1
|
Einarsson H, Graham RP. How Do I Diagnose Fibrolamellar Carcinoma? Mod Pathol 2025; 38:100711. [PMID: 39814265 DOI: 10.1016/j.modpat.2025.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Fibrolamellar carcinoma (FLC) is a unique primary carcinoma of the liver that is characterized by distinct morphologic findings and a recurrent DNAJB1::PRKACA gene fusion. It typically presents in young individuals without underlying liver dysfunction. FLC is difficult to diagnose when based only on morphology, and misdiagnosis is common. Frequent differential diagnoses include conventional hepatocellular carcinoma and intrahepatic cholangiocarcinoma, both of which can show similar morphologic and immunohistochemical features. If based only on molecular analysis, other differential diagnoses have recently emerged, as the DNAJB1::PRKACA fusion has now been reported in cases of intraductal oncocytic papillary neoplasm and intraductal papillary mucinous neoplasm. In this article, we review our diagnostic approach to FLC, which relies on both morphologic and immunohistochemical features, as well as molecular analysis.
Collapse
Affiliation(s)
- Haukur Einarsson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
2
|
López-Terrada D, Stahlschmidt J, Pérez-Atayde AR. "Update on pediatric primary liver tumors". Virchows Arch 2025; 486:23-47. [PMID: 39836187 DOI: 10.1007/s00428-024-03985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/22/2025]
Abstract
Liver masses are common in children, however primary malignant neoplasms are rare, representing only 1% of all pediatric cancers. Hepatocellular neoplasms are the most common primary liver malignancies and hepatoblastoma (HB) is the most frequently diagnosed. The incidence of HB, which is increasing, is approximately of 2 cases per million in the United States, followed by hepatocellular carcinoma (HCC). Pediatric primary liver tumors of mesenchymal origin are less common, except for benign vascular tumors (hemangiomas). Malignant mesenchymal neoplasms represent approximately 10-15% of all, the most common being embryonal sarcoma and malignant rhabdoid tumor. Malignant vascular tumors are rare, but epithelioid hemangioendothelioma (EHE) and angiosarcoma can be seen in children. The development and adoption of consensus diagnostic, therapeutic and risk-stratifying approaches for pediatric patients with malignant liver tumors has been historically challenged by their rarity and by their diverse clinical and histological appearance. On-going collaborative efforts of international consortia including the Children's Oncology Group (COG) in North America, the German Society of Paediatric Oncology and Haematology (GPOH), the Societe Internationale d' Oncologie Pediatrique Liver Tumor Study Group (SIOPEL) in Europe and the Japanese Liver Tumor group (JPLT), have made significant contributions to understanding the clinical and histopathological features, as well as the underlying biology of pediatric liver tumors, in particular HB. A new classification of pediatric liver tumors drafted at the international consensus meeting held in Los Angeles, has been incorporated in the recent WHO classification and is currently used by the PHITT (Paediatric Hepatic Malignancy International Tumour Trial) and other therapeutic protocols. This manuscript provides an overview of salient diagnostic features and updates in classification and molecular characterization for the most common pediatric primary liver neoplasms. It also includes a brief overview of other less common but relevant tumors, which should be considered in the differential diagnosis.
Collapse
Affiliation(s)
- Dolores López-Terrada
- Department of Pathology, Texas Children's Hospital, and Baylor College of Medicine, Houston, TX, USA.
| | - Jens Stahlschmidt
- Department of Histopathology and Molecular Pathology, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Antonio R Pérez-Atayde
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Ferrell LD, Kakar S, Terracciano LM, Wee A. Tumours and Tumour-Like Lesions. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:842-946. [DOI: 10.1016/b978-0-7020-8228-3.00013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Beauchamp K, Moran B, O'Brien T, Brennan D, Crown J, Sheahan K, Cotter MB. Carcinoma of unknown primary (CUP): an update for histopathologists. Cancer Metastasis Rev 2023; 42:1189-1200. [PMID: 37394540 PMCID: PMC10713813 DOI: 10.1007/s10555-023-10101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/03/2023] [Indexed: 07/04/2023]
Abstract
Carcinoma of unknown primary (CUP) is a heterogeneous group of metastatic cancers in which the site of origin is not identifiable. These carcinomas have a poor outcome due to their late presentation with metastatic disease, difficulty in identifying the origin and delay in treatment. The aim of the pathologist is to broadly classify and subtype the cancer and, where possible, to confirm the likely primary site as this information best predicts patient outcome and guides treatment. In this review, we provide histopathologists with diagnostic practice points which contribute to identifying the primary origin in such cases. We present the current clinical evaluation and management from the point of view of the oncologist. We discuss the role of the pathologist in the diagnostic pathway including the control of pre-analytical conditions, assessment of sample adequacy, diagnosis of cancer including diagnostic pitfalls, and evaluation of prognostic and predictive markers. An integrated diagnostic report is ideal in cases of CUP, with results discussed at a forum such as a molecular tumour board and matched with targeted treatment. This highly specialized evolving area ultimately leads to personalized oncology and potentially improved outcomes for patients.
Collapse
Affiliation(s)
- Katie Beauchamp
- Department of Histopathology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - Bruce Moran
- Department of Histopathology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Timothy O'Brien
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Donal Brennan
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin4, Ireland
- UCD Gynaecological Oncology Group, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Kieran Sheahan
- Department of Histopathology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Maura Bríd Cotter
- Department of Histopathology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
5
|
Alshareefy Y, Shen CY, Prekash RJ. Exploring the molecular pathogenesis, diagnosis and treatment of fibrolamellar hepatocellular carcinoma: A state of art review of the current literature. Pathol Res Pract 2023; 248:154655. [PMID: 37429175 DOI: 10.1016/j.prp.2023.154655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
This paper aims to present a detailed overview of fibrolamellar carcinoma (FLC), a variant of hepatocellular carcinoma (HCC) that accounts for approximately 1-9% of all cases a. according to the SEER database. Despite ongoing research, the aetiology of FLC tumours remains unclear. Nevertheless, FLC is believed to have a better overall prognosis than other primary liver tumours, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma. This study aims to present a comprehensive overview of fibrolamellar carcinoma (FLC), with a focus on its epidemiology, pathogenesis, diagnosis, treatment, and prognosis. FLC frequently incorporate features of stomach pain, weight loss, and malaise in their clinical signs and symptoms, which are generally nonspecific Ultimately, the most common physical finding is an abdominal mass or hepatomegaly. With this said, several unusual presentations have been documented such as Budd Chiari syndrome, severe anaemia, non-bacterial thrombotic endocarditis and many more. In regards to this tumour's genetic analysis, it is characterised by a 400 kb deletion on chromosome 19 leading to a functional DNAJB1-PRKACA chimeric transcript in addition to tetraploidy in 50% of cases. FLC is chromosomally stable as compared to typical HCC. mTOR pathway activation has also been found to play a critical role in 47% of these tumours and EFGR over-expression is also evident. Fibrolamellar carcinomas (FLCs) exhibit a distinctive gross appearance, characterized by a yellow to pale tan colour, with a consistency that can vary from soft to firm and hard. In addition, a central scar is observed in 60-70% of FLC cases. The central scar is typically white or grey in colour and has a fibrous appearance, which is often surrounded by nodular, tumour-like tissue. Its histologic appearance is characterized by large polygonal cells with abundant eosinophilic cytoplasm, large vesiculated nuclei, large nucleoli, and arranged in lamellar bands of collagen fibres. Lamellar bands of fibrosis, consisting of collagen type I, III and IV, have also been identified as a distinctive histologic feature that is observed under low power magnification. Ultrasound, CT and MRI along with image guided biopsy are the primary modalities in diagnosis. Current management options include systemic therapy which has thus far been unremarkable with platinum-based therapies as well combination therapy with interferon alpha-2b being the most successful options. Surgical resection remains the primary treatment modality and there have been no advances in targeted therapies. Although the prognosis for FLC is favourable as compared to other hepatic cancer subtypes such as intrahepatic cholangiocarcinoma, there is a high rate of recurrence ranging from 33% to 100% with a median recurrence-free survival of 20-48 months. As a result of this there is a low overall cure rate associated with this tumour type and much more research is required to gain an in-depth understanding of the molecular mechanisms occurring in order to provide more adequate treatment to patients who suffer from this condition.
Collapse
Affiliation(s)
- Yasir Alshareefy
- School of Medicine, Trinity College Dublin, University of Dublin, Ireland.
| | - Chai Yu Shen
- Department of Medicine, Manipal University College, Malaysia
| | | |
Collapse
|
6
|
Gummadi J, Wang X, Xie C. Current Advances in the Treatment of Fibrolamellar Carcinoma of Liver. J Hepatocell Carcinoma 2023; 10:745-752. [PMID: 37215364 PMCID: PMC10198173 DOI: 10.2147/jhc.s406902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) of the liver is a rare type of liver cancer that is prevalent in children and young adults, often less than 40 years old. The etiology is unclear. It presents without underlying liver disease with distinctive histological features such as fibrous collagen bands surrounding the tumor cells. Fusion protein DNAJB1-PRKACA is found in most of the cases. The prognosis of FLC is poor. Even though curative treatment option is surgery for a certain patient population, other treatment modalities including radiation, chemotherapy are currently being used without significant improvement of overall survival. Recently, targeted therapy and immunotherapy have been studied which may provide survival advantage in the future. This review sought to compile data from clinical trials and case reports/series to outline the current state of FLC treatment.
Collapse
Affiliation(s)
- Jyotsna Gummadi
- Department of Medicine, MedStar Franklin Square Medical Center, Baltimore, MD, 21237, USA
| | - Xin Wang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
- NCI CCR Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| |
Collapse
|
7
|
Rüland L, Andreatta F, Massalini S, Chuva de Sousa Lopes S, Clevers H, Hendriks D, Artegiani B. Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss. Nat Commun 2023; 14:2377. [PMID: 37137901 PMCID: PMC10156813 DOI: 10.1038/s41467-023-37951-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.
Collapse
Affiliation(s)
- Laura Rüland
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Simone Massalini
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Wu Q, Yu YX, Zhang T, Zhu WJ, Fan YF, Wang XM, Hu CH. Preoperative Diagnosis of Dual-Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models. J Magn Reson Imaging 2023; 57:1185-1196. [PMID: 36190656 DOI: 10.1002/jmri.28391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dual-phenotype hepatocellular carcinoma (DPHCC) is highly aggressive and difficult to distinguish from hepatocellular carcinoma (HCC). PURPOSE To develop and validate clinical and radiomics models based on contrast-enhanced MRI for the preoperative diagnosis of DPHCC. STUDY TYPE Retrospective. POPULATION A total of 87 patients with DPHCC and 92 patients with non-DPHCC randomly divided into a training cohort (n = 125: 64 non-DPHCC; 61 DPHCC) and a validation cohort (n = 54: 28 non-DPHCC; 26 DPHCC). FIELD STRENGTH/SEQUENCE A 3.0 T; dynamic contrast-enhanced MRI with time-resolved T1-weighted imaging sequence. ASSESSMENT In the clinical model, the maximum tumor diameter and hepatitis B virus (HBV) were independent risk factors of DPHCC. In the radiomics model, a total of 1781 radiomics features were extracted from tumor volumes of interest (VOIs) in the arterial phase (AP) and portal venous phase (PP) images. For feature reduction and selection, Pearson correlation coefficient (PCC) and recursive feature elimination (RFE) were used. Clinical, AP, PP, and combined radiomics models were established using machine learning algorithms (support vector machine [SVM], logistic regression [LR], and logistic regression-least absolute shrinkage and selection operator [LR-LASSO]) and their discriminatory efficacy assessed and compared. STATISTICAL TESTS The independent sample t test, Mann-Whitney U test, Chi-square test, regression analysis, receiver operating characteristic curve (ROC) analysis, Pearson correlation analysis, the Delong test. A P value < 0.05 was considered statistically significant. RESULTS In the validation cohort, the combined radiomics model (area under the curve [AUC] = 0.908, 95% confidence interval [CI]: 0.831-0.985) showed the highest diagnostic performance. The AUCs of the PP (AUC = 0.879, 95% CI: 0.779-0.979) and combined radiomics models were significantly higher than that of clinical model (AUC = 0.685, 95% CI: 0.526-0.844). There were no significant differences in AUC between AP or PP radiomics model and combined radiomics model (P = 0.286, 0.180 and 0.543). CONCLUSION MRI radiomics models may be useful for discriminating DPHCC from non-DPHCC before surgery. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Xing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Wen-Jing Zhu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yan-Fen Fan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi-Ming Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Hong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Schalm SS, O’Hearn E, Wilson K, LaBranche TP, Silva G, Zhang Z, DiPietro L, Bifulco N, Woessner R, Stransky N, Sappal D, Campbell R, Lobbardi R, Palmer M, Kim J, Ye C, Dorsch M, Lengauer C, Guzi T, Kadambi V, Garner A, Hoeflich KP. Evaluation of Protein Kinase cAMP-Activated Catalytic Subunit Alpha as a Therapeutic Target for Fibrolamellar Carcinoma. GASTRO HEP ADVANCES 2022; 2:307-321. [PMID: 39132655 PMCID: PMC11307690 DOI: 10.1016/j.gastha.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Fibrolamellar carcinoma (FLC) is a rare, difficult-to-treat liver cancer primarily affecting pediatric and adolescent patients, and for which precision medicine approaches have historically not been possible. The DNAJB1-PRKACA gene fusion was identified as a driver of FLC pathogenesis. We aimed to assess whether FLC tumors maintain dependency on this gene fusion and determine if PRKACA is a viable therapeutic target. Methods FLC patient-derived xenograft (PDX) shRNA cell lines were implanted subcutaneously into female NOD-SCID mice and tumors were allowed to develop prior to randomization to doxycycline (to induce knockdown) or control groups. Tumor development was assessed every 2 days. To assess the effect of treatment with novel selective PRKACA small molecule kinase inhibitors, BLU0588 and BLU2864, FLC PDX tumor cells were implanted subcutaneously into NOD-SCID mice and tumors allowed to develop. Mice were randomized to treatment (BLU0588 and BLU2864, orally, once daily) or control groups and tumor size determined as previously. Results Knockdown of DNAJB1-PRKACA reversed a FLC-specific gene signature and reduced PDX tumor growth in mice compared to the control group. Furthermore, FLC PDX tumor growth was significantly reduced with BLU0588 and BLU2864 treatment vs control (P = .003 and P = .0005, respectively). Conclusion We demonstrated, using an inducible knockdown and small molecule approaches, that FLC PDX tumors were dependent upon DNAJB1-PRKACA fusion activity. In addition, this study serves as a proof-of-concept that PRKACA is a viable therapeutic target for FLC and warrants further investigation.
Collapse
Affiliation(s)
| | - Erin O’Hearn
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Kevin Wilson
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Grace Silva
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Zhuo Zhang
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Neil Bifulco
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | | | - Darshan Sappal
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Riadh Lobbardi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Michael Palmer
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Joseph Kim
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Chaoyang Ye
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Marion Dorsch
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Timothy Guzi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Vivek Kadambi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Andrew Garner
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | |
Collapse
|
10
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
11
|
Narayan NJC, Requena D, Lalazar G, Ramos-Espiritu L, Ng D, Levin S, Shebl B, Wang R, Hammond WJ, Saltsman JA, Gehart H, Torbenson MS, Clevers H, LaQuaglia MP, Simon SM. Human liver organoids for disease modeling of fibrolamellar carcinoma. Stem Cell Reports 2022; 17:1874-1888. [PMID: 35803261 PMCID: PMC9391427 DOI: 10.1016/j.stemcr.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare, often lethal, liver cancer affecting adolescents and young adults, for which there are no approved therapeutics. The development of therapeutics is hampered by a lack of in vitro models. Organoids have shown utility as a model system for studying many diseases. In this study, tumor tissue and the adjacent non-tumor liver were obtained at the time of surgery. The tissue was dissociated and grown as organoids. We developed 21 patient-derived organoid lines: 12 from metastases, three from the liver tumor and six from adjacent non-tumor liver. These patient-derived FLC organoids recapitulate the histologic morphology, immunohistochemistry, and transcriptome of the patient tumor. Patient-derived FLC organoids were used in a preliminary high-throughput drug screen to show proof of concept for the identification of therapeutics. This model system has the potential to improve our understanding of this rare cancer and holds significant promise for drug testing and development.
Collapse
Affiliation(s)
- Nicole J C Narayan
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lavoisier Ramos-Espiritu
- High Throughput and Spectroscopy Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Solomon Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ruisi Wang
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - William J Hammond
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James A Saltsman
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Helmuth Gehart
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
| | - Michael S Torbenson
- Department of Laboratory Medicine and Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hans Clevers
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
| | - Michael P LaQuaglia
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
12
|
Robveille C, Cullen JM. Hepatocellular carcinomas in captive prosimians. Vet Pathol 2022; 59:1012-1021. [PMID: 35876312 DOI: 10.1177/03009858221114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We performed a retrospective examination of spontaneous hepatocellular carcinomas (HCCs) (primary and metastatic tumors) in 14 captive prosimians brought to the Veterinary Medical Diagnostic Laboratory in North Carolina State University over a period of 11 years (2003 to 2014) to characterize the tumors. These animals are endangered primates; a better understanding of the main fatal neoplasms is crucial. In addition to the histologic evaluation, an immunohistochemical study was also performed, using a hepatocyte marker (hepatocyte paraffin 1 [HepPar-1]) and 2 cholangiocyte markers (keratin 7 [K7] and keratin 19 [K19]), in an attempt to identify a specific profile for HCCs with metastatic behavior. Six of the 14 HCCs had pulmonary metastases. The most frequent histopathological findings were a trabecular pattern (14/14, 100%), presence of multinucleated cells (12/14, 85.7%), and foci of extramedullary hematopoiesis (9/14, 64.3%). The mitotic count was significantly higher in the metastatic HCCs (P < .05). HepPar-1 was detected in all primary and metastatic HCCs, with a strong intensity of staining. Labeling for K7 and K19 was positive in 12 HCCs (85.7%) and 1 HCC (7.1%), respectively. Contrary to the less aggressive HCCs, most of the metastatic HCCs (5/6) expressed K7 in more than 15% of cells. The percentage of K7-positive neoplastic hepatocytes was significantly higher in metastatic HCCs. This study suggests that K7 might be a prognostically relevant marker in HCCs of captive prosimians.
Collapse
|
13
|
Abdelhamed W, El-Kassas M. Fibrolamellar hepatocellular carcinoma: A rare but unpleasant event. World J Gastrointest Oncol 2022; 14:1103-1114. [PMID: 35949219 PMCID: PMC9244987 DOI: 10.4251/wjgo.v14.i6.1103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/19/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare variant of hepatocellular carcinoma (HCC), comprising 1%–9% of all HCCs. FLC is a poorly understood malignancy, which seems to be more prevalent in young patients with no underlying liver diseases. The term “fibrolamellar” is derived from thick fibrous collagen bands surrounding the tumor cells. Unlike HCC, cirrhosis and viral hepatitis infection are not predisposing to FLC, and it is not associated with elevations in serum alpha-fetoprotein. FLC patients often present with vague abdominal pain, nausea, malaise, and weight loss. Most cases present are at an advanced stage at the time of initial diagnosis. However, curative treatment options can still be offered to up to 70% of patients. Surgery (resection/liver transplantation) is the mainstay of treatment and the only potentially curative option. FLCs have been less chemo-responsive than the conventional HCC, however, in advanced cases, multimodality treatments can be effective. Recent advances in molecular studies of FLC have found a unique DNAJB1–PRKACA fusion transcript in most of the cases studied. The review aims to describe clinical characteristics, diagnostic methods, and therapeutic modalities for this rare tumor to raise awareness among clinicians and surgeons.
Collapse
Affiliation(s)
- Walaa Abdelhamed
- Department of Endemic Medicine, Sohag University, Sohag 14322, Egypt
| | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
14
|
Dinh TA, Utria AF, Barry KC, Ma R, Abou-Alfa GK, Gordan JD, Jaffee EM, Scott JD, Zucman-Rossi J, O’Neill AF, Furth ME, Sethupathy P. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19:328-342. [PMID: 35190728 PMCID: PMC9516439 DOI: 10.1038/s41575-022-00580-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1-PRKACA) encoding a fusion protein (DNAJ-PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ-PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.
Collapse
Affiliation(s)
- Timothy A. Dinh
- Medical Scientist Training Program, University of North Carolina, Chapel Hill, NC, USA.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Alan F. Utria
- Department of Surgery, University of Washington, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Kevin C. Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Rosanna Ma
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - John D. Gordan
- Gastrointestinal oncology, University of California at San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Elizabeth M. Jaffee
- Department of oncology, Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne université, Inserm, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Allison F. O’Neill
- Department of Paediatric Hematology/oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Mark E. Furth
- Fibrolamellar Cancer Foundation, Greenwich, CT, USA.,;
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,;
| |
Collapse
|
15
|
Takahashi A, Imamura H, Ito R, Kawano F, Gyoda Y, Ichida H, Yoshioka R, Mise Y, Fukumura Y, Sano K, Saiura A. A case report of fibrolamellar hepatocellular carcinoma, with particular reference to preoperative diagnosis, value of molecular genetic diagnosis, and cell origin. Surg Case Rep 2021; 7:208. [PMID: 34533614 PMCID: PMC8448801 DOI: 10.1186/s40792-021-01295-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background Fibrolamellar hepatocellular carcinoma (FL-HCC) is a liver tumor that occurs almost exclusively in young adults without underlying liver disease. In spite of its distinct clinical characteristics and specific imaging findings, preoperative diagnosis is often difficult due to the extremely low incidence of the tumor. Although FL-HCC shows particular morphological features on H&E-stained tissue sections, differential diagnosis from ordinary HCC, especially the scirrhous variant of HCC, and intrahepatic cholangiocarcinoma needs additional immunohistochemical (IHC) analyses and/or molecular genetic testing. Case presentation A 21-year-old male patient was referred to our hospital for further evaluation of a large liver mass. Abdominal ultrasound examination, contrast-enhanced computed tomography, and magnetic resonance imaging revealed a well-defined hypervascular lobulated liver mass, 11 × 11 cm in diameter, with a central scar and calcification, in segments 5/8. Under the diagnosis of FL-HCC, we carried out extended anterior sectorectomy, including a part of segment 4. On microscopic examination, the tumor was composed of proliferating polygonal cells with abundant eosinophilic granular cytoplasm containing nuclei with vesicular chromatin and enlarged nucleoli, in an abundant stroma. Collagen fibers arranged in a parallel lamellar pattern were seen in the tumor stroma. These findings, together with the results of subsequent IHC analyses using HAS, CK7, and CD 67, we made the diagnosis of FL-HCC, which was further confirmed by detection of the DNAJB1-PRKACA fusion gene in the tumor cells by RT-PCR. Conclusion FL-HCC shows distinct imaging appearances. Although it also has characteristic morphological features, combined use of IHC and/or molecular genetic studies are necessary for the final diagnosis.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hiroshi Imamura
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Ryota Ito
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Fumihiro Kawano
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yu Gyoda
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hirofumi Ichida
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Ryuji Yoshioka
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Mise
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yuki Fukumura
- Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Katsuhiro Sano
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akio Saiura
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University School of Medicine, Juntendo University Hospital, 3-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
16
|
Abstract
Malignant primary liver tumors are rare in children. Yet a wide histologic spectrum is seen, particularly in hepatoblastoma, the most common malignant liver tumor in children. Furthermore, there can be significant morphologic overlap with hepatocellular carcinoma, the second most common pediatric liver malignancy, and tumors with hybrid features of hepatoblastoma and hepatocellular carcinoma are also reported (currently placed in the provisional category of malignant hepatocellular neoplasm, not otherwise specified). This review provides detailed morphologic descriptions and updates in the evolving clinical context of these tumors, and presents recent molecular advances that may further help in accurate classification of these tumors, which is critical in their management.
Collapse
Affiliation(s)
- Soo-Jin Cho
- Department of Pathology, University of California San Francisco, 1825 4th Street Room M2369, Box 4066, San Francisco, CA 94143, USA.
| |
Collapse
|
17
|
Abstract
Fibrolamellar carcinoma (FLC) is a rare malignant entity arising from the liver and primarily affecting patients in late adolescence and young adulthood. FLC tumors are characterized by their unique histologic features and an only recently discovered genomic alteration: a chimeric fusion protein found in nearly all tumors. The rarity of these tumors coupled with the only recent acknowledgement of this genomic abnormality has likely led to disease under-recognition and de-prioritization of collaborative efforts aimed at establishing an evidence-guided standard of care. Surgical resection undoubtedly remains a mainstay of therapy and a necessity for cure but given the incidence of metastatic disease at diagnosis and high rates of distant relapse, systemic therapies remain a key component of disease control. There are few systemic therapies that have demonstrated proven benefit. Recent efforts have galvanized around single-institute or small consortia-based studies specifically focused on the enrollment of patients with FLC or use of agents with biologic rationale. This review will outline the current state of FLC epidemiology, histology, biology and trialed therapies derived from available published literature.
Collapse
|
18
|
Menz A, Bauer R, Kluth M, Marie von Bargen C, Gorbokon N, Viehweger F, Lennartz M, Völkl C, Fraune C, Uhlig R, Hube-Magg C, De Wispelaere N, Minner S, Sauter G, Kind S, Simon R, Burandt E, Clauditz T, Lebok P, Jacobsen F, Steurer S, Wilczak W, Krech T, Marx AH, Bernreuther C. Diagnostic and prognostic impact of cytokeratin 19 expression analysis in human tumors: a tissue microarray study of 13,172 tumors. Hum Pathol 2021; 115:19-36. [PMID: 34102222 DOI: 10.1016/j.humpath.2021.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
To evaluate cytokeratin 19 (CK19) expression in normal and cancerous tissues, 15,977 samples from 122 tumor types and 608 samples of 76 normal tissue types were analyzed by immunohistochemistry (IHC). In normal tissues, CK19 expression occurred in epithelial cells of most glandular organs but was strictly limited to the basal cell layer of nonkeratinizing squamous epithelium and absent in the skin. CK19 expression in ≥90% of cases was seen in 34% of the tumor entities including the adenocarcinomas of the pancreas (99.4%), colorectum (99.8%), esophagus (98.7%), and stomach (97.7%), as well as breast cancer (90.0%-100%), high-grade serous (99.1%) or endometrioid (97.8%) ovarian cancer, and urothelial carcinoma (92.6%-100%). A low CK19 positivity rate (0.1-10%) was seen in 5 of 122 tumor entities including hepatocellular carcinoma and seminoma. A comparison of tumor versus normal tissue findings demonstrated that upregulation and downregulation of CK19 can occur in cancer and that both alterations can be linked to unfavorable phenotypes. CK19 downregulation was linked to high grade (p = 0.0017) and loss of estrogen receptor- and progesterone receptor-expression (p < 0.0001 each) in invasive breast carcinoma of no special type. CK19 upregulation was linked to nodal metastases in neuroendocrine tumors and papillary thyroid carcinomas (p < 0.05 each) and to poor grade in clear cell renal cell carcinoma (p < 0.05). CK19 upregulation was particularly common in squamous cell carcinomas. We concluded that CK19 IHC might separate primary liver cell carcinoma from liver metastases, seminoma from other testicular tumors, and helps in the detection of early neoplastic transformation in squamous epithelium.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rifka Bauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Clara Marie von Bargen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cosima Völkl
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Noémi De Wispelaere
- Department and Clinic of Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
19
|
Application of Immunohistochemistry in the Pathological Diagnosis of Liver Tumors. Int J Mol Sci 2021; 22:ijms22115780. [PMID: 34071338 PMCID: PMC8198626 DOI: 10.3390/ijms22115780] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although radiological diagnostics have been progressing, pathological diagnosis remains the most reliable method for diagnosing liver tumors. In some cases, definite pathological diagnosis cannot be obtained by histological evaluation alone, especially when the sample is a small biopsy; in such cases, immunohistochemical staining is very useful. Immunohistochemistry is the most frequently used technique for molecular pathological diagnosis due to its broad application, ease of performance and evaluation, and reasonable cost. The results occasionally reflect specific genetic mutations. The immunohistochemical markers of hepatocellular carcinoma include those of hepatocellular differentiation—such as hepatocyte paraffin 1 and arginase-1—and those of malignant hepatocytes—such as glypican-3, heat shock protein 70, and glutamine synthetase (GS). To classify the subtypes of hepatocellular adenoma, examination of several immunohistochemical markers, such as liver fatty acid-binding protein, GS, and serum amyloid A, is indispensable. Immunohistochemical staining for GS is also important for the diagnosis of focal nodular hyperplasia. The representative immunohistochemical markers of intrahepatic cholangiocarcinoma include cytokeratin (CK) 7 and CK19. In this article, we provide an overview of the application of immunohistochemistry in the pathological diagnosis of liver tumors referring to the association with genetic alterations. Furthermore, we aimed to explain the practical points in the differential diagnosis of liver tumors by immunohistochemical staining.
Collapse
|
20
|
Vyas M, Jain D. An update on subtypes of hepatocellular carcinoma: From morphology to molecular. INDIAN J PATHOL MICR 2021; 64:S112-S120. [PMID: 34135152 DOI: 10.4103/ijpm.ijpm_751_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The morphologic spectrum of hepatocellular carcinoma (HCC) is quite broad. While in about one-third of cases, the neoplasms can be categorized into meaningful subtypes based on morphology, a vast majority of these neoplasms are morphologically heterogeneous. With extensive tumor profiling, data has begun to emerge which can correlate specific morphologic features with underlying molecular signatures. A true morphologic subtype not only has reproducible H & E features, further supported by specific immunohistochemical or molecular signatures, but also has specific clinical implications and prognostic associations. Eight such morphologic subtypes are recognized by the 2019 WHO classification of tumors with a few more additional subtypes described in the literature. The goal of this review is to familiarize the reader with the morphologic subtypes and elaborate on the clinical and molecular associations of these neoplasms.
Collapse
Affiliation(s)
- Monika Vyas
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dhanpat Jain
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Solipuram VKR, Hardenbergh D, Gopalakrishna H, Yarchoan M, Laheru DA. Hyperammonemic Encephalopathy in a Patient on DNAJB1-PRKACA Fusion Peptide Vaccine Trial for Fibrolamellar Hepatocellular Cancer- A Case Report. Cureus 2020. [DOI: 10.7759/cureus.11663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Vyas M, Zhang X. Hepatocellular Carcinoma: Role of Pathology in the Era of Precision Medicine. Clin Liver Dis 2020; 24:591-610. [PMID: 33012447 DOI: 10.1016/j.cld.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is a morphologically heterogeneous tumor with variable architectural growth patterns and several distinct histologic subtypes. Large-scale attempts have been made over the past decade to identify targetable genomic alterations in HCC; however, its translation into clinical personalized care remains a challenge to precision oncology. The role of pathology is no longer limited to confirmation of diagnosis when radiologic features are atypical. Pathology is now in a position to predict the underlying molecular alteration, prognosis, and behavior of HCC. This review outlines various aspects of histopathologic diagnosis and role of pathology in cutting-edge diagnostics of HCC.
Collapse
Affiliation(s)
- Monika Vyas
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 303 Brookline Avenue, Boston, MA 02215, USA
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|
23
|
El Dika I, Bowman AS, Berger MF, Capanu M, Chou JF, Benayed R, Zehir A, Shia J, O'Reilly EM, Klimstra DS, Solit DB, Abou-Alfa GK. Molecular profiling and analysis of genetic aberrations aimed at identifying potential therapeutic targets in fibrolamellar carcinoma of the liver. Cancer 2020; 126:4126-4135. [PMID: 32663328 DOI: 10.1002/cncr.32960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Fibrolamellar carcinoma (FLC) is a rare primary liver cancer of young adults. A functional chimeric transcript resulting from the in-frame fusion of the DNAJ homolog, subfamily B, member 1 (DNAJB1), and the catalytic subunit of protein kinase A (PRKACA) genes on chromosome 19 is believed to be unique in FLC, with a possible role in pathogenesis, yet with no established therapeutic value. The objective of the current study was to understand the molecular landscape of FLC and to identify potential novel therapeutic targets. METHODS Archival fresh, formalin-fixed, paraffin-embedded samples from patients with FLC who prospectively consented to an institutional review board-approved protocol were analyzed using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT), a next-generation sequencing assay encompassing up to 468 key cancer genes. Custom targeted RNA-Seq was performed in selected patients. Demographics, treatment, and outcome data were collected prospectively. Survival outcomes were estimated and correlated with mutation and/or copy number alterations. RESULTS A total of 33 tumor samples from 31 patients with FLC were analyzed. The median age of the patients at the time of diagnosis was 18 years and approximately 53% were women. The DNAJB1-PRKACA fusion transcript was detected in 100% of patients. In 10 of 31 patients in which MSK-IMPACT did not detect the fusion, its presence was confirmed by targeted RNA-Seq. TERT promoter mutation was the second most common, and was detected in 7 patients. The median follow up was 30 months (range, 6-153 months). The 3-year overall survival rate was 84% (95% CI, 61%-93%). CONCLUSIONS The DNAJB1-PRKACA fusion transcript is nonspecific and nonsensitive to FLC. Its potential therapeutic value currently is under evaluation. Opportunities currently are under development for therapy that may be driven or related to the DNAJB1-PRKACA fusion transcript or any therapeutic target identified from next-generation sequencing in patients with FLC.
Collapse
Affiliation(s)
- Imane El Dika
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - Anita S Bowman
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Berger
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - Marinela Capanu
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joanne F Chou
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryma Benayed
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ahmet Zehir
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jinru Shia
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - Eileen M O'Reilly
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - David S Klimstra
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| |
Collapse
|
24
|
du Toit M, Aldera AP. Fibrolamellar Carcinoma With Predominantly Pseudoglandular Architecture: A Potential Diagnostic Pitfall. Int J Surg Pathol 2020; 29:69-72. [PMID: 32508199 DOI: 10.1177/1066896920933344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biopsies of liver mass lesions are encountered frequently in general surgical pathology practice. The clinical differential diagnosis is typically hepatocellular carcinoma (HCC) versus metastatic adenocarcinoma. There are a variety of HCC variants that show a range of morphological appearances. The presence of malignant glands in the liver prompts the pathologist to consider adenocarcinoma, either metastatic or primary intrahepatic cholangiocarcinoma. It is important to remember that some variant patterns of HCC can show pseudoglandular growth. In this article, we present a case of fibrolamellar carcinoma that showed predominantly pseudoglandular growth to highlight the importance of a systematic approach and the routine use of a panel of immunohistochemical stains (HepPar1, CK7, and CD68).
Collapse
Affiliation(s)
- Mariëtte du Toit
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service-Groote Schuur Hospital, Cape Town, South Africa
| | - Alessandro Pietro Aldera
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- JDW Pathology Incorporated, Cape Town, South Africa
| |
Collapse
|
25
|
Chen DA, Koehne de Gonzalez A, Fazlollahi L, Coffey A, Remotti HE, Lagana SM. In situ hybridisation for albumin RNA in paediatric liver cancers compared with common immunohistochemical markers. J Clin Pathol 2020; 74:98-101. [PMID: 32471888 DOI: 10.1136/jclinpath-2020-206663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/04/2022]
Abstract
AIMS In situ hybridisation (ISH) for albumin mRNA is a sensitive marker of primary liver tumours in adults. However, paediatric tumours, such as hepatoblastoma (HB) and fibrolamellar hepatocellular carcinoma (FLC), have not been tested thoroughly and may require ancillary tests to diagnose with confidence. We aim to determine if albumin ISH is useful in the pathological evaluation of these malignancies and to compare it to commonly used immunohistochemical markers HepPar 1 (HEPA) and arginase-1 (ARG). METHODS Tissue microarrays of 26 HB and 10 FLC were constructed. Controls included 4 embryonal undifferentiated sarcomas of the liver, 51 neuroblastomas and 64 Wilms tumours. We evaluated a commercially available RNA ISH to detect albumin mRNA. Immunohistochemistry for HEPA and ARG was performed in the usual fashion. RESULTS Twenty-six of 26 HB showed positive staining by albumin ISH including 14 fetal, 8 embryonal and 4 mixed variants. All 10 FLC were diffusely positive. The sensitivity and specificity of albumin ISH were 100% for HB and FLC. ARG had 100% sensitivity and specificity for HB (26 of 26 cases) and FLC (9 of 9). HEPA stained 22 of 26 HB (85% sensitivity, 99.2% specificity) and 7 of 9 FLC (78% sensitivity, 99.1% specificity). CONCLUSION Albumin RNA ISH is a useful test to determine hepatocytic origin in HB and FLC. ARG was equally sensitive and easy to interpret, while HEPA was inferior to both in HB and FLC.
Collapse
Affiliation(s)
- Diane Ann Chen
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Anne Koehne de Gonzalez
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ladan Fazlollahi
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Amy Coffey
- Department of Diagnostic Medicine, University of Texas System, Austin, Texas, USA
| | - Helen E Remotti
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Stephen M Lagana
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Vyas M, Hechtman JF, Zhang Y, Benayed R, Yavas A, Askan G, Shia J, Klimstra DS, Basturk O. DNAJB1-PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma. Mod Pathol 2020; 33:648-656. [PMID: 31676785 PMCID: PMC7125037 DOI: 10.1038/s41379-019-0398-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
Recently discovered DNAJB1-PRKACA oncogenic fusions have been considered diagnostic for fibrolamellar hepatocellular carcinoma. In this study, we describe six pancreatobiliary neoplasms with PRKACA fusions, five of which harbor the DNAJB1-PRKACA fusion. All neoplasms were subjected to a hybridization capture-based next-generation sequencing assay (MSK-IMPACT), which enables the identification of sequence mutations, copy number alterations, and selected structural rearrangements involving ≥410 genes (n = 6) and/or to a custom targeted, RNA-based panel (MSK-Fusion) that utilizes Archer Anchored Multiplex PCR technology and next-generation sequencing to detect gene fusions in 62 genes (n = 2). Selected neoplasms also underwent FISH analysis, albumin mRNA in-situ hybridization, and arginase-1 immunohistochemical labeling (n = 3). Five neoplasms were pancreatic, and one arose in the intrahepatic bile ducts. All revealed at least focal oncocytic morphology: three cases were diagnosed as intraductal oncocytic papillary neoplasms, and three as intraductal papillary mucinous neoplasms with mixed oncocytic and pancreatobiliary or gastric features. Four cases had an invasive carcinoma component composed of oncocytic cells. Five cases revealed DNAJB1-PRKACA fusions and one revealed an ATP1B1-PRKACA fusion. None of the cases tested were positive for albumin or arginase-1. Our data prove that DNAJB1-PRKACA fusion is neither exclusive nor diagnostic for fibrolamellar hepatocellular carcinoma, and caution should be exercised in diagnosing liver tumors with DNAJB1-PRKACA fusions as fibrolamellar hepatocellular carcinoma, particularly if a pancreatic lesion is present. Moreover, considering DNAJB1-PRKACA fusions lead to upregulated protein kinase activity and that this upregulated protein kinase activity has a significant role in tumorigenesis of fibrolamellar hepatocellular carcinoma, protein kinase inhibition could have therapeutic potential in the treatment of these pancreatobiliary neoplasms as well, once a suitable drug is developed.
Collapse
Affiliation(s)
- Monika Vyas
- Memorial Sloan Kettering Cancer Center, NY, US
| | | | | | | | | | - Gokce Askan
- Memorial Sloan Kettering Cancer Center, NY, US
| | - Jinru Shia
- Memorial Sloan Kettering Cancer Center, NY, US
| | | | - Olca Basturk
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
27
|
Abou-Alfa GK, Mayer R, Venook AP, O'Neill AF, Beg MS, LaQuaglia M, Kingham PT, Kobos R, Basturk O, Brennan C, Yopp A, Harding JJ, Leong S, Crown J, Hoti E, Leonard G, Ly M, Bradley M, Valentino E, Markowitz D, Zukiwski A, Ren K, Gordan JD. Phase II Multicenter, Open-Label Study of Oral ENMD-2076 for the Treatment of Patients with Advanced Fibrolamellar Carcinoma. Oncologist 2020; 25:e1837-e1845. [PMID: 32154962 DOI: 10.1634/theoncologist.2020-0093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
LESSONS LEARNED The fibrolamellar carcinoma-associated DNAJB1-PRKACA gene fusion transcript RNA codes for the catalytic domain of protein kinase A and, thus, overexpression of Aurora kinase A. ENMD-2076 showed a favorable toxicity profile. The limited results, one patient (3%) with a partial response and 57% of patients with stable disease, do not support further evaluation of ENMD-2076 as single agent. Future studies will depend on the simultaneous targeting approach of DNAJB1-PRKACA and the critical downstream components. BACKGROUND Fibrolamellar carcinoma (FLC) represents approximately 0.85% of liver cancers. The associated DNAJB1-PRKACA gene fusion transcript RNA codes for the catalytic domain of protein kinase A and overexpression of Aurora kinase A (AURKA). ENMD-2076 is a selective anti-AURKA inhibitor. METHODS Patients aged >12 years with pathologically confirmed incurable FLC, with measurable disease, Eastern Cooperative Oncology Group performance status 0-2 or Lansky 70-100, and adequate organ function were eligible. Patients were prescribed ENMD-2076 based on body surface area. The primary endpoint was overall objective response rate by RECIST v1.1, with a null hypothesis of true response rate of 2% versus one-sided alternative of 15%. Secondary endpoints included 6-month progression-free survival (PFS) rate (Fig. 1), median PFS, time to progression (TTP), and overall survival (OS). Safety was evaluated throughout the study. RESULTS Of 35 patients who enrolled and received treatment, 1 (3%) had a partial response (PR) and 20 (57%) had stable disease (SD). Median TTP, PFS, and OS were 5, 3.9, and 19 months, respectively. The most frequently reported drug-related serious adverse event was hypertension in three patients. Three deaths were reported on-study-two due to disease progression and one due to pulmonary embolism not related to ENMD-2076. CONCLUSION The study provided no rationale for further studying ENMD-2076 as a single agent in FLC.
Collapse
Affiliation(s)
- Ghassan K Abou-Alfa
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Mayer
- Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts, USA
| | - Alan P Venook
- University of California San Francisco, San Francisco, California, USA
| | - Allison F O'Neill
- Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts, USA
| | | | - Michael LaQuaglia
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter T Kingham
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rachel Kobos
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Olca Basturk
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cameron Brennan
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Adam Yopp
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - James J Harding
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephen Leong
- University of Colorado Cancer Center, Aurora, Colorado, USA
| | - John Crown
- St Vincent's Private Hospital, Dublin, Ireland
| | - Emir Hoti
- St Vincent's Private Hospital, Dublin, Ireland
| | | | - Michele Ly
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mikaela Bradley
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Emily Valentino
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | - Ken Ren
- CASI Pharmaceuticals, Inc., Rockville, Maryland, USA
| | - John D Gordan
- University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
28
|
Udomsinprasert W, Angkathunyakul N, Klaikeaw N, Vejchapipat P, Poovorawan Y, Honsawek S. Hepatic glypican-3 and alpha-smooth muscle actin overexpressions reflect severity of liver fibrosis and predict outcome after successful portoenterostomy in biliary atresia. Surgery 2020; 167:560-568. [DOI: 10.1016/j.surg.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
|
29
|
Abou-Alfa GK, Jarnagin W, El Dika I, D'Angelica M, Lowery M, Brown K, Ludwig E, Kemeny N, Covey A, Crane CH, Harding J, Shia J, O'Reilly EM. Liver and Bile Duct Cancer. ABELOFF'S CLINICAL ONCOLOGY 2020:1314-1341.e11. [DOI: 10.1016/b978-0-323-47674-4.00077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Chakrabarti S, Tella SH, Kommalapati A, Huffman BM, Yadav S, Riaz IB, Goyal G, Mody K, Borad M, Cleary S, Smoot RL, Mahipal A. Clinicopathological features and outcomes of fibrolamellar hepatocellular carcinoma. J Gastrointest Oncol 2019; 10:554-561. [PMID: 31183207 DOI: 10.21037/jgo.2019.01.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Clinicopathological features and the outcomes of patients with fibrolamellar hepatocellular carcinoma (FLHCC) are not clearly defined. Methods Data were collected by retrospective chart review on 42 patients with FLHCC treated between 1990 and 2017 at Mayo Clinic. Results Of 42 patients (median age at diagnosis 22 years), 10 patients (23.8%) had stage I disease and 32 patients (76.2%) had stage II to IVB disease. All 10 patients with stage I disease and 21 of 32 patients with stage II-IVB disease underwent resection at presentation. In stage I patient group, 6 patients experienced recurrence with a median time to recurrence of 30.5 months and a 5-year overall survival (OS) of 86%. Patients with stage II to IVB disease who underwent resection (n=21) upfront had a median OS of 32.5 months and 5-year OS of 44%. In the upfront surgery group, 71% of patients experienced recurrence. The median OS of patients with unresectable disease (n=11) was 10 months. Four out of nine patients treated with sorafenib had stable disease and one patient with programmed cell death ligand-1 (PD-L1) expressing tumor had a near complete response after 2 months of therapy with nivolumab. Conclusions In FLHCC, surgical resection was associated with prolonged OS; although most patients had a disease recurrence regardless of disease stage and resection margin status. The response to kinase inhibitor, sorafenib, was variable. In select cases, therapy with a checkpoint inhibitor may provide a viable treatment option.
Collapse
Affiliation(s)
| | - Sri Harsha Tella
- Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Anuhya Kommalapati
- Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | - Irbaz Bin Riaz
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Gaurav Goyal
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Kabir Mody
- Department of Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Mitesh Borad
- Department of Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Sean Cleary
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
El Jabbour T, Lagana SM, Lee H. Update on hepatocellular carcinoma: Pathologists’ review. World J Gastroenterol 2019; 25:1653-1665. [PMID: 31011252 PMCID: PMC6465943 DOI: 10.3748/wjg.v25.i14.1653] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Histopathologic diversity and several distinct histologic subtypes of hepatocellular carcinoma (HCC) are well-recognized. Recent advances in molecular pathology and growing knowledge about the biology associated with distinct histologic features and immuno-profile in HCC allowed pathologists to update classifications. Improving sub-classification will allow for more clinically relevant diagnoses and may allow for stratification into biologically meaningful subgroups. Therefore, immuno-histochemical and molecular testing are not only diagnostically useful, but also are being incorporated as crucial components in predicting prognosis of the patients with HCC. Possibilities of targeted therapy are being explored in HCC, and it will be important for pathologists to provide any data that may be valuable from a theranostic perspective. Herein, we review and provide updates regarding the pathologic sub-classification of HCC. Pathologic diagnostic approach and the role of biomarkers as prognosticators are reviewed. Further, the histopathology of four particular subtypes of HCC: Steatohepatitic, clear cell, fibrolamellar and scirrhous - and their clinical relevance, and the recent consensus on combined HCC-cholangiocarcinoma is summarized. Finally, emerging novel biomarkers and new approaches to HCC stratification are reviewed.
Collapse
Affiliation(s)
- Tony El Jabbour
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY 12208, United States
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Hwajeong Lee
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY 12208, United States
| |
Collapse
|
32
|
Weeda VB, Aronson DC, Verheij J, Lamers WH. Is hepatocellular carcinoma the same disease in children and adults? Comparison of histology, molecular background, and treatment in pediatric and adult patients. Pediatr Blood Cancer 2019; 66:e27475. [PMID: 30259629 DOI: 10.1002/pbc.27475] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/10/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
Pediatric hepatocellular carcinoma (HCC) is rare, resulting in scattered knowledge of tumor biology and molecular background. Thus far, the variant in children has been treated as a different entity from adult HCC. We weigh the hypothesis that HCC in the pediatric and adult groups may be the same entity and may benefit from the same treatment. Although certain differences between adult and pediatric HCC are obvious and certain types of HCC may ask for a customized approach, in conventional HCC, similarities predominate, warranting treatment aiming at common molecular targets in adult and pediatric HCC patients.
Collapse
Affiliation(s)
- V B Weeda
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - D C Aronson
- Department of Paediatric Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | - J Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - W H Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Abstract
Fibrolamellar carcinoma is a rare primary hepatocellular malignancy arising in noncirrhotic livers of young individuals. Patients commonly present with a large solitary liver mass and nonspecific symptoms. Characteristic histologic features include large polygonal cells with oncocytic cytoplasm and prominent nucleoli separated into trabeculae and cords by dense parallel bands of collagen. Important differential diagnoses include classical hepatocellular carcinoma and intrahepatic cholangiocarcinoma, which may be distinguished by a judicious panel of immunohistochemical studies, including cytokeratin 7, CD68, and hepatocyte paraffin 1 (HepPar-1). In addition, fibrolamellar carcinomas are characterized by activation of protein kinase A. Prognosis of fibrolamellar carcinoma is similar to classical hepatocellular carcinoma occurring in the absence of liver cirrhosis and is strongly correlated with tumor resectability. Other treatment options include liver transplant, chemotherapy, and hepatic artery embolization. In this article, we review the clinical features, gross and microscopic pathology, molecular genetics, differential diagnosis, treatment, and prognosis of this rare and interesting tumor.
Collapse
Affiliation(s)
| | - Hui-Min Yang
- From the Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York. Dr Hui-Min Yang is currently located in the Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Koehne de Gonzalez A, Lagana SM. Update on Ancillary Testing in the Evaluation of High-Grade Liver Tumors. Surg Pathol Clin 2018; 11:367-375. [PMID: 29751880 DOI: 10.1016/j.path.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tissue diagnosis is the gold standard for mass lesions of the liver, but needle core biopsies may sometimes prove challenging. Presented here is a review of a panel of immunohistochemical stains, including hepatocyte in paraffin 1, arginase-1, polyclonal carcinoembryonic antigen, CD10, bile salt export pump, glypican-3, as well as in situ hybridization for albumin RNA, to establish hepatocellular origin in cases in which hepatocellular carcinoma is suspected but the sample is limited or the morphology is challenging, as it may be with cases of scirrhous, fibrolamellar carcinoma, intrahepatic cholangiocarcinoma, and combined hepatocellular-cholangiocarcinoma.
Collapse
Affiliation(s)
- Anne Koehne de Gonzalez
- Department of Pathology and Cell Biology, Columbia University, 622 W 168th Street, Vanderbilt Clinic 14-209, New York, NY 10032, USA
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, Columbia University, 622 W 168th Street, Vanderbilt Clinic 14-209, New York, NY 10032, USA.
| |
Collapse
|
35
|
Abstract
Fibrolamellar carcinoma is distinctive at clinical and histologic levels. A novel DNAJB1-PRKACA fusion gene characterizes almost all cases, distinguishes it from other hepatocellular neoplasms, and drives the pathogenesis of this unique tumor. A subset of cases of fibrolamellar carcinoma is associated with alternate mechanisms of protein kinase A activation. This review article discusses common and unusual histologic features of fibrolamellar carcinoma, its differential diagnoses, and how to make the diagnosis while avoiding key pitfalls. The impact of the discovery of the fusion gene on the understanding of the tumor and the prognosis of fibrolamellar carcinoma are also discussed.
Collapse
Affiliation(s)
- Rondell P Graham
- Division of Anatomic Pathology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA; Division of Laboratory Genetics and Genomics, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Ferrell LD, Kakar S, Terracciano LM, Wee A. Tumours and Tumour-like Lesions of the Liver. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:780-879. [DOI: 10.1016/b978-0-7020-6697-9.00013-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Garg R, Srinivasan R, Dey P, Singh P, Gupta N, Rajwanshi A. Utility of Cytokeratin7 Immunocytochemistry in the Cytopathological Diagnosis of Fibrolamellar Hepatocellular Carcinoma. J Cytol 2018; 35:75-78. [PMID: 29643652 PMCID: PMC5885607 DOI: 10.4103/joc.joc_130_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective To distinguish fibrolamellar hepatocellular carcinoma (FL-HCC) variant from the conventional hepatocellular carcinoma (HCC) by cytology, immunocytochemistry, and morphometry. Study Design Retrospective detailed cytomorphological, immunocytochemical, and morphometric analysis was performed in 6 cases of FL-HCC reported on fine needle aspiration. Cell block immunocytochemistry (CB-ICC) for CK7 and CD68 was performed in four cases. Morphometry was carried out with Cell A software. Area of the cell, nucleus and nucleolus was measured in 50 nuclei per case in 6 cases each of FL-HCC and HCC. Results The mean age of patients with FL-HCC was 19 years and all had normal serum alpha-fetoprotein levels. Fine needle aspiration smears showed large polygonal cells with abundant cytoplasm, vesicular nucleus and prominent nucleolus, associated with variably cellular fibrous stromal fragments. Intranuclear inclusions, cytoplasmic eosinophilic inclusions, and bile were also noted. FL-HCC showed strong membrano-cytoplasmic CK7 positivity and cytoplasmic granular and canalicular positivity for CD68. In contrast, HCC showed weak focal positivity for CK7 and only canalicular CD68 positivity. Morphometry revealed that FL-HCC cells were 2.19 times the size of HCC. Conclusion CK7 immunocytochemistry on cell blocks is useful for confirming and distinguishing it from HCC.
Collapse
Affiliation(s)
- Rashi Garg
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Priya Singh
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nalini Gupta
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arvind Rajwanshi
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
38
|
Molecular testing for the clinical diagnosis of fibrolamellar carcinoma. Mod Pathol 2018; 31:141-149. [PMID: 28862261 PMCID: PMC5758901 DOI: 10.1038/modpathol.2017.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
Fibrolamellar carcinoma has a distinctive morphology and immunophenotype, including cytokeratin 7 and CD68 co-expression. Despite the distinct findings, accurate diagnosis of fibrolamellar carcinoma continues to be a challenge. Recently, fibrolamellar carcinomas were found to harbor a characteristic somatic gene fusion, DNAJB1-PRKACA. A break-apart fluorescence in situ hybridization (FISH) assay was designed to detect this fusion event and to examine its diagnostic performance in a large, multicenter, multinational study. Cases initially classified as fibrolamellar carcinoma based on histological features were reviewed from 124 patients. Upon central review, 104 of the 124 cases were classified histologically as typical of fibrolamellar carcinoma, 12 cases as 'possible fibrolamellar carcinoma' and 8 cases as 'unlikely to be fibrolamellar carcinoma'. PRKACA FISH was positive for rearrangement in 102 of 103 (99%) typical fibrolamellar carcinomas, 9 of 12 'possible fibrolamellar carcinomas' and 0 of 8 cases 'unlikely to be fibrolamellar carcinomas'. Within the morphologically typical group of fibrolamellar carcinomas, two tumors with unusual FISH patterns were also identified. Both cases had the fusion gene DNAJB1-PRKACA, but one also had amplification of the fusion gene and one had heterozygous deletion of the normal PRKACA locus. In addition, 88 conventional hepatocellular carcinomas were evaluated with PRKACA FISH and all were negative. These findings demonstrate that FISH for the PRKACA rearrangement is a clinically useful tool to confirm the diagnosis of fibrolamellar carcinoma, with high sensitivity and specificity. A diagnosis of fibrolamellar carcinoma is more accurate when based on morphology plus confirmatory testing than when based on morphology alone.
Collapse
|
39
|
Engelholm LH, Riaz A, Serra D, Dagnæs-Hansen F, Johansen JV, Santoni-Rugiu E, Hansen SH, Niola F, Frödin M. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma. Gastroenterology 2017; 153:1662-1673.e10. [PMID: 28923495 PMCID: PMC5801691 DOI: 10.1053/j.gastro.2017.09.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8 to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. METHODS We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein injection to livers of 8-week-old female FVB/N mice. These mice did not have any other engineered genetic alterations and were not exposed to liver toxins or carcinogens. Liver tissues were collected 14 months after delivery; genomic DNA was analyzed by PCR to detect the Dnajb1-Prkaca fusion, and tissues were characterized by histology, immunohistochemistry, RNA sequencing, and whole-exome sequencing. RESULTS Livers from 12 of the 15 mice given the vectors to induce the Dnajb1-Prkaca gene fusion, but none of the 11 mice given the control vector, developed neoplasms. The tumors contained the Dnajb1-Prkaca gene fusion and had histologic and cytologic features of human FL-HCCs: large polygonal cells with granular, eosinophilic, and mitochondria-rich cytoplasm, prominent nucleoli, and markers of hepatocytes and cholangiocytes. In comparing expression levels of genes between the mouse tumor and non-tumor liver cells, we identified changes similar to those detected in human FL-HCC, which included genes that affect cell cycle and mitosis regulation. Genomic analysis of mouse neoplasms induced by the Dnajb1-Prkaca fusion revealed a lack of mutations in genes commonly associated with liver cancers, as observed in human FL-HCC. CONCLUSIONS Using CRISPR/Cas9 technology, we found generation of the Dnajb1-Prkaca fusion gene in wild-type mice to be sufficient to initiate formation of tumors that have many features of human FL-HCC. Strategies to block DNAJB1-PRKACA might be developed as therapeutics for this form of liver cancer.
Collapse
Affiliation(s)
- Lars H Engelholm
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark,Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anjum Riaz
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Denise Serra
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens V Johansen
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steen H Hansen
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,GI Cell Biology Research Laboratory, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francesco Niola
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Morten Frödin
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
DNAJB1-PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci U S A 2017; 114:13076-13084. [PMID: 29162699 DOI: 10.1073/pnas.1716483114] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A segmental deletion resulting in DNAJB1-PRKACA gene fusion is now recognized as the signature genetic event of fibrolamellar hepatocellular carcinoma (FL-HCC), a rare but lethal liver cancer that primarily affects adolescents and young adults. Here we implement CRISPR-Cas9 genome editing and transposon-mediated somatic gene transfer to demonstrate that expression of either the endogenous fusion protein or a chimeric cDNA leads to the formation of indolent liver tumors in mice that closely resemble human FL-HCC. Notably, overexpression of the wild-type PRKACA was unable to fully recapitulate the oncogenic activity of DNAJB1-PRKACA, implying that FL-HCC does not simply result from enhanced PRKACA expression. Tumorigenesis was significantly enhanced by genetic activation of β-catenin, an observation supported by evidence of recurrent Wnt pathway mutations in human FL-HCC, as well as treatment with the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which causes tissue injury, inflammation, and fibrosis. Our study validates the DNAJB1-PRKACA fusion kinase as an oncogenic driver and candidate drug target for FL-HCC, and establishes a practical model for preclinical studies to identify strategies to treat this disease.
Collapse
|
41
|
Wang HL, Kim CJ, Koo J, Zhou W, Choi EK, Arcega R, Chen ZE, Wang H, Zhang L, Lin F. Practical Immunohistochemistry in Neoplastic Pathology of the Gastrointestinal Tract, Liver, Biliary Tract, and Pancreas. Arch Pathol Lab Med 2017; 141:1155-1180. [PMID: 28854347 DOI: 10.5858/arpa.2016-0489-ra] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT - Immunomarkers with diagnostic, therapeutic, or prognostic values have been increasingly used to maximize the benefits of clinical management of patients with neoplastic diseases of the gastrointestinal tract, liver, biliary tract, and pancreas. OBJECTIVES - To review the characteristics of immunomarkers that are commonly used in surgical pathology practice for neoplasms of the gastrointestinal tract, liver, biliary tract, and pancreas, and to summarize the clinical usefulness of immunomarkers that have been discovered in recent years in these fields. DATA SOURCES - Data sources include literature review, authors' research data, and personal practice experience. CONCLUSIONS - Immunohistochemistry is an indispensable tool for the accurate diagnosis of neoplastic diseases of the gastrointestinal tract, liver, biliary tract, and pancreas. Useful immunomarkers are available to help distinguish malignant neoplasms from benign conditions, determine organ origins, and subclassify neoplasms that are morphologically and biologically heterogeneous. Specific immunomarkers are also available to help guide patient treatment and assess disease aggressiveness, which are keys to the success of personalized medicine. Pathologists will continue to play a critical role in the discovery, validation, and application of new biomarkers, which will ultimately improve patient care.
Collapse
|
42
|
Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9090127. [PMID: 28930164 PMCID: PMC5615342 DOI: 10.3390/cancers9090127] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa), hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome (frequent in Western countries). In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47); the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH) activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| |
Collapse
|
43
|
Graham RP, Craig JR, Jin L, Oliveira AM, Bergquist JR, Truty MJ, Mounajjed T, Greipp PT, Torbenson MS. Environmental exposures as a risk factor for fibrolamellar carcinoma. Mod Pathol 2017; 30:892-896. [PMID: 28256571 DOI: 10.1038/modpathol.2017.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023]
Abstract
Fibrolamellar carcinoma was first described in 1956. Subsequent large studies failed to identify cases before 1939 (the start of the World War II). This finding, combined with the presence of aryl hydrocarbon receptors on the tumor cells, have suggested that fibrolamellar carcinomas may be caused by environmental exposures that are new since World War II. To investigate this possibility, the surgical pathology files before 1939 were reviewed for hepatocellular carcinomas resected in young individuals. Two cases of fibrolamellar carcinoma were identified, from 1915 to 1924. The diagnosis of fibrolamellar carcinoma was confirmed at the histologic, ultrastructural and proteomic levels. These two fibrolamellar carcinoma cases clarify a key aspect of fibrolamellar carcinoma biology, reducing the likelihood that these tumors result exclusively from post World War II environmental exposures.
Collapse
Affiliation(s)
- Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Long Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Taofic Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
44
|
Abstract
Hepatocellular carcinomas can be further divided into distinct subtypes that provide important clinical information and biological insights. These subtypes are distinct from growth patterns and are on based on morphologic and molecular findings. There are 12 reasonably well-defined subtypes as well as 6 provisional subtypes, together making up 35% of all hepatocellular carcinomas. These subtypes are discussed, with an emphasis on their definitions and the key morphologic findings.
Collapse
Affiliation(s)
- Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA.
| |
Collapse
|
45
|
Kim YJ, Rhee H, Yoo JE, Alves VAF, Kim GJ, Kim HM, Herman P, Chagas A, Kim H, Park YN. Tumour epithelial and stromal characteristics of hepatocellular carcinomas with abundant fibrous stroma: fibrolamellar versus scirrhous hepatocellular carcinoma. Histopathology 2017; 71:217-226. [PMID: 28326574 DOI: 10.1111/his.13219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/18/2017] [Indexed: 12/14/2022]
Abstract
AIMS The scirrhous variant of hepatocellular carcinoma (S-HCC) and fibrolamellar HCC (FL-HCC) are less common subtypes of HCC that are characterized by abundant fibrous stroma. Here, we aimed to investigate differences in the tumour microenvironment and the tumour epithelial cell characteristics of S-HCC and FL-HCC. METHODS AND RESULTS Whole tissue sections of 17 S-HCCs and 9 FL-HCCs were subjected to immunohistochemical stains for keratin 7 (K7), K19, EpCAM, CD56/NCAM, CD163, CD68, pSTAT3, FAP, CCN2 and Ki-67. FL-HCC patients were younger than S-HCC patients (P < 0.001), and chronic liver disease was seen in the background of 88.2% of S-HCC and in none of the FL-HCC. CD68 and CD163-positive tumour-infiltrating macrophages, and FAP-positive cancer-associated fibroblasts (CAFs) were more abundant in the stroma of S-HCCs compared to FL-HCCs (all P < 0.05). Tumour epithelial K19 expression was more frequent in S-HCCs compared to FL-HCCs (P = 0.023). Significant positive correlations were seen between pSTAT3 expression status in tumour epithelial cells and CAFs, the extent of stromal CAF and macrophage infiltration and K19 expression status. No significant differences were seen for K7, EpCAM, CD56/NCAM, CCN2 expression and Ki-67 labelling index between S-HCCs and FL-HCCs. CONCLUSION S-HCC and FL-HCC are subtypes of HCC with extensive fibrosis, and the nature of the fibrous stroma differs between them. While the stroma of FL-HCC is composed of dense lamellated collagenous bands with sparse cellular components, S-HCC demonstrates more abundant CAF and tumour-infiltrating macrophages and stemness-related marker expression, suggesting the presence of a complex tumour microenvironment that may influence the aggressive behaviour of S-HCCs.
Collapse
Affiliation(s)
- Young-Joo Kim
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Hyungjin Rhee
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Eun Yoo
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Venancio A F Alves
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gi Jeong Kim
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Min Kim
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Paulo Herman
- Department of Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Aline Chagas
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Sorenson EC, Khanin R, Bamboat ZM, Cavnar MJ, Kim TS, Sadot E, Zeng S, Greer JB, Seifert AM, Cohen NA, Crawley MH, Green BL, Klimstra DS, DeMatteo RP. Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PLoS One 2017; 12:e0176562. [PMID: 28486549 PMCID: PMC5423588 DOI: 10.1371/journal.pone.0176562] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/12/2017] [Indexed: 01/17/2023] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare variant of HCC that most frequently affects young adults. Because of its rarity and an absence of preclinical models, our understanding of FL-HCC is limited. Our objective was to analyze chromosomal alterations and dysregulated gene expression in tumor specimens collected at a single center during two decades of experience with FL-HCC. We analyzed 38 specimens from 26 patients by array comparative genomic hybridiziation (aCGH) and 35 specimens from 15 patients by transcriptome sequencing (RNA-seq). All tumor specimens exhibited genomic instability, with a higher frequency of genomic amplifications or deletions in metastatic tumors. The regions encoding 71 microRNAs (miRs) were deleted in at least 25% of tumor specimens. Five of these recurrently deleted miRs targeted the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) gene product, and a correlating 100-fold upregulation of IGF2BP1 mRNA was seen in tumor specimens. Transcriptome analysis demonstrated intrapatient tumor similarity, independent of recurrence site or time. The p53 tumor suppressor pathway was downregulated as demonstrated by both aCGH and RNA-seq analysis. Notch, EGFR, NRAS, and RB1 pathways were also significantly dysregulated in tumors compared with normal liver tissue. The findings illuminate the genomic and transcriptomic landscape of this rare disease and provide insight into dysregulated oncogenic pathways and potential therapeutic targets in FL-HCC.
Collapse
Affiliation(s)
- Eric C. Sorenson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Raya Khanin
- Department of Computational Biology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Zubin M. Bamboat
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Michael J. Cavnar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Teresa S. Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Eran Sadot
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Shan Zeng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jonathan B. Greer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Adrian M. Seifert
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Noah A. Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Megan H. Crawley
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Benjamin L. Green
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - David S. Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ronald P. DeMatteo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Sempoux C, Paradis V, Saxena R. Variant differentiation patterns in primary liver carcinoma. Semin Diagn Pathol 2017; 34:176-182. [PMID: 28256363 DOI: 10.1053/j.semdp.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are two distinct forms of primary liver carcinoma recognizable at the microscope by their architectural and cytological characteristics, as well as specific immunohistochemical profiles. This straightforward concept however, is increasing imperiled by the recognition of primary liver carcinomas that do not subscribe to a dichotomous paradigm of differentiation, and instead demonstrate biphenotypic differentiation, stem/progenitor cell like features or other variant patterns of differentiation. Appropriate nomenclature, diagnostic criteria, prognostic significance and optimal therapeutic approach for these variant tumors are not completely defined, not leasyt because they are not always identified correctly and when they are, lack of uniform terminology hinders collection of adequate number of cases to facilitate their study. Similar to hepatocellular carcinoma and in contrast with intrahepatic cholangiocarcinoma, primary liver tumors showing biphenotypic differentiation, stem/progenitor cell features or variant differentiation occur mainly, but not always, on a background of chronic liver disease. They are particularly frequent after neo-adjuvant therapy. Whether they represent trans-differentiation of malignant cells, or whether they derive from a stem/progenitor cell that gives rise to divergent differentiation remains yet another area of uncertainty.
Collapse
Affiliation(s)
- Christine Sempoux
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, 25 rue du Bugnon, CH-1011 Lausanne, Switzerland.
| | - Valérie Paradis
- Pathology Department, Beaujon Hospital Inserm UMR 1149, Université Paris Diderot, 101 bd du Général Leclerc, 92110 Clichy, France.
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA.
| |
Collapse
|
48
|
Imaging of Rare Primary Malignant Hepatic Tumors in Adults With Histopathological Correlation. J Comput Assist Tomogr 2017; 40:452-62. [PMID: 26938690 DOI: 10.1097/rct.0000000000000382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are the most common primary liver malignancies in adults (comprising >85%); however, liver is also host to some unusual primary malignant tumors. Some of these tumors show distinct demographic, clinicopathologic, and imaging features. Imaging features of these uncommon primary malignant liver tumors are presented with an attempt to correlate them with histopathology.
Collapse
|
49
|
Graham RP, Torbenson MS. Fibrolamellar carcinoma: A histologically unique tumor with unique molecular findings. Semin Diagn Pathol 2016; 34:146-152. [PMID: 28110996 DOI: 10.1053/j.semdp.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrolamellar carcinoma is a unique type of hepatocellular carcinoma with a distinctive predilection for young patients without underlying liver disease, characteristic large neoplastic cells with intervening, dense fibrosis, co-expression of keratin 7 and CD68 and activation of protein kinase A (most often by formation of DNAJB1-PRKACA). Fibrolamellar carcinoma has a similar prognosis to conventional hepatocellular carcinomas arising in non-cirrhotic livers. The current American Joint Cancer Committee staging system does not provide optimal stratification of patients with fibrolamellar carcinoma and an alternate systems should be considered in the future. The only effective treatment for fibrolamellar carcinoma is complete resection. Novel therapies may be on the horizon as investigation into the molecular biology of fibrolamellar carcinoma continues.
Collapse
Affiliation(s)
- Rondell P Graham
- Division of Anatomic Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, United States
| | - Michael S Torbenson
- Division of Anatomic Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, United States
| |
Collapse
|
50
|
Affiliation(s)
- Miral Sadaria Grandhi
- Department of Surgery, Division of Surgical Oncology, Section of Gastrointestinal Surgical Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Timothy M. Pawlik
- Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|