1
|
Kuo CY, Moi SH, Hou MF, Luo CW, Pan MR. Chromatin Remodeling Enzyme Cluster Predicts Prognosis and Clinical Benefit of Therapeutic Strategy in Breast Cancer. Int J Mol Sci 2023; 24:ijms24065583. [PMID: 36982660 PMCID: PMC10055970 DOI: 10.3390/ijms24065583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The treatment provided for breast cancer depends on the expression of hormone receptors, human epidermal growth factor receptor-2 (HER2), and cancer staging. Surgical intervention, along with chemotherapy or radiation therapy, is the mainstay of treatment. Currently, precision medicine has led to personalized treatment using reliable biomarkers for the heterogeneity of breast cancer. Recent studies have shown that epigenetic modifications contribute to tumorigenesis through alterations in the expression of tumor suppressor genes. Our aim was to investigate the role of epigenetic modifications in genes involved in breast cancer. A total of 486 patients from The Cancer Genome Atlas Pan-cancer BRCA project were enrolled in our study. Hierarchical agglomerative clustering analysis further divided the 31 candidate genes into 2 clusters according to the optimal number. Kaplan–Meier plots showed worse progression-free survival (PFS) in the high-risk group of gene cluster 1 (GC1). In addition, the high-risk group showed worse PFS in GC1 with lymph node invasion, which also presented a trend of better PFS when chemotherapy was combined with radiotherapy than when chemotherapy was administered alone. In conclusion, we developed a novel panel using hierarchical clustering that high-risk groups of GC1 may be promising predictive biomarkers in the clinical treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Chia-Yu Kuo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (C.-W.L.); (M.-R.P.); Tel.: +886-7-3121101 (ext. 2260) (C.-W.L.); +886-7-3121101 (ext. 5092-34) (M.-R.P.); Fax: +886-7-3165011 (C.-W.L.); +886-7-3218309 (M.-R.P.)
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-W.L.); (M.-R.P.); Tel.: +886-7-3121101 (ext. 2260) (C.-W.L.); +886-7-3121101 (ext. 5092-34) (M.-R.P.); Fax: +886-7-3165011 (C.-W.L.); +886-7-3218309 (M.-R.P.)
| |
Collapse
|
2
|
Pettitt GA, Hurst CD, Khan Z, McPherson HR, Dunning MC, Alder O, Platt FM, Black EVI, Burns JE, Knowles MA. Development of resistance to FGFR inhibition in urothelial carcinoma via multiple pathways in vitro. J Pathol 2023; 259:220-232. [PMID: 36385700 PMCID: PMC10107504 DOI: 10.1002/path.6034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Alterations of fibroblast growth factor receptors (FGFRs) are common in bladder and other cancers and result in disrupted signalling via several pathways. Therapeutics that target FGFRs have now entered the clinic, but, in common with many cancer therapies, resistance develops in most cases. To model this, we derived resistant sublines of two FGFR-driven bladder cancer cell lines by long-term culture with the FGFR inhibitor PD173074 and explored mechanisms using expression profiling and whole-exome sequencing. We identified several resistance-associated molecular profiles. These included HRAS mutation in one case and reversible mechanisms resembling a drug-tolerant persister phenotype in others. Upregulated IGF1R expression in one resistant derivative was associated with sensitivity to linsitinib and a profile with upregulation of a YAP/TAZ signature to sensitivity to the YAP inhibitor CA3 in another. However, upregulation of other potential therapeutic targets was not indicative of sensitivity. Overall, the heterogeneity in resistance mechanisms and commonality of the persister state present a considerable challenge for personalised therapy. Nevertheless, the reversibility of resistance may indicate a benefit from treatment interruptions or retreatment following disease relapse in some patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Geoffrey A Pettitt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Zubeda Khan
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Helen R McPherson
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Matthew C Dunning
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Emma VI Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| |
Collapse
|
3
|
Singer CF, Holst F, Steurer S, Burandt EC, Lax SF, Jakesz R, Rudas M, Stöger H, Greil R, Sauter G, Filipits M, Simon R, Gnant M. Estrogen Receptor Alpha Gene Amplification Is an Independent Predictor of Long-Term Outcome in Postmenopausal Patients with Endocrine-Responsive Early Breast Cancer. Clin Cancer Res 2022; 28:4112-4120. [PMID: 35920686 PMCID: PMC9475247 DOI: 10.1158/1078-0432.ccr-21-4328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Estrogen receptor (ER) expression is a prognostic parameter in breast cancer, and a prerequisite for the use of endocrine therapy. In ER+ early breast cancer, however, no receptor-associated biomarker exists that identifies patients with a particularly favorable outcome. We have investigated the value of ESR1 amplification in predicting the long-term clinical outcome in tamoxifen-treated postmenopausal women with endocrine-responsive breast cancer. EXPERIMENTAL DESIGN 394 patients who had been randomized into the tamoxifen-only arm of the prospective randomized ABCSG-06 trial of adjuvant endocrine therapy with available formalin-fixed, paraffin-embedded tumor tissue were included in this analysis. IHC ERα expression was evaluated both locally and in a central lab using the Allred score, while ESR1 gene amplification was evaluated by FISH analysis using the ESR1/CEP6 ratio indicating focal copy number alterations. RESULTS Focal ESR1 copy-number elevations (amplifications) were detected in 187 of 394 (47%) tumor specimens, and were associated with a favorable outcome: After a median follow-up of 10 years, women with intratumoral focal ESR1 amplification had a significantly longer distant recurrence-free survival [adjusted HR, 0.48; 95% confidence interval (CI), 0.26-0.91; P = 0.02] and breast cancer-specific survival (adjusted HR 0.47; 95% CI, 0.27-0.80; P = 0.01) as compared with women without ESR1 amplification. IHC ERα protein expression, evaluated by Allred score, correlated significantly with focal ESR1 amplification (P < 0.0001; χ2 test), but was not prognostic by itself. CONCLUSIONS Focal ESR1 amplification is an independent and powerful predictor for long-term distant recurrence-free and breast cancer-specific survival in postmenopausal women with endocrine-responsive early-stage breast cancer who received tamoxifen for 5 years.
Collapse
Affiliation(s)
- Christian F. Singer
- Department of OB/GYN, Medical University of Vienna, Vienna, Austria.,Corresponding Author: Christian F. Singer, Medical University of Vienna, AKH Wien, Waehringer Guertel 18-20, Vienna 1090, Austria. Phone: 4314-0400-28010, Fax: 4314-0400-23230; E-mail:
| | | | - Frederik Holst
- Department of OB/GYN, Medical University of Vienna, Vienna, Austria.,Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike C. Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sigurd F. Lax
- Department of Pathology, Medical University of Graz, Graz, Austria.,Hospital Graz II, Graz, Austria.,Johannes Kepler University, School of Medicine, Graz, Austria
| | - Raimund Jakesz
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Margaretha Rudas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Herbert Stöger
- Department of Medicine, Medical University of Graz, Graz, Austria
| | - Richard Greil
- Salzburg Cancer Research Institute - Center for Clinical and Immunology Trials and Cancer Cluster Salzburg; IIIrd Medical Department, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Filipits
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
4
|
Suelmann BBM, Rademaker A, van Dooijeweert C, van der Wall E, van Diest PJ, Moelans CB. Genomic copy number alterations as biomarkers for triple negative pregnancy-associated breast cancer. Cell Oncol (Dordr) 2022; 45:591-600. [PMID: 35792986 PMCID: PMC9424154 DOI: 10.1007/s13402-022-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
PABC, commonly defined as breast cancer diagnosed during or ≤ 1 year after pregnancy, accounts for 7% of all breast cancers in women ≤ 45 years. Compared to age-matched non-PABC patients, PABC is characterized by a particularly aggressive histopathologic profile with poorly differentiated and estrogen- and progesterone receptor negative tumors and associated high mortality rates. This study assessed the genomic background of triple-negative PABC tumors by detection of copy number alterations (CNAs).
Methods
MLPA was used to compare CNAs in breast cancer-associated chromosomal loci between triple-negative PABC- and subtype-matched non-PABC patients. Both CNA patterns were evaluated by cluster analysis; associations between individual gene CNAs, pathological characteristics and survival were explored.
Results
Triple-negative PABC tumors exhibited unique CNAs compared to non-PABC tumors, including enrichment for TOP2A copy number loss, an independent predictor of worse overall survival (HR 8.96, p = 0.020). Cluster analysis based on CNA profiles identified a triple-negative PABC-subgroup with a particularly poor prognosis, characterized by chromosome 8p copy number loss. Individual gene CNAs analysis revealed that FGFR1 copy number loss on chromosome 8p11.23 was an independent predictor of poor outcome in multivariate analysis (HR 3.59, p = 0.053) and predicted the development of distant metastases (p = 0.048).
Conclusion
This study provides novel insights into the biology of triple-negative PABC tumors suggesting that CNAs, particularly 8p loss and TOP2A loss, are involved in the development of breast cancer during pregnancy. FGFR1 loss and TOP2A loss seem to be promising new biomarkers that independently identify subgroups of PABC patients with poor prognosis. These genomic biomarkers may provide clues for personalized therapy.
Collapse
Affiliation(s)
- B B M Suelmann
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Rademaker
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - C van Dooijeweert
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - E van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P J van Diest
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - C B Moelans
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands.
| |
Collapse
|
5
|
Miligy IM, Toss MS, Gorringe KL, Ellis IO, Green AR, Rakha EA. Aurora Kinase A Is an Independent Predictor of Invasive Recurrence in Breast Ductal Carcinoma in situ. Pathobiology 2022; 89:382-392. [PMID: 35533650 DOI: 10.1159/000522244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Aurora Kinase A (AURKA/STK15) has a role in centrosome duplication and is a regulator of mitotic cell proliferation. It is over-expressed in breast cancer and other cancers, however; its role in ductal carcinoma in situ (DCIS) remains to be defined. This study aims to characterize AURKA protein expression in DCIS and evaluate its prognostic significance. METHODS AURKA was assessed immunohistochemically in a large well-characterized cohort of DCIS (n = 776 pure DCIS and 239 DCIS associated with invasive breast cancer [DCIS-mixed]) with long-term follow-up data (median = 105 months) and basic molecular characterization. RESULTS High AURKA expression was observed in 15% of DCIS cases and was associated with features of aggressiveness including larger tumour size, high nuclear grade, hormone receptor negativity, HER2 positivity, and high Ki67 proliferation index. AURKA expression was higher in DCIS associated with invasive breast cancer than in pure DCIS (p < 0.0001). In the DCIS-mixed cohort, the invasive component showed higher AURKA expression than the DCIS component (p < 0.0001). Outcome analysis revealed that AURKA was a predictor of invasive recurrence (p = 0.002). CONCLUSION High AURKA expression is associated with poor prognosis in DCIS and might be a potential marker to predict DCIS progression to invasive disease.
Collapse
Affiliation(s)
- Islam M Miligy
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK, .,Histopathology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt,
| | - Michael S Toss
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Kylie L Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ian O Ellis
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Kim M, Ly SH, Xie Y, Duronio GN, Ford-Roshon D, Hwang JH, Sulahian R, Rennhack JP, So J, Gjoerup O, Talamas JA, Grandclaudon M, Long HW, Doench JG, Sethi NS, Giannakis M, Hahn WC. YAP1 and PRDM14 converge to promote cell survival and tumorigenesis. Dev Cell 2022; 57:212-227.e8. [PMID: 34990589 PMCID: PMC8827663 DOI: 10.1016/j.devcel.2021.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/15/2021] [Accepted: 12/03/2021] [Indexed: 01/26/2023]
Abstract
The transcriptional co-activator YAP1 oncogene is the downstream effector of the Hippo pathway, which regulates tissue homeostasis, organ size, regeneration, and tumorigenesis. Multiple cancers are dependent on sustained expression of YAP1 for cell proliferation, survival, and tumorigenesis, but the molecular basis of this oncogene dependency is not well understood. To identify genes that can functionally substitute for YAP1, we performed a genome-scale genetic rescue screen in YAP1-dependent colon cancer cells expressing an inducible YAP1-specific shRNA. We found that the transcription factor PRDM14 rescued cell proliferation and tumorigenesis upon YAP1 suppression in YAP1-dependent cells, xenografts, and colon cancer organoids. YAP1 and PRDM14 individually activated the transcription of calmodulin 2 (CALM2) and a glucose transporter SLC2A1 upon YAP1 suppression, and CALM2 or SLC2A1 expression was required for the rescue of YAP1 suppression. Together, these findings implicate PRDM14-mediated transcriptional upregulation of CALM2 and SLC2A1 as key components of oncogenic YAP1 signaling and dependency.
Collapse
Affiliation(s)
- Miju Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Seav Huong Ly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gina N Duronio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dane Ford-Roshon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Justin H Hwang
- Masonic Cancer Center and Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Rita Sulahian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan P Rennhack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan So
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ole Gjoerup
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jessica A Talamas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nilay S Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Gao B, Baudis M. Signatures of Discriminative Copy Number Aberrations in 31 Cancer Subtypes. Front Genet 2021; 12:654887. [PMID: 34054918 PMCID: PMC8155688 DOI: 10.3389/fgene.2021.654887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Copy number aberrations (CNA) are one of the most important classes of genomic mutations related to oncogenetic effects. In the past three decades, a vast amount of CNA data has been generated by molecular-cytogenetic and genome sequencing based methods. While this data has been instrumental in the identification of cancer-related genes and promoted research into the relation between CNA and histo-pathologically defined cancer types, the heterogeneity of source data and derived CNV profiles pose great challenges for data integration and comparative analysis. Furthermore, a majority of existing studies have been focused on the association of CNA to pre-selected "driver" genes with limited application to rare drivers and other genomic elements. In this study, we developed a bioinformatics pipeline to integrate a collection of 44,988 high-quality CNA profiles of high diversity. Using a hybrid model of neural networks and attention algorithm, we generated the CNA signatures of 31 cancer subtypes, depicting the uniqueness of their respective CNA landscapes. Finally, we constructed a multi-label classifier to identify the cancer type and the organ of origin from copy number profiling data. The investigation of the signatures suggested common patterns, not only of physiologically related cancer types but also of clinico-pathologically distant cancer types such as different cancers originating from the neural crest. Further experiments of classification models confirmed the effectiveness of the signatures in distinguishing different cancer types and demonstrated their potential in tumor classification.
Collapse
Affiliation(s)
- Bo Gao
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Michael Baudis
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
8
|
Erber R, Rübner M, Davenport S, Hauke S, Beckmann MW, Hartmann A, Häberle L, Gass P, Press MF, Fasching PA. Impact of fibroblast growth factor receptor 1 (FGFR1) amplification on the prognosis of breast cancer patients. Breast Cancer Res Treat 2020; 184:311-324. [PMID: 32852708 PMCID: PMC7599145 DOI: 10.1007/s10549-020-05865-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Various aberrations in the fibroblast growth factor receptor genes FGFR1, FGFR2, and FGFR3 are found in different cancers, including breast cancer (BC). This study analyzed the impact of FGFR amplification on the BC prognosis. METHODS The study included 894 BC patients. The amplification rates of FGFR1, FGFR2, and FGFR3 were evaluated on tissue microarrays using fluorescence in situ hybridization (FISH). Associations between these parameters and prognosis were analyzed using multivariate Cox regression analyses. RESULTS FGFR1 FISH was assessable in 503 samples, FGFR2 FISH in 447, and FGFR3 FISH in 562. The FGFR1 amplification rate was 6.6% (n = 33). Increased FGFR2 copy numbers were seen in 0.9% (n = 4); only one patient had FGFR3 amplification (0.2%). Most patients with FGFR1 amplification had luminal B-like tumors (69.7%, n = 23); only 32.6% (n = 153) of patients without FGFR1 amplification had luminal B-like BC. Other patient and tumor characteristics appeared similar between these two groups. Observed outcome differences between BC patients with and without FGFR1 amplification did not achieve statistical significance; however, there was a trend toward poorer distant metastasis-free survival in BC patients with FGFR1 amplification (HR = 2.08; 95% CI 0.98 to 4.39, P = 0.05). CONCLUSION FGFR1 amplification occurs most frequently in patients with luminal B-like BC. The study showed a nonsignificant correlation with the prognosis, probably due to the small sample size. Further research is therefore needed to address the role of FGFR1 amplifications in early BC patients. FGFR2 and FGFR3 amplifications are rare in patients with primary BC.
Collapse
Affiliation(s)
- Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Krankenhausstrasse 8-10, 91054, Erlangen, Germany.
| | - Matthias Rübner
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Simon Davenport
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Krankenhausstrasse 8-10, 91054, Erlangen, Germany
| | - Lothar Häberle
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Biostatistics Unit, Department of Gynecology and Obstetrics, Erlangen University Hospital, Erlangen, Germany
| | - Paul Gass
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter A Fasching
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
10
|
Igarashi H, Taniguchi H, Nosho K, Ishigami K, Koide H, Mitsuhashi K, Okita K, Takemasa I, Imai K, Nakase H. PRDM14 promotes malignant phenotype and correlates with poor prognosis in colorectal cancer. Clin Transl Oncol 2019; 22:1126-1137. [PMID: 31741141 DOI: 10.1007/s12094-019-02239-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/27/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Emerging evidence suggests that stemness in cancer cells is a cause of drug resistance or metastasis and is an important therapeutic target. PR [positive regulatory domain I-binding factor 1 (PRDI-BF1) and retinoblastoma protein-interacting zinc finger gene (RIZ1)] domain containing 14 (PRDM14), that regulates pluripotency in primordial germ cell, has reported the overexpression and function of stemness in various malignancies, suggesting it as the possible therapeutic target. However, to our knowledge, there have been no reports on the expression and function of PRDM14 in colorectal cancer (CRC). Therefore, we investigated the expression and the role of PRDM14 in CRC. METHODS We performed immunohistochemistry evaluations and assessed PRDM14 expression on 414 primary CRC specimens. Colon cancer cell lines were subjected to functional and stemness assays in vitro and in vivo. RESULTS We found that PRDM14 positive staining exhibited heterogeneity in the CRC primary tumor, especially at the tumor invasion front. The aberrant expression of PRDM14 at the invasion front was associated with lymph node metastasis and disease stage in patients with CRC. Furthermore, the multivariate analysis revealed high PRDM14 expression as an independent prognostic factor in the patients with Stage III CRC. Overexpression of PRDM14 enhanced the invasive, drug-resistant and stem-like properties in colon cancer cells in vitro and tumorigenicity in vivo. CONCLUSION Our findings suggest that PRDM14 is involved in progression and chemoresistance of CRC, and is a potential prognostic biomarker and therapeutic target in the CRC patients.
Collapse
Affiliation(s)
- H Igarashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chou-ku, Sapporo, 060-8543, Japan.
| | - H Taniguchi
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - K Nosho
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chou-ku, Sapporo, 060-8543, Japan
| | - K Ishigami
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chou-ku, Sapporo, 060-8543, Japan
| | - H Koide
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chou-ku, Sapporo, 060-8543, Japan
| | - K Mitsuhashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chou-ku, Sapporo, 060-8543, Japan
| | - K Okita
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - I Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - K Imai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - H Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chou-ku, Sapporo, 060-8543, Japan
| |
Collapse
|
11
|
Tracey LJ, Justice MJ. Off to a Bad Start: Cancer Initiation by Pluripotency Regulator PRDM14. Trends Genet 2019; 35:489-500. [PMID: 31130394 DOI: 10.1016/j.tig.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Despite advances in chemotherapies that improve cancer survival, most patients who relapse succumb to the disease due to the presence of cancer stem cells (CSCs), which are highly chemoresistant. The pluripotency factor PR domain 14 (PRDM14) has a key role in initiating many types of cancer. Normally, PRDM14 uses epigenetic mechanisms to establish and maintain the pluripotency of embryonic cells, and its role in cancer is similar. This important link between cancer and induced pluripotency is a key revelation for how CSCs may form: pluripotency genes, such as PRDM14, can expand stem-like cells as they promote ongoing DNA damage. PRDM14 and its protein-binding partners, the ETO/CBFA2T family, are ideal candidates for eliminating CSCs from relevant cancers, preventing relapse and improving long-term survival.
Collapse
Affiliation(s)
- Lauren J Tracey
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
12
|
Abstract
Endocrine therapy is essential for the treatment of patients with estrogen receptor positive (ER+) breast cancer, however, resistance and the development of metastatic disease is common. Understanding how ER+ breast cancer metastasizes is critical since the major cause of death in breast cancer is metastasis to distant organs. Results from many studies suggest dysregulation of the estrogen receptor alpha gene (ESR1 ) contributes to therapeutic resistance and metastatic biology. This review covers both pre-clinical and clinical evidence on the spectrum of ESR1 alterations including amplification, point mutations, and genomic rearrangement events driving treatment resistance and metastatic potential of ER+ breast cancer. Importantly, we describe how these ESR1 alterations may provide therapeutic opportunities to improve outcomes in patients with lethal, metastatic breast cancer.
Collapse
Affiliation(s)
- Jonathan T Lei
- Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuxu Gou
- Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sinem Seker
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Campone M, Bachelot T, Penault-Llorca F, Pallis A, Agrapart V, Pierrat MJ, Poirot C, Dubois F, Xuereb L, Bossard CJ, Guigal-Stephan N, Lockhart B, Andre F. A phase Ib dose allocation study of oral administration of lucitanib given in combination with fulvestrant in patients with estrogen receptor-positive and FGFR1-amplified or non-amplified metastatic breast cancer. Cancer Chemother Pharmacol 2019; 83:743-753. [DOI: 10.1007/s00280-018-03765-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 11/25/2022]
|
14
|
Martínez-Pérez C, Turnbull AK, Dixon JM. The evolving role of receptors as predictive biomarkers for metastatic breast cancer. Expert Rev Anticancer Ther 2018; 19:121-138. [PMID: 30501540 DOI: 10.1080/14737140.2019.1552138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In breast cancer, estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) are essential biomarkers to predict response to endocrine and anti-HER2 therapies, respectively. In metastatic breast cancer, the use of these receptors and targeted therapies present additional challenges: temporal heterogeneity, together with limited sampling methodologies, hinders receptor status assessment, and the constant evolution of the disease invariably leads to resistance to treatment. Areas covered: This review summarizes the genomic abnormalities in ER and HER2, such as mutations, amplifications, translocations, and alternative splicing, emerging as novel biomarkers that provide an insight into underlying mechanisms of resistance and hold potential predictive value to inform treatment selection. We also describe how liquid biopsies for sampling of circulating markers and ultrasensitive detection technologies have emerged which complement ongoing efforts for biomarker discovery and analysis. Expert commentary: While evidence suggests that genomic aberrations in ER and HER2 could contribute to meeting the pressing need for better predictive biomarkers, efforts need to be made to standardize assessment methods and better understand the resistance mechanisms these markers denote. Taking advantage of emerging technologies, research in upcoming years should include prospective trials incorporating these predictors into the study design to validate their potential clinical value.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - Arran K Turnbull
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - J Michael Dixon
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK.,b Edinburgh Breast Unit , Western General Hospital , Edinburgh , UK
| |
Collapse
|
15
|
Comprehensive Proteomic Profiling–derived Immunohistochemistry-based Prediction Models for BRCA1 and BRCA2 Germline Mutation-related Breast Carcinomas. Am J Surg Pathol 2018; 42:1262-1272. [DOI: 10.1097/pas.0000000000001115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Oria VO, Lopatta P, Schilling O. The pleiotropic roles of ADAM9 in the biology of solid tumors. Cell Mol Life Sci 2018; 75:2291-2301. [PMID: 29550974 PMCID: PMC11105608 DOI: 10.1007/s00018-018-2796-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
A disintegrin and a metalloprotease (ADAM) 9 is a metzincin cell-surface protease involved in several biological processes such as myogenesis, fertilization, cell migration, inflammatory response, proliferation, and cell-cell interactions. ADAM9 has been found over-expressed in several solid tumors entities such as glioma, melanoma, prostate cancer, pancreatic ductal adenocarcinoma, gastric, breast, lung, and liver cancers. Immunohistochemical analyses highlight ADAM9 expression by actual cancer cells and associate its abundant presence with clinicopathological features such as shortened overall survival, poor tumor grade, de-differentiation, therapy resistance, and metastasis formation. In each of these tumors, ADAM9 may contribute to tumor biology via proteolytic or non-proteolytic mechanisms. For example, in liver cancer, ADAM9 has been found to shed MHC class I polypeptide-related sequence A, contributing towards the evasion of tumor immunity. ADAM9 may also contribute to tumor biology in non-proteolytic ways probably through interaction with different integrins. For example, in melanoma, the interaction between ADAM9 and β1 integrins facilitates tumor stroma cross talks, which then promotes invasion and metastasis via the activation of MMP1 and MMP2. In breast cancer, the interaction between β1 integrins on endothelial cells and ADAM9 on tumor cells facilitate tumor cell extravasation and invasion to distant sites. This review summarizes the present knowledge on ADAM9 in solid cancers, and the different mechanisms which it employ to drive tumor progression.
Collapse
Affiliation(s)
- Victor O Oria
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Paul Lopatta
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Ooft ML, van Ipenburg J, van de Loo RJM, de Jong R, Moelans CB, de Bree R, de Herdt MJ, Koljenović S, Baatenburg de Jong R, Hardillo J, Willems SM. Differences in cancer gene copy number alterations between Epstein-Barr virus-positive and Epstein-Barr virus-negative nasopharyngeal carcinoma. Head Neck 2018; 40:1986-1998. [PMID: 29927011 DOI: 10.1002/hed.25195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 01/21/2018] [Accepted: 03/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) treatment is mainly based on clinical staging. We hypothesize that better understanding of the molecular heterogeneity of NPC can aid in better treatment decisions. Therefore, the purpose of this study was to present our exploration of cancer gene copy-number alterations (CNAs) of Epstein-Barr virus (EBV)-positive and EBV-negative NPC. METHODS Multiplex ligation-dependent probe amplification was applied to detect CNAs of 36 cancer genes (n = 103). Correlation between CNAs, clinicopathological features, and survival were examined. RESULTS The CNAs occurred significantly more in EBV-negative NPC, with PIK3CA and MCCC1 (P < .001) gain/amplification occurring more frequently. Gain/amplification of cyclin-L1 (CCNL1) and PTK2 (P < .001) predict worse disease-free survival (DFS) in EBV-positive NPC. CONCLUSION The EBV-positive and EBV-negative NPC show some similarities in cancer gene CNAs suggesting a common pathogenic route but also important differences possibly indicating divergence in oncogenesis. Copy number gain/amplification of CCNL1 and PTK2 are possibly good predictors of survival in EBV-positive NPC.
Collapse
Affiliation(s)
- Marc Lucas Ooft
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jolique van Ipenburg
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rob J M van de Loo
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick de Jong
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martine J de Herdt
- Department of Otorhinolaryngology - Head and Neck Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Senada Koljenović
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R Baatenburg de Jong
- Department of Otorhinolaryngology - Head and Neck Surgery, Erasmus Medical Center Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Hardillo
- Department of Otorhinolaryngology - Head and Neck Surgery, Erasmus Medical Center Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Stefan Martin Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Moelans CB, van Maldegem CMG, van der Wall E, van Diest PJ. Copy number changes at 8p11-12 predict adverse clinical outcome and chemo- and radiotherapy response in breast cancer. Oncotarget 2018; 9:17078-17092. [PMID: 29682206 PMCID: PMC5908307 DOI: 10.18632/oncotarget.24904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/12/2018] [Indexed: 01/15/2023] Open
Abstract
Purpose The short arm of chromosome 8 (8p) is a frequent target of loss of heterozygosity (LOH) in cancer, and 8p LOH is commonly associated with a more aggressive tumor phenotype. The 8p11-12 region is a recurrent breakpoint area characterized by a sharp decrease in gains/amplifications and increase in allelic loss towards 8pter. However, the clustering of genomic aberrations in this region, even in the absence of proximal amplifications or distal LOH, suggests that the 8p11-12 region could play a pivotal role in oncogenesis. Results Loss in the FGFR1 and ZNF703-containing 8p11 region was seen in 25% of patients, correlated with lower mRNA expression levels and independently predicted poor survival, particularly in systemic treatment-naïve patients and even without adjacent 8p12 loss. Amplification of FGFR1 at 8p11 and loss of DUSP26 and UNC5D, located in the 8p12 breakpoint region, independently predicted worse event free survival. Gains in the 8p12 region encompassing WRN, NRG1, DUSP26 and UNC5D, seen in 20-30% of patients, were associated with higher mRNA expression and independently predicted chemotherapy sensitivity. Losses at 8p12 independently predicted radiotherapy resistance. Material and methods Multiplex ligation-dependent probe amplification was used to investigate copy number aberrations at 8p11-12 in 234 female breast cancers. Alterations were correlated with clinicopathologic characteristics, survival and response to therapy. Results were validated using public METABRIC data. Conclusion Allelic loss and amplification in the 8p11-12 breakpoint region predict poor survival and chemo- and radiotherapy response. Assessment of 8p11-12 gene copy number status seems to augment existing prognostic and predictive tools.
Collapse
Affiliation(s)
- Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Khandia R, Pattnaik B, Rajukumar K, Pateriya A, Bhatia S, Murugkar H, Prakash A, Pradhan HK, Dhama K, Munjal A, Joshi SK. Anti-proliferative role of recombinant lethal toxin of Bacillus anthracis on primary mammary ductal carcinoma cells revealing its therapeutic potential. Oncotarget 2018; 8:35835-35847. [PMID: 28415766 PMCID: PMC5482621 DOI: 10.18632/oncotarget.16214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Bacillus anthracis secretes three secretary proteins; lethal factor (LF), protective antigen (PA) and edema factor (EF). The LF has ability to check proliferation of mammary tumors, chiefly depending on mitogen activated protein kinase (MAPK) signaling pathway. Evaluation of therapeutic potential of recombinant LF (rLF), recombinant PA (rPA) and lethal toxin (rLF + rPA = LeTx) on the primary mammary ductal carcinoma cells revealed significant (p < 0.01) reduction in proliferation of tumor cells with mean inhibition indices of 28.0 ± 1.37% and 19.6 ± 1.47% respectively. However, treatment with rPA alone had no significant anti-proliferative effect as evident by low mean inhibition index of 3.4 ± 3.87%. The higher inhibition index observed for rLF alone as compared to LeTx is contrary to the existing knowledge on LF, which explains the requirement of PA dependent endocytosis for its enzymatic activity. Therefore, the plausible existence of PA independent mode of action of LF including direct receptor mediated endocytosis or modulation of signal transduction cascade via unknown means is hypothesized. In silico protein docking analysis of other cellular receptors for any plausibility to play the role of receptor for LF revealed c-Met receptor showing strongest affinity for LF (H bond = 19; Free energy = −773.96), followed by nerve growth factor receptor (NGFR) and human epidermal growth factor receptor (HER)-1. The study summarizes the use of rLF or LeTx as therapeutic molecule against primary mammary ductal carcinoma cells and also the c-Met as potential alternative receptor for LF to mediate and modulate PA independent signal transduction.
Collapse
Affiliation(s)
- Rekha Khandia
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India.,Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Bramhadev Pattnaik
- Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, India
| | | | - Atul Pateriya
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Harshad Murugkar
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Hare Krishna Pradhan
- Ex-Avian Influenza National Consultant, Indian Office of WHO Consultant, Bhartiya Kala Kendra, New Delhi, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly Uttar Pradesh, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Sunil K Joshi
- Cellular Immunology Laboratory, Frank Reidy Research Center of Bioelectrics, College of Health Sciences, Old Dominion University Norfolk, VA USA
| |
Collapse
|
20
|
Rizzolo P, Navazio AS, Silvestri V, Valentini V, Zelli V, Zanna I, Masala G, Bianchi S, Scarnò M, Tommasi S, Palli D, Ottini L. Somatic alterations of targetable oncogenes are frequently observed in BRCA1/2 mutation negative male breast cancers. Oncotarget 2018; 7:74097-74106. [PMID: 27765917 PMCID: PMC5342038 DOI: 10.18632/oncotarget.12272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Male breast cancer (MBC) is a rare disease. Due to its rarity, MBC research and clinical approach are mostly based upon data derived from its largely known female counterpart. We aimed at investigating whether MBC cases harbor somatic alterations of genes known as prognostic biomarkers and molecular therapeutic targets in female breast cancer. We examined 103 MBC cases, all characterized for germ-line BRCA1/2 mutations, for somatic alterations in PIK3CA, EGFR, ESR1 and CCND1 genes. Pathogenic mutations of PIK3CA were detected in 2% of MBCs. No pathogenic mutations were identified in ESR1 and EGFR. Gene copy number variations (CNVs) analysis showed amplification of PIK3CA in 8.1%, EGFR in 6.8% and CCND1 in 16% of MBCs, whereas deletion of ESR1 was detected in 15% of MBCs. Somatic mutations and gene amplification were found only in BRCA1/2 mutation negative MBCs. Significant associations emerged between EGFR amplification and large tumor size (T4), ER-negative and HER2-positive status, between CCND1 amplification and HER2-positive and MIB1-positive status, and between ESR1 deletion and ER-negative status. Our results show that amplification of targetable oncogenes is frequent in BRCA1/2 mutation negative MBCs and may identify MBC subsets characterized by aggressive phenotype that may benefit from potential targeted therapeutic approaches.
Collapse
Affiliation(s)
- Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Sara Navazio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ines Zanna
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
| | - Marco Scarnò
- CINECA (Inter University Consortium for Super Computing), Rome, Italy
| | - Stefania Tommasi
- Molecular Genetics Laboratory, Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Vermeulen MA, Doebar SC, van Deurzen CHM, Martens JWM, van Diest PJ, Moelans CB. Copy number profiling of oncogenes in ductal carcinoma in situ of the male breast. Endocr Relat Cancer 2018; 25:173-184. [PMID: 29203614 DOI: 10.1530/erc-17-0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Characterizing male breast cancer (BC) and unraveling male breast carcinogenesis is challenging because of the rarity of this disease. We investigated copy number status of 22 BC-related genes in 18 cases of pure ductal carcinoma in situ (DCIS) and in 49 cases of invasive carcinoma (IC) with adjacent DCIS (DCIS-AIC) in males using multiplex ligation-dependent probe amplification (MLPA). Results were compared to female BC and correlated with survival. Overall, copy number ratio and aberration frequency including all 22 genes showed no significant difference between the 3 groups. Individual unpaired analysis revealed a significantly higher MTDH copy number ratio in IC compared to DCIS-AIC and pure DCIS (P = 0.009 and P = 0.038, respectively). ADAM9 showed a significantly lower copy number aberration frequency in male BC, compared to female BC (P = 0.020). In DCIS-AIC, MTDH, CPD, CDC6 and TOP2A showed a lower frequency of copy number increase in males compared to females (P < 0.001 for all 4 genes). In IC, CPD gain and CCNE1 gain were independent predictors of poor overall survival. In conclusion, male DCIS and IC showed a similar copy number profile for 21 out of 22 interrogated BC-related genes, illustrating their clonal relation and the genetically advanced state of male DCIS. MTDH showed a higher copy number ratio in IC compared to adjacent and pure DCIS and may therefore play a role in male breast carcinogenesis. Differences were detected between male and female DCIS for 4 genes pointing to differences in breast carcinogenesis between the sexes.
Collapse
Affiliation(s)
- Marijn A Vermeulen
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shusma C Doebar
- Department of PathologyErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carolien H M van Deurzen
- Department of PathologyErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- BOOG Study Center/Dutch Breast Cancer Research GroupAmsterdam, The Netherlands
| | - John W M Martens
- BOOG Study Center/Dutch Breast Cancer Research GroupAmsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics NetherlandsErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Ye L, Guo L, He Z, Wang X, Lin C, Zhang X, Wu S, Bao Y, Yang Q, Song L, Lin H. Upregulation of E2F8 promotes cell proliferation and tumorigenicity in breast cancer by modulating G1/S phase transition. Oncotarget 2018; 7:23757-71. [PMID: 26992224 PMCID: PMC5029661 DOI: 10.18632/oncotarget.8121] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/25/2016] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors are involved in cell cycle regulation and synthesis of DNA in mammalian cells, and simultaneously play important roles in the development and progression of cancer when dysregulated. E2F8, a novel identified E2F family member, was found to be associated with the progression of several human cancers; however, the biological role and clinical significance of E2F8 in breast cancer remain to be further elucidated. Herein, we report that E2F8 is robustly elevated in breast cancer cell lines and clinical breast cancer tissue samples, respectively. The high expression level of E2F8 significantly correlates with clinical progression (P = 0.001), poor patient survival (P < 0.001) and a high Ki67 staining index (P = 0.008) in 187 human breast cancer specimens. Furthermore, we find that overexpressing E2F8 promotes, whereas silencing E2F8 suppresses, the proliferation and tumorigenicity of breast cancer cells both in vitro and in vivo. We further demonstrate that E2F8 transcriptionally upregulates CCNE1 and CCNE2 via directly interacting with their respective gene promoter, which accelerates the transition of G1 to S phase of breast cancer cells. Taken together, these findings uncover a novel biologic role and regulatory mechanism of E2F8 responsible for the progression of breast cancer, indicating E2F8 may represent a novel prognostic biomarker and therapeutic target against breast cancer.
Collapse
Affiliation(s)
- Liping Ye
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Zhenyu He
- Department of Radiation Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Xi Wang
- Department of Breast Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Xin Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Shu Wu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Yong Bao
- Department of Radiation Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Qi Yang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Huanxin Lin
- Department of Radiation Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| |
Collapse
|
23
|
Luo J, Liu S, Leung S, Gru AA, Tao Y, Hoog J, Ho J, Davies SR, Allred DC, Salavaggione AL, Snider J, Mardis ER, Nielsen TO, Ellis MJ. An mRNA Gene Expression-Based Signature to Identify FGFR1-Amplified Estrogen Receptor-Positive Breast Tumors. J Mol Diagn 2017; 19:147-161. [PMID: 27993329 DOI: 10.1016/j.jmoldx.2016.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) amplification drives poor prognosis and is an emerging therapeutic target. We sought to construct a multigene mRNA expression signature to efficiently identify FGFR1-amplified estrogen receptor-positive (ER+) breast tumors. Five independent breast tumor series were analyzed. Genes discriminative for FGFR1 amplification were screened transcriptome-wide by receiver operating characteristic analyses. The METABRIC series was leveraged to construct/evaluate four approaches to signature composition. A locked-down signature was validated with 651 ER+ formalin-fixed, paraffin-embedded tissues (the University of British Columbia-tamoxifen cohort). A NanoString nCounter assay was designed to profile selected genes. For a gold standard, FGFR1 amplification was determined by fluorescent in situ hybridization (FISH). Prognostic effects of FGFR1 amplification were assessed by survival analyses. Eight 8p11-12 genes (ASH2L, BAG4, BRF2, DDHD2, LSM1, PROSC, RAB11FIP1, and WHSC1L1) together with the a priori selected FGFR1 gene, highly discriminated FGFR1 amplification (area under the receiver operating characteristic curve ≥0.82, all genes and all cohorts). The nine-gene signature Call-FGFR1-amp accurately identified FGFR1 FISH-amplified ER+ tumors in the University of British Columbia-tamoxifen cohort (specificity, 0.94; sensitivity, 0.96) and exhibited prognostic effects (disease-specific survival hazard ratio, 1.57; 95% CI, 1.14-2.16; P = 0.005). Call-FGFR1-amp includes several understudied 8p11-12 amplicon-driven oncogenes and accurately identifies FGFR1-amplified ER+ breast tumors. Our study demonstrates an efficient approach to diagnosing rare amplified therapeutic targets with FISH as a confirmatory assay.
Collapse
Affiliation(s)
- Jingqin Luo
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Surgery, the Siteman Cancer Center Biostatistics Shared Resource, Washington University School of Medicine, St. Louis, Missouri
| | - Shuzhen Liu
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alejandro A Gru
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Yu Tao
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Surgery, the Siteman Cancer Center Biostatistics Shared Resource, Washington University School of Medicine, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Julie Ho
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sherri R Davies
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - D Craig Allred
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrea L Salavaggione
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline Snider
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor School of Medicine, Houston, Texas.
| |
Collapse
|
24
|
Physical Confirmation and Comparative Genomics of the Rat Mammary carcinoma susceptibility 3 Quantitative Trait Locus. G3-GENES GENOMES GENETICS 2017; 7:1767-1773. [PMID: 28391240 PMCID: PMC5473756 DOI: 10.1534/g3.117.039388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human breast and rat mammary cancer susceptibility are complex phenotypes where complete sets of risk associated loci remain to be identified for both species. We tested multiple congenic rat strains to physically confirm and positionally map rat Mammary carcinoma susceptibility 3 (Mcs3)-a mammary cancer resistance allele previously predicted at Rattus norvegicus chromosome 1 (RNO1). The mammary cancer susceptible Wistar Furth (WF) strain was the recipient, and the mammary cancer resistant Copenhagen (Cop) strain was the RNO1-segment donor for congenics. Inbred WF females averaged 6.3 carcinogen-induced mammary carcinomas per rat. Two WF.Cop congenic strains averaged 2.8 and 3.4 mammary carcinomas per rat, which confirmed Mcs3 as an independently acting allele. Two other WF.Cop congenic strains averaged 6.6 and 8.1 mammary carcinomas per rat, and, thus, did not contain Mcs3 Rat Mcs3 was delimited to 27.8 Mb of RNO1 from rs8149408 to rs105131702 (RNO1:143700228-171517317 of RGSC 6.0/rn6). Human genetic variants with p values for association to breast cancer risk below 10-7 had not been reported for Mcs3 orthologous loci; however, human variants located in Mcs3-orthologous regions with potential association to risk (10-7 < p < 10-3) were listed in some population-based studies. Further, rat Mcs3 contains sequence orthologous to human 11q13/14-a region frequently amplified in female breast cancer. We conclude that Mcs3 is an independently acting mammary carcinoma resistance allele. Human population-based, genome-targeted association studies interrogating Mcs3 orthologous loci may yield novel breast cancer risk associated variants and genes.
Collapse
|
25
|
Ghaffari K, Hashemi M, Ebrahimi E, Shirkoohi R. BIRC5 Genomic Copy Number Variation in Early-Onset Breast Cancer. IRANIAN BIOMEDICAL JOURNAL 2017; 20:241-5. [PMID: 27372966 PMCID: PMC4983680 DOI: 10.7508/ibj.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) gene is an inhibitor of apoptosis that expresses in human embryonic tissues but it is absent in most healthy adult tissues. The copy number of BIRC5 has been indicated to be highly increased in tumor tissues; however, its association with the age of onset in breast cancer is not well understood. Methods: Forty tumor tissues of breast cancer were obtained from Tumor Bank of Cancer Institute, Imam Khomeini Hospital, Tehran, Iran. BIRC5 gene copy number variation (CNV) was evaluated using Multiplex Ligation-dependent Probe Amplification (MLPA) and then compared with the age of onset for each patient. Results: BIRC5 amplification was seen in 17.5% of cases. Also, a significant association was observed between BIRC5 gene amplification and individuals under 40 years of age (P=0.04). Conclusion: BIRC5 gene has the potential to be a marker for the detection and prognosis of cancer at an early age.
Collapse
Affiliation(s)
- Kimia Ghaffari
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Elmira Ebrahimi
- Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Lu Y, Wan Z, Zhang X, Zhong X, Rui L, Li Z. PRDM14 inhibits 293T cell proliferation by influencing the G1/S phase transition. Gene 2016; 595:180-186. [DOI: 10.1016/j.gene.2016.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022]
|
27
|
Desai A, Adjei AA. FGFR Signaling as a Target for Lung Cancer Therapy. J Thorac Oncol 2016; 11:9-20. [PMID: 26762735 DOI: 10.1016/j.jtho.2015.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/18/2015] [Accepted: 08/31/2015] [Indexed: 01/09/2023]
Abstract
Lung cancer is the leading cause of cancer-related death in developed countries. Recently, molecular targeted therapies have shown promising results in the management of lung cancer. These therapies require a clear understanding of the relevant pathways that drive carcinogenesis and maintenance of the malignant phenotype. The fibroblast growth factor receptor (FGFR) signaling axis is one such pathway that plays a central role in normal cellular function. Alterations in this pathway have been found in many cancers. In this review article, we focus on the role of this pathway in lung cancer. We present the molecular structure of FGFR, the interaction of the receptor with its ligands (the fibroblast growth factors), its downstream signaling, and aberrations in the FGFR pathway. We also discuss clinical trials involving selective and multikinase FGFR inhibitors in lung cancer treatment.
Collapse
Affiliation(s)
- Arpita Desai
- Department of Medicine, State University of New York at Buffalo, NY, USA
| | - Alex A Adjei
- Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
28
|
Tabarestani S, Ghaderian SMH, Rezvani H. Detection of Gene Amplification by Multiplex Ligation-Dependent Probe Amplification in Comparison with In Situ Hybridization and Immunohistochemistry. Asian Pac J Cancer Prev 2016; 16:7997-8002. [PMID: 26625832 DOI: 10.7314/apjcp.2015.16.17.7997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gene amplification is an important mechanism in the development and progression of cancer. Currently, gene amplification status is generally determined by in situ hybridization (ISH). Multiplex ligation-dependent probe amplification (MLPA) is a PCR-based method that allows copy number detection of up to 50 nucleic acid sequences in one reaction. The aim of the present study was to compare results for HER2, CCND1, MYC and ESR1 gene amplification detected by MLPA with fluorescent in situ hybridization (FISH) and chromogenic in situ hybridization (CISH) as clinically approved methods. Tissue samples of 170 invasive breast cancers were collected. All were ER positive. Tissue samples had previously been tested for HER2 using immunohistochemistry. Amplification of the selected genes were assessed using MLPA, FISH and CISH and results were compared. HER2 MLPA and ISH results were also compared with HER2 immunohistochemistry (IHC) which detects protein overexpression. Amplification of HER2, CCND1, MYC and ESR1 by MLPA were found in 9%, 19%, 20% and 2% of samples, respectively. Amplification of HER2, CCND1, MYC and ESR1 by FISH was noted in 7%, 16%, 16% and 1% of samples, respectively. A high level of concordance was found between MLPA/ FISH (HER2: 88%, CCND1: 88%, MYC: 86%, ESR1: 92%) and MLPA/ CISH (HER2: 84%). Of all IHC 3+ cases, 91% were amplified by MLPA. In IHC 2+ group, 31% were MLPA amplified. In IHC 1+ group, 2% were MLPA amplified. None of the IHC 0 cases were amplified by MLPA. Our results indicate that there is a good correlation between MLPA, IHC and ISH results. Therefore, MLPA can serve as an alternative to ISH for detection of gene amplification.
Collapse
Affiliation(s)
- Sanaz Tabarestani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail :
| | | | | |
Collapse
|
29
|
Dysregulation of histone methyltransferases in breast cancer - Opportunities for new targeted therapies? Mol Oncol 2016; 10:1497-1515. [PMID: 27717710 DOI: 10.1016/j.molonc.2016.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/24/2023] Open
Abstract
Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues on histone tails and non-histone targets. These important post-translational modifications are exquisitely regulated and affect chromatin compaction and transcriptional programs leading to diverse biological outcomes. There is accumulating evidence that genetic alterations of several HMTs impinge on oncogenic or tumor-suppressor functions and influence both cancer initiation and progression. HMTs therefore represent an opportunity for therapeutic targeting in those patients with tumors in which HMTs are dysregulated, to reverse the histone marks and transcriptional programs associated with aggressive tumor behavior. In this review, we describe the known histone methyltransferases and their emerging roles in breast cancer tumorigenesis.
Collapse
|
30
|
Navazio AS, Rizzolo P, Silvestri V, Valentini V, Zelli V, Zanna I, Masala G, Bianchi S, Tommasi S, Palli D, Ottini L. EMSY copy number variation in male breast cancers characterized for BRCA1 and BRCA2 mutations. Breast Cancer Res Treat 2016; 160:181-186. [PMID: 27628328 DOI: 10.1007/s10549-016-3976-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Male breast cancer (MBC) is a rare disease that shares some similarities with female breast cancer (FBC). Like FBC, genetic susceptibility to MBC can be referred to mutations in BRCA1 and, particularly, BRCA2 genes. However, only about 10 % of MBCs are caused by BRCA1/2 germ-line mutations, while the largest part are sporadic cancers and may derive from somatic alterations. EMSY, a BRCA2 inactivating gene, emerged as a candidate gene involved in the pathogenesis of sporadic FBC, and its amplification was suggested to be the somatic counterpart of BRCA2 mutations. Considering the relevant role of BRCA2 in MBC, we aimed at investigating the role of EMSY gene copy number variations in male breast tumors. METHODS EMSY copy number variations were analyzed by quantitative real-time PCR with TaqMan probes in a selected series of 75 MBCs, characterized for BRCA1/2 mutations. RESULTS We reported EMSY amplification in 34.7 % of MBCs. A significant association emerged between EMSY amplification and BRCA1/2 mutations (p = 0.03). We identified two amplification subgroups characterized by low and high amplification levels, with BRCA2-related tumors mostly showing low EMSY amplification. CONCLUSIONS Our results show a high frequency of EMSY amplification in MBC, thus pointing to a role of EMSY in the pathogenesis of this disease. EMSY amplification may be a new feature that might uncover underlying molecular pathways of MBCs and may allow for the identification of MBC subgroups with potential clinical implication for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Anna Sara Navazio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Ines Zanna
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
| | - Stefania Tommasi
- Molecular Genetics Laboratory, Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
31
|
Carofino BL, Ayanga B, Tracey LJ, Brooke-Bisschop T, Justice MJ. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open 2016; 5:645-53. [PMID: 27106930 PMCID: PMC4874358 DOI: 10.1242/bio.017699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PRDM14 is an epigenetic regulator known for maintaining embryonic stem cell identity and resetting potency in primordial germ cells. However, hematopoietic expression of Prdm14 at supraphysiological levels results in fully penetrant and rapid-onset T-cell acute lymphoblastic leukemia (T-ALL) in the mouse. Here, we show that PRDM14-induced T-ALLs are driven by NOTCH1, a frequently mutated driver of human T-ALL. Notch1 is activated in this murine model via RAG-dependent promoter deletions and subsequent production of truncated, ligand-independent protein from downstream regions of the Notch1 locus. These T-ALLs also have focal changes in H3K4me3 deposition at the Notch1 locus and global increases in both H3K4me1 and H3K4me3. Using a PRDM14-FLAG mouse model, we show that PRDM14 binds within an intron of Notch1 prior to leukemia development. Our data support the idea that PRDM14 binding promotes a chromatin state that allows access of the RAG recombinase complex to cryptic RAG signal sequences embedded at the Notch1 locus. Indeed, breeding into a RAG recombination-deficient background abrogates T-ALL development and prevents Notch1 deletions, while allowing for transient hematopoietic stem cell (HSC)-like pre-leukemia cell expansion. Together, our data suggest that PRDM14 expands a progenitor cell population while promoting a permissive epigenetic state for the creation of driver mutations (here, in Notch1), enabling cancer development through the misappropriation of endogenous cellular DNA recombination machinery. Summary: PRDM14 promotes an epigenetic state that facilitates RAG-dependent Notch1 driver mutations, coupling progenitor cell expansion with genomic instability to produce T-ALL with shorter latency than other NOTCH1-driven mouse models.
Collapse
Affiliation(s)
- Brandi L Carofino
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Bernard Ayanga
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Lauren J Tracey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8 Canada Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| | - Travis Brooke-Bisschop
- Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| | - Monica J Justice
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8 Canada Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| |
Collapse
|
32
|
Al-Janabi S, Horstman A, van Slooten HJ, Kuijpers C, Lai-A-Fat C, van Diest PJ, Jiwa M. Validity of whole slide images for scoring HER2 chromogenic in situ hybridisation in breast cancer. J Clin Pathol 2016; 69:992-997. [DOI: 10.1136/jclinpath-2016-203644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/14/2016] [Indexed: 11/04/2022]
|
33
|
Abstract
Histone posttranslational modifications represent a versatile set of epigenetic marks involved not only in dynamic cellular processes, such as transcription and DNA repair, but also in the stable maintenance of repressive chromatin. In this article, we review many of the key and newly identified histone modifications known to be deregulated in cancer and how this impacts function. The latter part of the article addresses the challenges and current status of the epigenetic drug development process as it applies to cancer therapeutics.
Collapse
Affiliation(s)
- James E Audia
- Constellation Pharmaceuticals, Cambridge, Massachusetts 02142
| | - Robert M Campbell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285
| |
Collapse
|
34
|
Tomiguchi M, Yamamoto Y, Yamamoto-Ibusuki M, Goto-Yamaguchi L, Fujiki Y, Fujiwara S, Sueta A, Hayashi M, Takeshita T, Inao T, Iwase H. Fibroblast growth factor receptor-1 protein expression is associated with prognosis in estrogen receptor-positive/human epidermal growth factor receptor-2-negative primary breast cancer. Cancer Sci 2016; 107:491-8. [PMID: 26801869 PMCID: PMC4832856 DOI: 10.1111/cas.12897] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 01/14/2023] Open
Abstract
Recently, research into the development of new targeted therapies has focused on specific genetic alterations to create advanced, more personalized treatment. One of the target genes, fibroblast growth factor receptor‐1 (FGFR1), has been reported to be amplified in estrogen receptor (ER)‐positive subtype breast cancer, and is considered one possible mechanism of endocrine resistance through cross‐talk between ER and growth factor receptor signaling. We performed a comprehensive analysis of FGFR1 at the levels of gene copy number, transcript and protein expression, and examined the relationships between FGFR1 status and clinicopathological parameters, including prognosis in 307 ER‐positive/HER2‐negative primary breast cancer patients treated with standard care at our institute. Most notably, a high level of FGFR1 protein expression was observed in 85 patients (27.7%), and was positively associated with invasive tumor size (P = 0.039). Furthermore, univariate analysis revealed that high FGFR1 protein expression was significantly correlated with poor relapse‐free survival rate (P = 0.0019, HR: 2.63, 95% confidence interval: 1.17–5.98), and showed a tendency towards an increase in recurrent events if the observation period extended beyond the 5 years of the standard endocrine treatment term. FGFR1 gain/amplification was found in 43 (14.0%) patients, which was only associated with higher nuclear grade (P = 0.010). No correlation was found between FGFR1 mRNA expression levels and any clinicopathological factors. Overall, the level of FGFR1 protein expression may be a biomarker of ER‐positive/HER2‐negative primary breast cancer with possible resistance to standard treatment, and may be a useful tool to identify more specific patients who would benefit from FGFR‐1 targeted therapy.
Collapse
Affiliation(s)
- Mai Tomiguchi
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Molecular-Targeting Therapy for Breast Cancer, Kumamoto University Hospital, Kumamoto, Japan
| | - Lisa Goto-Yamaguchi
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Fujiki
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Fujiwara
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Aiko Sueta
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuhiro Hayashi
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Takeshita
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Touko Inao
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Iwase
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Cyclin E amplification, over-expression, and relapse-free survival in HER-2-positive primary breast cancer. Tumour Biol 2016; 37:9813-23. [PMID: 26810187 DOI: 10.1007/s13277-016-4870-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/14/2016] [Indexed: 12/25/2022] Open
Abstract
Cyclin E is a well-characterized cell cycle regulator and an amplified oncogene in breast cancer. Over-expression of cyclin E has generally been associated with poor survival. Recent studies have shown an interaction between HER-2 (ERBB2) and cyclin E, but the exact mechanism is unknown. Interestingly, cyclin E over-expression has been associated with trastuzumab resistance. We studied cyclin E over-expression, CCNE1 amplification, and relapse-free survival in HER-2-positive primary breast cancers treated with and without trastuzumab therapy. Formalin-fixed paraffin-embedded tissue samples from 202 HER-2-positive breast carcinomas were studied. Expression levels of cyclin E and proliferation marker Ki-67 were determined using immunohistochemistry. Chromogenic in situ hybridization (CISH) with a gene-specific bacterial artificial chromosome (BAC) probe was used to analyze presence of CCNE1 amplification. Majority of HER-2-positive breast carcinomas exhibited nuclear staining for cyclin E protein. Cyclin E was highly expressed (≥50 % cells) in 37 % of cases. Incidence of CCNE1 amplification (≥6 gene copies/cell or clusters) was 8 %. Cyclin E amplification and over-expression were strongly associated with each other, grade, hormone receptors, and Ki-67. Neither high cyclin E expression nor CCNE1 amplification was associated with relapse-free survival (RFS) irrespective of short-term (9-week regimen) adjuvant trastuzumab therapy. These results confirm cyclin E and HER-2 gene co-amplification in a fraction of HER-2-positive breast cancers. Cyclin E is frequently over-expressed but appears to have limited value as a prognostic or predictive factor in HER-2-positive breast cancer regardless of trastuzumab therapy.
Collapse
|
36
|
Clinically advanced and metastatic pure mucinous carcinoma of the breast: a comprehensive genomic profiling study. Breast Cancer Res Treat 2016; 155:405-13. [PMID: 26762307 DOI: 10.1007/s10549-016-3682-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Pure mucinous breast carcinoma (pmucBC) is a distinctive variant of breast cancer (BC) featuring an excellent overall prognosis. However, on rare occasions, pmucBC pursues an aggressive clinical course. We queried whether comprehensive genomic profiling (CGP) would uncover clinically relevant genomic alterations (CRGA) that could lead to targeted therapy treatment for patients with an advanced and metastatic form of pmucBC. METHODS From a series of 51,238 total cancer samples, which included 5605 cases of clinically advanced BC and 22 cases of stage IV pmucBC, DNA was extracted from 40 microns of FFPE sections. Comprehensive genomic profiling was performed using a hybrid-capture, adaptor ligation-based next generation sequencing assay to a mean coverage depth of 564X. The results were analyzed for all classes of genomic alterations (GA) including base substitutions, insertions and deletions, select rearrangements, and copy number changes. Clinically relevant genomic alterations were defined as those indicating possible treatment with anti-cancer drugs on the market or in registered clinical trials. RESULTS Samples were obtained from breast (11), lymph nodes (3), chest wall (2), liver (2), soft tissue (2), bone (1), and pleura (1). The median age of the 22 pmucBC patients was 57 years (range 32-79 years). Three pmucBCs were grade 1, 17 were grade 2, and 2 were grade 3. Twenty-one (95 %) pmucBC were ER+, 18 (82 %) were PR+, and 3 (14 %) were HER2+ by IHC and/or FISH. A total of 132 GA were identified (6.0 GA per tumor), including 53 CRGA, for a mean of 2.4 GA per tumor. Amplification of FGFR1 or ZNF703, located within the same amplicon, was found in 8 of 22 cases (36 %). This enrichment of FGFR1 amplification in 36 % of pmucBC versus 11 % of non-mucinous ER+ BC (601 cases) was significant (p < 0.005). Other frequently altered genes of interest in pmucBC were CCND1 and the FGF3/FGF4/FGF19 amplicon (27 %), often co-amplified together. ERBB2/HER2 alterations were identified in 5 pmucBC (23 %): ERBB2 amplification was found in 3 of 3 cases (100 %) that were HER2+ by IHC and/or FISH; 1 pmucBC was negative for HER2 overexpression by IHC, but positive for amplification by CGP; and 2 pmucBC harbored the ERBB2 substitutions D769Y and V777L (one sample also featured ERBB2 amplification). The enrichment of ERBB2 GA in metastatic pmucBC versus non-metastatic primary pmucBC was significant (p = 0.03). CRGA were also found in 20 additional genes including PIK3CA (5), BRCA1 (1), TSC2 (1), STK11 (1), AKT3 (1), and ESR1 (1). CONCLUSIONS Metastatic pmucBC is a distinct form of breast cancer that features a relatively high frequency of CRGA, including a significant enrichment of FGFR1 alterations and a high frequency of ERBB2 alterations when compared with non-metastatic pmucBC. These findings suggest that CGP can identify a variety of known and emerging therapy targets that have the potential to improve outcomes for patients with clinically advanced and metastatic forms of this disease.
Collapse
|
37
|
Lacle MM, Moelans CB, Kornegoor R, van der Pol C, Witkamp AJ, van der Wall E, Rueschoff J, Buerger H, van Diest PJ. Chromosome 17 copy number changes in male breast cancer. Cell Oncol (Dordr) 2015; 38:237-45. [PMID: 25906114 PMCID: PMC4445249 DOI: 10.1007/s13402-015-0227-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Overall, HER2-amplified female breast cancer (FBC) is associated with a high grade, an aggressive phenotype and a poor prognosis. In male breast cancer (MBC) amplification of HER2, located on chromosome 17, occurs at a lower frequency than in FBC, where it is part of complex rearrangements. So far, only few studies have addressed the occurrence of chromosome 17 alterations in small MBC cohorts. METHODS Multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH) were used to detect and characterize copy number changes on chromosome 17 in a cohort of 139 MBC. The results obtained were compared to those in FBC, and were correlated with clinicopathological features and patient outcome data. RESULTS We observed a lower frequency of chromosome 17 copy number changes with less complex rearrangement patterns in MBC compared to FBC. Chromosome 17 changes in MBC included gains of 17q and losses of 17p. Whole chromosome 17 polyploidies were not encountered. Two recurrent chromosome 17 amplicons were detected: on 17q12 (encompassing the NEUROD2, HER2, GRB7 and IKZF3 gens) and on 17q23.1 (encompassing the MIR21 and RPS6KB1 genes). Whole arm copy number gains of 17q were associated with decreased 5 year survival rates (p = 0.010). Amplification of HER2 was associated with a high tumor grade, but did not predict patient survival. Although copy number gains of HER2 and NEUROD2 were associated with a high tumor grade, a high mitotic count and a decreased 5 year survival rate (p = 0.015), only tumor size and NEUROD2 copy number gains emerged as independent prognostic factors. CONCLUSIONS In MBC chromosome 17 shows less complex rearrangements and fewer copy number changes compared to FBC. Frequent gains of 17q, encompassing two distinct amplicons, and losses of 17p were observed, but no whole chromosome 17 polyploidies. Only NEUROD2 gains seem to have an independent prognostic impact. These results suggest different roles of chromosome 17 aberrations in male versus female breast carcinogenesis.
Collapse
Affiliation(s)
- Miangela M. Lacle
- />Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Cathy B. Moelans
- />Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Robert Kornegoor
- />Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Carmen van der Pol
- />Department of Surgery, University Medical Center, Utrecht, The Netherlands
| | - Arjen J. Witkamp
- />Department of Surgery, University Medical Center, Utrecht, The Netherlands
| | - Elsken van der Wall
- />Department of Division of Oncology, University Medical Center, Utrecht, The Netherlands
| | | | - Horst Buerger
- />Institute of Pathology Paderborn/Höxter and Brustzentrum, Paderborn, Germany
| | - Paul J. van Diest
- />Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
38
|
Wang T, Amemiya Y, Henry P, Seth A, Hanna W, Hsieh ET. Multiplex Ligation-dependent Probe Amplification Can Clarify HER2 Status in Gastric Cancers with "Polysomy 17". J Cancer 2015; 6:403-8. [PMID: 25874002 PMCID: PMC4392047 DOI: 10.7150/jca.11424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/12/2015] [Indexed: 01/29/2023] Open
Abstract
Therapy with trastuzumab confers a survival benefit in HER2 positive advanced gastric and gastroesophageal adenocarcinoma. HER2 status is evaluated by immunohistochemistry (IHC) and in situ hybridization (ISH). An ISH ratio of HER2 to centromere 17 (CEP17) ≥2.0 is considered amplified. This assumes that CEP17 reflects chromosomal copy number. Cases where CEP17 exceeds 3 are classified as polysomic, but it's unknown if they represent true polysomy or centromeric amplification. This has implications on the validity of current ISH criteria. Multiplex ligation-dependent probe amplification (MLPA) allows simultaneous quantification of multiple loci and can distinguish between true polysomy and centromeric amplification. We selected 13 gastric cancers with CEP17 counts ≥3.0 (polyCEP17), and 8 non-polyCEP17 gastric cancer controls. Silver ISH for HER2 and CEP17 were performed and scored by manufacturer guidelines. We also performed an MLPA HER2 assay that evaluates 22 genes on chromosome 17. MLPA identified HER2 amplification in 7 polyCEP17 cases compared to 2 identified by ISH. Overall, 9 of 13 polyCEP17 cases had amplification of the peri-centromeric gene WSB1, compared to 1 of 8 non-polyCEP17 controls (p=0.02). This could account for ISH CEP17 counts ≥3.0. MLPA did not show any cases of complete chromosome 17 duplication and peri-centromeric amplification can explain most cases of ISH polyCEP17. Current ISH criteria may under-diagnose HER2 amplification in polyCEP17 cases due to flawed assumptions about polysomy. MLPA can detect HER2 amplification missed by IHC and ISH, and thus may be an effective ancillary technique in evaluating HER2 status.
Collapse
Affiliation(s)
- Tao Wang
- 1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yutaka Amemiya
- 2. Genomics Core Facilities, Sunnybrook Research Institute, Toronto, Canada
| | - Pauline Henry
- 1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ; 3. Department of Pathology, Toronto East General Hospital, Toronto, Canada
| | - Arun Seth
- 1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ; 2. Genomics Core Facilities, Sunnybrook Research Institute, Toronto, Canada; ; 4. Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Wedad Hanna
- 1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ; 4. Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Eugene T Hsieh
- 1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ; 4. Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
39
|
Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res Treat 2015; 150:1-8. [PMID: 25677745 PMCID: PMC4344551 DOI: 10.1007/s10549-015-3301-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/04/2015] [Indexed: 01/28/2023]
Abstract
Fibroblast growth factor receptor (FGFR) signaling is involved in multiple biological processes, including cell proliferation, survival, differentiation, migration, and apoptosis during embryonic development and adult tissue homeostasis. Given its role in the activation of critical signaling pathways, aberrant FGFR signaling has been implicated in multiple cancer types. A comprehensive search of PubMed and congress abstracts was conducted to identify reports on FGFR pathway components in breast cancer. In breast cancers, FGFR1 and FGFR4 gene amplification and single nucleotide polymorphisms in FGFR2 and FGFR4 have been detected. Commonly, these FGFR aberrations and gene amplifications lead to increased FGFR signaling and have been linked with poor prognosis and resistance to breast cancer treatments. Here, we review the role of FGFR signaling and the impact of FGFR genetic amplifications/aberrations on breast tumors. In addition, we summarize the most recent preclinical and clinical data on FGFR-targeted therapies in breast cancer. Finally, we highlight the ongoing clinical trials of the FGFR-targeted agents dovitinib, AZD4547, lucitanib, BGJ398, and JNJ-42756493, which are selected for patients with FGFR pathway-amplified breast cancer. Aberrant FGFR pathway amplification may drive some breast cancers. Inhibition of FGFR signaling is being explored in the clinic, and data from these trials may refine our ability to select patients who would best respond to these treatments.
Collapse
|
40
|
Baykara O, Bakir B, Buyru N, Kaynak K, Dalay N. Amplification of chromosome 8 genes in lung cancer. J Cancer 2015; 6:270-5. [PMID: 25663945 PMCID: PMC4317763 DOI: 10.7150/jca.10638] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/18/2014] [Indexed: 12/25/2022] Open
Abstract
Chromosomal alterations are frequent events in lung carcinogenesis and usually display regions of focal amplification containing several overexpressed oncogenes. Although gains and losses of chromosomal loci have been reported copy number changes of the individual genes have not been analyzed in lung cancer. In this study 22 genes were analyzed by MLPA in tumors and matched normal tissue samples from 82 patients with non-small cell lung cancer. Gene amplifications were observed in 84% of the samples. Chromosome 8 was found to harbor the most frequent copy number alterations. The most frequently amplified genes were ZNF703, PRDM14 and MYC on chromosome 8 and the BIRC5 gene on chromosome 17. The frequency of deletions were much lower and the most frequently deleted gene was ADAM9. Amplification of the ZNF703, PRDM14 and MYC genes were highly correlated suggesting that the genes displaying high copy number changes on chromosome 8 collaborate during lung carcinogenesis.
Collapse
Affiliation(s)
- Onur Baykara
- 1. Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Turkey
| | - Burak Bakir
- 1. Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Turkey
| | - Nur Buyru
- 1. Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Turkey
| | - Kamil Kaynak
- 2. Department of Chest Surgery, Cerrahpasa Medical Faculty, Istanbul University, Turkey
| | - Nejat Dalay
- 3. Department of Basic Oncology, I.U. Oncology Institute, Istanbul University, Turkey
| |
Collapse
|
41
|
Madjd Z, Akbari ME, Zarnani AH, Khayamzadeh M, Kalantari E, Mojtabavi N. Expression of EMSY, a novel BRCA2-link protein, is associated with lymph node metastasis and increased tumor size in breast carcinomas. Asian Pac J Cancer Prev 2014; 15:1783-9. [PMID: 24641409 DOI: 10.7314/apjcp.2014.15.4.1783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The EMSY gene encodes a BRCA2-binding partner protein that represses the DNA repair function of BRCA2 in non-hereditary breast cancer. Although amplification of EMSY gene has been proposed to have prognostic value in breast cancer, no data have been available concerning EMSY tissue expression patterns and its associations with clinicopathological features. MATERIALS AND METHODS In the current study, we examined the expression and localization pattern of EMSY protein by immunohistochemistry and assessed its prognostic value in a well-characterized series of 116 unselected breast carcinomas with a mean follow up of 47 months using tissue microarray technique. RESULTS Immunohistochemical expression of EMSY protein was detected in 76% of primary breast tumors, localized in nuclear (18%), cytoplasmic (35%) or both cytoplasmic and nuclear sites (23%). Univariate analysis revealed a significant positive association between EMSY expression and lymph node metastasis (p value=0.045) and larger tumor size (p value=0.027), as well as a non-significant relation with increased risk of recurrence (p value=0.088), whereas no association with patients' survival (log rank test, p value=0.482), tumor grade or type was observed. CONCLUSIONS Herein, we demonstrated for the first time the immunostaining pattern of EMSY protein in breast tumors. Our data imply that EMSY protein may have impact on clinicipathological parameters and could be considered as a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Madjd
- Oncopathology Research Center and Dep pathology, Faculty of medicine, Iran University of Medical Sciences, Tehran, Iran E-mail : ,
| | | | | | | | | | | |
Collapse
|
42
|
Yong ZWE, Zaini ZM, Kallarakkal TG, Karen-Ng LP, Rahman ZAA, Ismail SM, Sharifah NA, Mustafa WMW, Abraham MT, Tay KK, Zain RB. Genetic alterations of chromosome 8 genes in oral cancer. Sci Rep 2014; 4:6073. [PMID: 25123227 PMCID: PMC4133705 DOI: 10.1038/srep06073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022] Open
Abstract
The clinical relevance of DNA copy number alterations in chromosome 8 were investigated in oral cancers. The copy numbers of 30 selected genes in 33 OSCC patients were detected using the multiplex ligation-dependent probe amplification (MLPA) technique. Amplifications of the EIF3E gene were found in 27.3% of the patients, MYC in 18.2%, RECQL4 in 15.2% and MYBL1 in 12.1% of patients. The most frequent gene losses found were the GATA4 gene (24.2%), FGFR1 gene (24.2%), MSRA (21.2) and CSGALNACT1 (12.1%). The co-amplification of EIF3E and RECQL4 was found in 9% of patients and showed significant association with alcohol drinkers. There was a significant association between the amplification of EIF3E gene with non-betel quid chewers and the negative lymph node status. EIF3E amplifications did not show prognostic significance on survival. Our results suggest that EIF3E may have a role in the carcinogenesis of OSCC in non-betel quid chewers.
Collapse
Affiliation(s)
- Zachary Wei Ern Yong
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zuraiza Mohamad Zaini
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Thomas George Kallarakkal
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Peng Karen-Ng
- Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Mazlipah Ismail
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Akmal Sharifah
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur
| | | | - Mannil Thomas Abraham
- Department of Oral and Maxillofacial Surgery, Hospital Tengku Ampuan Rahimah, Klang, Malaysia
| | - Keng Kiong Tay
- Oral Surgery Clinic, Hospital Umum Sarawak, Kuching, Malaysia
| | - Rosnah Binti Zain
- 1] Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Oral Cancer Research &Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Tajiri R, Inokuchi M, Sawada-Kitamura S, Kawashima H, Nakamura R, Oyama T, Dobashi Y, Ooi A. Clonal profiling of mixed lobular and ductal carcinoma revealed by multiplex ligation-dependent probe amplification and fluorescence in situ hybridization. Pathol Int 2014; 64:231-6. [PMID: 24888777 DOI: 10.1111/pin.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/25/2014] [Indexed: 11/29/2022]
Abstract
A needle biopsy of a mass in the right breast of a 36-year-old woman revealed invasive ductal carcinoma (IDC), and approximately 20% of cancer cells showed unequivocal membranous staining with the HercepTest. After systemic therapy with trastuzumab and paclitaxel followed by FEC (fluorouracil + epirubicin + cyclophosphamide), a right mastectomy was performed. By histological and immunohistochemical examinations, the resected tumor consisted mainly of E-cadherin-negative invasive lobular carcinoma (ILC), and the rest was ERBB2-positive IDC; thus, the diagnosis was mixed ductal and lobular carcinoma. Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization (FISH) analyses revealed that ILC and IDC shared high-level amplification of CCND1 in homogeneously staining regions (HSR) and that IDC had an additional HSR-type amplicon of ERBB2. These findings strongly indicate that IDC and ILC had a common precursor cell with CCND1 amplification. Review of the biopsy specimen with FISH showed IDC with gene amplifications of CCND1 and ERBB2 as a minor component, IDC without amplification of CCND1 or ERBB2 as a major component, and a minute portion of ILC with CCND1 amplification. We speculate that chemotherapy and trastuzumab caused a marked reduction in IDC; however, ILC with CCND1 amplification was resistant to chemotherapy and grew.
Collapse
Affiliation(s)
- Ryosuke Tajiri
- Department of Molecular and Cellular Pathology, Kanazawa University, Ishikawa
| | | | | | | | | | | | | | | |
Collapse
|
44
|
PRDM14: a unique regulator for pluripotency and epigenetic reprogramming. Trends Biochem Sci 2014; 39:289-98. [PMID: 24811060 DOI: 10.1016/j.tibs.2014.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
PRDM14 belongs to the PR domain-containing (PRDM) transcriptional regulators. Among the PRDM family members, PRDM14 shows specific expression in preimplantation embryos, primordial germ cells (PGCs), and embryonic stem cells (ESCs) in vitro, and accordingly plays a key role in the regulation of their pluripotency and epigenetic reprogramming, most notably, genome-wide DNA demethylation. The function of PRDM14 appears to be conserved between mice and humans, but it shows several characteristic differences between the two species. A precise understanding of the function of PRDM14 in mice and humans would shed new light on the regulation of pluripotency and the epigenome in these two species, providing a foundation for better control of stem cell fates in a broader context.
Collapse
|
45
|
Verschuur-Maes AHJ, Moelans CB, de Bruin PC, van Diest PJ. Analysis of gene copy number alterations by multiplex ligation-dependent probe amplification in columnar cell lesions of the breast. Cell Oncol (Dordr) 2014; 37:147-54. [PMID: 24692099 DOI: 10.1007/s13402-014-0170-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Columnar cell lesions (CCLs) are possible precursors of breast cancer, but little is known about the role of breast cancer-related genes in the progression of CCL to invasive breast cancer. METHODS Gene copy numbers of 17 breast cancer-related genes were analyzed using Multiplex Ligation-dependent Probe Amplification (MLPA) in CCL (N = 28), ductal carcinoma in situ (DCIS) grade I likely originating from CCL (N = 5), and paired CCL (N = 14/28) with DCIS (N = 7) and/or invasive carcinoma (N = 13). The genes included were BIRC5, C11orf30, CCND1, CCNE1, CDH1, CPD, EGFR, ERBB2, ESR1, FGFR1, IKBKB, MAPT, MED1, MTDH, MYC, TOP2A and TRAF4. RESULTS No high level gene amplifications were observed in CCL, but copy number gains were encountered for the C11orf30 (3/28), MYC, CPD, MTDH (2/28), and CCND1, CCNE1, ESR1 and TOP2A genes (1/28). In addition, CDH1 showed loss in 2/28 and TOP2A in 1/28 cases. CCLs with or without atypia exhibited comparable numbers of copy number changes (p = 0.312). Overall, the frequency of gene copy number changes increased from CCL towards DCIS and invasive carcinoma (p = 0.004). Also in the cases with synchronous lesions, the CCLs exhibited fewer copy number changes than the DCIS/invasive carcinomas. CONCLUSIONS CCLs carry copy number changes of several known breast cancer-related genes, thereby substantiating their role in breast carcinogenesis. Among them, CCND1 and ESR1 copy number gains and CDH1 copy number losses are of particular interest. Since the copy number changes observed were more prevalent in DCIS and invasive carcinoma than in CCL, the corresponding gene alterations may represent rather late occurring events in low nuclear grade breast carcinogenesis.
Collapse
Affiliation(s)
- Anoek H J Verschuur-Maes
- Department of Pathology, University Medical Center Utrecht Cancer Center, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
46
|
Bedussi F, Bottini A, Memo M, Fox SB, Sigala S, Generali D. Targeting fibroblast growth factor receptor in breast cancer: a promise or a pitfall? Expert Opin Ther Targets 2014; 18:665-78. [PMID: 24833241 DOI: 10.1517/14728222.2014.898064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) along with their receptors (FGFRs) are involved in several cellular functions, from embryogenesis to metabolism. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival in cancer, these have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. New evidences indicate that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-to-mesenchymal transition, invasion and tumour angiogenesis. This review focuses on the predictive and prognostic role of FGFRs, the role of FGFR signalling and how it may be most appropriately therapeutically targeted in breast cancer. AREAS COVERED Activation of the FGFR pathway is a common event in many cancer types and for this reason FGFR is an important potential target in cancer treatment. Relevant literature was reviewed to identify current and future role of FGFR family as a possible guide for selecting those patients who would be poor or good responders to the available or the upcoming target therapies for breast cancer treatment. EXPERT OPINION The success of a personalised medicine approach using targeted therapies ultimately depends on being capable of identifying the patients who will benefit the most from any given drug. Outlining the molecular mechanisms of FGFR signalling and discussing the role of this pathway in breast cancer, we would like to endorse the incorporation of specific patient selection biomakers with the rationale for therapeutic intervention with FGFR-targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Francesca Bedussi
- University of Brescia Medical School, Department of Molecular and Translational Medicine, Section of Pharmacology , Brescia , Italy
| | | | | | | | | | | |
Collapse
|
47
|
Ma Q, Reeves JH, Liberles DA, Yu L, Chang Z, Zhao J, Cui J, Xu Y, Liu L. A phylogenetic model for understanding the effect of gene duplication on cancer progression. Nucleic Acids Res 2014; 42:2870-8. [PMID: 24371277 PMCID: PMC3950708 DOI: 10.1093/nar/gkt1320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022] Open
Abstract
As biotechnology advances rapidly, a tremendous amount of cancer genetic data has become available, providing an unprecedented opportunity for understanding the genetic mechanisms of cancer. To understand the effects of duplications and deletions on cancer progression, two genomes (normal and tumor) were sequenced from each of five stomach cancer patients in different stages (I, II, III and IV). We developed a phylogenetic model for analyzing stomach cancer data. The model assumes that duplication and deletion occur in accordance with a continuous time Markov Chain along the branches of a phylogenetic tree attached with five extended branches leading to the tumor genomes. Moreover, coalescence times of the phylogenetic tree follow a coalescence process. The simulation study suggests that the maximum likelihood approach can accurately estimate parameters in the phylogenetic model. The phylogenetic model was applied to the stomach cancer data. We found that the expected number of changes (duplication and deletion) per gene for the tumor genomes is significantly higher than that for the normal genomes. The goodness-of-fit test suggests that the phylogenetic model with constant duplication and deletion rates can adequately fit the duplication data for the normal genomes. The analysis found nine duplicated genes that are significantly associated with stomach cancer.
Collapse
Affiliation(s)
- Qin Ma
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Jaxk H. Reeves
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - David A. Liberles
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Lili Yu
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Zheng Chang
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Jing Zhao
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Juan Cui
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Liang Liu
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, Department of Statistics, University of Georgia, Athens, GA 30602, USA, Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA, Department of Biostatistics, Georgia Southern University, Statesboro, GA 30458, USA, School of Mathematics, Shandong University, Jinan 250100, China, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 65888, USA, BioEnergy Science Center, Oak Ridge, TN 37830, USA and College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
48
|
Moelans CB, van der Groep P, Hoefnagel LD, van de Vijver MJ, Wesseling P, Wesseling J, van der Wall E, van Diest PJ. Genomic evolution from primary breast carcinoma to distant metastasis: Few copy number changes of breast cancer related genes. Cancer Lett 2014; 344:138-146. [DOI: 10.1016/j.canlet.2013.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 12/30/2022]
|
49
|
Tabarestani S, Ghaderian SMH, Rezvani H, Mirfakhraie R, Ebrahimi A, Attarian H, Rafat J, Ghadyani M, Alavi HA, Kamalian N, Rakhsha A, Azargashb E. Prognostic and predictive value of copy number alterations in invasive breast cancer as determined by multiplex ligation-dependent probe amplification. Cell Oncol (Dordr) 2014; 37:107-18. [PMID: 24573687 DOI: 10.1007/s13402-013-0165-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Breast cancer is a leading cause of morbidity and mortality in women worldwide. About 70 % of breast cancers are estrogen receptor (ER) positive. Blocking estrogen action by tamoxifen has been the treatment of choice in ER positive breast cancers for more than 30 years. In the past, several studies have revealed associations between gene copy number alterations and responsiveness to tamoxifen therapy, but so far no single gene copy number alteration could completely explain the response variation observed between individual breast cancer patients. Here, we set out to perform a simultaneous analysis of copy number alterations of several genes involved in the prognosis and response to therapy by multiplex ligation-dependent probe amplification (MLPA). METHODS A case-control study was designed encompassing 170 non-metastatic ER positive breast cancer patients (case group = 85, control group = 85). All patients in the control group had received standard adjuvant tamoxifen treatment for 5 years without any evidence of recurrence. Patients in the case group had experienced early recurrences while receiving tamoxifen treatment. 76 % of the patients of the case group and 73 % of the patients of the control group had received anthracycline-based adjuvant chemotherapy. Gene copy number alterations detected by MLPA in both groups were compared. RESULTS Amplification of CCND1 (OR = 3.13; 95 % CI = 1.35 to 7.26; p = 0.006) and TOP2A (OR = 3.05; 95 % CI = 1.13 to 8.24; p = 0.022) were significantly more prevalent in the case group, compared to the control group. In a multivariate analysis CCND1 (p = 0.01) and TOP2A (p = 0.041) amplifications remained significant predictors of recurrence. CONCLUSIONS Our results indicate that CCND1 amplification may serve as a useful biomarker for hormone responsiveness, and that TOP2A amplification may serve as a useful prognostic biomarker.
Collapse
Affiliation(s)
- Sanaz Tabarestani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Analysis of copy number changes on chromosome 16q in male breast cancer by multiplex ligation-dependent probe amplification. Mod Pathol 2013; 26:1461-7. [PMID: 23743929 DOI: 10.1038/modpathol.2013.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 11/08/2022]
Abstract
Gene copy number changes have an important role in carcinogenesis and could serve as potential biomarkers for prognosis and targets for therapy. Copy number changes mapping to chromosome 16 have been reported to be the most frequent alteration observed in female breast cancer and a loss on 16q has been shown to be associated with low grade and better prognosis. In the present study, we aimed to characterize copy number changes on 16q in a group of 135 male breast cancers using a novel multiplex ligation-dependent probe amplification kit. One hundred and twelve out of 135 (83%) male breast cancer showed copy number changes of at least one gene on chromosome 16, with frequent loss of 16q (71/135; 53%), either partial (66/135; 49%) or whole arm loss (5/135; 4%). Losses on 16q were thereby less often seen in male breast cancer than previously described in female breast cancer. Loss on 16q was significantly correlated with favorable clinicopathological features such as negative lymph node status, small tumor size, and low grade. Copy number gain of almost all genes on the short arm was also significantly correlated with lymph node negative status. A combination of 16q loss and 16p gain correlated even stronger with negative lymph node status (n=112; P=0.012), which was also underlined by unsupervised clustering. In conclusion, copy number loss on 16q is less frequent in male breast cancer than in female breast cancer, providing further evidence that male breast cancer and female breast cancer are genetically different. Gain on 16p and loss of 16q identify a group of male breast cancer with low propensity to develop lymph node metastases.
Collapse
|