the efficacy of immunotherapies in these microenvironments.
Collapse
Affiliation(s)
- Andrew Chow
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Sara Schad
- Weill Cornell Medical College, New York, NY, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan Rogel Cancer Center and Veterans Affairs Ann Arbor Healthcare System, MI, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viola Allaj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Ceglia
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulia Zago
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nisargbhai S Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hira Rizvi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhong
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cailian Liu
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yonina Bykov
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Hongyu Shi
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadna Budhu
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Fathema Uddin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aditi Gupta
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica J Waninger
- Department of Medical Education, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Angel Qin
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Vinod Balachandran
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer N Durham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dung T Le
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Sohrab P Shah
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew McPherson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason S Lewis
- Weill Cornell Medical College, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Caronni N, Piperno GM, Simoncello F, Romano O, Vodret S, Yanagihashi Y, Dress R, Dutertre CA, Bugatti M, Bourdeley P, Del Prete A, Schioppa T, Mazza EMC, Collavin L, Zacchigna S, Ostuni R, Guermonprez P, Vermi W, Ginhoux F, Bicciato S, Nagata S, Benvenuti F. TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and anti-tumor responses. Nat Commun 2021; 12:2237. [PMID: 33854047 PMCID: PMC8046802 DOI: 10.1038/s41467-021-22535-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Acquisition of cell-associated tumor antigens by type 1 dendritic cells (cDC1) is essential to induce and sustain tumor specific CD8+ T cells via cross-presentation. Here we show that capture and engulfment of cell associated antigens by tissue resident lung cDC1 is inhibited during progression of mouse lung tumors. Mechanistically, loss of phagocytosis is linked to tumor-mediated downregulation of the phosphatidylserine receptor TIM4, that is highly expressed in normal lung resident cDC1. TIM4 receptor blockade and conditional cDC1 deletion impair activation of tumor specific CD8+ T cells and promote tumor progression. In human lung adenocarcinomas, TIM4 transcripts increase the prognostic value of a cDC1 signature and predict responses to PD-1 treatment. Thus, TIM4 on lung resident cDC1 contributes to immune surveillance and its expression is suppressed in advanced tumors.
Collapse
Affiliation(s)
- Nicoletta Caronni
- Department of Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Giulia Maria Piperno
- Department of Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Francesca Simoncello
- Department of Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Yuichi Yanagihashi
- Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Regine Dress
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Pierre Bourdeley
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center-IRCCS, Rozzano-Milano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center-IRCCS, Rozzano-Milano, Italy
| | - Emilia Maria Cristina Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano-Milano, Italy
| | - Licio Collavin
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pierre Guermonprez
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - William Vermi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, St. Louis, MO, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Shigekatzu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Federica Benvenuti
- Department of Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
| |
Collapse
|
8
|
F4/80 + Kupffer Cell-Derived Oncostatin M Sustains the Progression Phase of Liver Regeneration through Inhibition of TGF-β2 Pathway. Molecules 2021; 26:molecules26082231. [PMID: 33924385 PMCID: PMC8069260 DOI: 10.3390/molecules26082231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
The role of Kupffer cells (KCs) in liver regeneration is complicated and controversial. To investigate the distinct role of F4/80+ KCs at the different stages of the regeneration process, two-thirds partial hepatectomy (PHx) was performed in mice to induce physiological liver regeneration. In pre- or post-PHx, the clearance of KCs by intraperitoneal injection of the anti-F4/80 antibody (α-F4/80) was performed to study the distinct role of F4/80+ KCs during the regenerative process. In RNA sequencing of isolated F4/80+ KCs, the initiation phase was compared with the progression phase. Immunohistochemistry and immunofluorescence staining of Ki67, HNF-4α, CD-31, and F4/80 and Western blot of the TGF-β2 pathway were performed. Depletion of F4/80+ KCs in pre-PHx delayed the peak of hepatocyte proliferation from 48 h to 120 h, whereas depletion in post-PHx unexpectedly led to persistent inhibition of hepatocyte proliferation, indicating the distinct role of F4/80+ KCs in the initiation and progression phases of liver regeneration. F4/80+ KC depletion in post-PHx could significantly increase TGF-β2 serum levels, while TGF-βRI partially rescued the impaired proliferation of hepatocytes. Additionally, F4/80+ KC depletion in post-PHx significantly lowered the expression of oncostatin M (OSM), a key downstream mediator of interleukin-6, which is required for hepatocyte proliferation during liver regeneration. In vivo, recombinant OSM (r-OSM) treatment alleviated the inhibitory effect of α-F4/80 on the regenerative progression. Collectively, F4/80+ KCs release OSM to inhibit TGF-β2 activation, sustaining hepatocyte proliferation by releasing a proliferative brake.
Collapse
|
9
|
Boehne C, Behrendt AK, Meyer-Bahlburg A, Boettcher M, Drube S, Kamradt T, Hansen G. Tim-3 is dispensable for allergic inflammation and respiratory tolerance in experimental asthma. PLoS One 2021; 16:e0249605. [PMID: 33822811 PMCID: PMC8023500 DOI: 10.1371/journal.pone.0249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been described as a transmembrane protein, expressed on the surface of various T cells as well as different cells of innate immunity. It has since been associated with Th1 mediated autoimmune diseases and transplantation tolerance studies, thereby indicating a possible role of this receptor in counter-regulation of Th2 immune responses. In the present study we therefore directly examined the role of Tim-3 in allergic inflammation and respiratory tolerance. First, Tim-3-/- mice and wild type controls were immunized and challenged with the model allergen ovalbumin (OVA) to induce an asthma-like phenotype. Analysis of cell numbers and distribution in the bronchoalveolar lavage (BAL) fluid as well as lung histology in H&E stained lung sections demonstrated a comparable degree of eosinophilic inflammation in both mouse strains. Th2 cytokine production in restimulated cell culture supernatants and serum IgE and IgG levels were equally increased in both genotypes. In addition, cell proliferation and the distribution of different T cell subsets were comparable. Moreover, analysis of both mouse strains in our respiratory tolerance model, where mucosal application of the model allergen before immunization, prevents the development of an asthma-like phenotype, revealed no differences in any of the parameters mentioned above. The current study demonstrates that Tim-3 is dispensable not only for the development of allergic inflammation but also for induction of respiratory tolerance in mice in an OVA-based model.
Collapse
Affiliation(s)
- Carolin Boehne
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
| | - Ann-Kathrin Behrendt
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Lower Saxony, Germany
| | - Martin Boettcher
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Sebastian Drube
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Thomas Kamradt
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Gesine Hansen
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Lower Saxony, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Lower Saxony, Germany
- * E-mail:
| |
Collapse
|
10
|
Arroyo Portilla C, Tomas J, Gorvel JP, Lelouard H. From Species to Regional and Local Specialization of Intestinal Macrophages. Front Cell Dev Biol 2021; 8:624213. [PMID: 33681185 PMCID: PMC7930007 DOI: 10.3389/fcell.2020.624213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Initially intended for nutrient uptake, phagocytosis represents a central mechanism of debris removal and host defense against invading pathogens through the entire animal kingdom. In vertebrates and also many invertebrates, macrophages (MFs) and MF-like cells (e.g., coelomocytes and hemocytes) are professional phagocytic cells that seed tissues to maintain homeostasis through pathogen killing, efferocytosis and tissue shaping, repair, and remodeling. Some MF functions are common to all species and tissues, whereas others are specific to their homing tissue. Indeed, shaped by their microenvironment, MFs become adapted to perform particular functions, highlighting their great plasticity and giving rise to high population diversity. Interestingly, the gut displays several anatomic and functional compartments with large pools of strikingly diversified MF populations. This review focuses on recent advances on intestinal MFs in several species, which have allowed to infer their specificity and functions.
Collapse
Affiliation(s)
- Cynthia Arroyo Portilla
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Departamento de Análisis Clínicos, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Julie Tomas
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | |
Collapse
|
11
|
Tim-4 expressing monocytes as a novel indicator to assess disease activity and severity of ulcerative colitis. Life Sci 2021; 269:119077. [PMID: 33465392 DOI: 10.1016/j.lfs.2021.119077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/25/2023]
Abstract
AIMS The dysregulation of the immune response has been shown to be involved in ulcerative colitis (UC) pathogenesis. Tim-4 is a potential regulator of the immune system which plays key roles in multiple autoimmune diseases. However, whether it is involved in UC remains unclear. The aim of this research was to determine the expression of Tim-4 on circulating monocytes and its clinical significance in UC patients. MAIN METHODS In total, 36 UC patients and 34 healthy controls (HCs) were enrolled in this study. The frequencies of CD14+Tim-4+ cells, regulatory T cells (Treg) and CD14+HLA-DR-/low myeloid-derived suppressor cells (MDSCs) in the peripheral blood were determined by flow cytometry. Serum IL-6 levels were determined by chemiluminescence immunoassay. KEY FINDINGS The percentage of CD14+Tim-4+ cells was higher in UC patients than in HCs. The frequency of Treg cells was significantly decreased, while that of MDSCs was significantly increased in UC patients. The frequency of CD14+Tim-4+ cells was significantly elevated in subjects with high severity, high number of defecations per day, high UC disease activity index Mayo score, high IgG, and high levels of inflammatory markers. And the percentages of Tim-4-expressing monocytes were significantly decreased in UC patients that received a 3-week treatment with mesalazine. Furthermore, the frequency of CD14+Tim-4+ cells was also positively correlated with MDSCs and negatively correlated with Treg cells. SIGNIFICANCE CD14+Tim-4+ cells was elevated in UC patients and could be a novel indicator to assess disease severity and activity of UC.
Collapse
|
12
|
De Maeyer RPH, van de Merwe RC, Louie R, Bracken OV, Devine OP, Goldstein DR, Uddin M, Akbar AN, Gilroy DW. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat Immunol 2020; 21:615-625. [PMID: 32251403 PMCID: PMC7983074 DOI: 10.1038/s41590-020-0646-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/02/2020] [Indexed: 01/26/2023]
Abstract
Increasing age alters innate immune-mediated responses; however, the mechanisms underpinning these changes in humans are not fully understood. Using a human dermal model of acute inflammation, we found that, although inflammatory onset is similar between young and elderly individuals, the resolution phase was substantially impaired in elderly individuals. This arose from a reduction in T cell immunoglobulin mucin receptor-4 (TIM-4), a phosphatidylserine receptor expressed on macrophages that enables the engulfment of apoptotic bodies, so-called efferocytosis. Reduced TIM-4 in elderly individuals was caused by an elevation in macrophage p38 mitogen-activated protein kinase (MAPK) activity. Administering an orally active p38 inhibitor to elderly individuals rescued TIM-4 expression, cleared apoptotic bodies and restored a macrophage resolution phenotype. Thus, inhibiting p38 in elderly individuals rejuvenated their resolution response to be more similar to that of younger people. This is the first resolution defect identified in humans that has been successfully reversed, thereby highlighting the tractability of targeting pro-resolution biology to treat diseases driven by chronic inflammation.
Collapse
Affiliation(s)
| | | | - Rikah Louie
- Division of Medicine, University College London, London, UK
| | | | - Oliver P Devine
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden
| | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
13
|
Ye Z, Jin Y, Li H, Xu H, He Y, Chen Y. Association of Tim-4 expression in monocyte subtypes with clinical course and prognosis in acute ischemic stroke patients. Int J Neurosci 2020; 130:906-916. [PMID: 31877070 DOI: 10.1080/00207454.2019.1709842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: It has been proven that T cell immunoglobin and mucin domain (Tim)-4 and monocytes (Mo) are involved in regulation of immunity, which is important for the recovery of acute ischemic stroke (AIS).Methods: In this study, the expression of Tim-4 in both circulating Mo subtypes and plasma in 32 consecutive AIS patients and 32 control patients was assessed to determine their correlation with the clinical course and prognosis of AIS.Results: It was found that, compared to the control patients, the percentage of Tim-4 expression in overall Mo, classical Mo and non-classical Mo was significantly elevated after 2 and 5 days of stroke (p < 0.05), while it was promoted from 0 to 10 days of stoke in intermediate Mo (p < 0.05). Furthermore, Tim-4 expressions in non-classical Mo and intermediate Mo were obviously correlated with National Institutes of Health Stroke Scale (NIHSS) scores at 2 days of stroke (r = 0.351, p = 0.048; r = 0.358, p = 0.044, respectively). In poor outcome (PO) patients, the expression of Tim-4 in non-classical Mo was remarkably promoted at 2 days of stroke in comparison with non-PO patients (p < 0.05). More importantly, our results revealed a positive correlation between Tim-4 expression in non-classical Mo and interleukin (IL)-6 plasma levels in AIS patients without infection.Conclusion: In summary, our findings proved that Tim-4 expression in non-classical Mo could be an appropriate target for the prediction of the clinical course and prognosis in AIS patients.
Collapse
Affiliation(s)
- Zhinan Ye
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yingying Jin
- Intensive Care Unit, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Haijun Li
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Hao Xu
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yingye He
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Ying Chen
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
14
|
Wei CW, Lee CY, Lee DJ, Chu CF, Wang JC, Wang TC, Jane WN, Chang ZF, Leu CM, Dzhagalov IL, Hsu CL. Equilibrative Nucleoside Transporter 3 Regulates T Cell Homeostasis by Coordinating Lysosomal Function with Nucleoside Availability. Cell Rep 2019; 23:2330-2341. [PMID: 29791845 DOI: 10.1016/j.celrep.2018.04.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
T cells are a versatile immune cell population responding to challenges by differentiation and proliferation followed by contraction and memory formation. Dynamic metabolic reprogramming is essential for T cells to meet the biosynthetic needs and the reutilization of biomolecules, processes that require active participation of metabolite transporters. Here, we show that equilibrative nucleoside transporter 3 (ENT3) is highly expressed in peripheral T cells and has a key role in maintaining T cell homeostasis by supporting the proliferation and survival of T cells. ENT3 deficiency leads to an enlarged and disturbed lysosomal compartment, resulting in accumulation of surplus mitochondria, elevation of intracellular reactive oxygen species, and DNA damage in T cells. Our results identify ENT3 as a vital metabolite transporter that supports T cell homeostasis and activation by regulating lysosomal integrity and the availability of nucleosides. Moreover, we uncovered that T cell lysosomes are an important source of salvaged metabolites for survival and proliferation.
Collapse
Affiliation(s)
- Chin-Wen Wei
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Chia-Ying Lee
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ding-Jin Lee
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Chang-Feng Chu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ju-Chu Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Tien-Chiao Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ivan L Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
15
|
Zhang X, Liu Q, Wang J, Li G, Weiland M, Yu FS, Mi QS, Gu J, Zhou L. TIM-4 is differentially expressed in the distinct subsets of dendritic cells in skin and skin-draining lymph nodes and controls skin Langerhans cell homeostasis. Oncotarget 2018; 7:37498-37512. [PMID: 27224924 PMCID: PMC5122327 DOI: 10.18632/oncotarget.9546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
T cell immunoglobulin and mucin-4 (TIM-4), mainly expressed on dendritic cells (DC) and macrophages, plays an essential role in regulating immune responses. Langerhans cells (LC), which are the sole DC subpopulation residing at the epidermis, are potent mediators of immune surveillance and tolerance. However, the significance of TIM-4 on epidermal LCs, along with other cutaneous DCs, remains totally unexplored. For the first time, we discovered that epidermal LCs expressed TIM-4 and displayed an increased level of TIM-4 expression upon migration. We also found that dermal CD207+ DCs and lymph node (LN) resident CD207−CD4+ DCs highly expressed TIM-4, while dermal CD207− DCs and LN CD207−CD4− DCs had limited TIM-4 expressions. Using TIM-4-deficient mice, we further demonstrated that loss of TIM-4 significantly upregulated the frequencies of epidermal LCs and LN resident CD207−CD4+ DCs. In spite of this, the epidermal LCs of TIM-4-deficient mice displayed normal phagocytic and migratory abilities, comparable maturation status upon the stimulation as well as normal repopulation under the inflamed state. Moreover, lack of TIM-4 did not affect dinitrofluorobenzene-induced contact hypersensitivity response. In conclusion, our results indicated that TIM-4 was differentially expressed in the distinct subsets of DCs in skin and skin-draining LNs, and specifically regulated epidermal LC and LN CD207−CD4+ DC homeostasis.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Queping Liu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Guihua Li
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Matthew Weiland
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Fu-Shin Yu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Jun Gu
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| |
Collapse
|
16
|
Some news from the unknown soldier, the Peyer's patch macrophage. Cell Immunol 2018; 330:159-167. [PMID: 29395860 DOI: 10.1016/j.cellimm.2018.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
In mammals, macrophages (MF) are present in virtually all tissues where they serve many different functions linked primarily to the maintenance of homeostasis, innate defense against pathogens, tissue repair and metabolism. Although some of these functions appear common to all tissues, others are specific to the homing tissue. Thus, MF become adapted to perform particular functions in a given tissue. Accordingly, MF express common markers but also sets of tissue-specific markers linked to dedicated functions. One of the largest pool of MF in the body lines up the wall of the gut. Located in the small intestine, Peyer's patches (PP) are primary antigen sampling and mucosal immune response inductive sites. Surprisingly, although markers of intestinal MF, such as F4/80, have been identified more than 30 years ago, MF of PP escaped any kind of phenotypic description and remained "unknown" for decades. In absence of MF identification, the characterization of the PP mononuclear phagocyte system (MPS) functions has been impaired. However, taking into account that PP are privileged sites of entry for pathogens, it is important to understand how the latter are handled by and/or escape the PP MPS, especially MF, which role in killing invaders is well known. This review focuses on recent advances on the PP MPS, which have allowed, through new criteria of PP phagocyte subset identification, the characterization of PP MF origin, diversity, specificity, location and functions.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW T-cell immunoglobulin and mucin domain-containing molecule (TIM)4 is a costimulatory molecule and phosphatidylserine receptor. Its dominant function varies according to the expressing cell and site of activation. In recent years, studies have identified its role in diverse disease processes and increasingly in alloimmunity. Herein, we will comprehensively review the literature on TIM4 and outline its function in shaping the alloimmune response. RECENT FINDINGS TIM4 expression on dendritic cells increases following transplantation. Blockade of TIM4 in vivo leads to increased differentiation of regulatory T cells and improved allograft survival. TIM4 binds phosphatidylserine-expressing apoptotic cells. Previously thought of as a tethering molecule, recent studies have demonstrated that TIM4 interacts with integrins to mediate uptake of apoptotic cells. TIM4 B cells have recently been identified, which produce high levels of IFNγ and promote allograft rejection. Targeting these B cells improved allograft survival and promoted the development of TIM1 regulatory B cells. SUMMARY TIM4 is expressed in niche compartments and has many immunological effects. However, inhibition of TIM4 has been demonstrated to prolong allograft survival, through varied mechanisms. A unifying explanation for the role of TIM4 in alloimmunity remains to be found, but this pathway appears to hold considerable promise in transplantation.
Collapse
|
18
|
Da Silva C, Wagner C, Bonnardel J, Gorvel JP, Lelouard H. The Peyer's Patch Mononuclear Phagocyte System at Steady State and during Infection. Front Immunol 2017; 8:1254. [PMID: 29038658 PMCID: PMC5630697 DOI: 10.3389/fimmu.2017.01254] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
The gut represents a potential entry site for a wide range of pathogens including protozoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and most diversified population of immune cells of the body. Its surveillance requires the constant sampling of its encounters by dedicated sentinels composed of follicles and their associated epithelium located in specialized area. In the small intestine, Peyer’s patches (PPs) are the most important of these mucosal immune response inductive sites. Through several mechanisms including transcytosis by specialized epithelial cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen sampling is critical to the initiation of the mucosal immune response, pathogens have evolved strategies to take advantage of this permissive gateway to enter the host and disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host defense and pathogen subversive strategies in order to develop new mucosal-based therapeutic approaches. Whereas penetration of pathogens through M cells has been well described, their fate once they have reached the subepithelial dome (SED) remains less well understood. Nevertheless, it is clear that the mononuclear phagocyte system (MPS) plays a critical role in handling these pathogens. MPS members, including both dendritic cells and macrophages, are indeed strongly enriched in the SED, interact with M cells, and are necessary for antigen presentation to immune effector cells. This review focuses on recent advances, which have allowed distinguishing the different PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, location, and functions. Interaction of PP phagocytes with the microbiota and the follicle-associated epithelium as well as PP infection studies are described in the light of these new criteria of PP phagocyte identification. Finally, known alterations affecting the different phagocyte subsets during PP stimulation or infection are discussed.
Collapse
Affiliation(s)
| | - Camille Wagner
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialisation, VIB Inflammation Research Center, Ghent, Belgium
| | | | - Hugues Lelouard
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
19
|
Foks AC, Kuiper J. Immune checkpoint proteins: exploring their therapeutic potential to regulate atherosclerosis. Br J Pharmacol 2017; 174:3940-3955. [PMID: 28369782 DOI: 10.1111/bph.13802] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
The immune system provides a large variety of immune checkpoint proteins, which involve both costimulatory and inhibitory proteins. Costimulatory proteins can promote cell survival, cell cycle progression and differentiation to effector and memory cells, whereas inhibitory proteins terminate these processes to halt ongoing inflammation. Immune checkpoint proteins play a pivotal role in atherosclerosis by regulating the activation and proliferation of various immune and non-immune cells, such as T-cells, macrophages and platelets. Upon activation within the atherosclerotic lesions or in secondary lymphoid organs, these cells produce large amounts of pro-atherogenic cytokines that contribute to the growth and destabilization of lesions, which can result in rupture of the lesion causing acute coronary syndromes, such as a myocardial infarction. Given the presence and regulatory capacity of immune checkpoint proteins in the circulation and atherosclerotic lesions of cardiovascular patients, modulation of these proteins by, for example, the use of monoclonal antibodies, offers unique opportunities to regulate pro-inflammatory immune responses in atherosclerosis. In this review, we highlight the latest advances on the role of immune checkpoint proteins, such as OX40-OX40L, CTLA-4 and TIM proteins, in atherosclerosis and discuss their therapeutic potential as promising immunotherapies to treat or prevent cardiovascular disease. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- A C Foks
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| | - J Kuiper
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
20
|
Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Arch 2017; 469:561-572. [DOI: 10.1007/s00424-017-1965-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
|
21
|
Abstract
ABSTRACT
Asthma is a heterogeneous chronic inflammatory disorder of the airways, and not surprisingly, many myeloid cells play a crucial role in pathogenesis. Antigen-presenting dendritic cells are the first to recognize the allergens, pollutants, and viruses that are implicated in asthma pathogenesis, and subsequently initiate the adaptive immune response by migrating to lymph nodes. Eosinophils are the hallmark of type 2 inflammation, releasing toxic compounds in the airways and contributing to airway remodeling. Mast cells and basophils control both the early- and late-phase allergic response and contribute to alterations in smooth muscle reactivity. Finally, relatively little is known about neutrophils and macrophages in this disease. Although many of these myeloid cells respond well to treatment with inhaled steroids, there is now an increasing armamentarium of targeted biologicals that can specifically eliminate only one myeloid cell population, like eosinophils. It is only with those new tools that we will be able to fully understand the role of myeloid cells in chronic asthma in humans.
Collapse
|
22
|
Hilligan KL, Connor LM, Schmidt AJ, Ronchese F. Activation-Induced TIM-4 Expression Identifies Differential Responsiveness of Intestinal CD103+ CD11b+ Dendritic Cells to a Mucosal Adjuvant. PLoS One 2016; 11:e0158775. [PMID: 27379516 PMCID: PMC4933342 DOI: 10.1371/journal.pone.0158775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022] Open
Abstract
Macrophage and dendritic cell (DC) populations residing in the intestinal lamina propria (LP) are highly heterogeneous and have disparate yet collaborative roles in the promotion of adaptive immune responses towards intestinal antigen. Under steady-state conditions, macrophages are efficient at acquiring antigen but are non-migratory. In comparison, intestinal DC are inefficient at antigen uptake but migrate to the mesenteric lymph nodes (mLN) where they present antigen to T cells. Whether such distinction in the roles of DC and macrophages in the uptake and transport of antigen is maintained under immunostimulatory conditions is less clear. Here we show that the scavenger and phosphatidylserine receptor T cell Immunoglobulin and Mucin (TIM)-4 is expressed by the majority of LP macrophages at steady-state, whereas DC are TIM-4 negative. Oral treatment with the mucosal adjuvant cholera toxin (CT) induces expression of TIM-4 on a proportion of CD103+ CD11b+ DC in the LP. TIM-4+ DC selectively express high levels of co-stimulatory molecules after CT treatment and are detected in the mLN a short time after appearing in the LP. Importantly, intestinal macrophages and DC expressing TIM-4 are more efficient than their TIM-4 negative counterparts at taking up apoptotic cells and soluble antigen ex vivo. Taken together, our results show that CT induces phenotypic changes to migratory intestinal DC that may impact their ability to take up local antigens and in turn promote the priming of mucosal immunity.
Collapse
Affiliation(s)
- Kerry L. Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa M. Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
- * E-mail:
| | | | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
23
|
Foks AC, Engelbertsen D, Kuperwaser F, Alberts-Grill N, Gonen A, Witztum JL, Lederer J, Jarolim P, DeKruyff RH, Freeman GJ, Lichtman AH. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol 2016; 36:456-65. [PMID: 26821944 PMCID: PMC4853762 DOI: 10.1161/atvbaha.115.306860] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE T cell immunoglobulin and mucin domain (Tim) proteins are expressed by numerous immune cells, recognize phosphatidylserine on apoptotic cells, and function as costimulators or coinhibitors. Tim-1 is expressed by activated T cells but is also found on dendritic cells and B cells. Tim-4, present on macrophages and dendritic cells, plays a critical role in apoptotic cell clearance, regulates the number of phosphatidylserine-expressing activated T cells, and is genetically associated with low low-density lipoprotein and triglyceride levels. Because these functions of Tim-1 and Tim-4 could affect atherosclerosis, their modulation has potential therapeutic value in cardiovascular disease. APPROACH AND RESULTS ldlr(-/-) mice were fed a high-fat diet for 4 weeks while being treated with control (rat immunoglobulin G1) or anti-Tim-1 (3D10) or -Tim-4 (21H12) monoclonal antibodies that block phosphatidylserine recognition and phagocytosis. Both anti-Tim-1 and anti-Tim-4 treatments enhanced atherosclerosis by 45% compared with controls by impairment of efferocytosis and increasing aortic CD4(+)T cells. Consistently, anti-Tim-4-treated mice showed increased percentages of activated T cells and late apoptotic cells in the circulation. Moreover, in vitro blockade of Tim-4 inhibited efferocytosis of oxidized low-density lipoprotein-induced apoptotic macrophages. Although anti-Tim-4 treatment increased T helper cell (Th)1 and Th2 responses, anti-Tim-1 induced Th2 responses but dramatically reduced the percentage of regulatory T cells. Finally, combined blockade of Tim-1 and Tim-4 increased atherosclerotic lesion size by 59%. CONCLUSIONS Blockade of Tim-4 aggravates atherosclerosis likely by prevention of phagocytosis of phosphatidylserine-expressing apoptotic cells and activated T cells by Tim-4-expressing cells, whereas Tim-1-associated effects on atherosclerosis are related to changes in Th1/Th2 balance and reduced circulating regulatory T cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/toxicity
- Aortic Diseases/chemically induced
- Aortic Diseases/genetics
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Apoptosis/drug effects
- Atherosclerosis/chemically induced
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Coculture Techniques
- Diet, High-Fat
- Disease Models, Animal
- Female
- Hepatitis A Virus Cellular Receptor 1
- Lipoproteins, LDL/metabolism
- Lymphocyte Activation/drug effects
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Male
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice, Knockout
- Phagocytosis/drug effects
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction/drug effects
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Amanda C Foks
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Daniel Engelbertsen
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Felicia Kuperwaser
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Noah Alberts-Grill
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Ayelet Gonen
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Joseph L Witztum
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - James Lederer
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Petr Jarolim
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Rosemarie H DeKruyff
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Gordon J Freeman
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.)
| | - Andrew H Lichtman
- From the Department of Pathology (A.C.F., D.E., F.K., N.A.-G., P.J., A.H.L.) and Department of Surgery (J.L.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Medicine, Stanford University, Stanford, CA (R.H.D.); and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.J.F.).
| |
Collapse
|
24
|
Xu XG, Hu JF, Ma JX, Nie L, Shao T, Xiang LX, Shao JZ. Essential Roles of TIM-1 and TIM-4 Homologs in Adaptive Humoral Immunity in a Zebrafish Model. THE JOURNAL OF IMMUNOLOGY 2016; 196:1686-99. [PMID: 26792807 DOI: 10.4049/jimmunol.1501736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023]
Abstract
TIM-1 and TIM-4 proteins have become increasingly attractive for their critical functions in immune modulation, particularly in CD4(+) Th2 cell activation. Thus, these proteins were hypothesized to regulate adaptive humoral immunity. However, further evidence is needed to validate this hypothesis. This study describes the molecular and functional characteristics of TIM-1 and TIM-4 homologs from a zebrafish (Danio rerio) model (D. rerio TIM [DrTIM]-1 and DrTIM-4). DrTIM-1 and DrTIM-4 were predominantly expressed in CD4(+) T cells and MHC class II(+) APCs under the induction of Ag stimulation. Blockade or knockdown of both DrTIM-1 and DrTIM-4 significantly decreased Ag-specific CD4(+) T cell activation, B cell proliferation, Ab production, and vaccinated immunoprotection against bacterial infection. This result suggests that DrTIM-1 and DrTIM-4 serve as costimulatory molecules required for the full activation of adaptive humoral immunity. DrTIM-1 was detected to be a trafficking protein located in the cytoplasm of CD4(+) T cells. It can translocate onto the cell surface under stimulation by TIM-4-expressing APCs, which might be a precise regulatory strategy for CD4(+) T cells to avoid self-activation before APCs stimulation. Furthermore, a unique alternatively spliced soluble DrTIM-4 variant was identified to exert a negative regulatory effect on the proliferation of CD4(+) T cells. The above findings highlight a novel costimulatory mechanism underlying adaptive immunity. This study enriches the current knowledge on TIM-mediated immunity and provides a cross-species understanding of the evolutionary history of costimulatory systems throughout vertebrate evolution.
Collapse
Affiliation(s)
- Xiao-Gang Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Jing-Fang Hu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Jun-Xia Ma
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
25
|
Zhang Q, Wang H, Wu X, Liu B, Liu W, Wang R, Liang X, Ma C, Gao L. TIM-4 promotes the growth of non-small-cell lung cancer in a RGD motif-dependent manner. Br J Cancer 2015; 113:1484-92. [PMID: 26512878 PMCID: PMC4815884 DOI: 10.1038/bjc.2015.323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/29/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND T-cell immunoglobulin domain and mucin domain 4 (TIM-4) is exclusively expressed in antigen-presenting cells and involved in immune regulation. However, the role of TIM-4 expressed in tumour cells remains completely unknown. METHODS Immunohistochemistry staining was used to examine TIM-4 or Ki-67 expression in tumour tissues. Real-time PCR or RT-PCR was performed to detect TIM-4 mRNA expression. Lung cancer cell growth and proliferation were conducted by CCK-8 assay and EdU staining. Cell cycle progression was analysed by flow cytometry. The PCNA and cell cycle-related proteins were verified by western blot. Co-IP assay was used to identify the interaction of TIM-4 and integrin αvβ3. The efficacy of TIM-4 in vivo was evaluated using xenograft tumour model. RESULTS The expression of TIM-4 in non-small-cell lung cancer (NSCLC) tissues was significantly higher than that of the adjacent tissues. Enhanced TIM-4 expression was negatively correlated with histological differentiation of lung carcinoma and lifespan of patients. Overexpression of TIM-4 promoted lung cancer cell growth and proliferation, and upregulated the expression of PCNA, cyclin A, cyclin B1 and cyclin D1, accompanied by accumulation of lung cancer cells in S phase. Interestingly, Arg-Gly-Asp (RGD) motif mutation abolished the effect of TIM-4 on lung cancer cells, which was further verified by tumour xenografts in mice. Furthermore, we found that TIM-4 interacted with αvβ3 integrin through RGD motif. CONCLUSIONS This finding suggests that TIM-4 might be a potential biomarker for NSCLC that promotes lung cancer progression by RGD motif.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China.,Institute of Cardiovascular Disease, General Hospital of Ji'nan Military Region, 8 Lashan Road, Ji'nan, Shandong 250022, People's Republic of China
| | - Hongxing Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China
| | - Xiaodong Wu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China.,Department of Packaging, Jinan Blood Centre, 127 Jing Qi Road, Jinan, Shandong 250021, People's Republic of China
| | - Bing Liu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China
| | - Wen Liu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China
| | - Rong Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China
| | - Xiaohong Liang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China
| | - Chunhong Ma
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China
| | - Lifen Gao
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
26
|
Li J, Zhao X, Liu X, Liu H. Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells. Mol Immunol 2015; 66:117-25. [DOI: 10.1016/j.molimm.2015.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/30/2022]
|
27
|
Innate and Adaptive Immune Functions of Peyer’s Patch Monocyte-Derived Cells. Cell Rep 2015; 11:770-84. [DOI: 10.1016/j.celrep.2015.03.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/03/2015] [Accepted: 03/26/2015] [Indexed: 12/23/2022] Open
|
28
|
Regulation of T cell trafficking by the T cell immunoglobulin and mucin domain 1 glycoprotein. Trends Mol Med 2014; 20:675-84. [DOI: 10.1016/j.molmed.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022]
|
29
|
Fang XY, Xu WD, Pan HF, Leng RX, Ye DQ. Novel insights into Tim-4 function in autoimmune diseases. Autoimmunity 2014; 48:189-95. [DOI: 10.3109/08916934.2014.983266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Baghdadi M, Takeuchi S, Wada H, Seino KI. Blocking monoclonal antibodies of TIM proteins as orchestrators of anti-tumor immune response. MAbs 2014; 6:1124-32. [PMID: 25517298 DOI: 10.4161/mabs.32107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibody (mAb)-based treatment of cancer has a significant effect on current practice in medical oncology, and is considered now as one of the most successful therapeutic strategies for cancer treatment. MAbs are designed to initiate or enhance anti-tumor immune responses, which can be achieved by either blocking inhibitory immune checkpoint molecules or triggering activating receptors. TIM gene family members are type-I surface molecules expressed in immune cells, and play important roles in the regulation of both innate and adaptive arms of the immune system. Therapeutic strategies based on anti-TIMs mAbs have shown promising results in experimental tumor models, and synergistic combinations of anti-TIMs mAbs with cancer vaccines, adoptive T-cell therapy, radiotherapy and chemotherapy will have great impact on cancer treatment in future clinical development.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- a Division of Immunobiology; Institute for Genetic Medicine ; Hokkaido University ; Sapporo , Japan
| | | | | | | |
Collapse
|
31
|
Murakami Y, Tian L, Voss OH, Margulies DH, Krzewski K, Coligan JE. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition. Cell Death Differ 2014; 21:1746-57. [PMID: 25034781 DOI: 10.1038/cdd.2014.86] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 01/15/2023] Open
Abstract
The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway.
Collapse
Affiliation(s)
- Y Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - L Tian
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - O H Voss
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - D H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - K Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - J E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
32
|
Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH, DeKruyff RH, Freeman GJ. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. ACTA ACUST UNITED AC 2014; 211:943-59. [PMID: 24752301 PMCID: PMC4010901 DOI: 10.1084/jem.20130790] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interaction between the inhibitory molecule PD-L2 on dendritic cells and repulsive guidance molecule b (RGMb) on lung macrophages is required to establish respiratory tolerance. We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb–PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2–deficient mice showed that PD-L2 expression on non–T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.
Collapse
Affiliation(s)
- Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute; 2 Division of Immunology and Department of Pediatrics, Boston Children's Hospital; 3 Department of Microbiology and Immunobiology and 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH, DeKruyff RH, Freeman GJ. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. Mol Immunol 2014; 48:1292-300. [PMID: 24752301 DOI: 10.1016/j.molimm.2010.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/17/2010] [Accepted: 12/08/2010] [Indexed: 12/30/2022]
Abstract
We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb-PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2-deficient mice showed that PD-L2 expression on non-T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.
Collapse
Affiliation(s)
- Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute; 2 Division of Immunology and Department of Pediatrics, Boston Children's Hospital; 3 Department of Microbiology and Immunobiology and 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4. Proc Natl Acad Sci U S A 2014; 111:E1463-72. [PMID: 24706780 DOI: 10.1073/pnas.1320174111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.
Collapse
|
35
|
den Haan JMM, Martinez-Pomares L. Macrophage heterogeneity in lymphoid tissues. Semin Immunopathol 2013; 35:541-52. [PMID: 23579230 DOI: 10.1007/s00281-013-0378-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022]
Abstract
Macrophages in lymphoid organs exhibit a wide variety of phenotypes and functions. These cells excel in the removal of apoptotic cells that arise during the generation of immune cells and are thereby essential for the prevention of auto-immune responses. In addition to this macrophages in the secondary lymphoid organs form an important barrier for spreading of infections by phagocytosis of pathogens and the activation of both innate and adaptive immune responses. Thus, the remarkable ability of macrophages to phagocytose and handle a wide range of self and non-self material and to produce immunomediators is effectively exploited within lymphoid organs to regulate immune activation.
Collapse
Affiliation(s)
- Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007, MB, Amsterdam, the Netherlands.
| | | |
Collapse
|