1
|
de Hoyos-Vega JM, Yu X, Gonzalez-Suarez AM, Chen S, Mercado-Perez A, Krueger E, Hernandez J, Fedyshyn Y, Druliner BR, Linden DR, Beyder A, Revzin A. Modeling gut neuro-epithelial connections in a novel microfluidic device. MICROSYSTEMS & NANOENGINEERING 2023; 9:144. [PMID: 38025883 PMCID: PMC10643697 DOI: 10.1038/s41378-023-00615-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
The intestinal lumen is filled with diverse chemical and physical stimuli. Intestinal epithelial cells sense these stimuli and signal to enteric neurons which coordinate a range of physiologic processes required for normal digestive tract function. Yet, the neuro-epithelial connections remain poorly resolved, in part because the tools for orchestrating interactions between these cellular compartments are lacking. We describe the development of a two-compartment microfluidic device for co-culturing enteric neurons with intestinal epithelial cells. The device contains epithelial and neuronal compartments connected by microgrooves. The epithelial compartment was designed for cell seeding via injection and confinement of intestinal epithelial cells derived from human intestinal organoids. We demonstrated that organoids planarized effectively and retained epithelial phenotype for over a week. In the second chamber we dissociated and cultured intestinal myenteric neurons including intrinsic primary afferent neurons (IPANs) from transgenic mice that expressed the fluorescent protein tdTomato. IPANs extended projections into microgrooves, surrounded and frequently made contacts with epithelial cells. The density and directionality of neuronal projections were enhanced by the presence of epithelial cells in the adjacent compartment. Our microfluidic device represents a platform that may, in the future, be used to dissect structure and function of neuro-epithelial connections in the gut and other organs (skin, lung, bladder, and others) in health and disease.
Collapse
Affiliation(s)
| | - Xi Yu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | | | - Sisi Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | | | - Eugene Krueger
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | - Jeric Hernandez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN USA
| | - Yaroslav Fedyshyn
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | - Brooke R. Druliner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN USA
| | - David R. Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN USA
| | - Arthur Beyder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
2
|
De Hoyos M, Yu X, Gonzalez-Suarez A, Mercado-Perez A, Krueger E, Hernandez J, Druliner B, Linden DR, Beyder A, Chen S, Fedyshyn Y, Revzin A. Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device. RESEARCH SQUARE 2023:rs.3.rs-2972828. [PMID: 37720014 PMCID: PMC10503863 DOI: 10.21203/rs.3.rs-2972828/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Organs that face external environments, such as skin and gut, are lined by epithelia, which have two functions - to provide a semi-permeable barrier and to sense stimuli. The intestinal lumen is filled with diverse chemical and physical stimuli. Intestinal epithelial cells sense these stimuli and signal to enteric neurons which coordinate a range of physiologic processes required for normal digestive tract function. Yet, the neuro-epithelial connections between intestinal epithelial cells and enteric neurons remain poorly resolved, which leaves us with limited mechanistic understanding of their function. We describe the development of a two-compartment microfluidic device for modeling neuro-epithelial interactions, and apply it to form the gut's neuro-epithelial connections. The device contains epithelial and neuronal compartments connected by microgrooves. The epithelial compartment was designed for cell seeding via injection and confinement of intestinal epithelial cells derived from human intestinal organoids. We demonstrated that organoids planarized effectively and retained epithelial phenotype for over a week. In the second chamber we dissociated and cultured intestinal myenteric neurons including intrinsic primary afferent neurons (IPANs) from transgenic mice that expressed the fluorescent protein tdTomato. IPANs extended projections into microgrooves, surrounded and frequently made contacts with epithelial cells. The density and directionality of neuronal projections were enhanced by the presence of epithelial cells in the adjacent compartment. Our microfluidic device represents a platform for dissecting structure and function of neuro-epithelial connections in the gut and other organs (skin, lung, bladder, and others) in health and disease.
Collapse
|
3
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
4
|
Vega JMDH, Hong HJ, Loutherback K, Stybayeva G, Revzin A. A Microfluidic Device for Long-Term Maintenance of Organotypic Liver Cultures. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201121. [PMID: 36818276 PMCID: PMC9937715 DOI: 10.1002/admt.202201121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 06/03/2023]
Abstract
Liver cultures may be used for disease modeling, testing therapies and predicting drug-induced injury. The complexity of the liver cultures has evolved from hepatocyte monocultures to co-cultures with non-parenchymal cells and finally to precision-cut liver slices. The latter culture format retains liver's native biomolecular and cellular complexity and therefore holds considerable promise for in vitro testing. However, liver slices remain functional for ~72 h in vitro and display limited utility for some disease modeling and therapy testing applications that require longer culture times. This paper describes a microfluidic device for longer-term maintenance of functional organotypic liver cultures. Our microfluidic culture system was designed to enable direct injection of liver tissue into a culture chamber through a valve-enabled side port. Liver tissue was embedded in collagen and remained functional for up to 31 days, highlighted by continued production of albumin and urea. These organotypic cultures also expressed several enzymes involved in xenobiotic metabolism. Conversely, matched liver tissue embedded in collagen in a 96-well plate lost its phenotype and function within 3-5 days. The microfluidic organotypic liver cultures described here represent a significant advance in liver cultivation and may be used for future modeling of liver diseases or for individualized liver-directed therapies.
Collapse
Affiliation(s)
- José M. de Hoyos Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kevin Loutherback
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Shinagawa T, Miyata S. Three-Dimensional Cell Drawing Technique in Hydrogel Using Micro Injection System. MICROMACHINES 2022; 13:1866. [PMID: 36363885 PMCID: PMC9699428 DOI: 10.3390/mi13111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Fabrication of three-dimensional tissues using living cells is a promised approach for drug screening experiment and in vitro disease modeling. To study a physiological neuronal function, three-dimensional cell patterning and construction of neuronal cell network were required. In this study, we proposed a three-dimensional cell drawing methodology in hydrogel to construct the three-dimensional neuronal cell network. PC-12 cells, which were used as neuronal cell differentiation model, were dispensed into a collagen hydrogel using a micro injector with a three-dimensional position control. To maintain the three-dimensional position of cells, atelocollagen was kept at sol-gel transition state during cell dispensing. As the results, PC-12 cells were patterned in the atelocollagen gel to form square pattern with different depth. In the patterned cellular lines, PC-12 cells elongated neurites and form a continuous cellular network in the atelocollagen gel. It was suggested that our three-dimensional cell drawing technology has potentials to reconstruct three-dimensional neuronal networks for an investigation of physiological neuronal functions.
Collapse
Affiliation(s)
- Takuya Shinagawa
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
6
|
Tabatabaee MS, Kerkovius J, Menard F. Design of an Imaging Probe to Monitor Real-Time Redistribution of L-type Voltage-Gated Calcium Channels in Astrocytic Glutamate Signaling. Mol Imaging Biol 2021; 23:407-416. [PMID: 33432518 DOI: 10.1007/s11307-020-01573-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE In the brain, astrocytes are non-excitable cells that undergo rapid morphological changes when stimulated by the excitatory neurotransmitter glutamate. We developed a chemical probe to monitor how glutamate affects the density and distribution of astrocytic L-type voltage-gated calcium channels (LTCC). PROCEDURES The imaging probe FluoBar1 was created from a barbiturate ligand modified with a fluorescent coumarin moiety. The probe selectivity was examined with colocalization analyses of confocal fluorescence imaging in U118-MG and transfected COS-7 cells. Living cells treated with 50 nM FluoBar1 were imaged in real time to reveal changes in density and distribution of astrocytic LTCCs upon exposure to glutamate. RESULTS FluoBar1 was synthesized in ten steps. The selectivity of the probe was demonstrated with immunoblotting and confocal imaging of immunostained cells expressing the CaV1.2 isoform of LTCCs proteins. Applying FluoBar1 to astrocyte model cells U118-MG allowed us to measure a fivefold increase in fluorescence density of LTCCs upon glutamate exposure. CONCLUSIONS Imaging probe FluoBar1 allows the real-time monitoring of LTCCs in living cells, revealing for first time that glutamate causes a rapid increase of LTCC membranar density in astrocyte model cells. FluoBar1 may help tackle previously intractable questions about LTCC dynamics in cellular events.
Collapse
Affiliation(s)
- Mitra Sadat Tabatabaee
- Department of Biochemistry & Molecular Biology, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Jeff Kerkovius
- Department of Chemistry, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Frederic Menard
- Department of Biochemistry & Molecular Biology, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada. .,Department of Chemistry, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
7
|
Kayasandik CB, Ru W, Labate D. A multistep deep learning framework for the automated detection and segmentation of astrocytes in fluorescent images of brain tissue. Sci Rep 2020; 10:5137. [PMID: 32198485 PMCID: PMC7083864 DOI: 10.1038/s41598-020-61953-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
While astrocytes have been traditionally described as passive supportive cells, studies during the last decade have shown they are active players in many aspects of CNS physiology and function both in normal and disease states. However, the precise mechanisms regulating astrocytes function and interactions within the CNS are still poorly understood. This knowledge gap is due in large part to the limitations of current image analysis tools that cannot process astrocyte images efficiently and to the lack of methods capable of quantifying their complex morphological characteristics. To provide an unbiased and accurate framework for the quantitative analysis of fluorescent images of astrocytes, we introduce a new automated image processing pipeline whose main novelties include an innovative module for cell detection based on multiscale directional filters and a segmentation routine that leverages deep learning and sparse representations to reduce the need of training data and improve performance. Extensive numerical tests show that our method performs very competitively with respect to state-of-the-art methods also in challenging images where astrocytes are clustered together. Our code is released open source and freely available to the scientific community.
Collapse
Affiliation(s)
| | - Wenjuan Ru
- Center for Neurodegeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Demetrio Labate
- University of Houston, Department of Mathematics, Houston, Texas, United States of America.
| |
Collapse
|
8
|
Gao Y, Stybayeva G, Revzin A. Fabrication of composite microfluidic devices for local control of oxygen tension in cell cultures. LAB ON A CHIP 2019; 19:306-315. [PMID: 30547179 PMCID: PMC9555225 DOI: 10.1039/c8lc00825f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Oxygen tension is a central component of the cellular microenvironment and can serve as a trigger for changes in cell phenotype and function. There is a strong need to precisely control and modulate oxygen tension in cell culture systems in order to more accurately model the physiology and pathophysiology observed in vivo. The objective of this paper was to develop a simple, yet effective strategy for local control of oxygen tension in microfluidic cell cultures. Our strategy relied on fabrication of microfluidic devices using oxygen-permeable and impermeable materials. This composite device was designed so as to incorporate regions of gas permeability into the roof of the cell culture chamber and was outfitted with a reservoir for the oxygen-consuming chemical pyrogallol. When assembled and filled with pyrogallol, this device allowed oxygen depletion to occur within a specific region of the microfluidic culture chamber. The geometry and dimensions of the hypoxic region inside a microfluidic chamber were controlled by features fabricated into the oxygen-impermeable layer. Oxygen tension as low as 0.5% could be achieved using this strategy. To prove the utility of this device, we demonstrated that hypoxia induced anaerobic metabolism in a group of liver cancer cells, and that neighboring cancer cells residing under normoxic conditions upregulated the expression of transporters for taking up lactate - a product of anaerobic respiration. The microfluidic devices described here may be broadly applicable for mimicking multiple physiological scenarios where oxygen tension varies on the length scale of tens of micrometers including the cancer microenvironment, liver zonation, and luminal microenvironment of the gut.
Collapse
Affiliation(s)
- Yandong Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55901
- Corresponding authors: Yandong Gao Ph.D. , Alexander Revzin Ph.D.
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55901
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55901
- Corresponding authors: Yandong Gao Ph.D. , Alexander Revzin Ph.D.
| |
Collapse
|
9
|
Fantuzzo JA, Hart RP, Zahn JD, Pang ZP. Compartmentalized Devices as Tools for Investigation of Human Brain Network Dynamics. Dev Dyn 2019; 248:65-77. [PMID: 30117633 PMCID: PMC6312734 DOI: 10.1002/dvdy.24665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Neuropsychiatric disorders have traditionally been difficult to study due to the complexity of the human brain and limited availability of human tissue. Induced pluripotent stem (iPS) cells provide a promising avenue to further our understanding of human disease mechanisms, but traditional 2D cell cultures can only provide a limited view of the neural circuits. To better model complex brain neurocircuitry, compartmentalized culturing systems and 3D organoids have been developed. Early compartmentalized devices demonstrated how neuronal cell bodies can be isolated both physically and chemically from neurites. Soft lithographic approaches have advanced this approach and offer the tools to construct novel model platforms, enabling circuit-level studies of disease, which can accelerate mechanistic studies and drug candidate screening. In this review, we describe some of the common technologies used to develop such systems and discuss how these lithographic techniques have been used to advance our understanding of neuropsychiatric disease. Finally, we address other in vitro model platforms such as 3D culture systems and organoids and compare these models with compartmentalized models. We ask important questions regarding how we can further harness iPS cells in these engineered culture systems for the development of improved in vitro models. Developmental Dynamics 248:65-77, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph A Fantuzzo
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Department of Neuroscience and Cell Biology, Research Tower, Piscataway, New Jersey
- Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
10
|
Jorfi M, D'Avanzo C, Kim DY, Irimia D. Three-Dimensional Models of the Human Brain Development and Diseases. Adv Healthc Mater 2018; 7:10.1002/adhm.201700723. [PMID: 28845922 PMCID: PMC5762251 DOI: 10.1002/adhm.201700723] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/24/2017] [Indexed: 01/07/2023]
Abstract
Deciphering the human brain pathophysiology remains one of the greatest challenges of the 21st century. Neurological disorders represent a significant proportion of diseases burden; however, the complexity of the brain physiology makes it challenging to model its diseases. Simple in vitro models have been very useful for precise measurements in controled conditions. However, existing models are limited in their ability to replicate complex interactions between various cells in the brain. Studying human brain requires sophisticated models to reconstitute the tangled architecture and functions of brain cells. Recently, advances in the development of three-dimensional (3D) brain cell culture models have begun to recapitulate various aspects of the human brain physiology in vitro and replicate basic disease processes of Alzheimer's disease, amyotrophic lateral sclerosis, and microcephaly. In this review, we discuss the progress, advantages, limitations, and future directions of 3D cell culture systems for modeling the human brain development and diseases.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| |
Collapse
|
11
|
Pas J, Pitsalidis C, Koutsouras DA, Quilichini PP, Santoro F, Cui B, Gallais L, O'Connor RP, Malliaras GG, Owens RM. Neurospheres on Patterned PEDOT:PSS Microelectrode Arrays Enhance Electrophysiology Recordings. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jolien Pas
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Charalampos Pitsalidis
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Dimitrios A. Koutsouras
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | | | - Francesca Santoro
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
- Center for Advanced Biomaterials for HealthCare; Italian Institute of Technology (IIT); Naples 80125 Italy
| | - Bianxiao Cui
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Laurent Gallais
- Aix Marseille Univ; CNRS, Centrale Marseille; Institut Fresnel; 13397 Marseille Cedex 20 France
| | - Rodney P. O'Connor
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - George G. Malliaras
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
- Electrical Engineering Division; University of Cambridge; Cambridge CB3 0AS UK
| | - Róisín M. Owens
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge CB3 0FA UK
| |
Collapse
|
12
|
Lin L, Lin X, Lin L, Feng Q, Kitamori T, Lin JM, Sun J. Integrated Microfluidic Platform with Multiple Functions To Probe Tumor-Endothelial Cell Interaction. Anal Chem 2017; 89:10037-10044. [PMID: 28820578 DOI: 10.1021/acs.analchem.7b02593] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Interaction between tumor and endothelial cells could affect tumor growth and progression and induce drug resistance during cancer therapy. Investigation of tumor-endothelial cell interaction involves cell coculture, protein detection, and analysis of drug metabolites, which are complicated and time-consuming. In this work, we present an integrated microfluidic device with three individual components (cell coculture component, protein detection component, and pretreatment component for drug metabolites) to probe the interaction between tumor and endothelial cells. Cocultured cervical carcinoma cells (CaSki cells) and human umbilical vein endothelial cells (HUVECs) show higher resistance to chemotherapeutic agents than single-cultured cells, indicated by higher cell viability, increased expression of angiogenic proteins, and elevated level of paclitaxel metabolites under coculture conditions. This integrated microfluidic platform with multiple functions facilitates understanding of the interaction between tumor and endothelial cells, and it may become a promising tool for drug screening within an engineered tumor microenvironment.
Collapse
Affiliation(s)
- Ling Lin
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Xuexia Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China.,College of Chemical Engineering, Huaqiao University , Xiamen 361021, People's Republic of China
| | - Luyao Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Qiang Feng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Vu TQ, de Castro RMB, Qin L. Bridging the gap: microfluidic devices for short and long distance cell-cell communication. LAB ON A CHIP 2017; 17:1009-1023. [PMID: 28205652 PMCID: PMC5473339 DOI: 10.1039/c6lc01367h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell-cell communication is a crucial component of many biological functions. For example, understanding how immune cells and cancer cells interact, both at the immunological synapse and through cytokine secretion, can help us understand and improve cancer immunotherapy. The study of how cells communicate and form synaptic connections is important in neuroscience, ophthalmology, and cancer research. But in order to increase our understanding of these cellular phenomena, better tools need to be developed that allow us to study cell-cell communication in a highly controlled manner. Some technical requirements for better communication studies include manipulating cells spatiotemporally, high resolution imaging, and integrating sensors. Microfluidics is a powerful platform that has the ability to address these requirements and other current limitations. In this review, we describe some new advances in microfluidic technologies that have provided researchers with novel methods to study intercellular communication. The advantages of microfluidics have allowed for new capabilities in both single cell-cell communication and population-based communication. This review highlights microfluidic communication devices categorized as "short distance", or primarily at the single cell level, and "long distance", which mostly encompasses population level studies. Future directions and translation/commercialization will also be discussed.
Collapse
Affiliation(s)
- Timothy Quang Vu
- Department of Bioengineering, Rice University, Houston, TX 77030, USA and Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Ricardo Miguel Bessa de Castro
- College of Engineering, Swansea University Singleton Park, Swansea, UK and Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA. and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
14
|
Adriani G, Ma D, Pavesi A, Kamm RD, Goh ELK. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. LAB ON A CHIP 2017; 17:448-459. [PMID: 28001148 DOI: 10.1039/c6lc00638h] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The neurovascular unit is a complex, interdependent system composed of neurons and neural supporting cells, such as astrocytes, as well as cells that comprise the vascular system including endothelial cells, pericytes, and smooth muscle cells. Each cell type in the neurovascular unit plays an essential role, either in transmitting and processing neural signals or in maintaining the appropriate microenvironmental conditions for healthy neural function. In vitro neurovascular models can be useful for understanding the different roles and functions of the cells composing the neurovascular unit, as well as for assessing the effects on neural function of therapeutic compounds after crossing the endothelial barrier. Here, we report a novel three-dimensional neurovascular microfluidic model consisting of primary rat astrocytes and neurons together with human cerebral microvascular endothelial cells. These three cell types in our neurovascular chip (NVC) show distinct cell type-specific morphological characteristics and functional properties. In particular, morphological and functional analysis of neurons enables quantitative assessment of neuronal responses, while human cerebral endothelial cells form monolayers with size-selective permeability similar to existing in vitro blood-brain barrier (BBB) models.
Collapse
Affiliation(s)
- Giulia Adriani
- Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Dongliang Ma
- Department of Research, National Neuroscience Institute, 20 College Road, 169856 Singapore and Neuroscience Academic Clinical Programme, Duke-NUS Medical School, 169857 Singapore.
| | - Andrea Pavesi
- Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research and Technology, 138602 Singapore and Massachusetts Institute of Technology, Cambridge, MA, 02139 USA.
| | - Eyleen L K Goh
- Department of Research, National Neuroscience Institute, 20 College Road, 169856 Singapore and Neuroscience Academic Clinical Programme, Duke-NUS Medical School, 169857 Singapore. and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore and KK Research Center, KK Women's and Children's Hospital, Singapore 229899, Singapore
| |
Collapse
|
15
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
16
|
Ugolini GS, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M. Microfabricated Physiological Models for In Vitro Drug Screening Applications. MICROMACHINES 2016; 7:E233. [PMID: 30404405 PMCID: PMC6189704 DOI: 10.3390/mi7120233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Microfluidics and microfabrication have recently been established as promising tools for developing a new generation of in vitro cell culture microdevices. The reduced amounts of reagents employed within cell culture microdevices make them particularly appealing to drug screening processes. In addition, latest advancements in recreating physiologically relevant cell culture conditions within microfabricated devices encourage the idea of using such advanced biological models in improving the screening of drug candidates prior to in vivo testing. In this review, we discuss microfluidics-based models employed for chemical/drug screening and the strategies to mimic various physiological conditions: fine control of 3D extra-cellular matrix environment, physical and chemical cues provided to cells and organization of co-cultures. We also envision future directions for achieving multi-organ microfluidic devices.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| |
Collapse
|