1
|
Si Y, Wang J, Hambly BD, Wang Y, Zhang Y, Bao S. Essential thrombocytosis transformed AML with TP53 mutations and its clinical implications. Discov Oncol 2024; 15:786. [PMID: 39692923 DOI: 10.1007/s12672-024-01665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
Essential thrombocytosis (ET) is a chronic myeloproliferative neoplasm. There is a rare possibility of its transformation from ET into acute myeloid leukemia (AML). While the TP53 mutation is a well-known risk factor for AML, limited research exists regarding ET patients who develop AML with TP53 mutations. Among three ET transformed AML patients, two exhibited TP53 mutations, with an increased number of AML cells. Conversely, the third ET patient who transformed to AML without TP53 mutations had a lower burden of AML cells. The patients with TP53 mutations had shorter survival times compared to that without mutations, in response to decitabine treatment. In contrast, the patient with ET transformed AML without TP53 mutations showed a better response to decitabine. The ET transformed AML without TP53 mutations patient exhibited a survival period exceeding 20 months. ET patients who develop AML with a high allelic burden of TP53 mutations may experience a more aggressive disease progression and severe complications compared to AML patient without TP53 mutations. Our report sheds light on the distinct clinical presentations of ET patients who develop AML, characterized by different TP53 mutations and varying therapeutic outcomes when treated with decitabine. However, further studies that include a larger quantity of samples are needed to elucidate the precise underlying molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Yang Si
- Department of Hematology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiyuan Wang
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Brett D Hambly
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Yuli Wang
- Department of Hematology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Yanfang Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Shisan Bao
- Department of Hematology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
2
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Loghavi S. SOHO State of the Art Updates and Next Questions-WHO Classification of Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:752-758. [PMID: 38866644 DOI: 10.1016/j.clml.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024]
Abstract
The 5th edition of the World Health Organization (WHO) classification of Hematolymphoid tumors provides a hierarchically-driven catalog of hematologic neoplasms and introduces a series of changes to the classification of acute myeloid leukemia (AML). Emphasizing molecular genetic findings, it expands the category of "acute myeloid leukemias with defining genetic abnormalities" while retaining the morphologically defined category of AML for cases that do not harbor disease-defining genetic drivers. The updates to the classification of AML provide refined definitions and diagnostic criteria based on clinicopathologic parameters and molecular genetic findings, emphasizing therapeutically and/or prognostically actionable biomarkers. This review provides an overview of the WHO 5th classification for AML with practical considerations for applying this classification system.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
4
|
Gonsalves M, Escobar A, Altarabishi AD, Xu CQ. Advances in Microflow Cytometry-Based Molecular Detection Methods for Improved Future MDS Cancer Diagnosis. Curr Issues Mol Biol 2024; 46:8053-8070. [PMID: 39194693 DOI: 10.3390/cimb46080476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a rare form of early-stage blood cancer that typically leads to leukemia and other deadly complications. The typical diagnosis for MDS involves a mixture of blood tests, a bone marrow biopsy, and genetic analysis. Flow cytometry has commonly been used to analyze these types of samples, yet there still seems to be room for advancement in several areas, such as the limit of detection, turnaround time, and cost. This paper explores recent advancements in microflow cytometry technology and how it may be used to supplement conventional methods of diagnosing blood cancers, such as MDS and leukemia, through flow cytometry. Microflow cytometry, a more recent adaptation of the well-researched and conventional flow cytometry techniques, integrated with microfluidics, demonstrates significant potential in addressing many of the shortcomings flow cytometry faces when diagnosing a blood-related disease such as MDS. The benefits that this platform brings, such as portability, processing speed, and operating cost, exemplify the importance of exploring microflow cytometry as a point-of-care (POC) diagnostic device for MDS and other forms of blood cancer.
Collapse
Affiliation(s)
- Marc Gonsalves
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Ahmad Diaa Altarabishi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Chang-Qing Xu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
5
|
Bedekovics J, Madarász K, Mokánszki A, Molnár S, Mester Á, Miltényi Z, Méhes G. Exploring p53 protein expression and its link to TP53 mutation in myelodysplasia-related malignancies-Interpretive challenges and potential field of applications. Histopathology 2024; 85:143-154. [PMID: 38571438 DOI: 10.1111/his.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
AIMS TP53 alterations have a significant prognostic effect in myeloid neoplasms. Our objective was to investigate the TP53 gene mutation status, p53 protein expression and their relationship in dysplasia-related myeloid neoplasms with varying levels of myeloblast counts. METHODS AND RESULTS A total of 76 bone marrow biopsy samples with different blast counts were analysed. Total and strong (3+) p53 expression was determined. Dual immunohistochemical staining was performed to determine the cell population associated with p53 expression. NGS analysis was performed using the Accel-Amplicon Comprehensive TP53 panel. Both p53 expression and TP53 VAF showed a significant correlation with the myeloblast ratio (P < 0.0001); however, p53 expression was also present in other cell lineages. The VAF value exhibited a significant correlation with p53 expression. A high specificity (0.9800) was observed for TP53 mutation using the ≥ 10% strong (3+) p53 cut-off value, although the sensitivity (0.4231) was low. CONCLUSIONS Strong (3+) p53 expression using a ≥ 10% cut-off value accurately predicts TP53 mutation but does not reveal the allelic state. The p53 expression is significantly influenced by myeloblast count, and histological interpretation should consider the presence of intermixed non-neoplastic marrow cells with varying physiological p53 expression.
Collapse
Affiliation(s)
- Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kristóf Madarász
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sarolta Molnár
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Mester
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Miltényi
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Loghavi S, Kanagal-Shamanna R, Khoury JD, Medeiros LJ, Naresh KN, Nejati R, Patnaik MM. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissue: Myeloid Neoplasms. Mod Pathol 2024; 37:100397. [PMID: 38043791 DOI: 10.1016/j.modpat.2023.100397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
In this manuscript, we review myeloid neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5), focusing on changes from the revised fourth edition (WHO-HEM4R). Disease types and subtypes have expanded compared with WHO-HEM4R, mainly because of the expansion in genomic knowledge of these diseases. The revised classification is based on a multidisciplinary approach including input from a large body of pathologists, clinicians, and geneticists. The revised classification follows a hierarchical structure allowing usage of family (class)-level definitions where the defining diagnostic criteria are partially met or a complete investigational workup has not been possible. Overall, the WHO-HEM5 revisions to the classification of myeloid neoplasms include major updates and revisions with increased emphasis on genetic and molecular drivers of disease. The most notable changes have been applied to the sections of acute myeloid leukemia and myelodysplastic neoplasms (previously referred to as myelodysplastic syndrome) with incorporation of novel, disease-defining genetic changes. In this review we focus on highlighting the updates in the classification of myeloid neoplasms, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of myeloid neoplasms in routine practice.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas.
| | | | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, DC; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Minnesota
| |
Collapse
|
7
|
Sheikhi M, Rostami M, Ferns G, Ayatollahi H, Siyadat P, Ayatollahi Y, Khoshnegah Z. Prognostic significance of ASXL1 mutations in acute myeloid leukemia: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:202-214. [PMID: 38807730 PMCID: PMC11129077 DOI: 10.22088/cjim.15.2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 05/30/2024]
Abstract
Background Although genetic mutations in additional sex-combs-like 1 (ASXL1) are prevalent in acute myeloid leukemia (AML), their exact impact on the AML prognosis remains uncertain. Hence, the present article was carried out to explore the prognostic importance of ASXL1 mutations in AML. Methods We thoroughly searched electronic scientific databases to find eligible papers. Twenty-seven studies with an overall number of 8,953 participants were selected for the current systematic review. The hazard ratio (HR) and 95% confidence interval (CI) for overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were extracted from all studies with multivariate or univariate analysis. Pooled HRs and p-values were also calculated as a part of our work. Results The pooled HR for OS in multivariable analysis indicated that ASXL1 significantly diminished survival in AML patients (pooled HR: 1.67; 95% CI: 1.342-2.091). Conclusions ASXL1 mutations may confer a poor prognosis in AML. Hence, they may be regarded as potential prognostic factors. However, more detailed studies with different ASXL1 mutations are suggested to shed light on this issue.
Collapse
Affiliation(s)
- Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rostami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Siyadat
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Yasamin Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Chen S, Jiang W, Du Y, Yang M, Pan Y, Li H, Cui M. Single-cell analysis technologies for cancer research: from tumor-specific single cell discovery to cancer therapy. Front Genet 2023; 14:1276959. [PMID: 37900181 PMCID: PMC10602688 DOI: 10.3389/fgene.2023.1276959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Single-cell sequencing (SCS) technology is changing our understanding of cellular components, functions, and interactions across organisms, because of its inherent advantage of avoiding noise resulting from genotypic and phenotypic heterogeneity across numerous samples. By directly and individually measuring multiple molecular characteristics of thousands to millions of single cells, SCS technology can characterize multiple cell types and uncover the mechanisms of gene regulatory networks, the dynamics of transcription, and the functional state of proteomic profiling. In this context, we conducted systematic research on SCS techniques, including the fundamental concepts, procedural steps, and applications of scDNA, scRNA, scATAC, scCITE, and scSNARE methods, focusing on the unique clinical advantages of SCS, particularly in cancer therapy. We have explored challenging but critical areas such as circulating tumor cells (CTCs), lineage tracing, tumor heterogeneity, drug resistance, and tumor immunotherapy. Despite challenges in managing and analyzing the large amounts of data that result from SCS, this technique is expected to reveal new horizons in cancer research. This review aims to emphasize the key role of SCS in cancer research and promote the application of single-cell technologies to cancer therapy.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, China
| | - Yanhui Du
- Department of Orthopaedics, Jilin Province People’s Hospital, Changchun, China
| | - Manshi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yihan Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huan Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Foucar K, Bagg A, Bueso-Ramos CE, George T, Hasserjian RP, Hsi ED, Orazi A, Tam W, Wang SA, Weinberg OK, Arber DA. Guide to the Diagnosis of Myeloid Neoplasms: A Bone Marrow Pathology Group Approach. Am J Clin Pathol 2023; 160:365-393. [PMID: 37391178 DOI: 10.1093/ajcp/aqad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/02/2023] Open
Abstract
OBJECTIVES The practicing pathologist is challenged by the ever-increasing diagnostic complexity of myeloid neoplasms. This guide is intended to provide a general roadmap from initial case detection, often triggered by complete blood count results with subsequent blood smear review, to final diagnosis. METHODS The integration of hematologic, morphologic, immunophenotypic, and genetic features into routine practice is standard of care. The requirement for molecular genetic testing has increased along with the complexity of test types, the utility of different testing modalities in identifying key gene mutations, and the sensitivity and turnaround time for various assays. RESULTS Classification systems for myeloid neoplasms have evolved to achieve the goal of providing a pathology diagnosis that enhances patient care, outcome prediction, and treatment options for individual patients and is formulated, endorsed, and adopted by hematologists/oncologists. CONCLUSIONS This guide provides diagnostic strategies for all myeloid neoplasm subtypes. Special considerations are provided for each category of testing and neoplasm category, along with classification information, genetic testing requirements, interpretation information, and case reporting recommendations based on the experience of 11 Bone Marrow Pathology Group members.
Collapse
Affiliation(s)
- Kathryn Foucar
- Department of Pathology, University of New Mexico, Albuquerque, NM, US
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, US
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Tracy George
- Department of Pathology, University of Utah, Salt Lake City, UT, US
| | | | - Eric D Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, US
| | - Attilio Orazi
- Department of Pathology, Texas Tech University, El Paso, TX, US
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Greenvale, NY, US
| | - Sa A Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, US
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, US
| |
Collapse
|
10
|
McCarter JGW, Nemirovsky D, Famulare CA, Farnoud N, Mohanty AS, Stone-Molloy ZS, Chervin J, Ball BJ, Epstein-Peterson ZD, Arcila ME, Stonestrom AJ, Dunbar A, Cai SF, Glass JL, Geyer MB, Rampal RK, Berman E, Abdel-Wahab OI, Stein EM, Tallman MS, Levine RL, Goldberg AD, Papaemmanuil E, Zhang Y, Roshal M, Derkach A, Xiao W. Interaction between myelodysplasia-related gene mutations and ontogeny in acute myeloid leukemia. Blood Adv 2023; 7:5000-5013. [PMID: 37142255 PMCID: PMC10471939 DOI: 10.1182/bloodadvances.2023009675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Accurate classification and risk stratification are critical for clinical decision making in patients with acute myeloid leukemia (AML). In the newly proposed World Health Organization and International Consensus classifications of hematolymphoid neoplasms, the presence of myelodysplasia-related (MR) gene mutations is included as 1 of the diagnostic criteria for AML, AML-MR, based largely on the assumption that these mutations are specific for AML with an antecedent myelodysplastic syndrome. ICC also prioritizes MR gene mutations over ontogeny (as defined in the clinical history). Furthermore, European LeukemiaNet (ELN) 2022 stratifies these MR gene mutations into the adverse-risk group. By thoroughly annotating a cohort of 344 newly diagnosed patients with AML treated at the Memorial Sloan Kettering Cancer Center, we show that ontogeny assignments based on the database registry lack accuracy. MR gene mutations are frequently observed in de novo AML. Among the MR gene mutations, only EZH2 and SF3B1 were associated with an inferior outcome in the univariate analysis. In a multivariate analysis, AML ontogeny had independent prognostic values even after adjusting for age, treatment, allo-transplant and genomic classes or ELN risks. Ontogeny also helped stratify the outcome of AML with MR gene mutations. Finally, de novo AML with MR gene mutations did not show an adverse outcome. In summary, our study emphasizes the importance of accurate ontogeny designation in clinical studies, demonstrates the independent prognostic value of AML ontogeny, and questions the current classification and risk stratification of AML with MR gene mutations.
Collapse
Affiliation(s)
- Joseph G. W. McCarter
- Department of Epidemiology & Biostatistics, Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Memorial Sloan Kettering Kids, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David Nemirovsky
- Department of Epidemiology & Biostatistics, Biostatistics Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Noushin Farnoud
- Department of Epidemiology & Biostatistics, Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abhinita S. Mohanty
- Department of Pathology and Laboratory Medicine, Diagnostic Molecular Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zoe S. Stone-Molloy
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jordan Chervin
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian J. Ball
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Maria E. Arcila
- Department of Pathology and Laboratory Medicine, Diagnostic Molecular Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aaron J. Stonestrom
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew Dunbar
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sheng F. Cai
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jacob L. Glass
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark B. Geyer
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit K. Rampal
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ellin Berman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Omar I. Abdel-Wahab
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Cancer Medicine Service, Human Oncogenesis & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eytan M. Stein
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ross L. Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Cancer Medicine Service, Human Oncogenesis & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aaron D. Goldberg
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elli Papaemmanuil
- Department of Epidemiology & Biostatistics, Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andriy Derkach
- Department of Epidemiology & Biostatistics, Biostatistics Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
11
|
Bahaj W, Kewan T, Gurnari C, Durmaz A, Ponvilawan B, Pandit I, Kubota Y, Ogbue OD, Zawit M, Madanat Y, Bat T, Balasubramanian SK, Awada H, Ahmed R, Mori M, Meggendorfer M, Haferlach T, Visconte V, Maciejewski JP. Novel scheme for defining the clinical implications of TP53 mutations in myeloid neoplasia. J Hematol Oncol 2023; 16:91. [PMID: 37537667 PMCID: PMC10401750 DOI: 10.1186/s13045-023-01480-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND TP53 mutations (TP53MT) occur in diverse genomic configurations. Particularly, biallelic inactivation is associated with poor overall survival in cancer. Lesions affecting only one allele might not be directly leukemogenic, questioning the presence of cryptic biallelic subclones in cases with dismal prognosis. METHODS We have collected clinical and molecular data of 7400 patients with myeloid neoplasms and applied a novel model by identifying an optimal VAF cutoff using a statistically robust strategy of sampling-based regression on survival data to accurately classify the TP53 allelic configuration and assess prognosis more precisely. RESULTS Overall, TP53MT were found in 1010 patients. Following the traditional criteria, 36% of the cases were classified as single hits, while 64% exhibited double hits genomic configuration. Using a newly developed molecular algorithm, we found that 579 (57%) patients had unequivocally biallelic, 239 (24%) likely contained biallelic, and 192 (19%) had most likely monoallelic TP53MT. Interestingly, our method was able to upstage 192 out of 352 (54.5%) traditionally single hit lesions into a probable biallelic category. Such classification was further substantiated by a survival-based model built after re-categorization. Among cases traditionally considered monoallelic, the overall survival of those with probable monoallelic mutations was similar to the one of wild-type patients and was better than that of patients with a biallelic configuration. As a result, patients with certain biallelic hits, regardless of the disease subtype (AML or MDS), had a similar prognosis. Similar results were observed when the model was applied to an external cohort. In addition, single-cell DNA studies unveiled the biallelic nature of previously considered monoallelic cases. CONCLUSION Our novel approach more accurately resolves TP53 genomic configuration and uncovers genetic mosaicism for the use in the clinical setting to improve prognostic evaluation.
Collapse
Affiliation(s)
- Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Division of Medical Oncology & Hematology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Division of Hematology & Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ishani Pandit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Olisaemeka D Ogbue
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Yazan Madanat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taha Bat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ramsha Ahmed
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | | | | | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Bewersdorf JP, Xie Z, Bejar R, Borate U, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, Porta MGD, DeZern AE, Fenaux P, Figueroa ME, Gore SD, Griffiths EA, Halene S, Hasserjian RP, Hourigan CS, Kim TK, Komrokji R, Kuchroo VK, List AF, Loghavi S, Majeti R, Odenike O, Patnaik MM, Platzbecker U, Roboz GJ, Sallman DA, Santini V, Sanz G, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Xu ML, Savona MR, Wei AH, Zeidan AM. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS): Proceedings from the 1 st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev 2023; 60:101072. [PMID: 36934059 DOI: 10.1016/j.blre.2023.101072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Biological events that contribute to the pathogenesis of myelodysplastic syndromes/neoplasms (MDS) are becoming increasingly characterized and are being translated into rationally designed therapeutic strategies. Herein, we provide updates from the first International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS) detailing recent advances in understanding the genetic landscape of MDS, including germline predisposition, epigenetic and immune dysregulation, the complexities of clonal hematopoiesis progression to MDS, as well as novel animal models of the disease. Connected to this progress is the development of novel therapies targeting specific molecular alterations, the innate immune system, and immune checkpoint inhibitors. While some of these agents have entered clinical trials (e.g., splicing modulators, IRAK1/4 inhibitors, anti-CD47 and anti-TIM3 antibodies, and cellular therapies), none have been approved for MDS. Additional preclinical and clinical work is needed to develop a truly individualized approach to the care of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Uma Borate
- Ohio State University Comprehensive Cancer/ James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew M Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rena Buckstein
- Department of Medical Oncology/Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jane E Churpek
- Department of Hematology, Oncology, and Palliative Care, Carbone Cancer Center, The University of Wisconsin-Madison, Madison, WI, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Clinical and Research Center & Humanitas University, Department of Biomedical Sciences, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Amy E DeZern
- Division of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pierre Fenaux
- Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris and Paris Cité University, Paris, France
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven D Gore
- National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | | | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, and Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alan F List
- Precision BioSciences, Inc., Durham, NC, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Olatoyosi Odenike
- Leukemia Program, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gail J Roboz
- Weill Cornell Medical College, New York, NY, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Mikkael A Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Michael R Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research and University of Melbourne, Victoria, Australia
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
13
|
Qin G, Han X. The Prognostic Value of TP53 Mutations in Adult Acute Myeloid Leukemia: A Meta-Analysis. Transfus Med Hemother 2023; 50:234-244. [PMID: 37435002 PMCID: PMC10331159 DOI: 10.1159/000526174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/24/2022] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE Mutations of the tumor protein p53 (TP53) gene were considered to be associated with an unfavorable prognosis in acute myeloid leukemia (AML). This meta-analysis aimed to systematically elucidate the prognostic value of TP53 mutation in adult patients with AML. METHOD A comprehensive literature search was conducted for eligible studies published before August 2021. The primary endpoint was overall survival (OS). Pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) were calculated for prognostic parameters. Subgroup analyses based on intensive treatment were performed. RESULTS Thirty-two studies with 7,062 patients were included. As compared to wild-type carriers, AML patients with TP53 mutations had significantly shorter OS (HR: 2.40, 95% CI: 2.16-2.67, I2: 46.6%). Similar results were found in DFS (HR: 2.87, 95% CI: 1.88-4.38), EFS (HR: 2.56, 95% CI: 1.97-3.31), and RFS (HR: 2.40, 95% CI: 1.79-3.22). Mutant TP53 predicted inferior OS (HR: 2.77, 95% CI: 2.41-3.18) in the intensively treated AML subgroup, compared with the non-intensively treated group (HR: 1.89, 95% CI: 1.58-2.26). Among intensively-treated AML patients, the age of 65 did not affect the prognostic value of TP53 mutations. Besides, TP53 mutation was also strongly associated with an elevated risk of adverse cytogenetics, which conferred a dismal OS in AML patients (HR: 2.03, 95% CI: 1.74-2.37). CONCLUSION TP53 mutation exhibits a promising potential for discriminating AML patients with a worse prognosis, thus being capable of serving as a novel tool for prognostication and therapeutic decision-making in the management of AML.
Collapse
Affiliation(s)
- Guoxiang Qin
- Department of Hematology, Jincheng People's Hospital, Jincheng, China
| | - Xueling Han
- Hospital Office, Zezhou People's Hospital, Jincheng, China
| |
Collapse
|
14
|
Rahmé R, Braun T, Manfredi JJ, Fenaux P. TP53 Alterations in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Biomedicines 2023; 11:biomedicines11041152. [PMID: 37189770 DOI: 10.3390/biomedicines11041152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
TP53 mutations are less frequent in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) than in solid tumors, except in secondary and therapy-related MDS/AMLs, and in cases with complex monosomal karyotype. As in solid tumors, missense mutations predominate, with the same hotspot mutated codons (particularly codons 175, 248, 273). As TP53-mutated MDS/AMLs are generally associated with complex chromosomal abnormalities, it is not always clear when TP53 mutations occur in the pathophysiological process. It is also uncertain in these MDS/AML cases, which often have inactivation of both TP53 alleles, if the missense mutation is only deleterious through the absence of a functional p53 protein, or through a potential dominant-negative effect, or finally a gain-of-function effect of mutant p53, as demonstrated in some solid tumors. Understanding when TP53 mutations occur in the disease course and how they are deleterious would help to design new treatments for those patients who generally show poor response to all therapeutic approaches.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université Paris Cité, 75010 Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université Paris Cité, 75010 Paris, France
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - Thorsten Braun
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Fenaux
- Senior Hematology Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| |
Collapse
|
15
|
Kurzer JH, Weinberg OK. Updates in molecular genetics of acute myeloid leukemia. Semin Diagn Pathol 2023; 40:140-151. [PMID: 37059636 DOI: 10.1053/j.semdp.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Acute myeloid leukemia (AML) is a type of cancer caused by aggressive neoplastic proliferations of immature myeloid cells that is fatal if untreated. AML accounts for 1.0% of all new cancer cases in the United States, with a 5-year relative survival rate of 30.5%. Once defined primarily morphologically, advances in next generational sequencing have expanded the role of molecular genetics in categorizing the disease. As such, both the World Health Organization Classification of Haematopoietic Neoplasms and The International Consensus Classification System now define a variety of AML subsets based on mutations in driver genes such as NPM1, CEBPA, TP53, ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2. This article provides an overview of some of the genetic mutations associated with AML and compares how the new classification systems incorporate molecular genetics into the definition of AML.
Collapse
Affiliation(s)
- Jason H Kurzer
- Department of Pathology, Stanford University Medical School, Palo Alto, CA, United States.
| | - Olga K Weinberg
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Bahaj W, Kewan T, Gurnari C, Durmaz A, Ponvilawan B, Pandit I, Kubota Y, Ogbue OD, Zawit M, Madanat Y, Bat T, Balasubramanian SK, Awada H, Ahmed R, Mori M, Meggendorfer M, Haferlach T, Visconte V, Maciejewski JP. Novel Scheme for Defining the Clinical Implications of TP53 Mutations in Myeloid Neoplasia. RESEARCH SQUARE 2023:rs.3.rs-2656206. [PMID: 36945617 PMCID: PMC10029089 DOI: 10.21203/rs.3.rs-2656206/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Background: TP53 mutations ( TP53 MT ) occur in diverse genomic configurations. Particularly, biallelic inactivation is associated with poor overall survival in cancer. Lesions affecting only one allele might not be directly leukemogenic, questioning the presence of cryptic biallelic subclones in cases with dismal prognosis. Methods: We have collected clinical and molecular data of 7400 patients with myeloid neoplasms and applied a novel model to properly resolve the allelic configuration of TP53 MT and assess prognosis more precisely. Results: Overall, TP53 MT were found in 1010 patients. Following the traditional criteria, 36% of cases were classified as single hits while 64% exhibited double hits genomic configuration. Using a newly developed molecular algorithm, we found that 579 (57%) patients had unequivocally biallelic, 239 (24%) likely contained biallelic, and 192 (19%) had most likely monoallelic TP53 MT . Such classification was further substantiated by a survival-based model built after re-categorization. Among cases traditionally considered monoallelic, the overall survival of those with probable monoallelic mutations was similar to the one of wild-type patients and was better than that of patients with a biallelic configuration. As a result, patients with certain biallelic hits, regardless of the disease subtype (AML or MDS), had a similar prognosis. Similar results were observed when the model was applied to an external cohort. These results were recapitulated by single-cell DNA studies, which unveiled the biallelic nature of previously considered monoallelic cases. Conclusion: Our novel approach more accurately resolves TP53 genomic configuration and uncovers genetic mosaicism for the use in the clinical setting to improve prognostic evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Taha Bat
- University of Texas Southwestern Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Makkar H, Majhi RK, Goel H, Gupta AK, Chopra A, Tanwar P, Seth R. Acute myeloid leukemia: novel mutations and their clinical implications. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:12-27. [PMID: 36937458 PMCID: PMC10017594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/09/2023] [Indexed: 03/21/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogenous and challenging hematological malignancy with suboptimal outcomes. The implications of advanced technologies in the genetic characterization of AML have enhanced the understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. A comprehensive study of novel mutations is essential to moderate the complicacies in patient management and achieve optimal outcomes in AML. In this review, we summarized the clinical relevance of important novel mutations, including TET2, ETV6, SATB1, EZH2, PTPN11, and U2AF1, which impact the prognosis of AML. TET2 mutation can lead to DNA hypermethylation, and gene fusion, and mutation in ETV6 disrupts hematopoietic transcription machinery, SATB1 downregulation aggravates the disease, and EZH2 mutation confers resistance to chemotherapy. PTPN11 mutation influences the RAS-MAPK signaling pathway, and U2AF1 alters the splicing of downstream mRNA. The systemic influence of these mutations has adverse consequences. Therefore, extensive research on novel mutations and their mechanism of action in the pathogenesis of AML is vital. This study lays out the perspective of expanding the apprehension about AML and novel drug targets. The combination of advanced genetic techniques, risk stratification, ongoing improvements, and innovations in treatment strategy will undoubtedly lead to improved survival outcomes in AML.
Collapse
Affiliation(s)
- Harshita Makkar
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ravi Kumar Majhi
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Harsh Goel
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
19
|
Pollyea DA, Pratz KW, Wei AH, Pullarkat V, Jonas BA, Recher C, Babu S, Schuh AC, Dail M, Sun Y, Potluri J, Chyla B, DiNardo CD. Outcomes in Patients with Poor-Risk Cytogenetics with or without TP53 Mutations Treated with Venetoclax and Azacitidine. Clin Cancer Res 2022; 28:5272-5279. [PMID: 36007102 PMCID: PMC9751752 DOI: 10.1158/1078-0432.ccr-22-1183] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE To evaluate efficacy and safety of venetoclax + azacitidine in treatment-naïve patients with acute myeloid leukemia harboring poor-risk cytogenetics and TP53mut or TP53wt. PATIENTS AND METHODS We analyzed data from a phase III study (NCT02993523) comparing venetoclax (400 mg orally days 1-28) + azacitidine (75 mg/m2 days 1-7) or placebo + azacitidine, and from a phase Ib study (NCT02203773) of venetoclax + azacitidine. Patients were ineligible for intensive therapy. TP53 status was analyzed centrally; cytogenetic studies were performed locally. RESULTS Patients (n = 127) with poor-risk cytogenetics receiving venetoclax + azacitidine (TP53wt = 50; TP53mut = 54) were compared with patients with poor-risk cytogenetics (n = 56) receiving azacitidine alone (TP53wt = 22; TP53mut = 18).For poor-risk cytogenetics + TP53wt patients, venetoclax + azacitidine versus azacitidine alone resulted in composite remission rates (CRc) of 70% versus 23%, median duration of remission (DoR) of 18.4 versus 8.5 months, and median overall survival (OS) of 23.4 versus 11.3 months, respectively. Outcomes with venetoclax + azacitidine were comparable with similarly treated patients with intermediate-risk cytogenetics and TP53wt.For poor-risk cytogenetics + TP53mut patients, venetoclax + azacitidine versus azacitidine alone resulted in CRc of 41% versus 17%, median DoR of 6.5 versus 6.7 months, and median OS of 5.2 versus 4.9 months, respectively.For poor-risk cytogenetics + TP53mut patients, predominant grade ≥3 adverse events (AE) for venetoclax + azacitidine versus azacitidine were febrile neutropenia (55%/39%), thrombocytopenia (28%/28%), neutropenia (26%/17%), anemia (13%/6%), and pneumonia (28%/33%). AEs were comparable between TP53mut and TP53wt patients. CONCLUSIONS In poor-risk cytogenetics + TP53mut patients, venetoclax + azacitidine improved remission rates but not DoR or OS compared with azacitidine alone. However, in poor-risk cytogenetics + TP53wt patients, venetoclax + azacitidine resulted in higher remission rates and longer DoR and OS than azacitidine alone, with outcomes comparable with similarly treated patients with intermediate-risk cytogenetics. Toxicities were similar in TP53mut and TP53wt patients. See related commentary by Green and Zeidner, p. 5235.
Collapse
Affiliation(s)
- Daniel A. Pollyea
- Division of Hematology, School of Medicine, University of Colorado, Aurora, Colorado.,Corresponding Author: Daniel A. Pollyea, University of Colorado, 1665 Aurora Court, Mail Stop F754, Aurora, CO 80045. E-mail:
| | - Keith W. Pratz
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew H. Wei
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital and Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation and Gehr Family Center for Leukemia Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Brian A. Jonas
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, California
| | | | - Sunil Babu
- Fort Wayne Medical Oncology and Hematology, Fort Wayne, Indiana
| | - Andre C. Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Yan Sun
- AbbVie Inc., North Chicago, Illinois
| | | | | | - Courtney D. DiNardo
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1245] [Impact Index Per Article: 415.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Zhao Y, Cai W, Hua Y, Yang X, Zhou J. The Biological and Clinical Consequences of RNA Splicing Factor U2AF1 Mutation in Myeloid Malignancies. Cancers (Basel) 2022; 14:4406. [PMID: 36139566 PMCID: PMC9496927 DOI: 10.3390/cancers14184406] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Mutations of spliceosome genes have been frequently identified in myeloid malignancies with the large-scale application of advanced sequencing technology. U2 small nuclear RNA auxiliary factor 1 (U2AF1), an essential component of U2AF heterodimer, plays a pivotal role in the pre-mRNA splicing processes to generate functional mRNAs. Over the past few decades, the mutation landscape of U2AF1 (most frequently involved S34 and Q157 hotspots) has been drawn in multiple cancers, particularly in myeloid malignancies. As a recognized early driver of myelodysplastic syndromes (MDSs), U2AF1 mutates most frequently in MDS, followed by acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). Here, for the first time, we summarize the research progress of U2AF1 mutations in myeloid malignancies, including the correlations between U2AF1 mutations with clinical and genetic characteristics, prognosis, and the leukemic transformation of patients. We also summarize the adverse effects of U2AF1 mutations on hematopoietic function, and the alterations in downstream alternative gene splicing and biological pathways, thus providing comprehensive insights into the roles of U2AF1 mutations in the myeloid malignancy pathogenesis. U2AF1 mutations are expected to be potential novel molecular markers for myeloid malignancies, especially for risk stratification, prognosis assessment, and a therapeutic target of MDS patients.
Collapse
Affiliation(s)
- Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Weili Cai
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an 223005, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Xiaochen Yang
- Department of Thyroid and Breast Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Jingdong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China
| |
Collapse
|
22
|
Li F, Li N, Wang A, Liu X. Correlation Analysis and Prognostic Impacts of Biological Characteristics in Elderly Patients with Acute Myeloid Leukemia. Clin Interv Aging 2022; 17:1187-1197. [PMID: 35967966 PMCID: PMC9369099 DOI: 10.2147/cia.s375000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background The significant heterogeneity of elderly AML patients’ biological features has caused stratification difficulties and adverse prognosis. This paper did a correlation study between their genetic mutations, clinical features, and prognosis to further stratify them. Methods 90 newly diagnosed elderly acute myeloid leukemia (AML) patients (aged ≥60 years) who detected genetic mutations by next-generation sequencing (NGS) were enrolled between April 2015 and March 2021 in our medical center. Results A total of 29 genetic mutations were identified in 82 patients among 90 cases with a frequency of 91.1%. DNMT3A, BCOR, U2AF1, and BCORL1 mutations were unevenly distributed among different FAB classifications (p < 0.05). DNMT3A, IDH2, NPM1, FLT3-ITD, ASXL1, IDH1, SRSF2, BCOR, NRAS, RUNX1, U2AF1, MPO, and WT1 mutations were distributed differently when an immunophenotype was expressed or not expressed (p<0.05). NPM1 and FLT3-ITD had higher mutation frequencies in patients with normal chromosome karyotypes than abnormal chromosome karyotypes (p<0.001, p=0.005). DNMT3A and NRAS mutations predicted lower CR rates. DNMT3A, TP53, and U2AF1 mutations were related to unfavorable OS. TET2 mutation with CD123+, CD11b+ or CD34- predicted lower CR rate. IDH2+/CD34- predicted lower CR rate. ASXL1+/CD38+ and SRSF2+/CD123- predicted shorter OS. Conclusion The study showed specific correlations between elderly AML patients’ genetic mutations and clinical features, some of which may impact prognosis.
Collapse
Affiliation(s)
- Fengli Li
- Department of Hematology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
| | - Na Li
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Anyou Wang
- Department of Hematology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Anyou Wang, Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001, People’s Republic of China, Tel/Fax +86-551-62283863, Email
| | - Xin Liu
- Department of Hematology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Correspondence: Xin Liu, Department of Hematology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Lujiang Road No. 17, Hefei, 230001, People’s Republic of China, Tel/Fax +86-551-62283863, Email
| |
Collapse
|
23
|
How Genetics Can Drive Initial Therapy Choices for Older Patients with Acute Myeloid Leukemia. Curr Treat Options Oncol 2022; 23:1086-1103. [PMID: 35687257 PMCID: PMC9898635 DOI: 10.1007/s11864-022-00991-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Treatment of older adults with acute myeloid leukemia (AML) is challenging. Therapy decisions must be guided by multiple factors including aging-related conditions (e.g., comorbidities, functional impairment), therapy benefits and risks, patient preferences, and disease characteristics. Balancing these factors requires understanding the unique, and frequently higher-risk cytogenetic and molecular characteristics of AML in older adult populations, which should caution providers not to reduce therapy intensity on the basis of age alone. Instead, geriatric assessments should be employed to determine fitness for therapy. Treatment options in AML are increasingly targeted to specific mutations or recognized to have differential benefits on the basis of genomics, and representation of older adults and geriatric outcome reporting in clinical trials is improving. Additionally, newer studies have begun to explore personalized therapy strategies on the basis of initial genetic testing. Review and refinement of practice guidelines for older patients on the basis of these advances is needed and is anticipated to remain an important topic in ongoing hematology/oncology clinical education.
Collapse
|
24
|
Claerhout H, Vranckx H, Lierman E, Michaux L, Boeckx N. Next generation sequencing in therapy-related myeloid neoplasms compared to de novo myeloid neoplasms. Acta Clin Belg 2022; 77:658-663. [PMID: 34197279 DOI: 10.1080/17843286.2021.1943232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Therapy-related myeloid neoplasms (t-MN) are frequently categorized according to previous therapy or pattern of cytogenetic abnormalities. Our objective was to evaluate and compare the mutational profile of de novo and t-MN by next generation sequencing. METHODS Sixty-four samples from patients with t-MN, previously treated for a solid tumor (mainly breast), or de novo AML, MDS, MDS/MPN were selected for our study. The library was prepared using diagnostic samples and the TruSight Myeloid sequencing panel targeting 54 genes. Samples were sequenced on a MiSeq. The classification system of the Belgian ComPerMed Expert Panel was used for the biological variant classification. RESULTS Taking only pathogenic, probably pathogenic variants and variants of unknown significance into account 141 variants in 33 genes were found in 52 of 64 samples (81%; mean number of variants per patient = 2; range = [1-11]; 67 variants in 25 genes in t-MN and 74 variants in 25 genes in de novo MN). Overall, the most frequently detected variants included TET2 (n = 22), TP53 (n = 12), DNMT3A (n = 10) and FLT3, NPM1, RUNX1 (n = 8 each). CONCLUSION Our study revealed a high variety of variants both in t-MN and de novo MN patients. There was a higher incidence of FLT3 and TP53 variants in t-MN compared to de novo MN.
Collapse
Affiliation(s)
- Helena Claerhout
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Vranckx
- Center for Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Els Lierman
- Center for Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Seo W, Silwal P, Song IC, Jo EK. The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol 2022; 15:51. [PMID: 35526025 PMCID: PMC9077970 DOI: 10.1186/s13045-022-01262-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematologic malignancy prevalent in older patients, and the identification of potential therapeutic targets for AML is problematic. Autophagy is a lysosome-dependent catabolic pathway involved in the tumorigenesis and/or treatment of various cancers. Mounting evidence has suggested that autophagy plays a critical role in the initiation and progression of AML and anticancer responses. In this review, we describe recent updates on the multifaceted functions of autophagy linking to genetic alterations of AML. We also summarize the latest evidence for autophagy-related genes as potential prognostic predictors and drivers of AML tumorigenesis. We then discuss the crosstalk between autophagy and tumor cell metabolism into the impact on both AML progression and anti-leukemic treatment. Moreover, a series of autophagy regulators, i.e., the inhibitors and activators, are described as potential therapeutics for AML. Finally, we describe the translation of autophagy-modulating therapeutics into clinical practice. Autophagy in AML is a double-edged sword, necessitating a deeper understanding of how autophagy influences dual functions in AML tumorigenesis and anti-leukemic responses.
Collapse
Affiliation(s)
- Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
26
|
Gao Y, Jia M, Mao Y, Cai H, Jiang X, Cao X, Zhou D, Li J. Distinct Mutation Landscapes Between Acute Myeloid Leukemia With Myelodysplasia-Related Changes and De Novo Acute Myeloid Leukemia. Am J Clin Pathol 2022; 157:691-700. [PMID: 34664628 DOI: 10.1093/ajcp/aqab172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To explore the distinct mutation profiles between acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) and de novo AML and their relationships with prognosis. METHODS Next-generation sequencing of 42 myeloid neoplasm-related genes in 293 newly diagnosed patients with AML. RESULTS Eighty-four patients had AML-MRC, and 161 patients had de novo AML. The mutation rates of ASXL1 (25% vs 8.7%, P = .001), NRAS (17.9% vs 8.1%, P = .022), PTPN11 (11.9% vs 5%, P = .048), SETBP1 (6% vs 0.6%, P = .033), SRSF2 (11.9% vs 5.6%, P = .08), TP53 (16.7% vs 1.2%, P < .001), and U2AF1 (17.9% vs 7.5%, P = .014) in AML-MRC were higher than those in de novo AML, while the rates of FLT3-ITD (3.6% vs 15.5%, P = .005), KIT (0% vs 6.2%, P = .046), WT1 (3.6% vs 9.9%, P = .077), NPM1 (1.2% vs 21.7%, P < .001), and CEBPA (4.8% vs 24.2%, P < .001) mutation were lower. The appearance of ASXL1, TP53, U2AF1, SRSF2, and SETBP1 mutation could predict AML-MRC-like features in de novo AML, which was related to older age (60 vs 51 years, P = .001), low WBC counts (4.7 × 109/L vs 11.6 × 109/L, P = .001), and inferior outcomes (median overall survival, 15 months vs not reached, P = .003). CONCLUSIONS The presence of AML-MRC-related mutations can reveal a subset of patients with de novo AML similar to patients with AML-MRC.
Collapse
Affiliation(s)
| | - Mingnan Jia
- Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Genetic Characteristics According to Subgroup of Acute Myeloid Leukemia with Myelodysplasia-Related Changes. J Clin Med 2022; 11:jcm11092378. [PMID: 35566503 PMCID: PMC9105081 DOI: 10.3390/jcm11092378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) includes heterogeneous conditions such as previous history and specific cytogenetic and morphological properties. In this study, we analyze genetic aberrations using an RNA-based next-generation sequencing (NGS) panel assay in 45 patients with AML-MRC and detect 4 gene fusions of KMT2A-SEPT9, KMT2A-ELL, NUP98-NSD1, and RUNX1-USP42 and 81 somatic mutations. Overall, all patients had genetic aberrations comprising of not only cytogenetic changes, but also gene fusions and mutations. We also demonstrated several characteristic genetic mutations according to the AML-MRC subgroup. TP53 was the most commonly mutated gene (n = 11, 24%) and all were found in the AML-MRC subgroup with myelodysplastic syndrome-defining cytogenetic abnormalities (AML-MRC-C) (p = 0.002). These patients showed extremely poor overall survival not only in AML-MRC, but also within the AML-MRC-C subgroup. The ASXL1 (n = 9, 20%) and SRSF2 (n = 7, 16%) mutations were associated with the AML-MRC subgroup with >50% dysplasia in at least two lineages (AML-MRC-M) and were frequently co-mutated (55%, 6/11, p < 0.001). Both mutations could be used as surrogate markers to diagnose AML-MRC, especially when the assessment of multilineage dysplasia was difficult. IDH1/IDH2 (n = 13, 29%) were most commonly mutated in AML-MRC, followed by CEBPA (n = 5, 11%), PTPN11 (n = 5, 11%), FLT3 (n = 4, 9%), IDH1 (n = 4, 9%), and RUNX1 (n = 4, 9%). These mutations were not limited in any AML-MRC subgroup and could have more significance as a risk factor or susceptibility marker for target therapy in not only AML-MRC, but also other AML categories.
Collapse
|
28
|
Abstract
Despite FDA approval of nine new drugs for patients with acute myeloid leukemia (AML) in the United States over the last 4 years, AML remains a major area of unmet medical need among hematologic malignancies. In this review, we discuss the development of promising new molecular targeted approaches for AML, including menin inhibition, novel IDH1/2 inhibitors, and preclinical means to target TET2, ASXL1, and RNA splicing factor mutations. In addition, we review progress in immune targeting of AML through anti-CD47, anti-SIRPα, and anti-TIM-3 antibodies; bispecific and trispecific antibodies; and new cellular therapies in development for AML.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Omar Abdel-Wahab
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
29
|
Ding W, Ling Y, Shi Y, Zheng Z. DesA Prognostic Risk Model of LncRNAs in Patients With Acute Myeloid Leukaemia Based on TCGA Data. Front Bioeng Biotechnol 2022; 10:818905. [PMID: 35265597 PMCID: PMC8899517 DOI: 10.3389/fbioe.2022.818905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Purpose: This study aimed to combine the clinical data of acute myeloid leukaemia (AML) from The Cancer Genome Atlas (TCGA) database to obtain prognosis-related biomarkers, construct a prognostic risk model using long non-coding RNAs (lncRNAs) in AML and help patients with AML make clinical treatment decisions. Methods: We analysed the transcriptional group information of 151 patients with AML obtained from TCGA and extracted the expressions of lncRNAs. According to the mutation frequency, the patients were divided into the high mutation group (genomic unstable group, top 25% of mutation frequency) and low mutation group (genomic stable group, 25% after mutation frequency). The ‘limma’ R package was used to analyse the difference in lncRNA expressions between the two groups, and the “survival,” “caret,” and “glmnet” R packages were used to screen lncRNAs that are related to clinical prognosis. Subsequently, a prognosis-related risk model was constructed and verified through different methods. Results: According to the lncRNA expression data in TCGA, we found that seven lncRNAs (i.e. AL645608.6, LINC01436, AL645608.2, AC073534.2, LINC02593, AL512413.1, and AL645608.4) were highly correlated with the clinical prognosis of patients with AML, so we constructed a prognostic risk model of lncRNAs based on LINC01436, AC073534.2, and LINC02593. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of differentially expressed lncRNA-related target genes were performed, receiver operating characteristic (ROC) curves were created, the applicability of the model in children was assessed using the TARGET database and the model was externally verified using the GEO database. Furthermore, different expression patterns of lncRNAs were validated in various AML cell lines derived from Homo sapiens. Conclusions: We have established a lncRNA prognostic model that can predict the survival of patients with AML. The Kaplan-Meier analysis showed that this model distinguished survival differences between patients with high- and low-risk status. The ROC analysis confirmed this finding and showed that the model had high prediction accuracy. The Kaplan-Meier analysis of the clinical subgroups showed that this model can predict prognosis independent of clinicopathological factors. Therefore, the proposed prognostic lncRNA risk model can be used as an independent biomarker of AML.
Collapse
Affiliation(s)
- Weidong Ding
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Soochow, China
| | - Yun Ling
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Soochow, China
| | - Yuan Shi
- Laboratory of Hematology, The Third Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Zhuojun Zheng, ; Yuan Shi,
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Zhuojun Zheng, ; Yuan Shi,
| |
Collapse
|
30
|
Yang M, Qiu Y, Yang Y, Wang W. An Integrated Analysis of the Identified PRPF19 as an Onco-immunological Biomarker Encompassing the Tumor Microenvironment, Disease Progression, and Prognoses in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:840010. [PMID: 35252202 PMCID: PMC8893313 DOI: 10.3389/fcell.2022.840010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Targeting the mRNA splicing process has been identified as a therapeutic strategy for human cancer. PRPF19 is an RNA binding protein that is involved in pre-mRNA processing and repairing DNA damage; the aberrant expression of PRPF19 is potentially associated with carcinogenesis. However, the biological role of PRPF19 in hepatocellular carcinoma (HCC) is still elusive.Methods: Data obtained from TCGA, Oncomine, and GEO were used to investigate the PRPF19 expression level and its role in tumor immune infiltration, prognosis, and the tumor progression of cohorts from HCC. Using various databases and tools (UALCAN, TIMER, TISMO, and PathCards), we presented the potential mechanisms of PFPF19 upregulation, PRPF19-related pathways, and its biological functions in liver cancer.Results: For HCC, PRPF19 expression was found upregulated both in single tumor cells and tissues. Furthermore, the increased expression of PRPF19 was significantly correlated to clinical characteristics: advanced stage, vascular invasion, high AFP, and poor prognosis of HCC. According to the tumor-immunological analysis, we found that PRPF19 is positively correlated with infiltrating myeloid-derived suppressor cells (MDSCs). Moreover, the microenvironment of HCC tissues with high expression of PRPF19 is highly immunosuppressive (lower T-lymphocytes, multiple immune checkpoints upregulated). Patients with high expression of PRPF19 and high MDSCs had a worse survival prognosis as well. TP53 mutation may have a positive effect on PRPF19 expression via decreased promoter methylation of PRPF19. By TF-mRNA network analysis, key transcription factors (TFs) in TC-NER and PCS pathways (PRPF19 involved) were identified.Conclusion: This work implied that PRPF19 is associated with tumor immune evasion and progression, and serves as a prognostic marker for worse clinical outcomes with HCC. Thus, this critical regulator could serve as a potential therapeutic target of HCC.
Collapse
|
31
|
Liu M, Wang F, Zhang Y, Chen X, Cao P, Nie D, Fang J, Wang M, Liu M, Liu H. Gene mutation spectrum of patients with myelodysplastic syndrome and progression to acute myeloid leukemia. Int J Hematol Oncol 2021; 10:IJH34. [PMID: 34540199 PMCID: PMC8446821 DOI: 10.2217/ijh-2021-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Aim: This study aimed to investigate the regularity of gene mutations in patients with myelodysplastic syndrome (MDS) and in those that progressed to acute myeloid leukemia (MDS/AML). Patients & methods: High-throughput sequencing technology was used to detect gene mutations in 99 newly diagnosed patients with MDS or MDS/AML. Results: Gene mutations were detected in 88 patients. The mutation incidence in the MDS/AML group was significantly higher than that in the MDS group. Statistically significant differences were observed between the MDS with refractory anemia (MDS-RA) and MDS-RA with excess blasts groups and between the MDS/AML and MDS-RA groups. Conclusion: Our data demonstrate that there is a cumulative accumulation of gene mutations, especially in transcription factor genes, during disease progression in MDS and MDS/AML. This study investigated the regularity of gene mutations in patients with myelodysplastic syndrome (MDS) and in those that have progressed to acute myeloid leukemia (MDS/AML). High-throughput sequencing was used to detect mutations in 58 genes with known clinical significance in 99 patients who were newly diagnosed with MDS or MDS/AML. A total of 28 mutated genes and 214 mutations were detected in 88 (88.9%) patients. The most frequently mutated gene was U2AF1 (13.55%; 29/214), followed by ASXL1 (10.28%; 22/214), TP53 (7.09%; 15/214), and RUNX1 (7.09%; 15/214). The mutation rate in the MDS/AML group was significantly higher than in the MDS group (100 vs 84.51%; p = 0.031). The average number of mutations per patient was 1.40, 2.20 and 2.64 in the MDS-refractory anemia (RA), MDS-RA with excess blast (RAEB) and MDS/AML groups, respectively. Statistically significant differences were observed between the MDS-RA and MDS-RAEB groups (p = 0.031) and between the MDS/AML and MDS-RA groups (p = 0.003). Signal transduction gene mutations were more frequent in the MDS/AML than in the MDS group (50% vs 22.54%; p = 0.014), especially in the FLT3 (14.29% vs 0; p = 0.005) and PTPN11 (17.86 vs 2.82%; p = 0.018) genes. Statistically significant (p < 0.05) correlations were found in 12 mutated gene combinations. TP53 mutations were mutually exclusive with RNA splicing factor gene mutations (p = 0.001). U2AF1 S34 mutations were associated with trisomy 8 (22.22 vs 5.97%; p = 0.03), and TP53 mutations were associated with complex karyotypes. Our data demonstrate that there is cumulative accumulation of gene mutations, especially in transcription factor genes, during disease progression in MDS and MDS/AML. The data also indicate there are synergistic pathogenicity and mutually exclusive effects among gene mutations and chromosomal abnormalities.
Collapse
Affiliation(s)
- Ming Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Yang Zhang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Xue Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Panxiang Cao
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Daijing Nie
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Jiancheng Fang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Mingyu Wang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Mingyue Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Hongxing Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China.,Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing 100176, China.,Beijing Lu Daopei Institute of Hematology, Beijing 100176, China
| |
Collapse
|
32
|
Qiu Q, Zhang P, Zhang N, Shen Y, Lou S, Deng J. Development of a Prognostic Nomogram for Acute Myeloid Leukemia on IGHD Gene Family. Int J Gen Med 2021; 14:4303-4316. [PMID: 34408473 PMCID: PMC8364394 DOI: 10.2147/ijgm.s317528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose Acute myeloid leukaemia (AML) is a common haematological disease in adults. The overall survival (OS) remains unsatisfactory. It is critical to identify potential prognostic biomarkers and develop a nomogram that predicts overall survival in patients with AML. Patients and Methods We used gene expression dataset and clinical data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) to identify differential expression analysis, survival analysis, and prognostic value of IGHD gene family (IGHDs) in AML patients. A risk score model was built through Lasso analysis and multivariate Cox regression. We also developed a nomogram and evaluated its accuracy with Harrell’s Harmony Index (C-index) and calibration curve. Last, the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database was used for external validation. Results IGHD1-20 mRNA expression level was an independent prognostic factor for patients with AML by multivariate analysis. After Lasso analysis and multivariate Cox regression, we constructed a 3-gene model (IGHD1-1, IGHD1-20, IGHD3-16) associated with OS in AML. Risk score and age were validated as independent risk factors for prognosis and were used to build a nomogram. The C index and calibration curve results show that its ability to predict 1-year, 3-year and 5-year overall survival is accurate. Conclusion The mRNA level of IGHDs was increased in AML patients. IGHD1-20 was an independent risk factor for OS in AML patients. The IGHDs risk model (IGHD1-1, IGHD1-20, IGHD3-16) relates to the OS of AML patients. The nomogram, including risk score and age, can conveniently and effectively predict the overall survival rate of patients.
Collapse
Affiliation(s)
- Qunxiang Qiu
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ping Zhang
- Hematology Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Nan Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yan Shen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| |
Collapse
|
33
|
Huang AJ, Gao L, Ni X, Hu XX, Tang GS, Cheng H, Chen J, Chen L, Liu LX, Wang CC, Zhang WP, Yang JM, Wang JM. [Spectrum of gene mutations and clinical features in adult acute myeloid leukemia with normal karyotype]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:420-424. [PMID: 35790467 PMCID: PMC8293012 DOI: 10.3760/cma.j.issn.0253-2727.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/24/2022]
Affiliation(s)
- A J Huang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - L Gao
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - X Ni
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - X X Hu
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - G S Tang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - H Cheng
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - J Chen
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - L Chen
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - L X Liu
- Acornmed Biotechnology Co., Ltd. Beijing, 100176
| | - C C Wang
- Acornmed Biotechnology Co., Ltd. Beijing, 100176
| | - W P Zhang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - J M Yang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - J M Wang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| |
Collapse
|
34
|
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous type of blood cancer, which presents with a high rate of mortality especially in elderly patients. Better understanding of critical players, such as molecules with tumor suppressive properties, may help to fine-tune disease classification and thereby treatment modalities for this detrimental disease. Here, we summarize well-known and established tumor suppressors as well as emerging tumor suppressors, including transcription factors (TCFs) and other transcriptional regulators, such as epigenetic modulators. In addition, we look into the versatile field of miRNAs also interfering with tumorigenesis and progression, which offer new possibilities in AML diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Jacqueline Wallwitz
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Petra Aigner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
35
|
Soares F, Chen B, Lee JB, Ahmed M, Ly D, Tin E, Kang H, Zeng Y, Akhtar N, Minden MD, He HH, Zhang L. CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood 2021; 137:2171-2181. [PMID: 33270841 DOI: 10.1182/blood.2019004108] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) remains a devastating disease in need of new therapies to improve patient survival. Targeted adoptive T-cell therapies have achieved impressive clinical outcomes in some B-cell leukemias and lymphomas but not in AML. Double-negative T cells (DNTs) effectively kill blast cells from the majority of AML patients and are now being tested in clinical trials. However, AML blasts obtained from ∼30% of patients show resistance to DNT-mediated cytotoxicity; the markers or mechanisms underlying this resistance have not been elucidated. Here, we used a targeted clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) screen to identify genes that cause susceptibility of AML cells to DNT therapy. Inactivation of the Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitinating complex components sensitized AML cells to DNT-mediated cytotoxicity. In contrast, CD64 inactivation resulted in resistance to DNT-mediated cytotoxicity. Importantly, the level of CD64 expression correlated strongly with the sensitivity of AML cells to DNT treatment. Furthermore, the ectopic expression of CD64 overcame AML resistance to DNTs in vitro and in vivo. Altogether, our data demonstrate the utility of CRISPR/Cas9 screens to uncover mechanisms underlying the sensitivity to DNT therapy and suggest CD64 as a predictive marker for response in AML patients.
Collapse
Affiliation(s)
| | - Branson Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; and
- Department of Laboratory Medicine and Pathobiology
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; and
- Department of Immunology, and
| | | | - Dalam Ly
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; and
- Department of Immunology, and
| | - Enoch Tin
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; and
- Department of Immunology, and
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; and
- Department of Laboratory Medicine and Pathobiology
| | | | | | | | - Housheng Hansen He
- Princess Margaret Cancer Centre and
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; and
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, and
| |
Collapse
|
36
|
Middeke JM, Teipel R, Röllig C, Stasik S, Zebisch A, Sill H, Kramer M, Scholl S, Hochhaus A, Jost E, Brümmendorf TH, Naumann R, Steffen B, Serve H, Altmann H, Kunzmann V, Einsele H, Parmentier S, Schaich M, Burchert A, Neubauer A, Schliemann C, Berdel WE, Sockel K, Stölzel F, Platzbecker U, Ehninger G, Bornhäuser M, Schetelig J, Thiede C. Decitabine treatment in 311 patients with acute myeloid leukemia: outcome and impact of TP53 mutations - a registry based analysis. Leuk Lymphoma 2021; 62:1432-1440. [PMID: 33399480 DOI: 10.1080/10428194.2020.1864354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We performed a registry-based analysis of 311 AML patients treated with decitabine in a standard of care setting to assess response and survival data with a distinct focus on the impact of the TP53 mutation status. Median age was 73 years. 172 patients received decitabine first-line and 139 in r/r disease. The ORR (whole cohort) was 30% with a median overall survival of 4.7 months. First-line patients achieved better responses than r/r-patients (ORR: 38% vs. 21%) resulting in a median OS of 5.8 months vs. 3.9 months. NGS based mutation analysis was performed in 180 patients. 20 patients (11%) harbored a TP53 mutation. Response rates and survival did not differ significantly between TP53 mutated patients and wild-type patients. This analysis of a large cohort of AML patients provides response rates and OS data after decitabine treatment. Interestingly, outcome was not negatively influenced by a TP53 mutation.
Collapse
Affiliation(s)
- Jan M Middeke
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Raphael Teipel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Sebastian Stasik
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Armin Zebisch
- Klinische Abteilung für Hämatologie, Medizinische Universität Graz, Graz, Austria.,Otto Loewi Forschungszentrum für Gefäßbiologie, Immunologie und Entzündung, Lehrstuhl für Pharmakologie, Medizinische Universität Graz, Graz, Austria
| | - Heinz Sill
- Klinische Abteilung für Hämatologie, Medizinische Universität Graz, Graz, Austria
| | - Michael Kramer
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Edgar Jost
- Medizinische Klinik IV, Uniklinik RWTH Aachen, Aachen, Germany
| | | | - Ralph Naumann
- Medizinische Klinik III, St. Marien-Krankenhaus Siegen, Siegen, Germany
| | - Björn Steffen
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Hubert Serve
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Heidi Altmann
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Volker Kunzmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stefani Parmentier
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Markus Schaich
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Germany, Marburg
| | - Andreas Neubauer
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Germany, Marburg
| | | | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Germany, Münster
| | - Katja Sockel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Medizinische Klinik und Poliklinik I - Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | | |
Collapse
|
37
|
Arber DA, Erba HP. Diagnosis and Treatment of Patients With Acute Myeloid Leukemia With Myelodysplasia-Related Changes (AML-MRC). Am J Clin Pathol 2020; 154:731-741. [PMID: 32864703 PMCID: PMC7610263 DOI: 10.1093/ajcp/aqaa107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives Acute myeloid leukemia (AML) with myelodysplasia-related changes (AML-MRC) represents a high-risk and somewhat diverse subtype of AML, and substantial confusion exists about the pathologic evaluation needed for diagnosis, which can include the patient’s clinical history, cytogenetic analysis, mutational analysis, and/or morphologic evaluation. Treatment decisions based on incomplete or untimely pathology reports may result in the suboptimal treatment of patients with AML-MRC. Methods Using a PubMed search, diagnosis of and treatment options for AML-MRC were investigated. Results This article reviews the current diagnostic criteria for AML-MRC, provides guidance on assessments necessary for an AML-MRC diagnosis, summarizes clinical and prognostic features of AML-MRC, and discusses potential therapies for patients with AML-MRC. In addition to conventional chemotherapy, treatment options include CPX-351, a liposomal encapsulation of daunorubicin/cytarabine approved for treatment of adults with AML-MRC; targeted agents for patients with certain mutations/disease characteristics; and lower-intensity therapies for less fit patients. Conclusions Given the evolving and complex treatment landscape and the high-risk nature of the AML-MRC population, a clear understanding of the pathology information necessary for AML-MRC diagnosis has become increasingly important to help guide treatment decisions and thereby improve patient outcomes.
Collapse
Affiliation(s)
- Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL
| | - Harry P Erba
- Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
38
|
Banskota SU, Khanal N, Bhatt VR. A precision medicine approach to management of acute myeloid leukemia in older adults. Curr Opin Oncol 2020; 32:650-655. [PMID: 32826488 PMCID: PMC7737662 DOI: 10.1097/cco.0000000000000673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Therapy selection in older adults with acute myeloid leukemia (AML) can be challenging because of a higher incidence of high-risk cytogenetic and molecular features conferring chemoresistance and poor functional status leading to increased treatment-related toxicities. The purpose of this review is to highlight the recent advances in precision medicine in AML that have shown promise to improve outcomes of older adults. RECENT FINDINGS The utilization of next generation sequencing to identify and target actionable mutations can influence therapy selection in one-third of patients and can result in higher response rates as well as survival compared with those who do not receive targeted therapy. Oral targeted agents are available for AML with IDH 1, IDH2, or FLT3 mutations. Low-intensity venetoclax-based regimens have shown high rates of responses in AML, particularly among those with NPM1 and IDH2 mutations; responses are often durable and associated with minimal residual disease (MRD) negativity. Multiple studies have demonstrated the prognostic significance of flow cytometric MRD, with potential implications for subsequent therapy. SUMMARY Novel approaches for AML risk-stratification, MRD assessment, and a precision medicine approach offer significant promise to improve survival and quality of life of older adults.
Collapse
Affiliation(s)
| | - Nabin Khanal
- Franciscan Physician Network Oncology & Hematology Specialists, St Francis hospital, Indianapolis, IN
| | - Vijaya Raj Bhatt
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
39
|
Jiang G, Capo-Chichi JM, Liu A, Atenafu EG, Guo R, Tierens A, Minden MD, Chang H. Acute myeloid leukemia with myelodysplasia-related changes diagnosed with multilineage dysplasia alone demonstrates a superior clinical outcome. Hum Pathol 2020; 104:117-126. [PMID: 32798550 DOI: 10.1016/j.humpath.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) generally confers poor prognosis; however, the clinical outcome remains heterogeneous. We sought to further stratify this subentity of AML by performing a retrospective analysis of 179 adult patients with AML-MRC diagnosed at our institution. Based on 2016 World Health Organization diagnostic criteria, 44 (25%) patients had multilineage dysplasia alone (AML-MRC-M), 74 (41%) had history of myelodysplastic syndrome (MDS) or myelodysplastic/myeloproliferative disease (AML-MRC-H), and 61 (34%) had MDS-related cytogenetics (AML-MRC-C). AML-MRC-M and hematopoietic stem cell transplantation (HSCT) were associated with prolonged event-free survival (EFS) (P = 0.0051 and P < 0.0001, respectively) and overall survival (OS) (P = 0.0015 and P < 0.0001, respectively), whereas AML-MRC-C and age ≥60 years were associated with shorter EFS (P = 0.028 and P = 0.015, respectively) and OS (P = 0.021 and P = 0.013, respectively). Of note, NPM1mut did not affect the patient's outcome. Multivariable analysis confirmed HSCT and AML-MRC-C as independent predictors for EFS (P < 0.0001 and P = 0.0342, respectively) and OS (P < 0.0001 and P = 0.0295, respectively). AML-MRC-M was an independent predictor for OS (P = 0.0449). When compared with a control group of 105 patients with normal karyotype AML not otherwise specified (NK-AML-NOS), patients with AML-MRC-M had similar EFS and OS (P = 0.99 and P = 0.91, respectively). However, AML-MRC-H and AML-MRC-C were associated with shorter EFS and OS (P = 0.0002 and P < 0.0001, respectively) than the same control group. In a subset of patients, next-generation sequencing analysis showed AML-MRC-M was associated with ASXL1 mutation compared with NK-AML (56% vs 6%). In conclusion, AML-MRC-M demonstrates a superior clinical outcome compared with the rest of the AML-MRC group. They have comparable outcomes to NK-AML-NOS, and these data suggest AML-MRC-M may be considered not to be classified in the same group as patients with other AML-MRC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Cell Lineage
- Female
- Genetic Predisposition to Disease
- Hematopoietic Stem Cell Transplantation/adverse effects
- Hematopoietic Stem Cell Transplantation/mortality
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/surgery
- Male
- Middle Aged
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/mortality
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/surgery
- Nuclear Proteins/genetics
- Nucleophosmin
- Progression-Free Survival
- Repressor Proteins/genetics
- Retrospective Studies
- Risk Assessment
- Risk Factors
- Time Factors
- Young Adult
Collapse
Affiliation(s)
- Gina Jiang
- Department of Laboratory Hematology, University Health Network, University of Toronto, Toronto, Canada
| | - Jose-Mario Capo-Chichi
- Department of Clinical Laboratory Genetics, Genome Diagnostics, University Health Network, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, China
| | | | - Robert Guo
- Department of Laboratory Hematology, University Health Network, University of Toronto, Toronto, Canada
| | - Ann Tierens
- Department of Laboratory Hematology, University Health Network, University of Toronto, Toronto, Canada
| | - Mark D Minden
- Department of Hematology and Medical Oncology, University Health Network, University of Toronto, Toronto, Canada
| | - Hong Chang
- Department of Laboratory Hematology, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
40
|
High Throughput Molecular Characterization of Normal Karyotype Acute Myeloid Leukemia in the Context of the Prospective Trial 02/06 of the Northern Italy Leukemia Group (NILG). Cancers (Basel) 2020; 12:cancers12082242. [PMID: 32796597 PMCID: PMC7464263 DOI: 10.3390/cancers12082242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
By way of a Next-Generation Sequencing NGS high throughput approach, we defined the mutational profile in a cohort of 221 normal karyotype acute myeloid leukemia (NK-AML) enrolled into a prospective randomized clinical trial, designed to evaluate an intensified chemotherapy program for remission induction. NPM1, DNMT3A, and FLT3-ITD were the most frequently mutated genes while DNMT3A, FLT3, IDH1, PTPN11, and RAD21 mutations were more common in the NPM1 mutated patients (p < 0.05). IDH1 R132H mutation was strictly associated with NPM1 mutation and mutually exclusive with RUNX1 and ASXL1. In the whole cohort of NK-AML, no matter the induction chemotherapy used, by multivariate analysis, the achievement of complete remission was negatively affected by the SRSF2 mutation. Alterations of FLT3 (FLT3-ITD) and U2AF1 were associated with a worse overall and disease-free survival (p < 0.05). FLT3-ITD positive patients who proceeded to alloHSCT had a survival probability similar to FLT3-ITD negative patients and the transplant outcome was no different when comparing high and low-AR-FLT3-ITD subgroups in terms of both OS and DFS. In conclusion, a comprehensive molecular profile for NK-AML allows for the identification of genetic lesions associated to different clinical outcomes and the selection of the most appropriate and effective treatment strategies, including stem cell transplantation and targeted therapies.
Collapse
|
41
|
Ni J, Hong J, Long Z, Li Q, Xia R, Zeng Q. Mutation profile and prognostic relevance in elderly patients with de novo acute myeloid leukemia treated with decitabine-based chemotherapy. Int J Lab Hematol 2020; 42:849-857. [PMID: 32730663 DOI: 10.1111/ijlh.13299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Decitabine-based chemotherapy regimens have shown efficacy in the treatment of elderly patients with acute myeloid leukemia (AML). However, it remains unclear whether any molecular alteration is correlated with the therapeutic effect of such treatment regimens. METHODS Gene mutations were detected using next-generation sequencing, and their impact on survival was investigated in elderly AML patients receiving decitabine-based chemotherapy. RESULTS A higher incidence of gene mutations was identified in elderly AML patients than in the younger cohorts. Elderly patients more frequently carried DNMT3A, IDH2, ASXL1, TET2, RUNX1, CEBPA single mutation (CEBPAsingle-mut ), and TP53 mutations. Survival analysis showed that DNMT3A, FLT3-ITD, and TP53 mutations were associated with inferior overall survival (OS) and event-free survival (EFS) in younger AML patients receiving standard treatment. However, in elderly patients treated with decitabine-based chemotherapy, FLT3-ITD, and ASXL1 mutations, but not DNMT3A and TP53 mutations, were associated with poor OS and EFS. Moreover, contrary to CEBPA double mutation (CEBPAdouble-mut ), CEBPAsingle-mut was identified as an unfavorable prognostic factor. CONCLUSION This study comprehensively analyzed the prognostic implications of gene mutations in elderly AML patients under decitabine-based treatment modality. Identification of genetic biomarkers to predict the subgroup of elderly AML patients who can benefit from decitabine-based regimens might have an immediate clinical utility to optimize the treatment of elderly AML patients.
Collapse
Affiliation(s)
- Jing Ni
- Department of Hematology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Hong
- Department of Hematology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhangbiao Long
- Department of Hematology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingsheng Li
- Department of Hematology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixiang Xia
- Department of Hematology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingshu Zeng
- Department of Hematology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
42
|
Mutational spectrum and prognosis in NRAS-mutated acute myeloid leukemia. Sci Rep 2020; 10:12152. [PMID: 32699322 PMCID: PMC7376066 DOI: 10.1038/s41598-020-69194-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
The mutational spectrum and prognostic factors of NRAS-mutated (NRASmut) acute myeloid leukemia (AML) are largely unknown. We performed next-generation sequencing (NGS) in 1,149 cases of de novo AML and discovered 152 NRASmut AML (13%). Of the 152 NRASmut AML, 89% had at least one companion mutated gene. DNA methylation-related genes confer up to 62% incidence. TET2 had the highest mutation frequency (51%), followed by ASXL1 (17%), NPM1 (14%), CEBPA (13%), DNMT3A (13%), FLT3-ITD (11%), KIT (11%), IDH2 (9%), RUNX1 (8%), U2AF1 (7%) and SF3B1(5%). Multivariate analysis suggested that age ≥ 60 years and mutations in U2AF1 were independent factors related to failure to achieve complete remission after induction therapy. Age ≥ 60 years, non-M3 types and U2AF1 mutations were independent prognostic factors for poor overall survival. Age ≥ 60 years, non-M3 types and higher risk group were independent prognostic factors for poor event-free survival (EFS) while allogenic hematopoietic stem cell transplantation was an independent prognostic factor for good EFS. Our study provided new insights into the mutational spectrum and prognostic factors of NRASmut AML.
Collapse
|
43
|
High-throughput Sequencing of Subcutaneous Panniculitis-like T-Cell Lymphoma Reveals Candidate Pathogenic Mutations. Appl Immunohistochem Mol Morphol 2020; 27:740-748. [PMID: 31702703 DOI: 10.1097/pai.0000000000000683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a malignant primary cutaneous T-cell lymphoma that is challenging to distinguish from other neoplastic and reactive panniculitides. In an attempt to identify somatic variants in SPTCL that may be diagnostically or therapeutically relevant, we performed both exome sequencing on paired tumor-normal samples and targeted sequencing of hematolymphoid-malignancy-associated genes on tumor biopsies. Exome sequencing was performed on skin biopsies from 4 cases of skin-limited SPTCL, 1 case of peripheral T-cell lymphoma, not otherwise specified with secondary involvement of the panniculus, and 2 cases of lupus panniculitis. This approach detected between 1 and 13 high-confidence somatic variants that were predicted to result in a protein alteration per case. Variants of interest identified include 1 missense mutation in ARID1B in 1 case of SPTCL. To detect variants that were present at a lower level, we used a more sensitive targeted panel to sequence 41 hematolymphoid-malignancy-associated genes. The targeted panel was applied to 2 of the biopsies that were evaluated by whole exome sequencing as well as 5 additional biopsies. Potentially pathogenic variants were identified in KMT2D and PLCG1 among others, but no gene was altered in >2 of the 7 cases sequenced. One variant that was notably absent from the cases sequences is RHOA G17V. Further work will be required to further elucidate the genetic abnormalities that lead to this rare lymphoma.
Collapse
|
44
|
Lai R, Zhang W, He X, Liao X, Liu X, Fu W, Yang P, Wang J, Hu K, Yuan X, Zhang X, Jing H, Liu W. Prognostic role of ACTL10 in Cytogenetic Normal Acute Myeloid Leukemia. J Cancer 2020; 11:5150-5161. [PMID: 32742462 PMCID: PMC7378917 DOI: 10.7150/jca.39467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 06/14/2020] [Indexed: 01/01/2023] Open
Abstract
ACTL10 is a member of the actin family; however, despite previous studies suggesting that certain proteins in this family may be related to the pathogenesis of leukemia, to the best of our knowledge, no studies to date have demonstrated any association between ACTAL10 and leukemia. Thus, the present study aimed to determine the association between ACTL10 expression levels, DNA methylation levels and the clinical prognosis in cytogenic normal acute myeloid leukemia (CN-AML). Data from seventy-five patients with CN-AML and patients with AML treated with chemotherapy or allogeneic hematopoietic stem cell transplantation were obtained from The Cancer Genome Atlas (TCGA) dataset and were used to analyze the clinical prognosis of ACTL10 RNA expression levels and DNA methylation levels. In addition, the study also investigated the combined clinical prognosis of ACTL10 RNA expression levels and ACTL10 DNA methylation levels in 74 patients with CN-AML from the TCGA dataset. ACTL10 RNA expression levels were observed to be highly expressed in patients with CD34+/CD38+ AML (P<0.01). Both ACTL10 RNA expression levels and DNA methylation were found to be independent prognostic factors for patients with CN-AML; patients with CN-AML in the ACTL10 RNA-high expression group had an increased EFS (P=0.0016) and OS (P=0.014) and patients in ACTL10 DNA methylation-low group also demonstrated a long EFS (P<0.0001) and OS (P=0.004). Notably, integrating ACTL10 RNA expression levels and ACTL10 DNA methylation levels could more accurately predict the prognosis of patients with CN-AML (EFS and OS, P<0.0001). In conclusion, the findings of the present study suggested that the high RNA expression levels and low DNA methylation levels of ACTL10 may predict a good prognosis in patients with CN-AML.
Collapse
Affiliation(s)
- Rui Lai
- Department of the Respiratory medicine, The People's Hospital of Ruijin City, Ruijin, 342500, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xue He
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, No. 6 Tiantan Xili, Beijing, 100050, China
| | - Xinhui Liao
- Department of Respiratory medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoni Liu
- Department of Respiratory medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Wei Fu
- Peking University Third Hospital, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Kai Hu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoliang Yuan
- Department of Respiratory medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Xiuru Zhang
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, No. 6 Tiantan Xili, Beijing, 100050, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Weiyou Liu
- Department of Respiratory medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
45
|
Zhang X, Liu B, Zhang J, Yang X, Zhang G, Yang S, Wang J, Shi J, Hu K, Wang J, Jing H, Ke X, Fu L. Expression level of ACOT7 influences the prognosis in acute myeloid leukemia patients. Cancer Biomark 2020; 26:441-449. [PMID: 31640082 DOI: 10.3233/cbm-182287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND ACOT plays an important role in lipid metabolism and recent studies found that ACOT participates in some kinds of tumorigenesis. However, both the role of ACOT and its significance have not been revealed in AML. Therefore, we conduct this study in order to investigate the association between AML and ACOT, and hopefully contributed to the management of AML. METHODS One hundred and fifty-six AML patients were enrolled in our study whose data were derived from the Cancer Genome Atlas database. There were 85 patients who received only chemotherapy and other 71 patients underwent allo-HSCT. RESULTS Patients in high ACOT7 group had a significant lower EFS and OS, while patients in high versus low expression levels of other types of ACOT showed no significant difference on the outcome. High level of ACOT7 related with poor outcome in both chemotherapy-only group and HSCT group. CONCLUSIONS High expression level of ACOT7 indicates unfavorable outcome in AML patients. Allo-HSCT could not overcome the unfavorable effect of ACOT7 in these patients.
Collapse
Affiliation(s)
- Xinpei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Bo Liu
- Peking University Health Science Center, Beijing, China
| | - Jilei Zhang
- Department of Otolaryngology, Peking University People's Hospital, Beijing, China
| | - Xinrui Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Gaoqi Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Jijun Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| |
Collapse
|
46
|
Juhlin CC, Asa SL, Jatta K, Naserhojati Rodsari H, Shabo I, Haglund F, Delahunt B, Samaratunga H, Egevad L, Höög A, Zedenius J. Perithyroidal Salivary Gland Acinic Cell Carcinoma: Morphological and Molecular Attributes of a Unique Lesion. Head Neck Pathol 2020; 15:628-637. [PMID: 32519264 PMCID: PMC8134583 DOI: 10.1007/s12105-020-01187-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
Rarely, salivary gland tumors such as mucoepidermoid carcinoma, mammary analogue secretory carcinoma and mucinous carcinoma arise as primary tumors from ectopic or metaplastic salivary gland tissue adjacent to or within the thyroid gland. We report for the first time a case of primary salivary acinic cell carcinoma (AcCC) adjacent to the thyroid gland in a 71-year-old female patient with Crohns disease and a previous history of malignant melanoma. Following the development of a nodule adjacent to the left thyroid lobe, a fine-needle aspiration biopsy was reported as consistent with a follicular lesion of undetermined significance (Bethesda III). A left-sided hemithyroidectomy was performed. A circumscribed lesion measuring 33 mm was noted adjacent to the thyroid and trapping parathyroid, it was composed of solid nests and glands with microcystic and follicular patterns. The tumor was negative for thyroid, parathyroid and paraganglioma markers, but positive for pan-cytokeratins, CK7, CD10, CD117, androgen receptor and HNF-beta. A metastasis of a thyroid-like renal cell carcinoma was suspected but ruled out, and the patient had no evident lesions on extensive radiology of the urogenital, pulmonary and GI tracts. Based on the morphology, a diagnosis of AcCC was suggested, and confirmed with DOG1 and PAS-diastase staining. Molecular analyses pinpointed a constitutional ASXL1 variant of uncertain significance, but no fusion events. The patient had no radiological or clinical evidence of parotid, submandibular or sublingual tumors postoperatively, and the excised lesion was therefore assumed to be a primary tumor. We here detail the morphological and immunophenotypic profile of this previously undescribed perithyroidal tumor.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| | - Sylvia L Asa
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kenbugul Jatta
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Ivan Shabo
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Hemamali Samaratunga
- Department of Molecular and Cellular Pathology, University of Queensland, Brisbane, Australia
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Höög
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Zedenius
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
The Influence of Methylating Mutations on Acute Myeloid Leukemia: Preliminary Analysis on 56 Patients. Diagnostics (Basel) 2020; 10:diagnostics10050263. [PMID: 32365516 PMCID: PMC7277399 DOI: 10.3390/diagnostics10050263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by abnormal proliferation and a lack of differentiation of myeloid blasts. Considering the dismal prognosis this disease presents, several efforts have been made to better classify it and offer a tailored treatment to each subtype. This has been formally done by the World Health Organization (WHO) with the AML classification schemes from 2008 and 2016. Nonetheless, there are still mutations that are not currently included in the WHO AML classification, as in the case of some mutations that influence methylation. In this regard, the present study aimed to determine if some of the mutations that influence DNA methylation can be clustered together regarding methylation, expression, and clinical profile. Data from the TCGA LAML cohort were downloaded via cBioPortal. The analysis was performed using R 3.5.2, and the necessary packages for classical statistics, dimensionality reduction, and machine learning. We included only patients that presented mutations in DNMT3A, TET2, IDH1/2, ASXL1, WT1, and KMT2A. Afterwards, mutations that were present in too few patients were removed from the analysis, thus including a total of 57 AML patients. We observed that regarding expression, methylation, and clinical profile, patients with mutated TET2, IDH1/2, and WT1 presented a high degree of similarity, indicating the equivalence that these mutations present between themselves. Nonetheless, we did not observe this similarity between DNMT3A- and KMT2A-mutated AML. Moreover, when comparing the hypermethylating group with the hypomethylating one, we also observed important differences regarding expression, methylation, and clinical profile. In the current manuscript we offer additional arguments for the similarity of the studied hypermethylating mutations and suggest that those should be clustered together in further classifications. The hypermethylating and hypomethylating groups formed above were shown to be different from each other considering overall survival, methylation profile, expression profile, and clinical characteristics. In this manuscript, we present additional arguments for the similarity of the effect generated by TET2, IDH1/2, and WT1 mutations in AML patients. Thus, we hypothesize that hypermethylating mutations skew the AML cells to a similar phenotype with a possible sensitivity to hypermethylating agents.
Collapse
|
48
|
Abstract
OPINION STATEMENT There is increasing awareness that AML is a widely heterogeneous disease, not only based on clinical characteristics and demographics of the patients we treat but also based on the genomics of the disease. Wider accessibility to next-generation DNA sequencing in AML has identified recurrent genetic abnormalities that drive disease biology, define overall prognosis, and predict for response to newly developed target-specific therapies. This knowledge has allowed the field to move away from a "one-size-fits-all" approach in newly diagnosed AML, to a more thoughtful, individualized approachy based on these factors. The first steps in realizing this new approach involve developing systems to efficiently obtain and analyze patient- and disease-related factors prior to starting therapy and having available clinical trials to address each subtype.
Collapse
|
49
|
Hong M, Zhu H, Sun Q, Zhu Y, Miao Y, Yang H, Qiu HR, Li JY, Qian SX. Decitabine in combination with low-dose cytarabine, aclarubicin and G-CSF tends to improve prognosis in elderly patients with high-risk AML. Aging (Albany NY) 2020; 12:5792-5811. [PMID: 32238611 PMCID: PMC7185116 DOI: 10.18632/aging.102973] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/19/2020] [Indexed: 04/17/2023]
Abstract
We evaluated the risk status and survival outcomes of 125 elderly acute myeloid leukemia (AML) patients treated with decitabine in combination with low-dose cytarabine, aclarubicin, and G-CSF (D-CAG). The risk status was evaluated by determining the frequency of recurring gene mutations using next-generation sequencing (NGS) analysis of 23 selected genes and cytogenetic profiling of bone marrow samples at diagnosis. After a median follow-up of 12 months (range: 2-82 months), 86 patients (68.8%) had achieved complete remission after one cycle of induction, and 94 patients (75.2%) had achieved it after two cycles. The median overall survival (OS) and disease-free survival (DFS) were 16 and 12 months, respectively. In 21 AML patients aged above 75 years, the median OS and DFS were longer in the low- and intermediate-risk group than the high-risk group, but the differences were not statistically significant. The median OS and DFS were similar in patients with or without TET2, DNMT3A, IDH2, TP53 and FLT3 mutations. Multivariate analysis showed that patient age above 75 years, high-risk status, and genetic anomalies, like deletions in chromosomes 5 and/or 7, were significant variables in predicting OS. D-CAG regimen tends to improve the prognosis of a subgroup of elderly patients with high-risk AML.
Collapse
Affiliation(s)
- Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| | - Han Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| | - Hui Yang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| | - Hai-Rong Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| | - Si-Xuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
50
|
Prats-Martín C, Burillo-Sanz S, Morales-Camacho RM, Pérez-López O, Suito M, Vargas MT, Caballero-Velázquez T, Carrillo-Cruz E, González J, Bernal R, Pérez-Simón JA. ASXL1 mutation as a surrogate marker in acute myeloid leukemia with myelodysplasia-related changes and normal karyotype. Cancer Med 2020; 9:3637-3646. [PMID: 32216059 PMCID: PMC7286456 DOI: 10.1002/cam4.2947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) are poor outcome leukemias. Its diagnosis is based on clinical, cytogenetic, and cytomorphologic criteria, last criterion being sometimes difficult to assess. A high frequency of ASXL1 mutations have been described in this leukemia. We sequenced ASXL1 gene mutations in 61 patients with AML-MRC and 46 controls with acute myeloid leukemia without other specifications (AML-NOS) to identify clinical, cytomorphologic, and cytogenetic characteristics associated with ASXL1 mutational status. Mutated ASXL1 (ASXL1+) was observed in 31% of patients with AML-MRC compared to 4.3% in AML-NOS. Its presence in AML-MRC was associated with older age, a previous history of myelodysplastic syndrome (MDS) or myelodysplastic/myeloproliferative neoplasms (MDS/MPN), leukocytosis, presence of micromegakaryocytes in bone marrow, lower number of blasts in bone marrow, myelomonocytic/monocytic morphological features and normal karyotype. ASXL1 mutation was not observed in patients with myelodysplastic syndrome-related cytogenetic abnormalities or TP53 mutations. Differences in terms of overall survival were found only in AML-MRC patients without prior MDS or MDS/MPN and with intermediate-risk karyotype, having ASXL1+ patients a worst outcome than ASXL1-. We conclude that the ASXL1 mutation frequency is high in AML-MRC patients being its presence associated with specific characteristics including morphological signs of dysplasia. This association raises the possible role of ASXL1 as a surrogate marker in AML-MRC, which could facilitate the diagnosis of patients within this group when the karyotype is normal, and especially when the assessment of multilineage dysplasia morphologically is difficult. This mutation could be used as a worst outcome marker in de novo AML-MRC with intermediate-risk karyotype.
Collapse
Affiliation(s)
- Concepción Prats-Martín
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Sergio Burillo-Sanz
- Department of Immunology, Hospital Universitario Virgen del Rocío. Sevilla, Sevilla, Spain
| | - Rosario M Morales-Camacho
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Olga Pérez-López
- Department of Hematology, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Sevilla, Spain
| | - Milagros Suito
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Maria T Vargas
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Estrella Carrillo-Cruz
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - José González
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Ricardo Bernal
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - José A Pérez-Simón
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CISC/CIBERONC), Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|