1
|
Kubo N, Suzuki S, Seki T, Furuke S, Yagi N, Ooki T, Aihara R, Mogi A, Yoshida Y, Kashiwabara K, Hosouchi Y, Shirabe K. A case of resected anaplastic carcinoma of the pancreas producing granulocyte-colony stimulating factor with literature review. Surg Case Rep 2024; 10:205. [PMID: 39231851 PMCID: PMC11374941 DOI: 10.1186/s40792-024-02008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (G-CSF)-producing tumors have been reported in various organs, and the prognosis of patients with G-CSF-producing pancreatic cancers is particularly dismal. In this report, we present a case of G-CSF-producing anaplastic carcinoma of the pancreas (ACP), characterized by early postoperative recurrence and rapid, uncontrolled growth. CASE PRESENTATION A 74-year-old man presented to our hospital with complaints of abdominal fullness and pain after eating. On admission, it was observed that the peripheral leukocyte counts and serum G-CSF levels were significantly elevated (23,770/µL and 251 pg/mL, respectively). Computed tomography of the abdomen revealed a pancreatic head tumor involving the superior mesenteric vein. Pathologically, ultrasound-guided fine-needle aspiration confirmed ACP. Subsequently, we performed a subtotal stomach-preserving pancreaticoduodenectomy with portal vein reconstruction and partial transverse colon resection. On postoperative day (POD) 7, the leukocyte count decreased from 21,180/μL to 8490/μL; moreover, computed tomography revealed liver metastasis. Therefore, mFOLFILINOX chemotherapy was initiated on POD 30. However, the tumor exhibited rapid progression, and the patient died on POD 45. CONCLUSIONS G-CSF-producing ACP is rare, and the prognosis of patients is extremely poor. Basic research is required to develop effective drugs against G-CSF-producing tumors, and large-scale studies using national databases are needed to develop multidisciplinary treatment methods.
Collapse
Affiliation(s)
- Norio Kubo
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan.
| | - Shigemasa Suzuki
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan
| | - Takahiro Seki
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan
| | - Shunsaku Furuke
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan
| | - Naoki Yagi
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan
| | - Takashi Ooki
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan
| | - Ryusuke Aihara
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan
| | - Akira Mogi
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan
| | - Yuka Yoshida
- Department of Pathology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Kenji Kashiwabara
- Department of Pathology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Yasuo Hosouchi
- Department of Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, 564-1 Kamishinden, Maebashi, Gunma, 371-0821, Japan
| | - Ken Shirabe
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
2
|
Nikiforova MN, Wald AI, Spagnolo DM, Melan MA, Grupillo M, Lai YT, Brand RE, O’Broin-Lennon AM, McGrath K, Park WG, Pfau PR, Polanco PM, Kubiliun N, DeWitt J, Easler JJ, Dam A, Mok SR, Wallace MB, Kumbhari V, Boone BA, Marsh W, Thakkar S, Fairley KJ, Afghani E, Bhat Y, Ramrakhiani S, Nasr J, Skef W, Thiruvengadam NR, Khalid A, Fasanella K, Chennat J, Das R, Singh H, Sarkaria S, Slivka A, Gabbert C, Sawas T, Tielleman T, Vanderveldt HD, Tavakkoli A, Smith LM, Smith K, Bell PD, Hruban RH, Paniccia A, Zureikat A, Lee KK, Ongchin M, Zeh H, Minter R, He J, Nikiforov YE, Singhi AD. A Combined DNA/RNA-based Next-Generation Sequencing Platform to Improve the Classification of Pancreatic Cysts and Early Detection of Pancreatic Cancer Arising From Pancreatic Cysts. Ann Surg 2023; 278:e789-e797. [PMID: 37212422 PMCID: PMC10481930 DOI: 10.1097/sla.0000000000005904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
OBJECTIVE We report the development and validation of a combined DNA/RNA next-generation sequencing (NGS) platform to improve the evaluation of pancreatic cysts. BACKGROUND AND AIMS Despite a multidisciplinary approach, pancreatic cyst classification, such as a cystic precursor neoplasm, and the detection of high-grade dysplasia and early adenocarcinoma (advanced neoplasia) can be challenging. NGS of preoperative pancreatic cyst fluid improves the clinical evaluation of pancreatic cysts, but the recent identification of novel genomic alterations necessitates the creation of a comprehensive panel and the development of a genomic classifier to integrate the complex molecular results. METHODS An updated and unique 74-gene DNA/RNA-targeted NGS panel (PancreaSeq Genomic Classifier) was created to evaluate 5 classes of genomic alterations to include gene mutations (e.g., KRAS, GNAS, etc.), gene fusions and gene expression. Further, CEA mRNA ( CEACAM5 ) was integrated into the assay using RT-qPCR. Separate multi-institutional cohorts for training (n=108) and validation (n=77) were tested, and diagnostic performance was compared to clinical, imaging, cytopathologic, and guideline data. RESULTS Upon creation of a genomic classifier system, PancreaSeq GC yielded a 95% sensitivity and 100% specificity for a cystic precursor neoplasm, and the sensitivity and specificity for advanced neoplasia were 82% and 100%, respectively. Associated symptoms, cyst size, duct dilatation, a mural nodule, increasing cyst size, and malignant cytopathology had lower sensitivities (41-59%) and lower specificities (56-96%) for advanced neoplasia. This test also increased the sensitivity of current pancreatic cyst guidelines (IAP/Fukuoka and AGA) by >10% and maintained their inherent specificity. CONCLUSIONS PancreaSeq GC was not only accurate in predicting pancreatic cyst type and advanced neoplasia but also improved the sensitivity of current pancreatic cyst guidelines.
Collapse
Affiliation(s)
- Marina N. Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Abigail I. Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Daniel M. Spagnolo
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Melissa A. Melan
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Maria Grupillo
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Yi-Tak Lai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Anne Marie O’Broin-Lennon
- The Sol Goldman Pancreatic Cancer Research Center, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Walter G. Park
- Department of Medicine, Stanford University, Stanford, CA
| | - Patrick R. Pfau
- Department of Medicine, University of Wisconsin, Madison, WI
| | - Patricio M. Polanco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nisa Kubiliun
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - John DeWitt
- Department of Gastroenterology and Hepatology, Indiana University Health Medical Center, Indianapolis, IN
| | - Jeffrey J. Easler
- Department of Gastroenterology and Hepatology, Indiana University Health Medical Center, Indianapolis, IN
| | - Aamir Dam
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| | - Shaffer R. Mok
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| | - Michael B. Wallace
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Jacksonville, FL
- Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Vivek Kumbhari
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Brian A. Boone
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV
| | - Wallis Marsh
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV
| | - Shyam Thakkar
- Department of Medicine, Section of Gastroenterology & Hepatology, West Virginia University Health Sciences Center, Morgantown, WV
| | - Kimberly J. Fairley
- Department of Medicine, Section of Gastroenterology & Hepatology, West Virginia University Health Sciences Center, Morgantown, WV
| | - Elham Afghani
- The Sol Goldman Pancreatic Cancer Research Center, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Yasser Bhat
- Department of Gastroenterology, Palo Alto Medical Foundation (PAMF), Mountain View, CA
| | - Sanjay Ramrakhiani
- Department of Gastroenterology, Palo Alto Medical Foundation (PAMF), Mountain View, CA
| | - John Nasr
- Department of Medicine, Wheeling Hospital, West Virginia University Health Sciences Center, Morgantown, WV
| | - Wasseem Skef
- Division of Gastroenterology and Hepatology, Department of Medicine, Loma Linda University Medical Center, Loma Linda, CA
| | - Nikhil R. Thiruvengadam
- Division of Gastroenterology and Hepatology, Department of Medicine, Loma Linda University Medical Center, Loma Linda, CA
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kenneth Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jennifer Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Rohit Das
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Harkirat Singh
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Savreet Sarkaria
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Charles Gabbert
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Tarek Sawas
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas Tielleman
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Anna Tavakkoli
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Katelyn Smith
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Phoenix D. Bell
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Amer Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kenneth K. Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Melanie Ongchin
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Herbert Zeh
- Department of Clinical Sciences, Surgery, University of Texas Southwestern, Dallas, TX
| | - Rebecca Minter
- Department of Surgery, University of Wisconsin, Madison, WI
| | - Jin He
- The Sol Goldman Pancreatic Cancer Research Center, Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
3
|
Takahashi K, Takeda Y, Ono Y, Isomoto H, Mizukami Y. Current status of molecular diagnostic approaches using liquid biopsy. J Gastroenterol 2023; 58:834-847. [PMID: 37470859 PMCID: PMC10423147 DOI: 10.1007/s00535-023-02024-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, and developing an efficient and reliable approach for its early-stage diagnosis is urgently needed. Precancerous lesions of PDAC, such as pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMN), arise through multiple steps of driver gene alterations in KRAS, TP53, CDKN2A, SMAD4, or GNAS. Hallmark mutations play a role in tumor initiation and progression, and their detection in bodily fluids is crucial for diagnosis. Recently, liquid biopsy has gained attention as an approach to complement pathological diagnosis, and in addition to mutation signatures in cell-free DNA, cell-free RNA, and extracellular vesicles have been investigated as potential diagnostic and prognostic markers. Integrating such molecular information to revise the diagnostic criteria for pancreatic cancer can enable a better understanding of the pathogenesis underlying inter-patient heterogeneity, such as sensitivity to chemotherapy and disease outcomes. This review discusses the current diagnostic approaches and clinical applications of genetic analysis in pancreatic cancer and diagnostic attempts by liquid biopsy and molecular analyses using pancreatic juice, duodenal fluid, and blood samples. Emerging knowledge in the rapidly advancing liquid biopsy field is promising for molecular profiling and diagnosing pancreatic diseases with significant diversity.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Yohei Takeda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Ono
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Mizukami
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
4
|
Siddappa PK, Park WG. Pancreatic Cyst Fluid Analysis. Gastrointest Endosc Clin N Am 2023; 33:599-612. [PMID: 37245938 DOI: 10.1016/j.giec.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pancreatic cyst fluid analysis can help diagnose pancreatic cyst type and the risk of high-grade dysplasia and cancer. Recent evidence from molecular analysis of cyst fluid has revolutionized the field with multiple markers showing promise in accurate diagnosis and prognostication of pancreatic cysts. The availability of multi-analyte panels has great potential for more accurate prediction of cancer.
Collapse
Affiliation(s)
- Pradeep K Siddappa
- Division of Gastroenterology & Hepatology, Stanford University, Stanford, CA, USA
| | - Walter G Park
- Division of Gastroenterology & Hepatology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Yamamoto T, Kohashi K, Yamada Y, Kawata J, Sakihama K, Matsuda R, Koga Y, Aishima S, Nakamura M, Oda Y. Relationship between cellular morphology and abnormality of SWI/SNF complex subunits in pancreatic undifferentiated carcinoma. J Cancer Res Clin Oncol 2022; 148:2945-2957. [PMID: 34817661 DOI: 10.1007/s00432-021-03860-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Pancreatic undifferentiated carcinoma (UDC) is a rare tumor with a worse prognosis than pancreatic ductal adenocarcinoma (PDAC). Recent study showed that UDC exhibits loss of SMARCB1, which is one of the subunits of the SWI/SNF complex. However, whether there are abnormalities of other SWI/SNF complex subunits in UDC has remained unknown. In this study, we attempted to clarify whether the loss of SWI/SNF complex subunits is related to the pathogenesis of UDC by comparing undifferentiated component (UC) and ductal adenocarcinoma component (DAC). METHODS Genetic analysis of the ten UCs and six DACs was performed. The expression of ARID1A, SMARCA2, SMARCA4, SMARCB1, SMARCC1, and SMARCC2 in formalin-fixed, paraffin-embedded tumor tissues collected by surgical resection from 18 UDC patients was evaluated immunohistochemically. Moreover, two pancreatic cell lines were evaluated for the effects of siARID1A on the mRNA and protein expression of E-cadherin, vimentin, and epithelial-mesenchymal transition (EMT)-related markers by qRT-PCR, western blotting, and immunofluorescence staining. RESULTS UCs tended to have a higher frequency of mutation in ARID1A, SMARCA4, and SMARCC2 than DACs. Immunohistochemically, UCs revealed reduced/lost expression of ARID1A (72%), SMARCB1 (44%), SMARCC1 (31%), and SMARCC2 (67%). Reduced/lost expression of ARID1A, SMARCB1, and SMARCC2 was significantly more frequently observed in UCs than in DACs. In the pancreatic cell lines, western blotting and qRT-PCR showed that the downregulation of ARID1A increased the expression of vimentin and EMT-related markers. CONCLUSION Our results suggest that the abnormality of SWI/SNF complex subunits, especially ARID1A, is one of the factors behind the morphological change of UDC.
Collapse
Affiliation(s)
- Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Kawata
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kukiko Sakihama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Matsuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Koga
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Barresi V, Musmeci C, Rinaldi A, Condorelli DF. Transcript-Targeted Therapy Based on RNA Interference and Antisense Oligonucleotides: Current Applications and Novel Molecular Targets. Int J Mol Sci 2022; 23:ijms23168875. [PMID: 36012138 PMCID: PMC9408055 DOI: 10.3390/ijms23168875] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/28/2022] Open
Abstract
The development of novel target therapies based on the use of RNA interference (RNAi) and antisense oligonucleotides (ASOs) is growing in an exponential way, challenging the chance for the treatment of the genetic diseases and cancer by hitting selectively targeted RNA in a sequence-dependent manner. Multiple opportunities are taking shape, able to remove defective protein by silencing RNA (e.g., Inclisiran targets mRNA of protein PCSK9, permitting a longer half-life of LDL receptors in heterozygous familial hypercholesteremia), by arresting mRNA translation (i.e., Fomivirsen that binds to UL123-RNA and blocks the translation into IE2 protein in CMV-retinitis), or by reactivating modified functional protein (e.g., Eteplirsen able to restore a functional shorter dystrophin by skipping the exon 51 in Duchenne muscular dystrophy) or a not very functional protein. In this last case, the use of ASOs permits modifying the expression of specific proteins by modulating splicing of specific pre-RNAs (e.g., Nusinersen acts on the splicing of exon 7 in SMN2 mRNA normally not expressed; it is used for spinal muscular atrophy) or by downregulation of transcript levels (e.g., Inotersen acts on the transthryretin mRNA to reduce its expression; it is prescribed for the treatment of hereditary transthyretin amyloidosis) in order to restore the biochemical/physiological condition and ameliorate quality of life. In the era of precision medicine, recently, an experimental splice-modulating antisense oligonucleotide, Milasen, was designed and used to treat an 8-year-old girl affected by a rare, fatal, progressive form of neurodegenerative disease leading to death during adolescence. In this review, we summarize the main transcriptional therapeutic drugs approved to date for the treatment of genetic diseases by principal regulatory government agencies and recent clinical trials aimed at the treatment of cancer. Their mechanism of action, chemical structure, administration, and biomedical performance are predominantly discussed.
Collapse
|
7
|
Correia L, Magno R, Xavier JM, de Almeida BP, Duarte I, Esteves F, Ghezzo M, Eldridge M, Sun C, Bosma A, Mittempergher L, Marreiros A, Bernards R, Caldas C, Chin SF, Maia AT. Allelic expression imbalance of PIK3CA mutations is frequent in breast cancer and prognostically significant. NPJ Breast Cancer 2022; 8:71. [PMID: 35676284 PMCID: PMC9177727 DOI: 10.1038/s41523-022-00435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
PIK3CA mutations are the most common in breast cancer, particularly in the estrogen receptor-positive cohort, but the benefit of PI3K inhibitors has had limited success compared with approaches targeting other less common mutations. We found a frequent allelic expression imbalance between the missense mutant and wild-type PIK3CA alleles in breast tumors from the METABRIC (70.2%) and the TCGA (60.1%) projects. When considering the mechanisms controlling allelic expression, 27.7% and 11.8% of tumors showed imbalance due to regulatory variants in cis, in the two studies respectively. Furthermore, preferential expression of the mutant allele due to cis-regulatory variation is associated with poor prognosis in the METABRIC tumors (P = 0.031). Interestingly, ER-, PR-, and HER2+ tumors showed significant preferential expression of the mutated allele in both datasets. Our work provides compelling evidence to support the clinical utility of PIK3CA allelic expression in breast cancer in identifying patients of poorer prognosis, and those with low expression of the mutated allele, who will unlikely benefit from PI3K inhibitors. Furthermore, our work proposes a model of differential regulation of a critical cancer-promoting gene in breast cancer.
Collapse
Affiliation(s)
- Lizelle Correia
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
| | - Ramiro Magno
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Joana M Xavier
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Bernardo P de Almeida
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
- The Research Institute of Molecular Pathology, Vienna, Austria
| | - Isabel Duarte
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Filipa Esteves
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, Universidade do Algarve, Faro, Portugal
| | - Marinella Ghezzo
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK
| | - Chong Sun
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- DKFZ, Heidelberg, Germany
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lorenza Mittempergher
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ana Marreiros
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Ana-Teresa Maia
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal.
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
8
|
González-López O, Muñoz-González JI, Orfao A, Álvarez-Twose I, García-Montero AC. Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers (Basel) 2022; 14:cancers14102487. [PMID: 35626091 PMCID: PMC9139197 DOI: 10.3390/cancers14102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which activating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, which has been associated with higher tumour burden and additional mutations in other genes, leading to an increased rate of transformation to advanced SM. Thus, among other mutations, alterations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mutation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient outcome, has become of great help to identify SM patients at higher risk of disease progression and/or poor survival who could benefit from closer follow-up and eventually also early cytoreductive treatment.
Collapse
Affiliation(s)
- Oscar González-López
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Javier I. Muñoz-González
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Iván Álvarez-Twose
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast, Virgen del Valle Hospital) and REMA, 45071 Toledo, Spain
| | - Andrés C. García-Montero
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
9
|
Subbarayan K, Massa C, Leisz S, Steven A, Bethmann D, Biehl K, Wickenhauser C, Seliger B. Biglycan as a potential regulator of tumorgenicity and immunogenicity in K-RAS-transformed cells. Oncoimmunology 2022; 11:2069214. [PMID: 35529675 PMCID: PMC9067524 DOI: 10.1080/2162402x.2022.2069214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix component biglycan (BGN) plays an essential role in various physiological and pathophysiological processes. A deficient BGN expression associated with reduced immunogenicity was found in HER-2/neu-overexpressing cells. To determine whether BGN is suppressed by oncogene-driven regulatory networks, the expression and function of BGN was analyzed in murine and human BGNlow/BGNhigh K-RASG12V-transformed model systems as well as in different patients' datasets of colorectal carcinoma (CRC) lesions. K-RAS-mutated CRC tissues expressed low BGN mRNA and protein levels when compared to normal colon epithelial cells, which was associated with a reduced patients' survival. Transfection of BGN in murine and human BGNlow K-RAS-expressing cells resulted in a reduced growth and migration of BGNhigh vs BGNlow K-RAS cells. In addition, increased MHC class I surface antigens as a consequence of an enhanced antigen processing machinery component expression was found upon restoration of BGN, which was confirmed by RNA-sequencing of BGNlow vs. BGNhigh K-RAS models. Furthermore, a reduced tumor formation of BGNhigh versus BGNlow K-RAS-transformed fibroblasts associated with an enhanced MHC class I expression and an increased frequency of tumor-infiltrating lymphocytes in tumor lesions was found. Our data provide for the first time an inverse link between BGN and K-RAS expression in murine and human K-RAS-overexpressing models and CRC lesions associated with altered growth properties, reduced immunogenicity and worse patients' outcome. Therefore, reversion of BGN might be a novel therapeutic option for K-RAS-associated malignancies.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
10
|
Merikangas AK, Shelly M, Knighton A, Kotler N, Tanenbaum N, Almasy L. What genes are differentially expressed in individuals with schizophrenia? A systematic review. Mol Psychiatry 2022; 27:1373-1383. [PMID: 35091668 PMCID: PMC9095490 DOI: 10.1038/s41380-021-01420-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
Schizophrenia is a severe, complex mental disorder characterized by a combination of positive symptoms, negative symptoms, and impaired cognitive function. Schizophrenia is highly heritable (~80%) with multifactorial etiology and complex polygenic genetic architecture. Despite the large number of genetic variants associated with schizophrenia, few causal variants have been established. Gaining insight into the mechanistic influences of these genetic variants may facilitate our ability to apply these findings to prevention and treatment. Though there have been more than 300 studies of gene expression in schizophrenia over the past 15 years, none of the studies have yielded consistent evidence for specific genes that contribute to schizophrenia risk. The aim of this work is to conduct a systematic review and synthesis of case-control studies of genome-wide gene expression in schizophrenia. Comprehensive literature searches were completed in PubMed, EmBase, and Web of Science, and after a systematic review of the studies, data were extracted from those that met the following inclusion criteria: human case-control studies comparing the genome-wide transcriptome of individuals diagnosed with schizophrenia to healthy controls published between January 1, 2000 and June 30, 2020 in the English language. Genes differentially expressed in cases were extracted from these studies, and overlapping genes were compared to previous research findings from the genome-wide association, structural variation, and tissue-expression studies. The transcriptome-wide analysis identified different genes than those previously reported in genome-wide association, exome sequencing, and structural variation studies of schizophrenia. Only one gene, GBP2, was replicated in five studies. Previous work has shown that this gene may play a role in immune function in the etiology of schizophrenia, which in turn could have implications for risk profiling, prevention, and treatment. This review highlights the methodological inconsistencies that impede valid meta-analyses and synthesis across studies. Standardization of the use of covariates, gene nomenclature, and methods for reporting results could enhance our understanding of the potential mechanisms through which genes exert their influence on the etiology of schizophrenia. Although these results are promising, collaborative efforts with harmonization of methodology will facilitate the identification of the role of genes underlying schizophrenia.
Collapse
Affiliation(s)
- Alison K Merikangas
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew Shelly
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA, USA
| | - Alexys Knighton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Kotler
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Tanenbaum
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Norman RL, Singh R, Muskett FW, Parrott EL, Rufini A, Langridge JI, Runau F, Dennison A, Shaw JA, Piletska E, Canfarotta F, Ng LL, Piletsky S, Jones DJL. Mass spectrometric detection of KRAS protein mutations using molecular imprinting. NANOSCALE 2021; 13:20401-20411. [PMID: 34854867 PMCID: PMC8675027 DOI: 10.1039/d1nr03180e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/27/2021] [Indexed: 05/07/2023]
Abstract
Cancer is a disease of cellular evolution where single base changes in the genetic code can have significant impact on the translation of proteins and their activity. Thus, in cancer research there is significant interest in methods that can determine mutations and identify the significant binding sites (epitopes) of antibodies to proteins in order to develop novel therapies. Nano molecularly imprinted polymers (nanoMIPs) provide an alternative to antibodies as reagents capable of specifically capturing target molecules depending on their structure. In this study, we used nanoMIPs to capture KRAS, a critical oncogene, to identify mutations which when present are indicative of oncological progress. Herein, coupling nanoMIPs (capture) and liquid chromatography-mass spectrometry (detection), LC-MS has allowed us to investigate mutational assignment and epitope discovery. Specifically, we have shown epitope discovery by generating nanoMIPs to a recombinant KRAS protein and identifying three regions of the protein which have been previously assigned as epitopes using much more time-consuming protocols. The mutation status of the released tryptic peptide was identified by LC-MS following capture of the conserved region of KRAS using nanoMIPS, which were tryptically digested, thus releasing the sequence of a non-conserved (mutated) region. This approach was tested in cell lines where we showed the effective genotyping of a KRAS cell line and in the plasma of cancer patients, thus demonstrating its ability to diagnose precisely the mutational status of a patient. This work provides a clear line-of-sight for the use of nanoMIPs to its translation from research into diagnostic and clinical utility.
Collapse
Affiliation(s)
- Rachel L Norman
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Rajinder Singh
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Frederick W Muskett
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7RH Leicester, UK
| | - Emma L Parrott
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Alessandro Rufini
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | | | - Franscois Runau
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Ashley Dennison
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Jacqui A Shaw
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Elena Piletska
- MIP Diagnostics, The Exchange Building, Colworth Park, MK44 1LQ, Bedford, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE1 7RH, UK
| | - Sergey Piletsky
- MIP Diagnostics, The Exchange Building, Colworth Park, MK44 1LQ, Bedford, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE1 7RH, UK
| |
Collapse
|
12
|
Yan H, Yu CC, Fine SA, Youssof AL, Yang YR, Yan J, Karg DC, Cheung EC, Friedman RA, Ying H, Chen EI, Luo J, Miao Y, Qiu W, Su GH. Loss of the wild-type KRAS allele promotes pancreatic cancer progression through functional activation of YAP1. Oncogene 2021; 40:6759-6771. [PMID: 34663879 PMCID: PMC8688281 DOI: 10.1038/s41388-021-02040-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023]
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) harboring one KRAS mutant allele often displays increasing genomic loss of the remaining wild-type (WT) allele (known as LOH at KRAS) as tumors progress to metastasis, yet the molecular ramification of this WT allelic loss is unknown. In this study, we showed that the restoration of WT KRAS expression in human PDAC cell lines with LOH at KRAS significantly attenuated the malignancy of PDAC cells both in vitro and in vivo, demonstrating a tumor-suppressive role of the WT KRAS allele. Through RNA-Seq, we identified the HIPPO signaling pathway to be positively regulated by WT KRAS in PDAC cells. In accordance with this observation, PDAC cells with LOH at KRAS exhibited increased nuclear localization and activation of transcriptional co-activator YAP1. Mechanistically, we discovered that WT KRAS expression sequestered YAP1 from the nucleus, through enhanced 14-3-3zeta interaction with phosphorylated YAP1 at S127. Consistently, expression of a constitutively-active YAP1 mutant in PDAC cells bypassed the growth inhibitory effects of WT KRAS. In patient samples, we found that the YAP1-activation genes were significantly upregulated in tumors with LOH at KRAS, and YAP1 nuclear localization predicted poor survival for PDAC patients. Collectively, our results reveal that the WT allelic loss leads to functional activation of YAP1 and enhanced tumor malignancy, which explains the selection advantage of the tumor cells with LOH at KRAS during pancreatic cancer clonal evolution and progression to metastasis, and should be taken into consideration in future therapeutic strategies targeting KRAS.
Collapse
Affiliation(s)
- Han Yan
- The Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chih-Chieh Yu
- The Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Stuart A Fine
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ayman Lee Youssof
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ye-Ran Yang
- The Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jun Yan
- Department of Pathology, Tianjin First Center Hospital, Tianjin, TJ, China
| | - Dillon C Karg
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Edwin C Cheung
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A Friedman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Haoqiang Ying
- Molecular and Cellular Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily I Chen
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yi Miao
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanglong Qiu
- The Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gloria H Su
- The Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Otolaryngology and Head & Neck Surgery, Columbia University Irving Medical Center, New York, NY, USA.
- Pancreas Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Agaimy A. Pleomorphic (giant cell) carcinoma revisited: A historical perspective and conceptual reappraisal. Semin Diagn Pathol 2021; 38:187-192. [PMID: 34583859 DOI: 10.1053/j.semdp.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
The term pleomorphic "giant cell" carcinoma was coined by Sommers and Meissner in 1954 for a pancreatic carcinoma variant showing a "sarcoma-like transformation" and characterized by an admixture of undifferentiated cells with striking variation in size and shape. Based on the predominant cell type, four patterns were recognized: spindle cell (sarcomatoid), pleomorphic "giant cell", osteoclastic giant cell-rich, and anaplastic round cell. These four basic patterns frequently coexisted within same tumor, albeit to a significantly variable extent. Follow-up series further characterized the entity, expanded its topographic distribution to include almost all organ systems, and illustrated its morphological and phenotypic homology among different organs. Although resemblance of the neoplastic cells to rhabdomyoblasts was already pointed out by Stout in 1958, the term "rhabdoid" (introduced in 1978 for specific kidney tumors) was not used for carcinomas until 1993. Review of the old and recent literature indicates pleomorphic "giant cell" carcinoma is not an entity but a morphological pattern in the spectrum of undifferentiated (anaplastic) and sarcomatoid carcinoma that can originate in any organ, either in a pure form or as a dedifferentiated carcinoma component. These tumors fall into two major categories: a monomorphic (variable admixture of small or larger "gemistocyte-like" rhabdoid cells and epithelioid cells) and a pleomorphic (bizarre large polygonal, spindled, or multinucleated malignant cells) subtype. The few available genetic studies suggest close association of the monomorphic type with SWI/SNF pathway defects, while bizarre-looking pleomorphic tumors usually harbor complex and heterogeneous genetic alterations. Most tumors dominated by the pleomorphic "giant cell" pattern are extremely aggressive, resulting in death, soon after diagnosis, irrespective of treatment modalities. This review gives an historical account on the evolution of the pleomorphic "giant cell" carcinoma concept with special reference to their relationship to SWI/SNF complex alterations.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany.
| |
Collapse
|
14
|
Cinar B, Alp E, Al-Mathkour M, Boston A, Dwead A, Khazaw K, Gregory A. The Hippo pathway: an emerging role in urologic cancers. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:301-317. [PMID: 34541029 PMCID: PMC8446764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The Hippo pathway controls several biological processes, including cell growth, differentiation, motility, stemness, cell contact, immune cell maturation, organ size, and tumorigenesis. The Hippo pathway core kinases MST1/2 and LATS1/2 in mammals phosphorylate and inactivate YAP1 signaling. Increasing evidence indicates that loss of MST1/2 and LATS1/2 function is linked to the biology of many cancer types with poorer outcomes, likely due to the activation of oncogenic YAP1/TEAD signaling. Therefore, there is a renewed interest in blocking the YAP1/TEAD functions to prevent cancer growth. This review introduces the Hippo pathway components and examines their role and therapeutic potentials in prostate, kidney, and bladder cancer.
Collapse
Affiliation(s)
- Bekir Cinar
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Esma Alp
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Marwah Al-Mathkour
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Ava Boston
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Abdulrahman Dwead
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Kezhan Khazaw
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Alexis Gregory
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|
15
|
Levin N, Paria BC, Vale NR, Yossef R, Lowery FJ, Parkhurst MR, Yu Z, Florentin M, Cafri G, Gartner JJ, Shindorf ML, Ngo LT, Ray S, Kim SP, Copeland AR, Robbins PF, Rosenberg SA. Identification and Validation of T-cell Receptors Targeting RAS Hotspot Mutations in Human Cancers for Use in Cell-based Immunotherapy. Clin Cancer Res 2021; 27:5084-5095. [PMID: 34168045 DOI: 10.1158/1078-0432.ccr-21-0849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapies mediate the regression of human tumors through recognition of tumor antigens by immune cells that trigger an immune response. Mutations in the RAS oncogenes occur in about 30% of all patients with cancer. These mutations play an important role in both tumor establishment and survival and are commonly found in hotspots. Discovering T-cell receptors (TCR) that recognize shared mutated RAS antigens presented on MHC class I and class II molecules are thus promising reagents for "off-the-shelf" adoptive cell therapies (ACT) following insertion of the TCRs into lymphocytes. EXPERIMENTAL DESIGN In this ongoing work, we screened for RAS antigen recognition in tumor-infiltrating lymphocytes (TIL) or by in vitro stimulation of peripheral blood lymphocytes (PBL). TCRs recognizing mutated RAS were identified from the reactive T cells. The TCRs were then reconstructed and virally transduced into PBLs and tested. RESULTS Here, we detect and report multiple novel TCR sequences that recognize nonsynonymous mutant RAS hotspot mutations with high avidity and specificity and identify the specific class-I and -II MHC restriction elements involved in the recognition of mutant RAS. CONCLUSIONS The TCR library directed against RAS hotspot mutations described here recognize RAS mutations found in about 45% of the Caucasian population and about 60% of the Asian population and represent promising reagents for "off-the-shelf" ACTs.
Collapse
Affiliation(s)
- Noam Levin
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Biman C Paria
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Nolan R Vale
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Rami Yossef
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Frank J Lowery
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Zhiya Yu
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Maria Florentin
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Gal Cafri
- Surgery Branch, National Cancer Institute, Bethesda, Maryland.,Sheba Medical Center, Ramat Gan, Israel
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Lien T Ngo
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Satyajit Ray
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Sanghyun P Kim
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Amy R Copeland
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | | |
Collapse
|
16
|
Sanchez Barea J, Kang D. Integration of Surface‐enhanced Raman Spectroscopy with
PCR
for Monitoring Single Copy of
KRAS G12D
Mutation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joel Sanchez Barea
- Department of Chemistry Incheon National University Incheon 22012 Republic of Korea
| | - Dong‐Ku Kang
- Department of Chemistry Incheon National University Incheon 22012 Republic of Korea
- Department of Chemistry Research Institute of Basic Sciences, Incheon National University Incheon 22012 Republic of Korea
| |
Collapse
|
17
|
Wang Y, Nguyen K, Spitale RC, Chaput JC. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat Chem 2021; 13:319-326. [DOI: 10.1038/s41557-021-00645-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
|
18
|
Hisanaga E, Sano T, Yoshida Y, Ishii N, Shirabe K, Ikota H. A mucinous cystic neoplasm of the pancreas containing an undifferentiated carcinoma component and harboring the NRAS driver mutation. Clin J Gastroenterol 2021; 14:910-917. [PMID: 33710503 DOI: 10.1007/s12328-021-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
A woman in her 20s visited our hospital with a chief complaint of abdominal distension and back pain. She was diagnosed with a cystic tumor (diameter 16 cm) in the tail of the pancreas and underwent a combined distal pancreatectomy, splenectomy, and left adrenalectomy. Histopathologically, the tumor presented as a mucinous cystic neoplasm with an undifferentiated carcinoma component of the pancreas. In addition, the cells demonstrated a partial rhabdoid-like morphology. These findings were considered relatively typical for a mucinous cystic neoplasm in the tail of the pancreas in a young woman. However, NRAS mutation, which is rare in pancreatic tumors, was detected.
Collapse
Affiliation(s)
- Etsuko Hisanaga
- Clinical Department of Pathology, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Takaaki Sano
- Department of Diagnostic Pathology, Graduate School of Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yuka Yoshida
- Clinical Department of Pathology, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Norihiro Ishii
- Clinical Department of Hepatobiliary and Pancreatic Surgery, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ken Shirabe
- Clinical Department of Hepatobiliary and Pancreatic Surgery, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
19
|
Ota S, Tanke G, Asai S, Ito R, Hara K, Takada Y, Adachi K, Shimada Y, Hayashi M, Itani T, Ishihara M, Masamune A. An Autopsy Case of Anaplastic Carcinoma of the Pancreas in a 39-Year-Old Woman that Developed from Hereditary Pancreatitis. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e928993. [PMID: 33587725 PMCID: PMC7899047 DOI: 10.12659/ajcr.928993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patient: Female, 39-year-old Final Diagnosis: Anaplastic carcinoma of the pancreas • pancreatic cancer Symptoms: Epigastralgia • jaundice Medication: — Clinical Procedure: — Specialty: Gastroenterology and Hepatology • Oncology
Collapse
Affiliation(s)
- Shogo Ota
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Gensho Tanke
- Department of Gastroenterology, Kobe City Nishi-Kobe medical Center, Kobe, Hyogo, Japan
| | - Satsuki Asai
- Department of Pathology, Kobe City Nishi-kobe Medical Center, Kobe, Hyogo, Japan
| | - Ryo Ito
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Kazuya Hara
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Yutaka Takada
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Kanna Adachi
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Yukari Shimada
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Motohito Hayashi
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Toshinao Itani
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Misa Ishihara
- Department of Pathology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Atsushi Masamune
- Department of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
20
|
Vaes RDW, van Dijk DPJ, Welbers TTJ, Blok MJ, Aberle MR, Heij L, Boj SF, Olde Damink SWM, Rensen SS. Generation and initial characterization of novel tumour organoid models to study human pancreatic cancer-induced cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1509-1524. [PMID: 33047901 PMCID: PMC7749546 DOI: 10.1002/jcsm.12627] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/08/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The majority of patients with pancreatic cancer develops cachexia. The mechanisms underlying cancer cachexia development and progression remain elusive, although tumour-derived factors are considered to play a major role. Pancreatic tumour organoids are in vitro three-dimensional organ-like structures that retain many pathophysiological characteristics of the in vivo tumour. We aimed to establish a pancreatic tumour organoid biobank from well-phenotyped cachectic and non-cachectic patients to enable identification of tumour-derived factors driving cancer cachexia. METHODS Organoids were generated from tumour tissue of eight pancreatic cancer patients. A comprehensive pre-operative patient assessment of cachexia-related parameters including nutritional status, physical performance, body composition, and inflammation was performed. Tumour-related and cachexia-related characteristics of the organoids were analysed using histological stainings, targeted sequencing, and real-time-quantitative PCR. Cachexia-related factors present in the circulation of the patients and in the tumour organoid secretome were analysed by enzyme-linked immunosorbent assay. RESULTS The established human pancreatic tumour organoids presented typical features of malignancy corresponding to the primary tumour (i.e. nuclear enlargement, multiple nucleoli, mitosis, apoptosis, and mutated KRAS and/or TP53). These tumour organoids also expressed variable levels of many known cachexia-related genes including interleukin-6 (IL-6), TNF-α, IL-8, IL-1α, IL-1β, Mcp-1, GDF15, and LIF. mRNA expression of IL-1α and IL-1β was significantly reduced in organoids from cachectic vs. non-cachectic patients (IL-1α: -3.8-fold, P = 0.009, and IL-1β: -4.7-fold, P = 0.004). LIF, IL-8, and GDF15 mRNA expression levels were significantly higher in organoids from cachectic vs. non-cachectic patients (LIF: 1.6-fold, P = 0.003; IL-8: 1.4-fold, P = 0.01; GDF15: 2.3-fold, P < 0.001). In line with the GDF15 and IL-8 mRNA expression levels, tumour organoids from cachectic patients secreted more GDF15 and IL-8 compared with organoids from non-cachectic patients (5.4 vs. 1.5 ng/mL, P = 0.01, and 7.4 vs. 1.3 ng/mL, P = 0.07, respectively). CONCLUSIONS This novel human pancreatic tumour organoid biobank provides a valuable tool to increase our understanding of the mechanisms driving cancer cachexia. Our preliminary characterization of the secretome of these organoids supports their application in functional studies including conditioned medium approaches and in vivo transplantation models.
Collapse
Affiliation(s)
- Rianne D W Vaes
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - David P J van Dijk
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tessa T J Welbers
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Merel R Aberle
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
| | - Lara Heij
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany.,Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Sylvia F Boj
- Foundation Hubrecht Organoid Technology (HUB), Utrecht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Sander S Rensen
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
21
|
Bazzichetto C, Luchini C, Conciatori F, Vaccaro V, Di Cello I, Mattiolo P, Falcone I, Ferretti G, Scarpa A, Cognetti F, Milella M. Morphologic and Molecular Landscape of Pancreatic Cancer Variants as the Basis of New Therapeutic Strategies for Precision Oncology. Int J Mol Sci 2020; 21:E8841. [PMID: 33266496 PMCID: PMC7700259 DOI: 10.3390/ijms21228841] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
To date, pancreatic cancer is still one of the most lethal cancers in the world, mainly due to the lack of early diagnosis and personalized treatment strategies. In this context, the possibility and the opportunity of identifying genetic and molecular biomarkers are crucial to improve the feasibility of precision medicine. In 2019, the World Health Organization classified pancreatic ductal adenocarcinoma cancer (the most common pancreatic tumor type) into eight variants, according to specific histomorphological features. They are: colloid carcinoma, medullary carcinoma, adenosquamous carcinoma, undifferentiated carcinoma, including also rhabdoid carcinoma, undifferentiated carcinoma with osteoclast-like giant cells, hepatoid carcinoma, and signet-ring/poorly cohesive cells carcinoma. Interestingly, despite the very low incidence of these variants, innovative high throughput genomic/transcriptomic techniques allowed the investigation of both somatic and germline mutations in each specific variant, paving the way for their possible classification according also to specific alterations, along with the canonical mutations of pancreatic cancer (KRAS, TP53, CDKN2A, SMAD4). In this review, we aim to report the current evidence about genetic/molecular profiles of pancreatic cancer variants, highlighting their role in therapeutic and clinical impact.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.L.); (I.D.C.); (P.M.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Vanja Vaccaro
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Ilaria Di Cello
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.L.); (I.D.C.); (P.M.)
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.L.); (I.D.C.); (P.M.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Aldo Scarpa
- Department ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy;
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Michele Milella
- Division of Oncology, University of Verona, 37126 Verona, Italy;
| |
Collapse
|
22
|
Circulating Tumor DNA in KRAS positive colorectal cancer patients as a prognostic factor - a systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 154:103065. [PMID: 32763752 DOI: 10.1016/j.critrevonc.2020.103065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Liquid biopsy is a novel tool in oncology. It provides minimally invasive detection of tumor specific DNA. This review summarizes data on presence of circulating tumor DNA in serum or plasma of CRC patients as a potential negative prognostic factor. MATERIALS AND METHODS The systematic review was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The search was performed using PubMed, Web of Science and Scopus. RESULTS In total 18 articles with a total of 1779 patients met the inclusion criteria. Six out of 8 studies found that presence of ctDNA in plasma/serum was associated with inferior overall survival. All 6 studies found that high concentrations of ctDNA in plasma/serum was associated with inferior overall survival. CONCLUSIONS Presence or high concentrations of KRAS mutation in plasma or serum were associated with inferior prognosis. Establishing cut-off concentrations is warranted for further clinical implementation of liquid biopsy.
Collapse
|
23
|
Pancreatic ductal adenocarcinomas from Mexican patients present a distinct genomic mutational pattern. Mol Biol Rep 2020; 47:5175-5184. [PMID: 32583281 DOI: 10.1007/s11033-020-05592-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in humans, with less than 5% 5-year survival rate. PDAC is characterized by a small number of recurrent mutations, including KRAS, CDKN2A, TP53, and SMAD4 and a long "tail" of infrequent mutated genes. Most of the studies have been performed in US and European populations, so new studies are needed to describe the mutational landscape of these tumors in other cohorts. The present study analyzed the exome and transcriptome of four PDAC tumors from Mexican patients. We found a paucity of the previously described recurrent mutations, with mutations in only three genes (HERC2, CNTNAP2 and HMCN1) previously reported in PDAC with a frequency > 1%. In addition, we discovered several recurrent putative copy number aberrations in SKP2, BRAF, CSSF1R, FOXE1, JAK2 and MET genes and in genes previously reported as putative drivers in PDAC, including KRAS, SF3B1, BRAF, MYC and MET. Although a larger cohort is needed to validate these findings, our results could be pointing toward potential differences in contributing factors for PDAC in Latin-American populations.
Collapse
|
24
|
Zong N, Sharma DK, Yu Y, Egan JB, Davila JI, Wang C, Jiang G. Developing a FHIR-based Framework for Phenome Wide Association Studies: A Case Study with A Pan-Cancer Cohort. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2020; 2020:750-759. [PMID: 32477698 PMCID: PMC7233075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phenome Wide Association Studies (PheWAS) enables phenome-wide scans to discover novel associations between genotype and clinical phenotypes via linking available genomic reports and large-scale Electronic Health Record (EHR). Data heterogeneity from different EHR systems and genetic reports has been a critical challenge that hinders meaningful validation. To address this, we propose an FHIR-based framework to model the PheWAS study in a standard manner. We developed an FHIR-based data model profile to enable the standard representation of data elements from genetic reports and EHR data that are used in the PheWAS study. As a proof-of-concept, we implemented the proposed method using a cohort of 1,595 pan-cancer patients with genetic reports from Foundation Medicine as well as the corresponding lab tests and diagnosis from Mayo EHRs. A PheWAS study is conducted and 81 significant genotype-phenotype associations are identified, in which 36 significant associations for cancers are validated based on a literature review.
Collapse
Affiliation(s)
- Nansu Zong
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Deepak K Sharma
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Yue Yu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jan B Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Jaime I Davila
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Guoqian Jiang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Bao SM, Hu QH, Yang WT, Wang Y, Tong YP, Bao WD. Targeting Epidermal Growth Factor Receptor in Non-Small-Cell-Lung Cancer: Current State and Future Perspective. Anticancer Agents Med Chem 2020; 19:984-991. [PMID: 30868964 DOI: 10.2174/1871520619666190313161009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/20/2018] [Accepted: 03/01/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is one of the leading cause of cancer death worldwide, the most common histological type of lung cancer is non-small cell lung cancer (NSCLC), whose occurrence and development is closely related to the mutation and amplification of epidermal growth factor receptors (EGFR). Currently , a series of targeted drugs were developed on the inhibition of EGFR such as epidermal growth factor receptortyrosine kinase inhibitor EGFR-TKI and monoclonal antibody (McAb). OBJECTIVE We sought to summarizes the current drugs targeting Epidermal Growth Factor Receptor in nonsmall- cell-lung. METHODS We conducted a comprehensive review of the development and application of EGFR-TKI and McAb which targeted EGFR in NSCLC and compared the mechanisms of PROTAC with the traditional inhibitors. RESULTS The drugs targeted EGFR in NSCLC have been widely used in clinic practices. Compared to traditional chemotherapy, these drugs excel with their clear and specific targeting, better curative effects, and less toxic and side effects. However, the mechanism comes with some insurmountable weaknesses like serious toxic and other side effects, as well as proneness to producing drug resistance. CONCLUSION The emerging PROTAC (Proteolysis Targeting Chimera) technology has been successfully applied to selective degradation of multiple protein targets, including EGFR. It also highlights the potential and challenges of PROTAC therapy regarding future combination therapeutic options in NSCLC treatment.
Collapse
Affiliation(s)
- Shui-Ming Bao
- Department of biology, East China University of Technology, 418 Guanglan Road, Nan chang, Jiangxi province 330013, China
| | - Qing-Hui Hu
- Nanchang Five Elements Biology Technology Company Limited, Nanchang, Jiangxi, China
| | - Wen-Ting Yang
- Nanchang Five Elements Biology Technology Company Limited, Nanchang, Jiangxi, China
| | - Yao Wang
- Nanchang Five Elements Biology Technology Company Limited, Nanchang, Jiangxi, China
| | - Yin-Ping Tong
- Nanchang Five Elements Biology Technology Company Limited, Nanchang, Jiangxi, China
| | - Wen-Dai Bao
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
26
|
Maeda S, Ohka F, Okuno Y, Aoki K, Motomura K, Takeuchi K, Kusakari H, Yanagisawa N, Sato S, Yamaguchi J, Tanahashi K, Hirano M, Kato A, Shimizu H, Kitano Y, Yamazaki S, Yamashita S, Takeshima H, Shinjo K, Kondo Y, Wakabayashi T, Natsume A. H3F3A mutant allele specific imbalance in an aggressive subtype of diffuse midline glioma, H3 K27M-mutant. Acta Neuropathol Commun 2020; 8:8. [PMID: 32019606 PMCID: PMC7001313 DOI: 10.1186/s40478-020-0882-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/18/2020] [Indexed: 11/12/2022] Open
Abstract
Diffuse midline glioma, H3 K27M-mutant is a lethal brain tumor located in the thalamus, brain stem, or spinal cord. H3 K27M encoded by the mutation of a histone H3 gene such as H3F3A plays a pivotal role in the tumorigenesis of this type of glioma. Although several studies have revealed comprehensive genetic and epigenetic profiling, the prognostic factors of these tumors have not been identified to date. In various cancers, oncogenic driver genes have been found to exhibit characteristic copy number alterations termed mutant allele specific imbalance (MASI). Here, we showed that several diffuse midline glioma, H3 K27M-mutant exhibited high variant allele frequency (VAF) of the mutated H3F3A gene using droplet digital polymerase chain reaction (ddPCR) assays. Whole-genome sequencing (WGS) revealed that these cases had various copy number alterations that affected the mutant and/or wild-type alleles of the H3F3A gene. We also found that these MASI cases showed a significantly higher Ki-67 index and poorer survival compared with those in the lower VAF cases (P < 0.05). Our results indicated that the MASI of the H3F3A K27M mutation was associated with the aggressive phenotype of the diffuse midline glioma, H3 K27M-mutant via upregulation of the H3 K27M mutant protein, resulting in downregulation of H3K27me3 modification.
Collapse
|
27
|
Chan-Seng-Yue M, Kim JC, Wilson GW, Ng K, Figueroa EF, O'Kane GM, Connor AA, Denroche RE, Grant RC, McLeod J, Wilson JM, Jang GH, Zhang A, Dodd A, Liang SB, Borgida A, Chadwick D, Kalimuthu S, Lungu I, Bartlett JMS, Krzyzanowski PM, Sandhu V, Tiriac H, Froeling FEM, Karasinska JM, Topham JT, Renouf DJ, Schaeffer DF, Jones SJM, Marra MA, Laskin J, Chetty R, Stein LD, Zogopoulos G, Haibe-Kains B, Campbell PJ, Tuveson DA, Knox JJ, Fischer SE, Gallinger S, Notta F. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet 2020; 52:231-240. [PMID: 31932696 DOI: 10.1038/s41588-019-0566-9] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic adenocarcinoma presents as a spectrum of a highly aggressive disease in patients. The basis of this disease heterogeneity has proved difficult to resolve due to poor tumor cellularity and extensive genomic instability. To address this, a dataset of whole genomes and transcriptomes was generated from purified epithelium of primary and metastatic tumors. Transcriptome analysis demonstrated that molecular subtypes are a product of a gene expression continuum driven by a mixture of intratumoral subpopulations, which was confirmed by single-cell analysis. Integrated whole-genome analysis uncovered that molecular subtypes are linked to specific copy number aberrations in genes such as mutant KRAS and GATA6. By mapping tumor genetic histories, tetraploidization emerged as a key mutational process behind these events. Taken together, these data support the premise that the constellation of genomic aberrations in the tumor gives rise to the molecular subtype, and that disease heterogeneity is due to ongoing genomic instability during progression.
Collapse
Affiliation(s)
- Michelle Chan-Seng-Yue
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jaeseung C Kim
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Genomics Technology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gavin W Wilson
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Karen Ng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Centre University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ashton A Connor
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Robert E Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert C Grant
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Centre University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jessica McLeod
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Julie M Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anna Dodd
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Centre University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sheng-Ben Liang
- UHN Program in BioSpecimen Sciences, University Health Network, Toronto, Ontario, Canada
| | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Dianne Chadwick
- UHN Program in BioSpecimen Sciences, University Health Network, Toronto, Ontario, Canada
| | - Sangeetha Kalimuthu
- Department of Pathology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ilinca Lungu
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John M S Bartlett
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Paul M Krzyzanowski
- Genomics Technology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vandana Sandhu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA.,Department of Surgery, University of California San Diego, NCI-designated Comprehensive Cancer Center, La Jolla, CA, USA
| | - Fieke E M Froeling
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA.,Department of Surgery and Cancer, Imperial College London, London, UK
| | | | | | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Runjan Chetty
- Department of Pathology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Lincoln D Stein
- Bioinformatics, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - George Zogopoulos
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA
| | - Jennifer J Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Centre University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Fischer
- Department of Pathology, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada. .,Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada. .,PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Grant AD, Vail P, Padi M, Witkiewicz AK, Knudsen ES. Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations. Sci Rep 2019; 9:12766. [PMID: 31484939 PMCID: PMC6726654 DOI: 10.1038/s41598-019-48967-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
Genetic alterations are essential for cancer initiation and progression. However, differentiating mutations that drive the tumor phenotype from mutations that do not affect tumor fitness remains a fundamental challenge in cancer biology. To better understand the impact of a given mutation within cancer, RNA-sequencing data was used to categorize mutations based on their allelic expression. For this purpose, we developed the MAXX (Mutation Allelic Expression Extractor) software, which is highly effective at delineating the allelic expression of both single nucleotide variants and small insertions and deletions. Results from MAXX demonstrated that mutations can be separated into three groups based on their expression of the mutant allele, lack of expression from both alleles, or expression of only the wild-type allele. By taking into consideration the allelic expression patterns of genes that are mutated in PDAC, it was possible to increase the sensitivity of widely used driver mutation detection methods, as well as identify subtypes that have prognostic significance and are associated with sensitivity to select classes of therapeutic agents in cell culture. Thus, differentiating mutations based on their mutant allele expression via MAXX represents a means to parse somatic variants in tumor genomes, helping to elucidate a gene’s respective role in cancer.
Collapse
Affiliation(s)
- Adam D Grant
- University of Arizona Cancer Center, Tucson, AZ, 85719, USA
| | - Paris Vail
- University of Arizona Cancer Center, Tucson, AZ, 85719, USA
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85719, USA
| | | | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
29
|
Ito H, Hiraiwa SI, Sugiyama T, Tajiri T, Yoshii H, Izumi H, Yamaji Y, Kaneko M, Tsuda S, Ichikawa H, Nagata J, Kojima S, Takashimizu S, Shirai T, Watanabe N. An Autopsy Case of Anaplastic Pancreatic Ductal Carcinoma (Spindle Cell Type) Multiple Onset in the Pancreas. Case Rep Oncol 2019; 12:332-338. [PMID: 31123460 PMCID: PMC6514515 DOI: 10.1159/000499969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
This is a case of a 75-year-old man who was diagnosed with anaplastic pancreatic ductal carcinoma (spindle cell type). His image findings showed pancreatic head cysts and pancreatic head, body, and tail tumors respectively. EUS-FNA was performed to the pancreatic head and pancreatic body tumors, and the same high atypical type cells suspected of cancer were obtained from either specimen, and finally total pancreatectomy was performed. On the specimen, there were 4 lesions in the pancreas; histology showed that the same anaplastic pancreatic ductal carcinoma (spindle cell type) was obtained from the pancreatic head cyst and the pancreatic tumors.
Collapse
Affiliation(s)
- Hiroyuki Ito
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | | | - Tomoko Sugiyama
- Department of Pathology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Takuma Tajiri
- Department of Pathology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Hisamichi Yoshii
- Department of Surgery, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Hideki Izumi
- Department of Surgery, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Yoko Yamaji
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Motoki Kaneko
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Shingo Tsuda
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Hitoshi Ichikawa
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Junko Nagata
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Seiichiro Kojima
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Shinji Takashimizu
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Takayuki Shirai
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Norihito Watanabe
- Department of Gastroenterology, Tokai University Hachioji Hospital, Tokyo, Japan
| |
Collapse
|
30
|
Merrick BA, Phadke DP, Bostrom MA, Shah RR, Wright GM, Wang X, Gordon O, Pelch KE, Auerbach SS, Paules RS, DeVito MJ, Waalkes MP, Tokar EJ. Arsenite malignantly transforms human prostate epithelial cells in vitro by gene amplification of mutated KRAS. PLoS One 2019; 14:e0215504. [PMID: 31009485 PMCID: PMC6476498 DOI: 10.1371/journal.pone.0215504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Inorganic arsenic is an environmental human carcinogen of several organs including the urinary tract. RWPE-1 cells are immortalized, non-tumorigenic, human prostate epithelia that become malignantly transformed into the CAsE-PE line after continuous in vitro exposure to 5μM arsenite over a period of months. For insight into in vitro arsenite transformation, we performed RNA-seq for differential gene expression and targeted sequencing of KRAS. We report >7,000 differentially expressed transcripts in CAsE-PE cells compared to RWPE-1 cells at >2-fold change, q<0.05 by RNA-seq. Notably, KRAS expression was highly elevated in CAsE-PE cells, with pathway analysis supporting increased cell proliferation, cell motility, survival and cancer pathways. Targeted DNA sequencing of KRAS revealed a mutant specific allelic imbalance, ‘MASI’, frequently found in primary clinical tumors. We found high expression of a mutated KRAS transcript carrying oncogenic mutations at codons 12 and 59 and many silent mutations, accompanied by lower expression of a wild-type allele. Parallel cultures of RWPE-1 cells retained a wild-type KRAS genotype. Copy number analysis and sequencing showed amplification of the mutant KRAS allele. KRAS is expressed as two splice variants, KRAS4a and KRAS4b, where variant 4b is more prevalent in normal cells compared to greater levels of variant 4a seen in tumor cells. 454 Roche sequencing measured KRAS variants in each cell type. We found KRAS4a as the predominant transcript variant in CAsE-PE cells compared to KRAS4b, the variant expressed primarily in RWPE-1 cells and in normal prostate, early passage, primary epithelial cells. Overall, gene expression data were consistent with KRAS-driven proliferation pathways found in spontaneous tumors and malignantly transformed cell lines. Arsenite is recognized as an important environmental carcinogen, but it is not a direct mutagen. Further investigations into this in vitro transformation model will focus on genomic events that cause arsenite-mediated mutation and overexpression of KRAS in CAsE-PE cells.
Collapse
Affiliation(s)
- B. Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Dhiral P. Phadke
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Meredith A. Bostrom
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Ruchir R. Shah
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Garron M. Wright
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Xinguo Wang
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Oksana Gordon
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Katherine E. Pelch
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Scott S. Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Richard S. Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael J. DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael P. Waalkes
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Erik J. Tokar
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
31
|
Shiroma N, Arihiro K, Oda M, Orita M. KRAS fluorescence in situ hybridisation testing for the detection and diagnosis of pancreatic adenocarcinoma. J Clin Pathol 2018; 71:865-873. [PMID: 29695486 DOI: 10.1136/jclinpath-2018-205002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/02/2023]
Abstract
AIMS The aim of our study was to analyse correlations between KRAS mutation status, chromosomal changes that affect KRAS status in cells from pancreatic tumours. METHODS We collected 69 cases of surgically resected pancreatic ductal adenocarcinoma (PDA) and seven cases of chronic pancreatitis (CP). Chromosomal abnormalities of KRAS and CEP12 were detected using fluorescence in situ hybridisation (FISH). RESULTS The number of CEP12 signals per cell ranged from 1.78 to 2.04 and 1.46 to 4.88 in CP and PDA samples, respectively, while the number of KRAS signals per cell ranged from 1.94 to 2.06 and 1.88 to 8.18 in CP and PDA samples, respectively. The 'chromosomal instability index', which was defined as the percentage of cells with any chromosomal abnormality, was over 5.7 times greater in PDA than in CP. We performed KRAS mutation analysis by direct sequencing and found that tumours with KRAS mutations have a significantly higher mean KRAS signal per cell from PDA samples compared with tumours with wild-type KRAS. KRAS amplification was noted in 10% of cases. Although we found that lymph node metastasis and distal metastasis of PDA were more frequent in cases with KRAS amplification, this was not correlated with overall survival. Using a threshold of 40%, we found that the chromosomal instability index robustly discriminated PDA cells from CP cells. CONCLUSIONS Based on these findings, we concluded that FISH testing of KRAS using cytology samples may represent an accurate approach for the diagnosis of PDA.
Collapse
Affiliation(s)
- Noriyuki Shiroma
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Miyo Oda
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Makoto Orita
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
32
|
Chang XY, Wu Y, Li Y, Wang J, Chen J. Intraductal papillary mucinous neoplasms of the pancreas: Clinical association with KRAS. Mol Med Rep 2018; 17:8061-8068. [PMID: 29658583 PMCID: PMC5983980 DOI: 10.3892/mmr.2018.8875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/18/2018] [Indexed: 12/30/2022] Open
Abstract
Intraductal papillary mucinous neoplasms of the pancreas (IPMN) are among the most important precancerous lesions in the pancreas. V‑Ki‑ras 2 Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most important genes involved in pancreatic neoplasms, and exhibits a high mutation rate in pancreatic ductal adenocarcinomas and pancreatic intraepithelial neoplasia. The present study aimed to further elucidate the associations among IPMN subtypes (gastric, intestinal, pancreatobiliary and oncocytic), pathological classifications [low‑grade, intermediate‑grade, and high‑grade IPMN, and associated minimally invasive carcinoma (invasive depth ≤0.5 cm) and advanced invasive carcinoma (invasive depth >0.5 cm)]. A total of 56 cases of IPMN were studied using scorpion amplified refractory mutation system analysis of KRAS mutations, pathological features and prognosis. KRAS mutations were identified in 50% (28/56 cases). The frequency was 60% (9/15 cases) in gastric‑type, 52.6% (10/19 cases) in intestinal‑type, 47.3% (9/19 cases) in pancreatobiliary‑type and zero (0/3 cases) in oncocytic‑type IPMN. Except for oncocytic type IPMN, the frequencies of KRAS mutations in IPMN with low, intermediate and high grade, and IPMN‑associated carcinoma were 58.3% (7/12 cases), 27.3% (3/11 cases), 80% (4/5 cases) and 56% (14/25 cases), respectively. With more advanced dysplasia and invasion, the prevalence of KRAS mutations in intestinal‑type IPMN increased (P=0.012). The Kaplan‑Meier survival curve demonstrated that survival rate was not associated with KRAS mutation (log‑rank test; P=0.308). The prevalence of KRAS mutations was lowest in intestinal‑type IPMN, and was in proportion to the degree of dysplasia and invasion. Therefore, KRAS mutation in IPMN does not correlate with histological subtype, dysplasia grade, depth of invasion or survival.
Collapse
Affiliation(s)
- Xiao Yan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, P.R. China
| | - Yan Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, P.R. China
| | - Yuan Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, P.R. China
| | - Jing Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, P.R. China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, P.R. China
| |
Collapse
|
33
|
Rao M, Zhenjiang L, Meng Q, Sinclair G, Dodoo E, Maeurer M. Mutant Epitopes in Cancer. Oncoimmunology 2017. [DOI: 10.1007/978-3-319-62431-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
34
|
Barnett D, Liu Y, Partyka K, Huang Y, Tang H, Hostetter G, Brand RE, Singhi AD, Drake RR, Haab BB. The CA19-9 and Sialyl-TRA Antigens Define Separate Subpopulations of Pancreatic Cancer Cells. Sci Rep 2017; 7:4020. [PMID: 28642461 PMCID: PMC5481434 DOI: 10.1038/s41598-017-04164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023] Open
Abstract
Molecular markers to detect subtypes of cancer cells could facilitate more effective treatment. We recently identified a carbohydrate antigen, named sTRA, that is as accurate a serological biomarker of pancreatic cancer as the cancer antigen CA19-9. We hypothesized that the cancer cells producing sTRA are a different subpopulation than those producing CA19-9. The sTRA glycan was significantly elevated in tumor tissue relative to adjacent pancreatic tissue in 3 separate tissue microarrays covering 38 patients. The morphologies of the cancer cells varied in association with glycan expression. Cells with dual staining of both markers tended to be in well-to-moderately differentiated glands with nuclear polarization, but exclusive sTRA staining was present in small clusters of cells with poor differentiation and large vacuoles, or in small and ill-defined glands. Patients with higher dual-staining of CA19-9 and sTRA had statistically longer time-to-progression after surgery. Patients with short time-to-progression (<2 years) had either low levels of the dual-stained cells or high levels of single-stained cells, and such patterns differentiated short from long time-to-progression with 90% (27/30) sensitivity and 80% (12/15) specificity. The sTRA and CA19-9 glycans define separate subpopulations of cancer cells and could together have value for classifying subtypes of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Daniel Barnett
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, East Lansing, MI, USA
| | - Ying Liu
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Ying Huang
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Huiyuan Tang
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Randall E Brand
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D Singhi
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Brian B Haab
- Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
35
|
Przybyl J, Kowalewska M, Quattrone A, Dewaele B, Vanspauwen V, Varma S, Vennam S, Newman AM, Swierniak M, Bakuła-Zalewska E, Siedlecki JA, Bidzinski M, Cools J, van de Rijn M, Debiec-Rychter M. Macrophage infiltration and genetic landscape of undifferentiated uterine sarcomas. JCI Insight 2017; 2:94033. [PMID: 28570276 DOI: 10.1172/jci.insight.94033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Endometrial stromal tumors include translocation-associated low- and high-grade endometrial stromal sarcomas (ESS) and highly malignant undifferentiated uterine sarcomas (UUS). UUS is considered a poorly defined group of aggressive tumors and is often seen as a diagnosis of exclusion after ESS and leiomyosarcoma (LMS) have been ruled out. We performed a comprehensive analysis of gene expression, copy number variation, point mutations, and immune cell infiltrates in the largest series to date of all major types of uterine sarcomas to shed light on the biology of UUS and to identify potential novel therapeutic targets. We show that UUS tumors have a distinct molecular profile from LMS and ESS. Gene expression and immunohistochemical analyses revealed the presence of high numbers of tumor-associated macrophages (TAMs) in UUS, which makes UUS patients suitable candidates for therapies targeting TAMs. Our results show a high genomic instability of UUS and downregulation of several TP53-mediated tumor suppressor genes, such as NDN, CDH11, and NDRG4. Moreover, we demonstrate that UUS carry somatic mutations in several oncogenes and tumor suppressor genes implicated in RAS/PI3K/AKT/mTOR, ERBB3, and Hedgehog signaling.
Collapse
Affiliation(s)
- Joanna Przybyl
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland.,Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland.,Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | - Anna Quattrone
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Vanessa Vanspauwen
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Michal Swierniak
- Human Cancer Genetics, Center of New Technologies, CENT, University of Warsaw, Warsaw, Poland
| | | | - Janusz A Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Mariusz Bidzinski
- Department of Gynecologic Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland.,The Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland
| | - Jan Cools
- KU Leuven and Flanders Interuniversity Institute for Biotechnology (VIB), Leuven, Belgium
| | - Matt van de Rijn
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Modi RM, Pavurala RB, Krishna SG. An appraisal of pancreatic cyst fluid molecular markers. INTERNATIONAL JOURNAL OF GASTROINTESTINAL INTERVENTION 2017. [DOI: 10.18528/gii170005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rohan M. Modi
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ravi B. Pavurala
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
37
|
Mutant allele specific imbalance in oncogenes with copy number alterations: Occurrence, mechanisms, and potential clinical implications. Cancer Lett 2016; 384:86-93. [PMID: 27725226 DOI: 10.1016/j.canlet.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023]
Abstract
Mutant allele specific imbalance (MASI) was initially coined to describe copy number alterations associated with the mutant allele of an oncogene. The copy number gain (CNG) specific to the mutant allele can be readily observed in electropherograms. With the development of genome-wide analyses at base-pair resolution with copy number counts, we can now further differentiate MASI into those with CNG, with copy neutral alteration (also termed acquired uniparental disomy; UPD), or with loss of heterozygosity (LOH) due to the loss of the wild-type (WT) allele. Here we summarize the occurrence of MASI with CNG, aUPD, or MASI with LOH in some major oncogenes (such as EGFR, KRAS, PIK3CA, and BRAF). We also discuss how these various classifications of MASI have been demonstrated to impact tumorigenesis, progression, metastasis, prognosis, and potentially therapeutic responses in cancer, notably in lung, colorectal, and pancreatic cancers.
Collapse
|
38
|
Martinez E, Silvy F, Fina F, Bartoli M, Krahn M, Barlesi F, Figarella-Branger D, Iovanna J, Laugier R, Ouaissi M, Lombardo D, Mas E. Rs488087 single nucleotide polymorphism as predictive risk factor for pancreatic cancers. Oncotarget 2016; 6:39855-64. [PMID: 26498142 PMCID: PMC4741865 DOI: 10.18632/oncotarget.5627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is a devastating disease progressing asymptomatically until death within months after diagnosis. Defining at-risk populations should promote its earlier diagnosis and hence also avoid its development. Considering the known involvement in pancreatic disease of exon 11 of the bile salt-dependent lipase (BSDL) gene that encodes variable number of tandem repeat (VNTR) sequences, we hypothesized upon the existence of a genetic link between predisposition to PC and mutations in VNTR loci. To test this, BSDL VNTR were amplified by touchdown-PCR performed on genomic DNA extracted from cancer tissue or blood samples from a French patient cohort and amplicons were Sanger sequenced. A robust method using probes for droplet digital (dd)-PCR was designed to discriminate the C/C major from C/T or T/T minor genotypes. We report that the c.1719C > T transition (SNP rs488087) present in BSDL VNTR may be a useful marker for defining a population at risk of developing PC (occurrence: 63.90% in the PC versus 27.30% in the control group). The odds ratio of 4.7 for the T allele was larger than those already determined for other SNPs suspected to be predictive of PC. Further studies on tumor pancreatic tissue suggested that a germline T allele may favor Kras G12R/G12D somatic mutations which represent negative prognostic factors associated with reduced survival. We propose that the detection of the T allele in rs488087 SNP should lead to an in-depth follow-up of patients in whom an association with other potential risk factors of pancreatic cancer may be present.
Collapse
Affiliation(s)
- Emmanuelle Martinez
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, F-13005, Marseille, France.,INSERM, UMR_S 911, F-13005, Marseille, France
| | - Françoise Silvy
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, F-13005, Marseille, France.,INSERM, UMR_S 911, F-13005, Marseille, France
| | - Fréderic Fina
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, F-13005, Marseille, France.,INSERM, UMR_S 911, F-13005, Marseille, France.,LBM- Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Service de Transfert d'Oncologie Biologique, F-13015, Marseille, France
| | - Marc Bartoli
- Aix-Marseille Université, INSERM, UMR 910, F-13005, Marseille, France
| | - Martin Krahn
- Aix-Marseille Université, INSERM, UMR 910, F-13005, Marseille, France.,Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone-Enfants, Département de Génétique Médicale, F-13005, Marseille, France
| | - Fabrice Barlesi
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, F-13005, Marseille, France.,INSERM, UMR_S 911, F-13005, Marseille, France.,Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Service d'Oncologie Multidisciplinaire & Innovation Thérapeutique, F-13915, Marseille, France
| | - Dominique Figarella-Branger
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, F-13005, Marseille, France.,INSERM, UMR_S 911, F-13005, Marseille, France.,Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service d'Anatomopathologie, F-13005, Marseille, France
| | - Juan Iovanna
- Aix-Marseille Université, CRCM, Centre de Recherche en Cancérologie de Marseille, F-13009, Marseille, France.,INSERM, UMR_S 1068, F-13009, Marseille, France.,CNRS, UMR 7258, F-13009, Marseille, France
| | - René Laugier
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service de Gastroentérologie, F-13005, Marseille, France
| | - Mehdi Ouaissi
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, F-13005, Marseille, France.,INSERM, UMR_S 911, F-13005, Marseille, France.,Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service de Chirurgie Digestive et Viscérale, F-13005, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, F-13005, Marseille, France.,INSERM, UMR_S 911, F-13005, Marseille, France
| | - Eric Mas
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, F-13005, Marseille, France.,INSERM, UMR_S 911, F-13005, Marseille, France
| |
Collapse
|
39
|
Muraki T, Reid MD, Basturk O, Jang KT, Bedolla G, Bagci P, Mittal P, Memis B, Katabi N, Bandyopadhyay S, Sarmiento JM, Krasinskas A, Klimstra DS, Adsay V. Undifferentiated Carcinoma With Osteoclastic Giant Cells of the Pancreas: Clinicopathologic Analysis of 38 Cases Highlights a More Protracted Clinical Course Than Currently Appreciated. Am J Surg Pathol 2016; 40:1203-16. [PMID: 27508975 PMCID: PMC4987218 DOI: 10.1097/pas.0000000000000689] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Undifferentiated carcinomas with osteoclastic giant cells of the pancreas (OGC) are rare tumors. The current impression in the literature is that they are highly aggressive tumors similar in prognosis to ductal adenocarcinomas. In this study, the clinicopathologic characteristics of 38 resected OGCs were investigated and contrasted with 725 resected pancreatic ductal adenocarcinomas without osteoclastic cells (PDCs). The frequency among systematically reviewed pancreatic cancers was 1.4%. OGCs showed a slight female predominance (62.9%, vs. 51.4% in PDCs). The mean age was 57.9 years (vs. 65.0). The mean size of invasive cancer was 5.3 cm (vs. 3.2). They were characterized by nodular, pushing-border growth, and 8 arose in tumoral intraepithelial neoplasms (4 in mucinous cystic neoplasms, 4 in intraductal papillary mucinous neoplasms type lesions), and 23 (61%) also showed prominent intraductal/intracystic growth. Twenty-nine (76%) had an invasive ductal/tubular adenocarcinoma component. Osteoid was seen in 12. Despite their larger size, perineural invasion and nodal metastasis were uncommon (31.6% and 22.6%, vs. 85.5% and 64.0%, respectively). Immunohistochemistry performed on 24 cases revealed that osteoclastic cells expressed the histiocytic marker CD68, and background spindle cells and pleomorphic/giant carcinoma cells often showed p53 and often lacked cytokeratin. Survival of OGCs was significantly better than that of PDCs (5 yr, 59.1% vs. 15.7%, respectively, P=0.0009). In conclusion, pancreatic OGCs present with larger tumor size and in slightly younger patients than PDC, 21% arise in mucinous cystic neoplasms/intraductal papillary mucinous neoplasms, and 61% show intraductal/intracystic polypoid growth. OGCs have a significantly better prognosis than is currently believed in the literature.
Collapse
Affiliation(s)
- Takashi Muraki
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Michelle D. Reid
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gabriela Bedolla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Pelin Bagci
- Department of Pathology, Marmara University, Istanbul, Turkey
| | - Pardeep Mittal
- Department of Radiology, Emory University School of Medicine, GA, USA
| | - Bahar Memis
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY, USA
| | | | | | - Alyssa Krasinskas
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - David S. Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Volkan Adsay
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| |
Collapse
|
40
|
Intratumor Heterogeneity of KRAS Mutation Status in Pancreatic Ductal Adenocarcinoma Is Associated With Smaller Lesions. Pancreas 2016; 45:876-81. [PMID: 26646269 DOI: 10.1097/mpa.0000000000000562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Recent studies have demonstrated intratumor heterogeneity (ITH) for genetic mutations in various tumors and suggest that ITH might have significant clinical impact. Because KRAS is the most commonly mutated oncogene in pancreatic ductal adenocarcinoma and has an important role in pancreatic carcinogenesis, the purpose of this study was to evaluate ITH for KRAS gene mutation and its clinical significance. METHODS Deep sequencing of 47 pancreatic ductal adenocarcinoma cases was used to determine the fraction of KRAS mutant alleles. In addition, computerized morphometry was used to calculate the fraction of tumor cells. After analysis of both results, cases were classified as ITH or as having amplification of mutant KRAS. The presence of ITH was correlated with clinical and pathological factors. RESULTS KRAS mutation was found in 38 (81%) cases, of which 12 (32%) showed ITH and 9 (23%) were found to have KRAS mutant allele amplification. The presence of ITH was associated with smaller tumors, whereas amplification was associated with higher tumor diameter. CONCLUSIONS In pancreatic ductal adenocarcinoma, ITH for KRAS gene mutation was associated with smaller tumors. It is possible that, as the tumor progresses, more cells carry this mutation, which leads to more aggressive tumor features.
Collapse
|
41
|
Abstract
INTRODUCTION Next-Generation-Sequencing (NGS) has enabled gene mutation profiling - cataloguing sequence variants and modifications in clinical assays encompassing tens to thousands of genes in tumors and in germlines. The clinical benefit of applying multi-gene NGS to diverse applications in various malignancies remains to be demonstrated. AREAS COVERED Applications of gene mutation profiling in oncology include screening cancer-prone families, classification of malignancies, treatment selection, and monitoring the response to treatment of solid tumors (the 'liquid biopsy'). Google Scholar was used to search PubMed for the period 2011-2016 using combinations of the following search terms: 'clinical utility', NGS, 'molecular diagnostics'. Expert commentary: Clinical studies are in progress pairing mutation profiling with streamlined new trial designs to speed identification of promising drug-target combinations and to see if genotype-informed treatment selection will improve outcome across a spectrum of histologies. The analytical advantages and falling cost of NGS make focused gene panels likely to become the dominant modality in molecular diagnostic testing even if trials eventually discourage use of large panels to test all malignancies.
Collapse
Affiliation(s)
- Loren Joseph
- a Department of Pathology, Beth Israel Deaconess Medical Center, Molecular Diagnostics Laboratory , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
42
|
Bai Q, Zhang X, Zhu X, Wang L, Huang D, Cai X, Zhou X, Wang J, Sheng W. Pancreatic carcinosarcoma with the same KRAS gene mutation in both carcinomatous and sarcomatous components: molecular evidence for monoclonal origin of the tumour. Histopathology 2016; 69:393-405. [PMID: 27307095 DOI: 10.1111/his.12975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/25/2016] [Indexed: 12/12/2022]
Abstract
AIMS To better understand the histogenesis, prognosis and feasible treatment of pancreatic carcinosarcoma, a rare type of neoplasia. METHODS AND RESULTS We investigated eight additional cases of pancreatic carcinosarcoma at a single institution, including the clinicopathological, immunohistochemical, and KRAS mutation characteristics. We have also reviewed the current literature on this rare type of neoplasia, and summarized the clinicopathological features and feasible treatments. As a result, concordant strong nuclear immunoreactivity for P53 protein and the same type of KRAS gene mutation, c.35G>A (p.G12D) or c.35G>T (p.G12V), were showed in both carcinomatous and sarcomatous components in five of eight cases. Furthermore, we found that the patients treated with surgery plus postoperative chemotherapy had longer survival than those treated with surgery only (P = 0.034 and P = 0.131 for overall survival and disease-free survival, respectively), although Cox regression multivariate analysis indicated that it was not an independent predictor. In addition, we found KRAS mutant allele-specific imbalance in four of our five cases of pancreatic carcinosarcoma, which was associated with advanced disease and a worse prognosis. CONCLUSIONS This is the largest panel of cases of pancreatic carcinosarcoma studied so far, including clinicopathological, immunohistochemical and molecular cytogenetic features. Our findings indicate that the tumour could have been of monoclonal origin, and that the sarcomatous components might have arisen from metaplastic transformation of the carcinomatous components. Our results also suggest that surgery plus POC including gemcitabine may be a good choice for patients with pancreatic carcinosarcoma.
Collapse
Affiliation(s)
- Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Pathology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Xiaoli Zhu
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
43
|
KRAS, BRAF, and PIK3CA mutations, and patient prognosis in 126 pancreatic cancers: pyrosequencing technology and literature review. Med Oncol 2016; 33:32. [DOI: 10.1007/s12032-016-0745-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|
44
|
Matsuda Y, Ishiwata T, Yachida S, Suzuki A, Hamashima Y, Hamayasu H, Yoshimura H, Honma N, Aida J, Takubo K, Arai T. Clinicopathological Features of 15 Occult and 178 Clinical Pancreatic Ductal Adenocarcinomas in 8339 Autopsied Elderly Patients. Pancreas 2016; 45:234-40. [PMID: 26474426 DOI: 10.1097/mpa.0000000000000447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the clinicopathological features of pancreatic cancer at different stages using autopsy results. METHODS We retrospectively evaluated 8399 consecutive cases of autopsy performed between 1972 and 2013 at our geriatric hospital. RESULTS Macroscopic pancreatic lesions were detected in 6.13% of the cases. Primary and secondary pancreatic tumors were observed in 2.88% and 2.10% of the cases, respectively. Most primary tumors were invasive ductal adenocarcinomas (193 cases [2.31%]; mean patient age, 78.09 years) with a peak incidence at 50 to 59 years. Occult invasive ductal adenocarcinoma was discovered incidentally in 15 cases, with distant metastasis present in 26.67% of those. Microscopically, occult and advanced tumors exhibited similar characteristics such as hyalinized fibrous stroma, necrosis, invasion into vessels, peripancreatic fat tissues, and extrapancreatic nerve plexus. Mucin 1 and 2 immunohistochemical expression levels were also similar. Occult cancer incidence increased with age. Patients aged 85 years or older had shorter survival, a small tumor size, and a low incidence of lymph node metastasis. Approximately 8% of pancreatic invasive ductal adenocarcinomas progressed asymptomatically and were discovered incidentally at autopsy. CONCLUSIONS Pancreatic cancers in elderly patients tend to progress asymptomatically, but once symptoms develop, they are more often fatal than those in younger patients.
Collapse
Affiliation(s)
- Yoko Matsuda
- From the *Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku; †Department of Pathology and Integrative Oncological Pathology, Nippon Medical School, Bunkyo-ku; ‡Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku; and §Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Digitally guided microdissection aids somatic mutation detection in difficult to dissect tumors. Cancer Genet 2015; 209:42-9. [PMID: 26767919 DOI: 10.1016/j.cancergen.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 01/03/2023]
Abstract
Molecular genetic testing on formalin fixed, paraffin embedded (FFPE) tumors frequently requires dissection of tumor from tissue sections mounted on glass slides. In a process referred to as "manual macrodissection," the pathologist reviews an H&E stained slide at the light microscope and marks areas for dissection, and then the laboratory performs manual dissection from adjacent sections without the aid of a microscope, using the marked reference H&E slide as a guide. Manual macrodissection may be inadequate for tissue sections with low tumor content. We compared manual macrodissection to a new method, digitally guided microdissection, on a series of 32 FFPE pancreatic cancer samples. KRAS hotspot mutation profiling was performed using the Sequenom MassARRAY system (Agena Bioscience). Digitally guided microdissection was performed on multiple smaller areas of high tumor content selected from within the larger areas marked for manual macrodissection. The KRAS mutant allele fraction and estimated neoplastic cellularity were significantly higher in samples obtained by digitally guided microdissection (p < 0.01), and 7 of the 32 samples (22%) showed a detectable mutation only with digitally guided microdissection. DNA quality and yield per cubic millimeter of dissected tissue were similar for both dissection methods. These results indicate a significant improvement in tumor content achievable with digitally guided microdissection.
Collapse
|
46
|
Kitade H, Yanagida H, Yamada M, Satoi S, Yoshioka K, Shikata N, Kon M. Granulocyte-colony stimulating factor producing anaplastic carcinoma of the pancreas treated by distal pancreatectomy and chemotherapy: report of a case. Surg Case Rep 2015; 1:46. [PMID: 26366343 PMCID: PMC4560138 DOI: 10.1186/s40792-015-0048-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/25/2015] [Indexed: 12/15/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) producing pancreatic cancers are extremely rare. These tumors have an aggressive clinical course but no established treatment. We encountered a patient with a G-CSF-induced pancreatic cancer who was treated by surgical resection, followed by steroid treatment and chemotherapy. A 68-year-old Asian male presented at a local hospital with a 3-month history of fever, loss of appetite, and 10-kg weight loss. Laboratory data showed leukocytosis and elevation of C-reactive protein. Computed tomography (CT) revealed a 50-mm mass in the tail of the pancreas, but no signs of infective foci. He was transferred to our hospital for further evaluation. Contrast-enhanced CT showed rapid growth of this tumor over 1 week, and 18 F-2-fluoro-2-deoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) showed FDG accumulation in the tail of the pancreas (SUV max, 17.1) but at no other sites in his body. Magnetic resonance imaging showed a heterogeneous mass, similar to that observed by CT. Three weeks later, the patient underwent a distal pancreatectomy with splenectomy. The resected specimen was 154 mm in diameter, a threefold increase from the initial image. Histopathological examination identified the tumor as an anaplastic carcinoma of the pancreas. Following surgery, his leukocyte count and body temperature were reduced. He recovered well and was discharged from our hospital on postoperative day 18. Immunohistochemical expression of G-CSF in the resected specimen and elevated serum G-CSF concentration confirmed that the mass was a G-CSF producing anaplastic carcinoma of the pancreas. Subsequently, the patient experienced a high fever and loss of appetite. CT showed recurrence of cancer in the abdominal cavity, for which he was started immediately on tegafur-gimeracil-oteracil potassium combination S-1 and steroid. Unfortunately, he died on postoperative day 83. To our knowledge, this patient was the first with a G-CSF producing anaplastic carcinoma of the pancreas to be treated by surgical resection, steroid and adjuvant chemotherapy.
Collapse
Affiliation(s)
- Hiroaki Kitade
- Department of Surgery, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8507 Japan ; Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1191 Japan
| | - Hidesuke Yanagida
- Department of Surgery, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8507 Japan ; Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1191 Japan
| | - Masanori Yamada
- Department of Surgery, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8507 Japan ; Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1191 Japan
| | - Sohei Satoi
- Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1191 Japan
| | - Kazuhiko Yoshioka
- Department of Surgery, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8507 Japan ; Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1191 Japan
| | - Nobuaki Shikata
- Department of Diagnostic Pathology, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8507 Japan
| | - Masanori Kon
- Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1191 Japan
| |
Collapse
|
47
|
Malapelle U, Sgariglia R, De Stefano A, Bellevicine C, Vigliar E, de Biase D, Sepe R, Pallante P, Carlomagno C, Tallini G, Troncone G. KRAS mutant allele-specific imbalance (MASI) assessment in routine samples of patients with metastatic colorectal cancer. J Clin Pathol 2015; 68:265-9. [PMID: 25609577 DOI: 10.1136/jclinpath-2014-202761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Patients with colorectal cancer harbouring KRAS mutations do not respond to antiepidermal growth factor receptor (anti-EGFR) therapy. Community screening for KRAS mutation selects patients for treatment. When a KRAS mutation is identified by direct sequencing, mutant and wild type alleles are seen on the sequencing electropherograms. KRAS mutant allele-specific imbalance (MASI) occurs when the mutant allele peak is higher than the wild type one. The aims of this study were to verify the rate and tissue distribution of KRAS MASI as well as its clinical relevance. METHODS A total of 437 sequencing electropherograms showing KRAS exon 2 mutation was reviewed and in 30 cases next generation sequencing (NGS) was also carried out. Five primary tumours were extensively laser capture microdissected to investigated KRAS MASI tissue spatial distribution. KRAS MASI influence on the overall survival was evaluated in 58 patients. In vitro response to anti-EGFR therapy in relation to different G13D KRAS MASI status was also evaluated. RESULTS On the overall, KRAS MASI occurred in 58/436 cases (12.8%), being more frequently associated with G13D mutation (p=0.05) and having a heterogeneous tissue distribution. KRAS MASI detection by Sanger Sequencing and NGS showed 94% (28/30) concordance. The longer overall survival of KRAS MASI negative patients did not reach statistical significance (p=0.08). In cell line model G13D KRAS MASI conferred resistance to cetuximab treatment. CONCLUSIONS KRAS MASI is a significant event in colorectal cancer, specifically associated with G13D mutation, and featuring a heterogeneous spatial distribution, that may have a role to predict the response to EGFR inhibitors. The foreseen implementation of NGS in community KRAS testing may help to define KRAS MASI prognostic and predictive significance.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Roberta Sgariglia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alfonso De Stefano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoles, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Dario de Biase
- Department of Medicine (DIMES)-Anatomic Pathology Unit, Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Romina Sepe
- CNR/IEOS, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples, Italy
| | - Pierlorenzo Pallante
- CNR/IEOS, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples, Italy
| | - Chiara Carlomagno
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoles, Italy
| | - Giovanni Tallini
- Department of Medicine (DIMES)-Anatomic Pathology Unit, Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
48
|
Pancreatic undifferentiated rhabdoid carcinoma: KRAS alterations and SMARCB1 expression status define two subtypes. Mod Pathol 2015; 28:248-60. [PMID: 25103069 DOI: 10.1038/modpathol.2014.100] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/30/2014] [Accepted: 06/18/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic undifferentiated carcinoma is a heterogeneous group of neoplasms, including pleomorphic giant cell, sarcomatoid, round cell, and rhabdoid carcinomas, the molecular profiles of which have so far been insufficiently characterized. We studied 14 undifferentiated carcinomas with prominent rhabdoid cells, occurring as advanced tumors in seven females and seven males aged 44-96 years (mean: 65 years). Histologically, 10 tumors qualified as pleomorphic giant cell and 4 as monomorphic anaplastic carcinomas. A glandular component, either in the primary or in the metastases, was seen in 5 out of 14 tumors (4 out of 10 pleomorphic giant cell and 1 out of 4 monomorphic anaplastic subtypes, respectively). Osteoclast-like giant cells were absent. Immunohistochemistry revealed coexpression of cytokeratin and vimentin, and loss of membranous β-catenin and E-cadherin staining in the majority of cases. Nuclear SMARCB1 (INI1) expression was lost in 4 out of 14 cases (28%), representing all 4 tumors of the monomorphic anaplastic subtype. FISH and mutation testing of KRAS revealed KRAS amplification in 5 out of 13 (38%) and exon 2 mutations in 6 out of 11 (54%) successfully analyzed cases. A strong correlation was found between KRAS alterations (mutation and/or copy number changes) and intact SMARCB1 expression (7 out of 8; 87%). On the other hand, loss of SMARCB1 expression correlated with the absence of KRAS alterations (3 out of 5 cases; 60%). The results suggest that rhabdoid phenotype in pancreatic undifferentiated rhabdoid carcinomas has a heterogeneous genetic background. SMARCB1 loss is restricted to the anaplastic monomorphic subtype and correlates with the absence of KRAS alterations, whereas the pleomorphic giant cell subtype is characterized by KRAS alterations and intact SMARCB1 expression. Recognition and appropriate subtyping of these rare variants might become necessary for future therapeutic strategies.
Collapse
|
49
|
Park JT, Johnson N, Liu S, Levesque M, Wang YJ, Ho H, Huso D, Maitra A, Parsons MJ, Prescott JD, Leach SD. Differential in vivo tumorigenicity of diverse KRAS mutations in vertebrate pancreas: A comprehensive survey. Oncogene 2014; 34:2801-6. [PMID: 25065594 PMCID: PMC4836617 DOI: 10.1038/onc.2014.223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/09/2014] [Accepted: 06/15/2014] [Indexed: 12/30/2022]
Abstract
Somatic activation of the KRAS proto-oncogene is evident in almost all pancreatic cancers, and appears to represent an initiating event. These mutations occur primarily at codon 12 and less frequently at codons 13 and 61. While some studies have suggested that different KRAS mutations may have variable oncogenic properties, to date there has been no comprehensive functional comparison of multiple KRAS mutations in an in vivo vertebrate tumorigenesis system. We generated a Gal4/UAS-based zebrafish model of pancreatic tumorigenesis in which the pancreatic expression of UAS-regulated oncogenes is driven by a ptf1a:Gal4-VP16 driver line. This system allowed us to rapidly compare the ability of 12 different KRAS mutations (G12A, G12C, G12D, G12F, G12R, G12S, G12V, G13C, G13D, Q61L, Q61R, and A146T) to drive pancreatic tumorigenesis in vivo. Among fish injected with one of five KRAS mutations reported in other tumor types but not in human pancreatic cancer, 2/79 (0.25%) developed pancreatic tumors, with both tumors arising in fish injected with A146T. In contrast, among fish injected with one of seven KRAS mutations known to occur in human pancreatic cancer, 22/106 (20.8%) developed pancreatic cancer. All eight tumorigenic KRAS mutations were associated with downstream MAPK/ERK pathway activation in preneoplastic pancreatic epithelium, while non-tumorigenic mutations were not. These results suggest that the spectrum of KRAS mutations observed in human pancreatic cancer reflects selection based upon variable tumorigenic capacities, including the ability to activate MAPK/ERK signaling.
Collapse
Affiliation(s)
- J T Park
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - N Johnson
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - S Liu
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - M Levesque
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Y J Wang
- Graduate Program in Human Genetics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - H Ho
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - D Huso
- Department of Molecular & Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - A Maitra
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - M J Parsons
- 1] Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA [2] Graduate Program in Human Genetics, Johns Hopkins Medical Institutions, Baltimore, MD, USA [3] Institute of Genetic Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - J D Prescott
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - S D Leach
- 1] Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA [2] Graduate Program in Human Genetics, Johns Hopkins Medical Institutions, Baltimore, MD, USA [3] Institute of Genetic Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
50
|
Krasinskas AM, Chiosea SI, Pal T, Dacic S. KRAS mutational analysis and immunohistochemical studies can help distinguish pancreatic metastases from primary lung adenocarcinomas. Mod Pathol 2014; 27:262-70. [PMID: 23887294 PMCID: PMC4091042 DOI: 10.1038/modpathol.2013.146] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 01/02/2023]
Abstract
Lung metastases from primary pancreatic adenocarcinomas often have mucinous features, which makes them difficult to distinguish from the primary lung adenocarcinoma. We explored the potential utility of KRAS mutational status and immunohistochemical studies in the evaluation of adenocarcinomas in the lungs of patients with known pancreatic cancer. Metastatic pancreatic cancer cases had fewer solitary lung lesions (5 (15%) versus 37 (95%) for lung primaries; P=0.0001), more tumors with pure (100%) mucinous morphology (16 (50%) versus 9 (23%) for lung primaries; P=0.0037), and more frequent KRAS mutations (24 (75%) versus 18 (46%) for lung primaries; P=0.0093). Presence of the KRAS G12C mutation had 96% specificity and positive predictive value for lung adenocarcinoma, whereas G12R was 99% specific for pancreatic cancer with a positive predictive value of 86%. Of the 18 KRAS mutated mucinous lung tumors, only 3 (16%) occurred in nonsmokers. Conversely, of the 19 KRAS mutated pancreatic cancer metastases, 11 (58%) occurred in nonsmokers. The median overall survival was significantly shorter for patients with metastatic tumors when compared with patients with primary mucinous tumors (19 months, 95% confidence interval, 10-28 months versus 55 months, 95% confidence interval, 39-70 months, P=0.005). CK20 and CDX2 positivity supported metastatic pancreatic cancer, whereas TTF-1 positivity supported primary lung adenocarcinoma. In summary, KRAS G12C mutations, TTF-1, and napsin A were associated with primary lung adenocarcinoma, whereas KRAS G12R mutations, CK20, and CDX2 favored pancreatic adenocarcinoma. We showed survival differences for patients whose pancreatic metastases were synchronous versus metachronous to their primary tumors, and for patients with mucinous pancreatic cancer metastases versus primary mucinous lung adenocarcinomas. Differences in KRAS mutations reflect differences in exposure to tobacco smoking and highlight biological differences between two KRAS oncogene-driven cancers.
Collapse
|