1
|
Li L, Lei B, Zhang W, Wang W, Shang C, Hu Y, Zhao K, Yuan W. The disturbance of intestinal microbiome caused by the novel duck reovirus infection in Cherry Valley ducklings can induce intestinal damage. Poult Sci 2024; 103:104428. [PMID: 39490133 PMCID: PMC11550084 DOI: 10.1016/j.psj.2024.104428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024] Open
Abstract
Novel duck reovirus disease is an infectious disease mainly caused by novel duck reovirus (NDRV), which is characterized by spleen necrosis and persistent diarrhea in ducks. However, the pathogenic mechanism of NDRV infection in Cherry Valley ducks remains unclear. To investigate the distribution of NDRV in the intestines of Cherry Valley ducks, intestinal morphogenesis, intestinal permeability, inflammatory cytokines, and the expression of tight junction proteins (TJPs), we introduced NDRV via intramuscular infection. The diversity and composition of ileum flora and content of short-chain fatty acids (SCFAs) were analyzed using Illumina MiSeq sequencing. The relationship between changes in the intestinal microbial community and intestinal damage in Cherry Valley ducks infected with NDRV was also assessed to offer new insights into the pathogenesis of NDRV and intestinal flora composition. The results showed that intestinal inflammation and barrier dysfunction occurred following NDRV infection. Additionally, a significant reduction in dominant bacterial species and a decrease in SCFA content within the intestinal microbiota led to weakened colonization resistance and the enrichment of opportunistic pathogens, exacerbating intestinal damage post-NDRV infection. Notably, TJPs and inflammatory cytokine disruptions were linked to a decline in SCFA-producing bacteria and an accumulation of pathogenic bacteria. In summary, changes in the ileum intestinal flora and disruptions to the intestinal barrier were associated with NDRV infection. Consequently, disturbances in intestinal flora caused by NDRV infection can lead to intestinal damage. These findings may offer us a new perspective, targeting the gut microbiota to better understand the progression of NDRV disease and investigate its underlying pathogenesis.
Collapse
Affiliation(s)
- Lijie Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Weizhu Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | | | - Yibin Hu
- Beijing Centrebio Biological Co., Ltd, Beijing 102629, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China.
| |
Collapse
|
2
|
Wu J, Li J, Yan M, Xiang Z. Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024; 10:104. [PMID: 39389989 PMCID: PMC11467339 DOI: 10.1038/s41522-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Brenchley JM, Serrano-Villar S. From dysbiosis to defense: harnessing the gut microbiome in HIV/SIV therapy. MICROBIOME 2024; 12:113. [PMID: 38907315 PMCID: PMC11193286 DOI: 10.1186/s40168-024-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although the microbiota has been extensively associated with HIV pathogenesis, the majority of studies, particularly those using omics techniques, are largely correlative and serve primarily as a basis for hypothesis generation. Furthermore, most have focused on characterizing the taxonomic composition of the bacterial component, often overlooking other levels of the microbiome. The intricate mechanisms by which the microbiota influences immune responses to HIV are still poorly understood. Interventional studies on gut microbiota provide a powerful tool to test the hypothesis of whether we can harness the microbiota to improve health outcomes in people with HIV. RESULTS Here, we review the multifaceted role of the gut microbiome in HIV/SIV disease progression and its potential as a therapeutic target. We explore the complex interplay between gut microbial dysbiosis and systemic inflammation, highlighting the potential for microbiome-based therapeutics to open new avenues in HIV management. These include exploring the efficacy of probiotics, prebiotics, fecal microbiota transplantation, and targeted dietary modifications. We also address the challenges inherent in this research area, such as the difficulty in inducing long-lasting microbiome alterations and the complexities of study designs, including variations in probiotic strains, donor selection for FMT, antibiotic conditioning regimens, and the hurdles in translating findings into clinical practice. Finally, we speculate on future directions for this rapidly evolving field, emphasizing the need for a more granular understanding of microbiome-immune interactions, the development of personalized microbiome-based therapies, and the application of novel technologies to identify potential therapeutic agents. CONCLUSIONS Our review underscores the importance of the gut microbiome in HIV/SIV disease and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, MA, USA.
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, IRYCIS and CIBERInfec, Madrid, Spain.
| |
Collapse
|
4
|
Manickam C, Upadhyay AA, Woolley G, Kroll KW, Terry K, Broedlow CA, Klatt NR, Bosinger SE, Reeves RK. Natural killer-like B cells are a distinct but infrequent innate immune cell subset modulated by SIV infection of rhesus macaques. PLoS Pathog 2024; 20:e1012223. [PMID: 38739675 PMCID: PMC11115201 DOI: 10.1371/journal.ppat.1012223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Natural killer-like B (NKB) cells are unique innate immune cells expressing both natural killer (NK) and B cell receptors. As first responders to infection, they secrete IL-18 to induce a critical cascade of innate and adaptive immune cell infiltration and activation. However, limited research exists on the role of NKB cells in homeostasis and infection, largely due to incomplete and erroneous evaluations. To fill this knowledge gap, we investigated the expression of signaling and trafficking proteins, and the in situ localization and transcriptome of naïve NKB cells compared to conventionally-defined NK and B cells, as well as modulations of these cells in SIV infection. Intracellular signaling proteins and trafficking markers were expressed differentially on naïve NKB cells, with high expression of CD62L and Syk, and low expression of CD69, α4β7, FcRg, Zap70, and CD3z, findings which were more similar to B cells than NK cells. CD20+NKG2a/c+ NKB cells were identified in spleen, mesenteric lymph nodes (MLN), colon, jejunum, and liver of naïve rhesus macaques (RM) via tissue imaging, with NKB cell counts concentrated in spleen and MLN. For the first time, single cell RNA sequencing (scRNAseq), including B cell receptor (BCR) sequencing, of sorted NKB cells confirmed that NKB cells are unique. Transcriptomic analysis of naïve splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. While only 15% of sorted NKB cells showed transcript expression of both KLRC1 (NKG2A) and MS4A1 (CD20) genes, only 5% of cells expressed KLRC1, MS4A1, and IgH/IgL transcripts. We observed expanded NKB frequencies in RM gut and buccal mucosa as early as 14 and 35 days post-SIV infection, respectively. Further, mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes, respectively. Our studies indicate that NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings that could only be resolved using genomic techniques. Although NKB cells were clearly elevated during SIV infection and associated with inflammatory changes during infection, further interrogation is necessary to acurately identify the true phenotype and significance of NKB cells in infection and inflammation.
Collapse
Affiliation(s)
- Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Amit A. Upadhyay
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Kyle W. Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Courtney A. Broedlow
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nichole R. Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Steven E. Bosinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Zhao W, Chen A, Yuan N, Hao X, Wang C, Lu X, Song X, Zhang Z. The Role of High Mobility Group Box B-1 in the Prognosis of Colorectal Cancer Based on the Changes in the Intestinal Mucosal Barrier. Technol Cancer Res Treat 2024; 23:15330338231198972. [PMID: 38200714 PMCID: PMC10785708 DOI: 10.1177/15330338231198972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 01/12/2024] Open
Abstract
Background: To investigate the expression of high mobility group box B-1 (HMGB-1) in patients with colorectal cancer (CRC) and its association with clinicopathological features and prognosis in colorectal carcinoma by combining bioinformatics and clinical data analysis, and to clarify the role of HMGB-1. To examine whether HMGB-1 expression is related to the damage of the intestinal mucosal barrier, and then explore the potential HMGB-1-dependent mechanisms affecting the progression of CRC. Methods: CRC datasets of GSE12945, GSE17536, and GSE17537 from the public gene chip database were screened and downloaded. Clinical information and CRC tissue samples from patients with stage I-III CRC from the hospital were collected. Serum samples of patients were applied by enzyme-linked immunosorbent assay on HMGB-1, and were divided into high and low HMGB-1 expression, which was examined by 16S rDNA sequencing. Immunohistochemistry was performed to examine the relationship between the expression of HMGB-1 and tight junction protein, occludin, tumor necrosis factor-α, and interferon-γ. Results: Based on the Cutoff value of 10.24 ng/mL, the CRC patients were divided into high and low expression groups. In the HMGB-1H patient group, the TNM staging, overall survival, disease-free survival, recurrence, and metastasis were inferior to the HMGB-1L group. The results of 16S rDNA sequencing demonstrated that the Providencia genus was found to be enriched in the HMGB-1L group. Immunohistochemical results showed that HMGB-1 expression was negatively correlated with the expression of ZO-1 and occludin (R = 0.035, R = 0.003, P < .05), but was positively correlated with the expression of TNF-α and IFN-γ (R = 0.016, R = 0.001, P < .05). Conclusion: The survival of CRC patients with positive HMGB-1 expression was significantly shortened, which may be related to the decrease of Rovitensis content, the decreased expression of ZO-1 and occludin, and the increased levels of TNF-α and IFN-γ, which in turn damage the intestinal mucosal barrier, leading to the development of CRC.
Collapse
Affiliation(s)
- Weiwei Zhao
- Radiotherapy Department, The First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei, China
| | - Anqi Chen
- Graduate School of Hebei Northern University, Zhangjiakou, Hebei, China
| | - Na Yuan
- Radiotherapy Department, The First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei, China
| | - Xiaohui Hao
- Radiotherapy Department, The First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei, China
| | - Cong Wang
- Radiotherapy Department, The First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei, China
| | - Xiurong Lu
- Radiotherapy Department, The First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei, China
| | - Xiao Song
- Radiotherapy Department, The First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei, China
| | - Zhilin Zhang
- Radiotherapy Department, The First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei, China
| |
Collapse
|
6
|
Shao T, Hsu R, Rafizadeh DL, Wang L, Bowlus CL, Kumar N, Mishra J, Timilsina S, Ridgway WM, Gershwin ME, Ansari AA, Shuai Z, Leung PSC. The gut ecosystem and immune tolerance. J Autoimmun 2023; 141:103114. [PMID: 37748979 DOI: 10.1016/j.jaut.2023.103114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The gastrointestinal tract is home to the largest microbial population in the human body. The gut microbiota plays significant roles in the development of the gut immune system and has a substantial impact on the maintenance of immune tolerance beginning in early life. These microbes interact with the immune system in a dynamic and interdependent manner. They generate immune signals by presenting a vast repertoire of antigenic determinants and microbial metabolites that influence the development, maturation and maintenance of immunological function and homeostasis. At the same time, both the innate and adaptive immune systems are involved in modulating a stable microbial ecosystem between the commensal and pathogenic microorganisms. Hence, the gut microbial population and the host immune system work together to maintain immune homeostasis synergistically. In susceptible hosts, disruption of such a harmonious state can greatly affect human health and lead to various auto-inflammatory and autoimmune disorders. In this review, we discuss our current understanding of the interactions between the gut microbiota and immunity with an emphasis on: a) important players of gut innate and adaptive immunity; b) the contribution of gut microbial metabolites; and c) the effect of disruption of innate and adaptive immunity as well as alteration of gut microbiome on the molecular mechanisms driving autoimmunity in various autoimmune diseases.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Desiree L Rafizadeh
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Narendra Kumar
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Jayshree Mishra
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Suraj Timilsina
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - William M Ridgway
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Lavinder TR, Fachko DN, Stanton J, Varco-Merth B, Smedley J, Okoye AA, Skalsky RL. Effects of Early Antiretroviral Therapy on the Composition and Diversity of the Fecal Microbiome of SIV-infected Rhesus Macaques ( Macaca mulatta). Comp Med 2022; 72:287-297. [PMID: 36162961 PMCID: PMC9827599 DOI: 10.30802/aalas-cm-22-000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HIV-infected people develop reproducible disruptions in their gastrointestinal microbiota. Despite the suppression of HIV viremia via long-term antiretroviral therapy (ART), alterations still occur in gut microbial diversity and the commensal microbiota. Mounting evidence suggests these microbial changes lead to the development of gut dysbiosis-persistent inflammation that damages the gut mucosa-and correlate with various immune defects. In this study, we examined how early ART intervention influences microbial diversity in SIV-infected rhesus macaques. Using 16S rRNA sequencing, we defined the fecal microbiome in macaques given daily ART beginning on either 3 or 7 d after SIV infection (dpi) and characterized changes in composition, α diversity, and β diversity from before infection through 112 dpi. The dominant phyla in the fecal samples before infection were Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria. After SIV infection and ART, the relative abundance of Firmicutes and Bacteroidetes did not change significantly. Significant reductions in α diversity occurred across time when ART was initiated at 3 dpi but not at 7 dpi. Principal coordinate analysis of samples revealed a divergence in β diversity in both treatment groups after SIV infection, with significant differences depending on the timing of ART administration. These results indicate that although administration of ART at 3 or 7 dpi did not substantially alter fecal microbial composition, the timing of early ART measurably altered phylogenetic diversity.
Collapse
Affiliation(s)
- Tiffany R Lavinder
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University,,Corresponding authors. ,
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and
| | - Jeffrey Stanton
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon,Corresponding authors. ,
| |
Collapse
|
8
|
Pallikkuth S, Mendez R, Russell K, Sirupangi T, Kvistad D, Pahwa R, Villinger F, Banerjee S, Pahwa S. Age Associated Microbiome and Microbial Metabolites Modulation and Its Association With Systemic Inflammation in a Rhesus Macaque Model. Front Immunol 2021; 12:748397. [PMID: 34737748 PMCID: PMC8560971 DOI: 10.3389/fimmu.2021.748397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 01/19/2023] Open
Abstract
Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate the age associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 geriatric (age 19-24 years) and 4 young adult (age 3-4 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in peripheral blood mononuclear cells (PBMC) by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate, and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the gut microbiome in geriatric animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young adults. Highly abundant microbes in the geriatric animals showed a direct association with plasma biomarkers of inflammation and immune activation such as neopterin, CRP, TNF, IL-2, IL-6, IL-8 and IFN-γ. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of geriatric animals compared to the young adults. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile. Aging NHP can serve as a model for investigating the relationship of the gut microbiome to particular age-associated comorbidities and for strategies aimed at modulating the microbiome.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberto Mendez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kyle Russell
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tirupataiah Sirupangi
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Daniel Kvistad
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Santanu Banerjee
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Miami Integrative Metabolomics Research Center (MIMRC), University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Scientific Review, National Institute of Health, Bethesda, MD, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Abstract
Purpose of Review Observations of differing bacterial, intestinal microbiomes in people living with HIV have propelled interest in contributions of the microbiome to HIV disease. Non-human primate (NHP) models of HIV infection provide a controlled setting for assessing contributions of the microbiome by standardizing environmental confounders. We provide an overview of the findings of microbiome contributions to aspects of HIV disease derived from these animal models. Recent Findings Observations of differing bacterial, intestinal microbiomes are inconsistently observed in the NHP model following SIV infection. Differences in lentiviral susceptibility and vaccine efficacy have been attributed to variations in the intestinal microbiome; however, by-and-large, these differences have not been experimentally assessed. Summary Although compelling associations exist, clearly defined contributions of the microbiome to HIV and SIV disease are lacking. The empirical use of comprehensive multi-omics assessments and longitudinal and interventional study designs in NHP models is necessary to define this contribution more clearly.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA.
| |
Collapse
|
10
|
Tanes C, Walker EM, Slisarenko N, Gerrets GL, Grasperge BF, Qin X, Jazwinski SM, Bushman FD, Bittinger K, Rout N. Gut Microbiome Changes Associated with Epithelial Barrier Damage and Systemic Inflammation during Antiretroviral Therapy of Chronic SIV Infection. Viruses 2021; 13:1567. [PMID: 34452432 PMCID: PMC8402875 DOI: 10.3390/v13081567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Gut dysbiosis is a common feature associated with the chronic inflammation of HIV infection. Toward understanding the interplay of chronic treated HIV infection, dysbiosis, and systemic inflammation, we investigated longitudinal fecal microbiome changes and plasma inflammatory markers in the nonhuman primate model. Following simian immunodeficiency virus (SIV) infection in rhesus macaques, significant changes were observed in several members of the phylum Firmicutes along with an increase in Bacteroidetes. Viral suppression with antiretroviral therapy (ART) resulted in an early but partial recovery of compositional changes and butyrate producing genes in the gut microbiome. Over the course of chronic SIV infection and long-term ART, however, the specific loss of Faecalibacterium prausnitzii and Treponema succinifaciens significantly correlated with an increase in plasma inflammatory cytokines including IL-6, G-CSF, I-TAC, and MIG. Further, the loss of T. succinifaciens correlated with an increase in circulating biomarkers of gut epithelial barrier damage (IFABP) and microbial translocation (LBP and sCD14). As F. prausnitzii and T. succinifaciens are major short-chain fatty acid producing bacteria, their sustained loss during chronic SV-ART may contribute to gut inflammation and metabolic alterations despite effective long-term control of viremia. A better understanding of the correlations between the anti-inflammatory bacterial community and healthy gut barrier functions in the setting of long-term ART may have a major impact on the clinical management of inflammatory comorbidities in HIV-infected individuals.
Collapse
Affiliation(s)
- Ceylan Tanes
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Edith M. Walker
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Giovanni L. Gerrets
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
11
|
Khan A, Ding Z, Ishaq M, Bacha AS, Khan I, Hanif A, Li W, Guo X. Understanding the Effects of Gut Microbiota Dysbiosis on Nonalcoholic Fatty Liver Disease and the Possible Probiotics Role: Recent Updates. Int J Biol Sci 2021; 17:818-833. [PMID: 33767591 PMCID: PMC7975705 DOI: 10.7150/ijbs.56214] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is leading chronic liver syndrome worldwide. Gut microbiota dysbiosis significantly contributes to the pathogenesis and severity of NAFLD. However, its role is complex and even unclear. Treatment of NAFLD through chemotherapeutic agents have been questioned because of their side effects on health. In this review, we highlighted and discussed the current understanding on the importance of gut microbiota, its dysbiosis and its effects on the gut-liver axis and gut mucosa. Further, we discussed key mechanisms involved in gut dysbiosis to provide an outline of its role in progression to NAFLD and liver cirrhosis. In addition, we also explored the potential role of probiotics as a treatment approach for the prevention and treatment of NAFLD. Based on the latest findings, it is evident that microbiota targeted interventions mostly the use of probiotics have shown promising effects and can possibly alleviate the gut microbiota dysbiosis, regulate the metabolic pathways which in turn inhibit the progression of NAFLD through the gut-liver axis. However, very limited studies in humans are available on this issue and suggest further research work to identify a specific core microbiome association with NAFLD and to discover its mechanism of pathogenesis, which will help to enhance the therapeutic potential of probiotics to NAFLD.
Collapse
Affiliation(s)
- Ashiq Khan
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
- Department of Microbiology, Balochistan University of Information Technology Engineering & Management Sciences Quetta 87300, Pakistan
| | - Zitong Ding
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Muhammad Ishaq
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Ali Sher Bacha
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Israr Khan
- School of Life Sciences, Institute of Microbiology Lanzhou University, Lanzhou 730000, PR China
| | - Anum Hanif
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Wenyuan Li
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
12
|
Luo Q, Lei X, Xu J, Jahangir A, He J, Huang C, Liu W, Cheng A, Tang L, Geng Y, Chen Z. An altered gut microbiota in duck-origin parvovirus infection on cherry valley ducklings is associated with mucosal barrier dysfunction. Poult Sci 2021; 100:101021. [PMID: 33677399 PMCID: PMC7940990 DOI: 10.1016/j.psj.2021.101021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/13/2023] Open
Abstract
Duck-origin parvovirus disease is an epidemic disease mainly caused by duck-origin goose parvovirus (D-GPV), which is characterized by beak atrophy and dwarfism syndrome. Its main symptoms are persistent diarrhea, skeletal dysplasia, and growth retardation. However, the pathogenesis of Cherry Valley ducks infected by D-GPV has not been studied thoroughly. To perceive the distribution of D-GPV in the intestinal tract, intestinal morphological development, intestinal permeability, inflammatory cytokines in Cherry Valley ducks, and expression of tight junction protein, the D-GPV infection was given intramuscularly. Illumina MiSeq sequencing technology was used to analyze the diversity and structure of ileum flora and content of short-chain fatty acids of its metabolites. To investigate the relationship between intestinal flora changes and intestinal barrier function after D-GPV infection on Cherry Valley ducks is of great theoretical and practical significance for further understanding the pathogenesis of D-GPV and the structure of intestinal flora in ducks. The results showed that D-GPV infection was accompanied by intestinal inflammation and barrier dysfunction. At this time, the decrease of a large number of beneficial bacteria and the content of short-chain fatty acids in intestinal flora led to the weakening of colonization resistance of the intestinal flora and the accumulation of potentially pathogenic bacteria, which would aggravate the negative effect of D-GPV damage to the intestinal tract. Furthermore, a significant increase in Unclassified_S24-7 and decrease in Streptococcus was observed in D-GPV persistent, indicating the disruption in the structure of gut microbiota. Notably, the shift of microbiota was associated with the transcription of tight-junction protein and immune-associated cytokines. These results indicate that altered ileum microbiota, intestinal barrier, and immune dysfunction are associated with D-GPV infection. Therefore, there is a relationship between the intestinal barrier dysfunction and dysbiosis caused by D-GPV, but the specific mechanism needs to be further explored.
Collapse
Affiliation(s)
- Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinyu Lei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Asad Jahangir
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junbo He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wentao Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Tang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
13
|
Siddiqui S, Bao D, Doyle-Meyers L, Dufour J, Wu Y, Liu YZ, Ling B. Alterations of the gut bacterial microbiota in rhesus macaques with SIV infection and on short- or long-term antiretroviral therapy. Sci Rep 2020; 10:19056. [PMID: 33149234 PMCID: PMC7642356 DOI: 10.1038/s41598-020-76145-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Gut dysbiosis and microbial translocation are associated with chronic systemic immune activation and inflammation in HIV-1 infection. However, the extent of restoration of gut microbiota in HIV-1 patients with short or long-term antiretroviral therapy (ART) is unclear. To understand the impact of ART on the gut microbiota, we used the rhesus macaque model of SIV infection to characterize and compare the gut microbial community upon SIV infection and during ART. We observed altered taxonomic compositions of gut microbiota communities upon SIV infection and at different time points of ART. SIV-infected animals showed decreased diversity of gut microbiome composition, while the ART group appeared to recover towards the diversity level of the healthy control. Animals undergoing ART for various lengths of time were observed to have differential gut bacterial abundance across different time points. In addition, increased blood lipopolysaccharide (LPS) levels during SIV infection were reduced to near normal upon ART, indicating that microbial translocation and immune activation can be improved during therapy. In conclusion, while short ART may be related to transient increase of certain pathogenic bacterial microbiome, ART may promote microbiome diversity compromised by SIV infection, improve the gut microbiota towards the healthy compositions and alleviate immune activation.
Collapse
Affiliation(s)
- Summer Siddiqui
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Duran Bao
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | | | - Jason Dufour
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Yuntao Wu
- Department of Molecular and Microbiology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Yao-Zhong Liu
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Covington, LA, 70433, USA. .,Tulane Center for Aging, School of Medicine, Tulane University, New Orleans, LA, 70112, USA. .,Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA. .,Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX, 78227, USA.
| |
Collapse
|
14
|
Wang J, Zhu G, Sun C, Xiong K, Yao T, Su Y, Fang H. TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microb Cell Fact 2020; 19:158. [PMID: 32762699 PMCID: PMC7412642 DOI: 10.1186/s12934-020-01417-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background The goal of the present study was to investigate the effects of TAK-242 on the gut microbiota and the TLR4/JAK2/STAT3 signaling pathway in mice with dextran sulfate sodium (DSS)-induced colitis. Results At the phylum level, Bacteroidetes, Firmicutes, Actinobacteria, Cyanobacteria, Epsilonbacteraeota and Proteobacteria were the primary microbiota in the five groups. TAK-242 treatment significantly enhanced Verrucomicrobia and Actinobacteria; significantly decreased Cyanobacteria, Epsilonbacteraeota and Proteobacteria; and particularly promoted the growth of Akkermansia. TAK-242 markedly alleviated DSS-induced colitis symptoms and colonic lesions by promoting IL-10 release, inhibiting IL-17 release, downregulating TLR4 and JAK2/STAT3 mRNA and protein expression and increasing JAK2/STAT3 phosphorylation. Conclusion TAK-242 modulates the structure of the gut microbiota in colitis and may be a novel therapeutic candidate for ulcerative colitis.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Guannan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Sun
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Kangwei Xiong
- Department of Gastroenterology and Hepatology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.,Center for Gut Microbiota Research, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tingting Yao
- Department of Gastroenterology and Hepatology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.,Center for Gut Microbiota Research, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Su
- Department of Gastroenterology and Hepatology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.,Center for Gut Microbiota Research, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haiming Fang
- Department of Gastroenterology and Hepatology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China. .,Center for Gut Microbiota Research, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
15
|
High abundance of genus Prevotella is associated with dysregulation of IFN-I and T cell response in HIV-1-infected patients. AIDS 2020; 34:1467-1473. [PMID: 32675560 DOI: 10.1097/qad.0000000000002574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE HIV-1-associated dysbiosis is most commonly characterized by overall decreased diversity, with abundance of the genus Prevotella, recently related to inflammatory responses. DESIGN A pilot study including 10 antiretroviral therapy-treated HIV-1-infected men and 50 uninfected controls was performed to identify the main gut dysbiosis determinants (e.g. Prevotella enrichment), that may affect mucosal antiviral defenses and T cell immunity in HIV-1-infected individuals. METHODS 16rRNA gene sequencing was applied to the HIV-1-infected individuals' fecal microbiota and compared with controls. Measurements of CD4 and CD8 T cell activation [CD38, human leukocyte antigen (HLA)-DR, CD38 HLA-DR] and frequencies of Th17, obtained from lamina propria lymphocytes isolated from five different intestinal sites, were performed by flow cytometry. IFNβ, IFNAR1 and MxA gene expression level was evaluated by real-time PCR in lamina propria lymphocytes. Nonparametric t tests were used for statistical analysis. RESULTS HIV-1-infected men had a significant fecal microbial communities' imbalance, including different levels of genera Faecalibacterium, Prevotella, Alistipes and Bacteroides, compared with controls. Notably, Prevotella abundance positively correlated with frequencies of CD4 T cells expressing CD38 or HLA-DR and coexpressing CD38 and HLA-DR (P < 0.05 for all these measures). The same trend was observed for the activated CD8 T cells. Moreover, Prevotella levels were inversely correlated with IFN-I genes (P < 0.05 for IFNβ, IFNAR1 and MxA genes) and the frequencies of Th17 cells (P < 0.05). By contrast, no statistically significant correlations were observed for the remaining bacterial genera. CONCLUSION Our findings suggest that Prevotella enrichment might affect gut mucosal IFN-I pathways and T cell response in HIV-1-infected patients, thus contributing to immune dysfunction.
Collapse
|
16
|
Allers K, Stahl-Hennig C, Fiedler T, Wibberg D, Hofmann J, Kunkel D, Moos V, Kreikemeyer B, Kalinowski J, Schneider T. The colonic mucosa-associated microbiome in SIV infection: shift towards Bacteroidetes coincides with mucosal CD4 + T cell depletion and enterocyte damage. Sci Rep 2020; 10:10887. [PMID: 32616803 PMCID: PMC7331662 DOI: 10.1038/s41598-020-67843-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
The intesinal microbiome is considered important in human immunodeficiency virus (HIV) pathogenesis and therefore represents a potential therapeutic target to improve the patients’ health status. Longitudinal alterations in the colonic mucosa-associated microbiome during simian immunodeficiency virus (SIV) infection were investigated using a 16S rRNA amplicon approach on the Illumina sequencing platform and bioinformatics analyses. Following SIV infection of six animals, no alterations in microbial composition were observed before the viral load peaked in the colon. At the time of acute mucosal SIV replication, the phylum Bacteroidetes including the Bacteroidia class as well as the phylum Firmicutes and its families Ruminococcaceae and Eubacteriaceae became more abundant. Enrichment of Bacteroidetes was maintained until the chronic phase of SIV infection. The shift towards Bacteroidetes in the mucosa-associated microbiome was associated with the extent of SIV infection-induced mucosal CD4+ T cell depletion and correlated with increasing rates of enterocyte damage. These observations suggest that Bacteroidetes strains increase during virus-induced mucosal immune destruction. As Bacteroidetes belong to the lipopolysaccharide- and short chain fatty acids-producing bacteria, their rapid enrichment may contribute to inflammatory tissue damage and metabolic alterations in SIV/HIV infection. These aspects should be considered in future studies on therapeutic interventions.
Collapse
Affiliation(s)
- Kristina Allers
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | | | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615, Bielefeld, Germany
| | - Jörg Hofmann
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Désirée Kunkel
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353, Berlin, Germany
| | - Verena Moos
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615, Bielefeld, Germany
| | - Thomas Schneider
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| |
Collapse
|
17
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Lin D, Lacey EA, Bach BH, Bi K, Conroy CJ, Suvorov A, Bowie RCK. Gut microbial diversity across a contact zone for California voles: Implications for lineage divergence of hosts and mitonuclear mismatch in the assembly of the mammalian gut microbiome. Mol Ecol 2020; 29:1873-1889. [PMID: 32282951 DOI: 10.1111/mec.15443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/27/2020] [Indexed: 12/29/2022]
Abstract
Gut microbial diversity is thought to reflect the co-evolution of microbes and their hosts as well as current host-specific attributes such as genetic background and environmental setting. To explore interactions among these parameters, we characterized variation in gut microbiome composition of California voles (Microtus californicus) across a contact zone between two recently diverged lineages of this species. Because this contact zone contains individuals with mismatched mitochondrial-nuclear genomes (cybrids), it provides an important opportunity to explore how different components of the genotype contribute to gut microbial diversity. Analyses of bacterial 16S rRNA sequences and joint species distribution modelling revealed that host genotypes and genetic differentiation among host populations together explained more than 50% of microbial community variation across our sampling transect. The ranked importance (most to least) of factors contributing to gut microbial diversity in our study populations were: genome-wide population differentiation, local environmental conditions, and host genotypes. However, differences in microbial communities among vole populations (β-diversity) did not follow patterns of lineage divergence (i.e., phylosymbiosis). Instead, among-population variation was best explained by the spatial distribution of hosts, as expected if the environment is a primary source of gut microbial diversity (i.e., dispersal limitation hypothesis). Across the contact zone, several bacterial taxa differed in relative abundance between the two parental lineages as well as among individuals with mismatched mitochondrial and nuclear genomes. Thus, genetic divergence among host lineages and mitonuclear genomic mismatches may also contribute to microbial diversity by altering interactions between host genomes and gut microbiota (i.e., hologenome speciation hypothesis).
Collapse
Affiliation(s)
- Dana Lin
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Eileen A Lacey
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Bryan H Bach
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Computational Genomics Resource Laboratory, California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | | | - Anton Suvorov
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Rauri C K Bowie
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
19
|
HIV-associated gut dysbiosis is independent of sexual practice and correlates with noncommunicable diseases. Nat Commun 2020; 11:2448. [PMID: 32415070 PMCID: PMC7228978 DOI: 10.1038/s41467-020-16222-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
Loss of gut mucosal integrity and an aberrant gut microbiota are proposed mechanisms contributing to chronic inflammation and increased morbidity and mortality during antiretroviral-treated HIV disease. Sexual practice has recently been uncovered as a major source of microbiota variation, potentially confounding prior observations of gut microbiota alterations among persons with HIV (PWH). To overcome this and other confounding factors, we examine a well-powered subset of AGEhIV Cohort participants comprising antiretroviral-treated PWH and seronegative controls matched for age, body-mass index, sex, and sexual practice. We report significant gut microbiota differences in PWH regardless of sex and sexual practice including Gammaproteobacteria enrichment, Lachnospiraceae and Ruminococcaceae depletion, and decreased alpha diversity. Men who have sex with men (MSM) exhibit a distinct microbiota signature characterized by Prevotella enrichment and increased alpha diversity, which is linked with receptive anal intercourse in both males and females. Finally, the HIV-associated microbiota signature correlates with inflammatory markers including suPAR, nadir CD4 count, and prevalence of age-associated noncommunicable comorbidities.
Collapse
|
20
|
Toll-like receptor distribution in colonic epithelium and lamina propria is disrupted in HIV viremic, immune success, and failure. AIDS 2020; 34:815-826. [PMID: 32028329 DOI: 10.1097/qad.0000000000002499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DESIGN Since intestinal immunity and the microbiome are disrupted in HIV disease, we studied the abundance of innate immune sensors, Toll-like receptors (TLRs), in the mucosa of participants with viremia, prior to antiretroviral therapy (ART), immune success (>500 CD4 T cells/μl after 2 years of ART; suppressed viremia), and immune failure (<350 CD4 T cells/μl after 2 years of ART; suppressed viremia). We hypothesized that disruption of intestinal TLR abundance and location provides a mechanism behind persistent inflammation. METHODS Immunofluorescence for TLR3, TLR4, and TLR9 on paraffin embedded biopsies from uninfected, viremic, immune success, and immune failure colons was imaged by deconvolution microscopy and quantified with MetaMorph software. Plasma levels of C-reactive protein, IL-6, and intestinal fatty-acid binding protein (I-FABP) were correlated with TLR expression. RESULTS Viremic participants have significantly higher levels of TLR3 and TLR9 on surface epithelium and in crypts when compared with uninfected controls. TLR3 is further elevated in immune failure and immune success. TLR9 abundance remains elevated in immune failure and is normalized in immune success. TLR9 expression in the crypt and lamina propria positively associates with C-reactive protein and IL-6 and negatively with I-FABP. TLR4 is significantly lower on surface epithelium and higher in crypts in viremic. Its expression in the lamina propria positively correlates with IL-6 and negatively correlates with I-FABP. CONCLUSION Mucosal TLR imbalance and deregulation, and the resulting mucosal TLR desensitization and hypervigilance, remain after suppressive ART, in the presence or absence of T-cell recovery, likely contributing to chronic systemic inflammation.
Collapse
|
21
|
Hou T, Sun X, Zhu J, Hon KL, Jiang P, Chu IMT, Tsang MSM, Lam CWK, Zeng H, Wong CK. IL-37 Ameliorating Allergic Inflammation in Atopic Dermatitis Through Regulating Microbiota and AMPK-mTOR Signaling Pathway-Modulated Autophagy Mechanism. Front Immunol 2020; 11:752. [PMID: 32411145 PMCID: PMC7198885 DOI: 10.3389/fimmu.2020.00752] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Interaction between eosinophils and dermal fibroblasts is essential for provoking allergic inflammation in atopic dermatitis (AD). In vitro co-culture of human eosinophils and dermal fibroblasts upon AD-related IL-31 and IL-33 stimulation, and in vivo MC903-induced AD murine model were employed to investigate the anti-inflammatory mechanism of IL-1 family cytokine IL-37 in AD. Results showed that IL-37b could inhibit the in vitro induction of AD-related pro-inflammatory cytokines IL-6 and TNF-α, and chemokines CXCL8, CCL2 and CCL5, increase autophagosome biogenesis-related LC3B, and decrease autophagy-associated ubiquitinated protein p62 by regulating intracellular AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. In CRISPR/Cas9 human IL-37b knock-in mice, IL-37b could significantly alleviate MC903-stimulated ear tissue swelling, itching sensation and the level of circulating cytokine IL-6 and ear in situ expression of AD-related TNF-α, CCL5 and transforming growth factor-β. Moreover, IL-37b could significantly upregulate Foxp3+ regulatory T cells (Treg) in spleen and ear together with significantly increased serum Treg cytokine IL-10, and decrease eosinophil infiltration in ear lesion. IL-37b knock-in mice showed a distinct intestinal microbiota metabolic pattern upon MC903 stimulation. Furthermore, IL-37b restored the disordered gut microbiota diversity, through regulating the in vivo autophagy mechanism mediated by intestinal metabolite 3-methyladenine, adenosine monophosphate, 2-hydroxyglutarate, purine and melatonin. In summary, IL-37b could significantly ameliorate eosinophils-mediated allergic inflammation via the regulation of autophagy mechanism, intestinal bacterial diversity and their metabolites in AD. Results therefore suggest that IL-37 is a potential anti-inflammatory cytokine for AD treatment.
Collapse
Affiliation(s)
- Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Zhu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kam-Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiyong Jiang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Huasong Zeng
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Blum FC, Hardy BL, Bishop-Lilly KA, Frey KG, Hamilton T, Whitney JB, Lewis MG, Merrell DS, Mattapallil JJ. Microbial Dysbiosis During Simian Immunodeficiency Virus Infection is Partially Reverted with Combination Anti-retroviral Therapy. Sci Rep 2020; 10:6387. [PMID: 32286417 PMCID: PMC7156522 DOI: 10.1038/s41598-020-63196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is characterized by a massive loss of CD4 T cells in the gastrointestinal tract (GIT) that is accompanied by changes in the gut microbiome and microbial translocation that contribute to inflammation and chronic immune activation. Though highly active antiretroviral therapy (HAART) has led to better long-term outcomes in HIV infected patients, it has not been as effective at reverting pathogenesis in the GIT. Using the simian immunodeficiency virus (SIV) infection model, we show that combination antiretroviral therapy (c-ART) partially reverted microbial dysbiosis observed during SIV infection. Though the relative abundance of bacteria, their richness or diversity did not significantly differ between infected and treated animals, microbial dysbiosis was evident via multiple beta diversity metrics: Jaccard similarity coefficient, Bray-Curtis similarity coefficient, and Yue & Clayton theta similarity coefficient. Principal coordinates analysis (PCoA) clustered SIV-infected untreated animals away from healthy and treated animals that were clustered closely, indicating that c-ART partially reversed the gut dysbiosis associated with SIV infection. Metastats analysis identified specific operational taxonomic units (OTUs) falling within the Streptococcus, Prevotella, Acinetobacter, Treponema, and Lactobacillus genera that were differentially represented across the three groups. Our results suggest that complete viral suppression with c-ART could potentially revert microbial dysbiosis observed during SIV and HIV infections.
Collapse
Affiliation(s)
- Faith C Blum
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Britney L Hardy
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Kimberly A Bishop-Lilly
- Genomics & Bioinformatics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, United States
| | - Kenneth G Frey
- Genomics & Bioinformatics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, United States
| | - Theron Hamilton
- Genomics & Bioinformatics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, United States
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | | | - D Scott Merrell
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States.
| | - Joseph J Mattapallil
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States.
| |
Collapse
|
23
|
Vujkovic-Cvijin I, Somsouk M. HIV and the Gut Microbiota: Composition, Consequences, and Avenues for Amelioration. Curr HIV/AIDS Rep 2020; 16:204-213. [PMID: 31037552 DOI: 10.1007/s11904-019-00441-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We discuss recent advances in understanding of gut bacterial microbiota composition in HIV-infected subjects and comment on controversies. We discuss the putative effects of microbiota shifts on systemic inflammation and HIV disease progression and potential mechanisms, as well as ongoing strategies being developed to modulate the gut microbiota in humans for amelioration of infectious and inflammatory diseases. RECENT FINDINGS Lifestyle and behavioral factors relevant to HIV infection studies have independent effects on the microbiota. Microbial metabolism of immunomodulatory compounds and direct immune stimulation by translocation of microbes are putative mechanisms contributing to HIV disease. Fecal microbiota transplantation, microbial enzyme inhibition, phage therapy, and rationally selected probiotic cocktails have emerged as promising strategies for microbiota modulation. Numerous surveys of the HIV gut microbiota matched for lifestyle factors suggest consistent shifts in gut microbiota composition among HIV-infected subjects. Evidence exists for a complex pathogenic role of the gut microbiota in HIV disease progression, warranting further study.
Collapse
Affiliation(s)
- Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, National Institute of Allergy & Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, CA, USA.
| |
Collapse
|
24
|
Anti-Inflammatory, Antioxidant, and Microbiota-Modulating Effects of Camellia Oil from Camellia brevistyla on Acetic Acid-Induced Colitis in Rats. Antioxidants (Basel) 2020; 9:antiox9010058. [PMID: 31936300 PMCID: PMC7022941 DOI: 10.3390/antiox9010058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Altering the microbiota by the daily diet is highly associated with improved human health. Studies confirms the gastrointestinal protective and anti-inflammatory effects of camellia oil; however, the benefits in gut microbiota remain unclear. Camellia oils of Camellia oleifera (PCO) and C. brevistyla (TCCO) were used to evaluate probiotic growth in vitro. In addition, the protective effects of camellia oils in the acetic acid (AA)-induced colitis rat model were investigated. In vitro fermentation study showed the proliferation of Lactobacillus spp. and Bifidobacterium spp. from human intestinal microbiota was increased after TCCO treatment. Moreover, the rats pretreated with TCCO exhibited significantly less AA-induced colonic injury and hemorrhage, higher serum immunoglobulin G 1 (IgG 1) levels, lower malondialdehyde levels, and lower inflammatory cytokine production in the colon tissue compared with those in the PCO group. Surprising, the protective effect against acetic acid-induced colitis by TCCO was similar to sulfasalazine (positive control) treatment. Moreover, TCCO increased the richness and diversity of probiotics in gut microbiota. TCCO alleviated AA-induced colitis by modulating gut microbiota, reducing oxidative stress and suppressing inflammatory responses.
Collapse
|
25
|
PPARα-targeted mitochondrial bioenergetics mediate repair of intestinal barriers at the host-microbe intersection during SIV infection. Proc Natl Acad Sci U S A 2019; 116:24819-24829. [PMID: 31740620 PMCID: PMC6900595 DOI: 10.1073/pnas.1908977116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our study has identified that impaired peroxisome proliferator-activated receptor-α (PPARα) signaling and associated mitochondrial dysfunction is an important underlying mechanism for prolonged leaky gut barriers in HIV and Simian immunodeficiency virus (SIV) infections despite antiretroviral therapy. Using the intestinal loop model in SIV-infected rhesus macaques, we found rapid repair of gut epithelial barriers within 5 h of administering Lactobacillus plantarum into virally inflamed gut. The rapid recovery was driven by PPARα activation and occurred independent of mucosal CD4+ T cell recovery, highlighting a metabolic repair pathway that can be targeted for epithelial repair prior to complete immune recovery. Our findings provide translational insights into restoring gut mucosal immunity and function, both of which are essential to enable HIV cure efforts. Chronic gut inflammatory diseases are associated with disruption of intestinal epithelial barriers and impaired mucosal immunity. HIV-1 (HIV) causes depletion of mucosal CD4+ T cells early in infection and disruption of gut epithelium, resulting in chronic inflammation and immunodeficiency. Although antiretroviral therapy (ART) is effective in suppressing viral replication, it is incapable of restoring the “leaky gut,” which poses an impediment for HIV cure efforts. Strategies are needed for rapid repair of the epithelium to protect intestinal microenvironments and immunity in inflamed gut. Using an in vivo nonhuman primate intestinal loop model of HIV/AIDS, we identified the pathogenic mechanism underlying sustained disruption of gut epithelium and explored rapid repair of gut epithelium at the intersection of microbial metabolism. Molecular, immunological, and metabolomic analyses revealed marked loss of peroxisomal proliferator-activated receptor-α (PPARα) signaling, predominant impairment of mitochondrial function, and epithelial disruption both in vivo and in vitro. To elucidate pathways regulating intestinal epithelial integrity, we introduced probiotic Lactobacillus plantarum into Simian immunodeficiency virus (SIV)-inflamed intestinal lumen. Rapid recovery of the epithelium occurred within 5 h of L. plantarum administration, independent of mucosal CD4+ T cell recovery, and in the absence of ART. This intestinal barrier repair was driven by L. plantarum-induced PPARα activation and restoration of mitochondrial structure and fatty acid β-oxidation. Our data highlight the critical role of PPARα at the intersection between microbial metabolism and epithelial repair in virally inflamed gut and as a potential mitochondrial target for restoring gut barriers in other infectious or gut inflammatory diseases.
Collapse
|
26
|
Crakes KR, Jiang G. Gut Microbiome Alterations During HIV/SIV Infection: Implications for HIV Cure. Front Microbiol 2019; 10:1104. [PMID: 31191468 PMCID: PMC6539195 DOI: 10.3389/fmicb.2019.01104] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Gut mucosal damage, associated with Human Immunodeficiency Virus-1 (HIV) infection, is characterized by depletion in CD4+ T cells and persistent immune activation as a result of early epithelial barrier disruption and systemic translocation of microbial products. Unique approaches in studying both HIV infection in human patients and Simian Immunodeficiency Virus (SIV) infection in rhesus macaques have provided critical evidence for the pathogenesis and treatment of HIV/AIDS. While there is vast resemblance between SIV and HIV infection, the development of gut dysbiosis attributed to HIV infection in chronically infected patients has not been consistently reported in SIV infection in the non-human primate model of AIDS, raising concerns for the translatability of gut microbiome studies in rhesus macaques. This review outlines our current understanding of gut microbial signatures across various stages of HIV versus SIV infection, with an emphasis on the impact of microbiome-based therapies in restoring gut mucosal immunity as well as their translational potential to supplement current HIV cure efforts.
Collapse
Affiliation(s)
- Katti R. Crakes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Guochun Jiang
- Department of Biochemistry and Biophysics, Institute for Global Health & Infectious Diseases, UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
27
|
Rocafort M, Noguera-Julian M, Rivera J, Pastor L, Guillén Y, Langhorst J, Parera M, Mandomando I, Carrillo J, Urrea V, Rodríguez C, Casadellà M, Calle ML, Clotet B, Blanco J, Naniche D, Paredes R. Evolution of the gut microbiome following acute HIV-1 infection. MICROBIOME 2019; 7:73. [PMID: 31078141 PMCID: PMC6511141 DOI: 10.1186/s40168-019-0687-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/22/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND In rhesus macaques, simian immunodeficiency virus infection is followed by expansion of enteric viruses but has a limited impact on the gut bacteriome. To understand the longitudinal effects of HIV-1 infection on the human gut microbiota, we prospectively followed 49 Mozambican subjects diagnosed with recent HIV-1 infection (RHI) and 54 HIV-1-negative controls for 9-18 months and compared them with 98 chronically HIV-1-infected subjects treated with antiretrovirals (n = 27) or not (n = 71). RESULTS We show that RHI is followed by increased fecal adenovirus shedding, which persists during chronic HIV-1 infection and does not resolve with ART. Recent HIV-1 infection is also followed by transient non-HIV-specific changes in the gut bacterial richness and composition. Despite early resilience to change, an HIV-1-specific signature in the gut bacteriome-featuring depletion of Akkermansia, Anaerovibrio, Bifidobacterium, and Clostridium-previously associated with chronic inflammation, CD8+ T cell anergy, and metabolic disorders, can be eventually identified in chronically HIV-1-infected subjects. CONCLUSIONS Recent HIV-1 infection is associated with increased fecal shedding of eukaryotic viruses, transient loss of bacterial taxonomic richness, and long-term reductions in microbial gene richness. An HIV-1-associated microbiome signature only becomes evident in chronically HIV-1-infected subjects.
Collapse
Affiliation(s)
- Muntsa Rocafort
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya, C. Sagrada Família 7, 08500, Vic, Catalonia, Spain
| | - Javier Rivera
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya, C. Sagrada Família 7, 08500, Vic, Catalonia, Spain
| | - Lucía Pastor
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, 08916, Badalona, Catalonia, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), 1929, Maputo, Mozambique
| | - Yolanda Guillén
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Jost Langhorst
- Integrative Gastroenterology, Kliniken Essen-Mitte, University of Duisburg-Essen, Essen, Germany
- Chair for Integrative Medicine and translationale Gastroenterology, Klinikum Bamberg, University of Duisburg-Essen, Essen, Bavaria, Germany
| | - Mariona Parera
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), 1929, Maputo, Mozambique
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Víctor Urrea
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Cristina Rodríguez
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Maria Casadellà
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Maria Luz Calle
- Universitat de Vic-Universitat Central de Catalunya, C. Sagrada Família 7, 08500, Vic, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya, C. Sagrada Família 7, 08500, Vic, Catalonia, Spain
- Infectious Diseases Service, Hospital Universitari Germans Trias i Pujol, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya, C. Sagrada Família 7, 08500, Vic, Catalonia, Spain
- Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, 08916, Badalona, Catalonia, Spain
| | - Denise Naniche
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), 1929, Maputo, Mozambique
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain.
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain.
- Universitat de Vic-Universitat Central de Catalunya, C. Sagrada Família 7, 08500, Vic, Catalonia, Spain.
- Infectious Diseases Service, Hospital Universitari Germans Trias i Pujol, Ctra de Canyet s/n, 08916, Badalona, Catalonia, Spain.
| |
Collapse
|
28
|
Luo Q, Xu J, Huang C, Lei X, Cheng D, Liu W, Cheng A, Tang L, Fang J, Ou Y, Geng Y, Chen Z. Impacts of Duck-Origin Parvovirus Infection on Cherry Valley Ducklings From the Perspective of Gut Microbiota. Front Microbiol 2019; 10:624. [PMID: 30984145 PMCID: PMC6450226 DOI: 10.3389/fmicb.2019.00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/12/2019] [Indexed: 01/30/2023] Open
Abstract
Duck-origin goose parvovirus (D-GPV) is the causative agent of beak atrophy and dwarfism syndrome (BADS), characterized by growth retardation, skeletal dysplasia, and persistent diarrhea. However, the pathogenic mechanism of D-GPV remains undefined. Here, we first reported the gut microbiome diversity of D-GPV infected Cherry Valley ducks. In the investigation for the influence of D-GPV infection on gut microbiota through a period of infection, we found that D-GPV infection caused gut microbiota dysbiosis by reducing the prevalence of the dominant genera and decreasing microbial diversity. Furthermore, exfoliation of the intestinal epithelium, proliferation of lymphocytes, up-regulated mRNA expression of pro-inflammatory TNF-α, IL-1β, IL-6, IL-17A, and IL-22 and down-regulated mRNA expression of anti-inflammatory IL-10 and IL-4 occurred when D-GPV targeted in cecal epithelium. In addition, the content of short chain fatty acids (SCFAs) in cecal contents was significantly reduced after D-GPV infection. Importantly, the disorder of pro-inflammatory and anti-inflammatory cytokines was associated with the decrease of SCFAs-producing bacteria and the enrichment of opportunistic pathogens. Collectively, the decrease of SCFAs and the enrichment of pathogen-containing gut communities promoted intestinal inflammatory injury. These results may provide a new insight that target the gut microbiota to understand the progression of BADS disease and to research the pathogenic mechanism of D-GPV.
Collapse
Affiliation(s)
- Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinyu Lei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjing Cheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wentao Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Tang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yangping Ou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
29
|
Lewy T, Hong BY, Weiser B, Burger H, Tremain A, Weinstock G, Anastos K, George MD. Oral Microbiome in HIV-Infected Women: Shifts in the Abundance of Pathogenic and Beneficial Bacteria Are Associated with Aging, HIV Load, CD4 Count, and Antiretroviral Therapy. AIDS Res Hum Retroviruses 2019; 35:276-286. [PMID: 29808701 DOI: 10.1089/aid.2017.0200] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated nonacquired immunodeficiency syndrome (AIDS) conditions, such as cardiovascular disease, diabetes, osteoporosis, and dementia are more prevalent in older than in young adult HIV-infected subjects. Although the oral microbiome has been studied as a window into pathogenesis in aging populations, its relationship to HIV disease progression, opportunistic infections, and HIV-associated non-AIDS conditions is not well understood. We utilized 16S rDNA-based pyrosequencing to compare the salivary microbiome in three groups: (1) Chronically HIV-infected women >50 years of age (aging); (2) HIV-infected women <35 years of age (young adult); and (3) HIV-uninfected age-matched women. We also examined correlations between salivary dysbiosis, plasma HIV RNA, CD4+ T cell depletion, and opportunistic oral infections. In both aging and young adult women, HIV infection was associated with salivary dysbiosis characterized by increased abundance of Prevotella melaninogenica and Rothia mucilaginosa. Aging was associated with increased bacterial diversity in both uninfected and HIV-infected women. In HIV-infected women with oral coinfections, aging was also associated with reduced abundance of the common commensal Veillonella parvula. Patients taking antiretroviral therapy showed increased numbers of Neisseria and Haemophilus. High plasma HIV RNA levels correlated positively with the presence of Prevotella and Veillonella, and negatively with the abundance of potentially beneficial Streptococcus and Lactobacillus. Circulating CD4+ T cell numbers correlated positively with the abundance of Streptococcus and Lactobacillus. Our findings extend previous studies of the role of the microbiome in HIV pathogenesis, providing new evidence that HIV infection is associated with a shift toward an increased pathogenic footprint of the salivary microbiome. Taken together, the data suggest a complex relationship, worthy of additional study, between chronic dysbiosis in the oral cavity, aging, viral burden, CD4+ T cell depletion, and long-term antiretroviral therapy.
Collapse
Affiliation(s)
- Tyler Lewy
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California
| | | | - Barbara Weiser
- Department of Medicine, Division of Infectious Disease, University of California, Davis, Davis, California
- Sacramento VA Medical Center, Sacramento, California
| | - Harold Burger
- Department of Medicine, Division of Infectious Disease, University of California, Davis, Davis, California
- Sacramento VA Medical Center, Sacramento, California
| | - Andrew Tremain
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California
| | | | | | - Michael D. George
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
30
|
Gaulke CA, Martins ML, Watral VG, Humphreys IR, Spagnoli ST, Kent ML, Sharpton TJ. A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome's link to Pseudocapillaria tomentosa infection and pathology. MICROBIOME 2019; 7:10. [PMID: 30678738 PMCID: PMC6346533 DOI: 10.1186/s40168-019-0622-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/08/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Helminth parasites represent a significant threat to the health of human and animal populations, and there is a growing need for tools to treat, diagnose, and prevent these infections. Recent work has turned to the gut microbiome as a utilitarian agent in this regard; components of the microbiome may interact with parasites to influence their success in the gut, meaning that the microbiome may encode new anthelmintic drugs. Moreover, parasite infections may restructure the microbiome's composition in consistent ways, implying that the microbiome may be useful for diagnosing infection. The innovation of these utilities requires foundational knowledge about how parasitic infection, as well as its ultimate success in the gut and impact on the host, relates to the gut microbiome. In particular, we currently possess limited insight into how the microbiome, host pathology, and parasite burden covary during infection. Identifying interactions between these parameters may uncover novel putative methods of disrupting parasite success. RESULTS To identify interactions between parasite success and the microbiome, we quantified longitudinal associations between an intestinal helminth of zebrafish, Pseudocapillaria tomentosa, and the gut microbiome in 210 4-month-old 5D line zebrafish. Parasite burden and parasite-associated pathology varied in severity throughout the experiment in parasite-exposed fish, with intestinal pathologic changes becoming severe at late time points. Parasite exposure, burden, and intestinal lesions were correlated with gut microbial diversity. Robust generalized linear regression identified several individual taxa whose abundance predicted parasite burden, suggesting that gut microbiota may influence P. tomentosa success. Numerous associations between taxon abundance, burden, and gut pathologic changes were also observed, indicating that the magnitude of microbiome disruption during infection varies with infection severity. Finally, a random forest classifier accurately predicted a fish's exposure to the parasite based on the abundance of gut phylotypes, which underscores the potential for using the gut microbiome to diagnose intestinal parasite infection. CONCLUSIONS These experiments demonstrate that P. tomentosa infection disrupts zebrafish gut microbiome composition and identifies potential interactions between the gut microbiota and parasite success. The microbiome may also provide a diagnostic that would enable non-destructive passive sampling for P. tomentosa and other intestinal pathogens in zebrafish facilities.
Collapse
Affiliation(s)
| | - Mauricio L Martins
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Virginia G Watral
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
| | - Ian R Humphreys
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
| | - Sean T Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA.
- Department of Statistics, Oregon State University, Corvallis, OR, 97330, USA.
| |
Collapse
|
31
|
Arrazuria R, Pérez V, Molina E, Juste RA, Khafipour E, Elguezabal N. Diet induced changes in the microbiota and cell composition of rabbit gut associated lymphoid tissue (GALT). Sci Rep 2018; 8:14103. [PMID: 30237566 PMCID: PMC6148544 DOI: 10.1038/s41598-018-32484-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
The gut associated lymphoid tissue (GALT) is the largest immune organ of the body. Although the gut transient and mucosa-associated microbiota have been largely studied, the microbiota that colonizes the GALT has received less attention. The gut microbiome plays an important role in competitive exclusion of pathogens and in development and maturation of immunity. Diet is a key factor affecting the microbiota composition in the digestive tract. To investigate the relation between diet, microbiota and GALT, microbial and cell composition of vermiform appendix (VA) and sacculus rotundus (SR) were studied in two groups of New Zealand white rabbits on different diets. Diet shifted the lymphoid tissue microbiota affecting the presence and/or absence of certain taxa and their abundances. Immunohistochemistry revealed that a higher fibre content diet resulted in M cell hyperplasia and an increase of recently recruited macrophages, whereas T-cell levels remained unaltered in animals on both high fibre and standard diets. These findings indicate that diet has an impact on the microbiota and cell composition of the GALT, which could act as an important microbial recognition site where interactions with beneficial bacteria can take place favouring microbiota replacement after digestive dysregulations.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Valentín Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, University of Leon, Leon, Spain
| | - Elena Molina
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,SERIDA, Agri-food Research and Development Regional Service, Villaviciosa, Asturias, Spain
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Natalia Elguezabal
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The article describes recent advances in understanding the causes and consequences of microbial translocation in HIV and simian immunodeficiency virus infections. RECENT FINDINGS Persistent microbial translocation contributes to aberrant immune activation in immunodeficiency lentiviral infections and thereby, pathogenesis and mortality. Efforts to delineate the circumstances surrounding translocation have benefited from use of simian immunodeficiency virus-infected nonhuman primates and highlight the overwhelming immunologic diversion caused by translocating microbes. The use of therapeutics aimed at reducing microbial translocation show promise and will benefit from continued research into the mechanisms that promote systemic microbial dissemination in treated and untreated infections. SUMMARY Insights into the source and identity of translocating microbes in lentiviral infections continue to enhance the development of adjunct therapeutics.
Collapse
|
33
|
Sui Y, Dzutsev A, Venzon D, Frey B, Thovarai V, Trinchieri G, Berzofsky JA. Influence of gut microbiome on mucosal immune activation and SHIV viral transmission in naive macaques. Mucosal Immunol 2018; 11:1219-1229. [PMID: 29858581 PMCID: PMC6030500 DOI: 10.1038/s41385-018-0029-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 02/04/2023]
Abstract
It is unknown whether the gut microbiome affects HIV transmission. In our recent SHIV vaccine study, we found that the naive rhesus macaques from two different sources had significantly different rates of infection against repeated low-dose intrarectal challenge with SHIVSF162P4 virus. Exploring causes, we found that the more susceptible group of seven macaques had significantly more activated CD4+CCR5+Ki67+ T cells in the rectal mucosa than the more resistant group of 11 macaques from a different source. The prevalence of pre-challenge activated rectal CD4 T cells in the naive macaques correlated inversely with the number of challenges required to infect. Because the two naive groups came from different sources, we hypothesized that their microbiomes may differ and might explain the activation difference. Indeed, after sequencing 16s rRNA, we found differences between the two naive groups that correlated with immune activation status. Distinct gut microbiota induced different levels of immune activation ex vivo. Significantly lower ratios of Bacteroides to Prevotella, and significantly lower levels of Firmicutes were found in the susceptible cohort, which were also inversely correlated with high levels of immune activation in the rectal mucosa. Thus, host-microbiome interactions might influence HIV/SIV mucosal transmission through effects on mucosal immune activation.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,Corresponding authors: Yongjun Sui, Vaccine Branch, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892 USA, Ph: 240-760-6716, Fx: 240-541-4453, ; Jay A. Berzofsky, Vaccine Branch, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892 USA, Ph: 240-760-6148, Fx: 240-541-4452,
| | - Amiran Dzutsev
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Blake Frey
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Vishal Thovarai
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jay A. Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,Corresponding authors: Yongjun Sui, Vaccine Branch, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892 USA, Ph: 240-760-6716, Fx: 240-541-4453, ; Jay A. Berzofsky, Vaccine Branch, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892 USA, Ph: 240-760-6148, Fx: 240-541-4452,
| |
Collapse
|
34
|
Subclinical Cytomegalovirus Infection Is Associated with Altered Host Immunity, Gut Microbiota, and Vaccine Responses. J Virol 2018; 92:JVI.00167-18. [PMID: 29669841 DOI: 10.1128/jvi.00167-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/14/2018] [Indexed: 12/15/2022] Open
Abstract
Subclinical viral infections (SVI), including cytomegalovirus (CMV), are highly prevalent in humans, resulting in lifelong persistence. However, the impact of SVI on the interplay between the host immunity and gut microbiota in the context of environmental exposures is not well defined. We utilized the preclinical nonhuman primate (NHP) model consisting of SVI-free (specific-pathogen-free [SPF]) rhesus macaques and compared them to the animals with SVI (non-SPF) acquired through natural exposure and investigated the impact of SVI on immune cell distribution and function, as well as on gut microbiota. These changes were examined in animals housed in the outdoor environment compared to the controlled indoor environment. We report that SVI are associated with altered immune cell subsets and gut microbiota composition in animals housed in the outdoor environment. Non-SPF animals harbored a higher proportion of potential butyrate-producing Firmicutes and higher numbers of lymphocytes, effector T cells, and cytokine-producing T cells. Surprisingly, these differences diminished following their transfer to the controlled indoor environment, suggesting that non-SPFs had increased responsiveness to environmental exposures. An experimental infection of indoor SPF animals with CMV resulted in an increased abundance of butyrate-producing bacteria, validating that CMV enhanced colonization of butyrate-producing commensals. Finally, non-SPF animals displayed lower antibody responses to influenza vaccination compared to SPF animals. Our data show that subclinical CMV infection heightens host immunity and gut microbiota changes in response to environmental exposures. This may contribute to the heterogeneity in host immune response to vaccines and environmental stimuli at the population level.IMPORTANCE Humans harbor several latent viruses that modulate host immunity and commensal microbiota, thus introducing heterogeneity in their responses to pathogens, vaccines, and environmental exposures. Most of our understanding of the effect of CMV on the immune system is based on studies of children acquiring CMV or of immunocompromised humans with acute or reactivated CMV infection or in ageing individuals. The experimental mouse models are genetically inbred and are completely adapted to the indoor laboratory environment. In contrast, nonhuman primates are genetically outbred and are raised in the outdoor environment. Our study is the first to report the impact of long-term subclinical CMV infection on host immunity and gut microbiota, which is evident only in the outdoor environment but not in the indoor environment. The significance of this study is in highlighting the impact of SVI on enhancing host immune susceptibility to environmental exposures and immune heterogeneity.
Collapse
|
35
|
Lin SS, Zhang RQ, Shen L, Xu XJ, Li K, Bazhin AV, Fichna J, Li YY. Alterations in the gut barrier and involvement of Toll-like receptor 4 in murine postoperative ileus. Neurogastroenterol Motil 2018; 30:e13286. [PMID: 29314441 DOI: 10.1111/nmo.13286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The changes in the gut barrier (GB) and associated mechanisms in postoperative ileus (POI) are still unclear. Toll-like receptor 4 (TLR4) is involved in inflammation, which may cause GB dysfunction and POI. Here, the roles of the GB in POI in relation to TLR4-dependent signaling pathways were explored. METHODS POI was induced by small bowel manipulation in wild-type (WT) and TLR4-knockout (TLR4-/-) mice. Twenty-four hours after manipulation, indices of gastrointestinal (GI) transit, GB structure and function, inflammation, and related signaling pathways were analyzed. KEY RESULTS Normal GI motility and GB function were not affected by TLR4 knockout. Compared with WT POI mice, TLR4-/-POI mice showed milder GI transit retardation, GB dysfunction, and inflammatory responses. In WT mice, GB disorder was characterized by colonic goblet cells depletion, increased gut claudin-2 expression, and decreased CD4+/CD8+ ratios in intestinal Peyer's patches. Green fluorescent protein-tagged Escherichia coli in the gut was detected in plasma and extraintestinal organs, followed with increased plasma lipopolysaccharide. These changes displayed in WT POI mice were less severe in TLR4-/-POI mice. Furthermore, the mRNA and protein expression of interleukin-6, monocyte chemotactic protein-1, pp38 and pJNK in the intestine, and TNF-α level in plasma were significantly increased in WT, but not TLR4-/-POI mice. CONCLUSIONS & INFERENCES These results indicate that GB is impaired in the experimental POI, with inflammation being involved in this pathological process. TLR4 deficiency alleviated GB dysfunction and suppressed inflammation by disrupting the activation of mitogen-activated protein kinase signaling pathways, thereby ameliorating POI.
Collapse
Affiliation(s)
- S-S Lin
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - R-Q Zhang
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - L Shen
- Department of Immunology and Pathogenic Biology, Tongji University School of Medicine, Shanghai, China
| | - X-J Xu
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - K Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - A-V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig Maximilians-University of Munich, Munich, Germany
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Y-Y Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Scagnolari C, Antonelli G. Type I interferon and HIV: Subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev 2018; 40:19-31. [PMID: 29576284 PMCID: PMC7108411 DOI: 10.1016/j.cytogfr.2018.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Type I interferon (IFN) response initially limits HIV-1 spread and may delay disease progression by stimulating several immune system components. Nonetheless, persistent exposure to type I IFN in the chronic phase of HIV-1 infection is associated with desensitization and/or detrimental immune activation, thereby hindering immune recovery and fostering viral persistence. This review provides a basis for understanding the complexity and function of IFN pleiotropic activity in HIV-1 infection. In particular, the dichotomous role of the IFN response in HIV-1 immunopathogenesis will be discussed, highlighting recent advances in the dynamic modulation of IFN production in acute versus chronic infection, expression signatures of IFN subtypes, and viral and host factors affecting the magnitude of IFN response during HIV-1 infection. Lastly, the review gives a forward-looking perspective on the interplay between microbiome compositions and IFN response.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy.
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
37
|
Saltzman ET, Palacios T, Thomsen M, Vitetta L. Intestinal Microbiome Shifts, Dysbiosis, Inflammation, and Non-alcoholic Fatty Liver Disease. Front Microbiol 2018; 9:61. [PMID: 29441049 PMCID: PMC5797576 DOI: 10.3389/fmicb.2018.00061] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022] Open
Abstract
Adverse fluctuations in the distribution of the intestinal microbiome cohort has been associated with the onset of intra- and extra-intestinal inflammatory conditions, like the metabolic syndrome (MetS) and it's hepatic manifestation, non-alcoholic fatty liver disease (NAFLD). The intestinal microbial community of obese compared to lean subjects has been shown to undergo configurational shifts in various genera, including but not limited to increased abundances of Prevotella, Escherichia, Peptoniphilus, and Parabacteroides and decreased levels of Bifidobacteria, Roseburia, and Eubacteria genera. At the phylum level, decreased Bacteroidetes and increased Firmicutes have been reported. The intestinal microbiota therefore presents an important target for designing novel therapeutic modalities that target extra-intestinal inflammatory disorders, such as NAFLD. This review hypothesizes that disruption of the intestinal-mucosal macrophage interface is a key factor in intestinal-liver axis disturbances. Intestinal immune responses implicated in the manifestation, maintenance and progression of NAFLD provide insights into the dialogue between the intestinal microbiome, the epithelia and mucosal immunity. The pro-inflammatory activity and immune imbalances implicated in NAFLD pathophysiology are reported to stem from dysbiosis of the intestinal epithelia which can serve as a source of hepatoxic effects. We posit that the hepatotoxic consequences of intestinal dysbiosis are compounded through intestinal microbiota-mediated inflammation of the local mucosa that encourages mucosal immune dysfunction, thus contributing important plausible insight in NAFLD pathogenesis. The administration of probiotics and prebiotics as a cure-all remedy for all chronic diseases is not advocated, instead, the incorporation of evidence based probiotic/prebiotic formulations as adjunctive modalities may enhance lifestyle modification management strategies for the amelioration of NAFLD.
Collapse
Affiliation(s)
- Emma T. Saltzman
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Talia Palacios
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Michael Thomsen
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Luis Vitetta
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| |
Collapse
|
38
|
HIV Exploits Antiviral Host Innate GCN2-ATF4 Signaling for Establishing Viral Replication Early in Infection. mBio 2017; 8:mBio.01518-16. [PMID: 28465428 PMCID: PMC5414007 DOI: 10.1128/mbio.01518-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Antiviral innate host defenses against acute viral infections include suppression of host protein synthesis to restrict viral protein production. Less is known about mechanisms by which viral pathogens subvert host antiviral innate responses for establishing their replication and dissemination. We investigated early innate defense against human immunodeficiency virus (HIV) infection and viral evasion by utilizing human CD4+ T cell cultures in vitro and a simian immunodeficiency virus (SIV) model of AIDS in vivo. Our data showed that early host innate defense against the viral infection involves GCN2-ATF4 signaling-mediated suppression of global protein synthesis, which is exploited by the virus for supporting its own replication during early viral infection and dissemination in the gut mucosa. Suppression of protein synthesis and induction of protein kinase GCN2-ATF4 signaling were detected in the gut during acute SIV infection. These changes diminished during chronic viral infection. HIV replication induced by serum deprivation in CD4+ T cells was linked to the induction of ATF4 that was recruited to the HIV long terminal repeat (LTR) to promote viral transcription. Experimental inhibition of GCN2-ATF4 signaling either by a specific inhibitor or by amino acid supplementation suppressed the induction of HIV expression. Enhancing ATF4 expression through selenium administration resulted in reactivation of latent HIV in vitro as well as ex vivo in the primary CD4+ T cells isolated from patients receiving suppressive antiretroviral therapy (ART). In summary, HIV/SIV exploits the early host antiviral response through GCN2-ATF4 signaling by utilizing ATF4 for activating the viral LTR transcription to establish initial viral replication and is a potential target for HIV prevention and therapy. Understanding how HIV overcomes host antiviral innate defense response in order to establish infection and dissemination is critical for developing prevention and treatment strategies. Most investigations focused on the viral pathogenic mechanisms leading to immune dysfunction following robust viral infection and dissemination. Less is known about mechanisms that enable HIV to establish its presence despite rapid onset of host antiviral innate response. Our novel findings provide insights into the viral strategy that hijacks the host innate response of the suppression of protein biosynthesis to restrict the virus production. The virus leverages transcription factor ATF4 expression during the GCN2-ATF4 signaling response and utilizes it to activate viral transcription through the LTR to support viral transcription and production in both HIV and SIV infections. This unique viral strategy is exploiting the innate response and is distinct from the mechanisms of immune dysfunction after the critical mass of viral loads is generated.
Collapse
|
39
|
Kugathasan S, Denson LA, Walters TD, Kim MO, Marigorta UM, Schirmer M, Mondal K, Liu C, Griffiths A, Noe JD, Crandall WV, Snapper S, Rabizadeh S, Rosh JR, Shapiro JM, Guthery S, Mack DR, Kellermayer R, Kappelman MD, Steiner S, Moulton DE, Keljo D, Cohen S, Oliva-Hemker M, Heyman MB, Otley AR, Baker SS, Evans JS, Kirschner BS, Patel AS, Ziring D, Trapnell BC, Sylvester FA, Stephens MC, Baldassano RN, Markowitz JF, Cho J, Xavier RJ, Huttenhower C, Aronow BJ, Gibson G, Hyams JS, Dubinsky MC. Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study. Lancet 2017; 389:1710-1718. [PMID: 28259484 PMCID: PMC5719489 DOI: 10.1016/s0140-6736(17)30317-3] [Citation(s) in RCA: 467] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/18/2016] [Accepted: 11/26/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Stricturing and penetrating complications account for substantial morbidity and health-care costs in paediatric and adult onset Crohn's disease. Validated models to predict risk for complications are not available, and the effect of treatment on risk is unknown. METHODS We did a prospective inception cohort study of paediatric patients with newly diagnosed Crohn's disease at 28 sites in the USA and Canada. Genotypes, antimicrobial serologies, ileal gene expression, and ileal, rectal, and faecal microbiota were assessed. A competing-risk model for disease complications was derived and validated in independent groups. Propensity-score matching tested the effect of anti-tumour necrosis factor α (TNFα) therapy exposure within 90 days of diagnosis on complication risk. FINDINGS Between Nov 1, 2008, and June 30, 2012, we enrolled 913 patients, 78 (9%) of whom experienced Crohn's disease complications. The validated competing-risk model included age, race, disease location, and antimicrobial serologies and provided a sensitivity of 66% (95% CI 51-82) and specificity of 63% (55-71), with a negative predictive value of 95% (94-97). Patients who received early anti-TNFα therapy were less likely to have penetrating complications (hazard ratio [HR] 0·30, 95% CI 0·10-0·89; p=0·0296) but not stricturing complication (1·13, 0·51-2·51; 0·76) than were those who did not receive early anti-TNFα therapy. Ruminococcus was implicated in stricturing complications and Veillonella in penetrating complications. Ileal genes controlling extracellular matrix production were upregulated at diagnosis, and this gene signature was associated with stricturing in the risk model (HR 1·70, 95% CI 1·12-2·57; p=0·0120). When this gene signature was included, the model's specificity improved to 71%. INTERPRETATION Our findings support the usefulness of risk stratification of paediatric patients with Crohn's disease at diagnosis, and selection of anti-TNFα therapy. FUNDING Crohn's and Colitis Foundation of America, Cincinnati Children's Hospital Research Foundation Digestive Health Center.
Collapse
Affiliation(s)
- Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas D Walters
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mi-Ok Kim
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Urko M Marigorta
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melanie Schirmer
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Kajari Mondal
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chunyan Liu
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anne Griffiths
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Joshua D Noe
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wallace V Crandall
- Department of Pediatric Gastroenterology, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott Snapper
- Department of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Shervin Rabizadeh
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joel R Rosh
- Department of Pediatrics, Goryeb Children's Hospital, Morristown, NJ, USA
| | - Jason M Shapiro
- Department of Pediatrics, Hasbro Children's Hospital, Providence, RI, USA
| | - Stephen Guthery
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - David R Mack
- Department of Pediatrics, Children's Hospital of Eastern Ontario IBD Centre and University of Ottawa, ON, Canada
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Michael D Kappelman
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven Steiner
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dedrick E Moulton
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Keljo
- Department of Gastroenterology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Stanley Cohen
- Children's Healthcare of Atlanta, Atlanta, GA, USA; Children's Center for Digestive Health Care, Atlanta, GA, USA
| | - Maria Oliva-Hemker
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melvin B Heyman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony R Otley
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Susan S Baker
- Department of Digestive Diseases and Nutrition Center, University at Buffalo, Buffalo, NY, USA
| | - Jonathan S Evans
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | | | - Ashish S Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Ziring
- Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Bruce C Trapnell
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francisco A Sylvester
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael C Stephens
- Department of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Judy Cho
- Department of Pediatrics, Mount Sinai Hospital, New York, NY, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Curtis Huttenhower
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, CT, USA
| | - Marla C Dubinsky
- Department of Pediatrics, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
40
|
Williams B, Landay A, Presti RM. Microbiome alterations in HIV infection a review. Cell Microbiol 2016; 18:645-51. [PMID: 26945815 DOI: 10.1111/cmi.12588] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Abstract
Recent developments in molecular techniques have allowed researchers to identify previously uncultured organisms, which has propelled a vast expansion of our knowledge regarding our commensal microbiota. Interest in the microbiome specific to HIV grew from earlier findings suggesting that bacterial translocation from the intestines is the cause of persistent immune activation despite effective viral suppression with antiretroviral therapy (ART). Studies of SIV infected primates have demonstrated that Proteobacteria preferentially translocate and that mucosal immunity can be restored with probiotics. Pathogenic SIV infection results in a massive expansion of the virome, whereas non-pathogenic SIV infection does not. Human HIV infected cohorts have been shown to have microbiota distinctive from that of HIV negative controls and efforts to restore the intestinal microbiome via probiotics have often had positive results on host markers. The microbiota of the genital tract may play a significant role in acquisition and transmission of HIV. Modification of commensal microbial communities likely represents an important therapeutic adjunct to treatment of HIV. Here we review the literature regarding human microbiome in HIV infection.
Collapse
Affiliation(s)
- Brett Williams
- Division of Infectious Diseases, Rush University Medical Center, USA
| | - Alan Landay
- Department of Immunology/microbiology, Rush University Medical Center, USA
| | - Rachel M Presti
- Division of Infectious Disease, Washington University School of Medicine, USA
| |
Collapse
|
41
|
Abstract
HIV-1 infection is associated with substantial damage to the gastrointestinal tract resulting in structural impairment of the epithelial barrier and a disruption of intestinal homeostasis. The accompanying translocation of microbial products and potentially microbes themselves from the lumen into systemic circulation has been linked to immune activation, inflammation, and HIV-1 disease progression. The importance of microbial translocation in the setting of HIV-1 infection has led to a recent focus on understanding how the communities of microbes that make up the intestinal microbiome are altered during HIV-1 infection and how they interact with mucosal immune cells to contribute to inflammation. This review details the dysbiotic intestinal communities associated with HIV-1 infection and their potential link to HIV-1 pathogenesis. We detail studies that begin to address the mechanisms driving microbiota-associated immune activation and inflammation and the various treatment strategies aimed at correcting dysbiosis and improving the overall health of HIV-1-infected individuals. Finally, we discuss how this relatively new field of research can advance to provide a more comprehensive understanding of the contribution of the gut microbiome to HIV-1 pathogenesis.
Collapse
|
42
|
Sena AAS, Glavan T, Jiang G, Sankaran-Walters S, Grishina I, Dandekar S, Goulart LR. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection. Sci Rep 2016; 6:31157. [PMID: 27484833 PMCID: PMC4971494 DOI: 10.1038/srep31157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 07/15/2016] [Indexed: 01/18/2023] Open
Abstract
HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection.
Collapse
Affiliation(s)
- Angela A S Sena
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil.,Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Tiffany Glavan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Guochun Jiang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Irina Grishina
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil.,Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
43
|
Tomalka J, Ghneim K, Bhattacharyya S, Aid M, Barouch DH, Sekaly RP, Ribeiro SP. The sooner the better: innate immunity as a path toward the HIV cure. Curr Opin Virol 2016; 19:85-91. [PMID: 27497036 DOI: 10.1016/j.coviro.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
To combat the diverse pathogens that infect humans, the immune system has evolved complex and diverse transcriptional signatures, which drive differential cellular and humoral responses. These signatures are induced by immune receptor sensing of pathogens and by cytokines produced at the earliest onset of infection. The specific nature of immune activation is as critical to pathogen clearance as the induction of an adaptive immune response. This is particularly true for HIV, which has developed numerous immune evasion mechanisms. In this review, we will highlight recent findings that show the differential role for early innate immune responses in promoting infection versus clearance and demonstrate the need for continued research on these pathways for development of effective HIV treatments.
Collapse
Affiliation(s)
- Jeffrey Tomalka
- Case Western Reserve University, Department of Pathology, Cleveland, OH, USA
| | - Khader Ghneim
- Case Western Reserve University, Department of Pathology, Cleveland, OH, USA
| | | | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Palmer BE, Li SX, Lozupone CA. The HIV-Associated Enteric Microbiome Has Gone Viral. Cell Host Microbe 2016; 19:270-2. [PMID: 26962936 DOI: 10.1016/j.chom.2016.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV infection is associated with dramatic alterations in enteric bacteria, but little is known about other microbiome components. In this issue of Cell Host & Microbe, studies by Monaco et al. (2016) and Handley et al. (2016) reveal an under-appreciated role of the enteric virome in HIV-associated gastroenteritis and pathogenesis.
Collapse
Affiliation(s)
- Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Sam X Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
45
|
Gaulke CA, Barton CL, Proffitt S, Tanguay RL, Sharpton TJ. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish. PLoS One 2016; 11:e0154632. [PMID: 27191725 PMCID: PMC4871530 DOI: 10.1371/journal.pone.0154632] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/15/2016] [Indexed: 12/30/2022] Open
Abstract
Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs) associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome's interaction with environmental chemicals.
Collapse
Affiliation(s)
- Christopher A. Gaulke
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Carrie L. Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of America
- The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Sarah Proffitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of America
- The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Robert L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of America
- The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
46
|
Murphy K, Mitchell CM. The Interplay of Host Immunity, Environment and the Risk of Bacterial Vaginosis and Associated Reproductive Health Outcomes. J Infect Dis 2016; 214 Suppl 1:S29-35. [PMID: 27056955 DOI: 10.1093/infdis/jiw140] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial vaginosis (BV) is one of the most common causes of vaginal symptoms in US women, but its causal mechanism has not yet been defined. BV is more prevalent in women who are immunosuppressed, and several risk factors for the development of BV are associated with lower quantities of immune mediators in vaginal fluid. In contrast, the poor reproductive health outcomes associated with BV, such as preterm birth and human immunodeficiency virus type 1 acquisition, are associated with increased levels of proinflammatory immune mediators in the genital tract. In this article, we discuss how variations in the host immune profile and environmental effects on host immunity may influence the risk of BV, as well as the risk of complications associated with BV.
Collapse
Affiliation(s)
- Kerry Murphy
- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York
| | - Caroline M Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston
| |
Collapse
|
47
|
Aounallah M, Dagenais-Lussier X, El-Far M, Mehraj V, Jenabian MA, Routy JP, van Grevenynghe J. Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects. Cytokine Growth Factor Rev 2016; 28:1-10. [PMID: 26851985 DOI: 10.1016/j.cytogfr.2016.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/01/2016] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
HIV-1 infection leads to a depletion of CD4 T-cells associated with a persistent immune inflammation and changes in cellular metabolism. Most effort of managing HIV infection with combination of antiretroviral therapies (ART) has been focused on CD4 T-cell recovery, while control of persistent immune inflammation and metabolism were relatively underappreciated in the past. Recent discoveries on the interplay between innate immunity, inflammation (especially the inflammasome) and metabolic changes in the context of cancer and autoimmunity provide an emerging field for chronic viral infections including HIV-1. In a previous review, we described the deregulated metabolism contributing to immune dysfunctions such as alteration of memory T-cell responses, mucosal protection, and dendritic cell-related antigen presentation. Here, we summarize the latest knowledge on the detrimental influence of long-lasting inflammation and inflammasome activation induced by HIV-1, gut dysbiosis, and bacterial translocation, on metabolism during the course of viral infection. We also report on the inability of ART to fully counteract inflammation, resulting in partial metabolic improvement and leading to an insufficient decrease in the risk of non-AIDS events. Further advances in our understanding of the relationship between inflammation, altered metabolism, and long-term ART is warranted. Additionally, there is a critical need for developing new strategies to regulate the pro-inflammatory signals to enhance cellular metabolism and immune functions in order to improve the quality of life of individuals living with HIV-1.
Collapse
Affiliation(s)
- Mouna Aounallah
- INRS-Institut Armand Frappier, Laval, Quebec H7V 1B7, Canada
| | | | | | - Vikram Mehraj
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | |
Collapse
|
48
|
Ponte R, Mehraj V, Ghali P, Couëdel-Courteille A, Cheynier R, Routy JP. Reversing Gut Damage in HIV Infection: Using Non-Human Primate Models to Instruct Clinical Research. EBioMedicine 2016; 4:40-9. [PMID: 26981570 PMCID: PMC4776249 DOI: 10.1016/j.ebiom.2016.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy (ART) has led to dramatic improvements in the lives of HIV-infected persons. However, residual immune activation, which persists despite ART, is associated with increased risk of non-AIDS morbidities. Accumulating evidence shows that disruption of the gut mucosal epithelium during SIV/HIV infections allows translocation of microbial products into the circulation, triggering immune activation. This disruption is due to immune, structural and microbial alterations. In this review, we highlighted the key findings of gut mucosa studies of SIV-infected macaques and HIV-infected humans that have revealed virus-induced changes of intestinal CD4, CD8 T cells, innate lymphoid cells, myeloid cells, and of the local cytokine/chemokine network in addition to epithelial injuries. We review the interplay between the host immune response and the intestinal microbiota, which also impacts disease progression. Collectively, these studies have instructed clinical research on early ART initiation, modifiers of microbiota composition, and recombinant cytokines for restoring gut barrier integrity.
Collapse
Affiliation(s)
- Rosalie Ponte
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Vikram Mehraj
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter Ghali
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada; Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
| | - Anne Couëdel-Courteille
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Université Paris Diderot, Paris 75013, France
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada; Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|