1
|
Hernández-Núñez I, Urman A, Zhang X, Jacobs W, Hoffman C, Rebba S, Harding EG, Li Q, Mao F, Cani AK, Chen S, Dawlaty MM, Rao RC, Ruzycki PA, Edwards JR, Clark BS. Active DNA demethylation is upstream of rod-photoreceptor fate determination and required for retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636318. [PMID: 39975078 PMCID: PMC11838574 DOI: 10.1101/2025.02.03.636318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Retinal cell fate specification from multipotent retinal progenitors is governed by dynamic changes in chromatin structure and gene expression. Methylation at cytosines in DNA (5mC) is actively regulated for proper control of gene expression and chromatin architecture. Numerous genes display active DNA demethylation across retinal development; a process that requires oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and is controlled by the ten-eleven translocation methylcytosine dioxygenase (TET) enzymes. Using an allelic series of conditional TET enzyme mutants, we determine that DNA demethylation is required upstream of NRL and NR2E3 expression for the establishment of rod-photoreceptor fate. Using histological, behavioral, transcriptomic, and base-pair resolution DNA methylation analyses, we establish that inhibition of active DNA demethylation results in global changes in gene expression and methylation patterns that prevent photoreceptor precursors from adopting a rod-photoreceptor fate, instead producing a retina in which all photoreceptors specify as cones. Our results establish the TET enzymes and DNA demethylation as critical regulators of retinal development and cell fate specification, elucidating a novel mechanism required for the specification of rod-photoreceptors.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alaina Urman
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaodong Zhang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - William Jacobs
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christy Hoffman
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Sohini Rebba
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Andi K Cani
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Shiming Chen
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Genetics, and Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department and Center of Computational Medicine and Bioinformatics, Comprehensive Cancer Center, A. Alfred Taubman Medical Research Institute, Center for RNA Biomedicine, Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgery Section, VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Edwards
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Saraswathi KK, Santhi R, Kim U, Vanniarajan A. Investigating the frequency of somatic MYD88 L265P mutation in primary ocular adnexal B cell lymphoma. Mol Biol Rep 2024; 51:973. [PMID: 39249595 DOI: 10.1007/s11033-024-09903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Ocular adnexal B cell lymphoma is the most common orbital malignancy in adults. Large chromosomal translocations and alterations in cell-signaling pathways were frequently reported in lymphomas. Among the altered pathways, perturbations of NFκB signaling play a significant role in lymphomagenesis. Specifically, the MYD88 L265P mutation, an activator of NFκB signaling, is extensively studied in intraocular lymphoma but not at other sites. Therefore, this study aims to screen the MYD88 L265P mutation in Ocular adnexal B cell lymphoma tumors and assess its clinical significance. METHODS AND RESULTS Our study of twenty Ocular adnexal B cell lymphoma tumor samples by Allele-Specific Polymerase Chain Reaction identified two samples positive for the MYD88 L265P mutation. Subsequent Sanger sequencing confirmed the presence of the heterozygous mutation in those two samples tested positive in Allele-Specific Polymerase Chain Reaction. A comprehensive review of MYD88 L265P mutation in Ocular adnexal B cell lymphoma revealed variable frequencies, ranging from 0 to 36%. The clinical, pathological, and prognostic features showed no differences between patients with and without the MYD88 L265P mutation. CONCLUSION The present study indicates that the MYD88 L265P mutation is relatively infrequent in our cohort, underscoring the need for further validation in additional cohorts.
Collapse
Affiliation(s)
- Karuvel Kannan Saraswathi
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Usha Kim
- Department of Orbit, Oculoplasty, Ocular Oncology and Ocular Prosthesis, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, India.
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
3
|
Alfaar AS, Yousef YA, W Wilson M, Hassanain O, Kakkassery V, Moustafa M, Kunbaz A, Esmael A, Strauß O. Declining incidence and improving survival of ocular and orbital lymphomas in the US between 1995 and 2018. Sci Rep 2024; 14:7886. [PMID: 38570585 PMCID: PMC10991268 DOI: 10.1038/s41598-024-58508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024] Open
Abstract
This epidemiological study examined ocular and orbital lymphomas in the United States from 1995 to 2018, using data from the North American Association of Central Cancer Registries database of 87,543 patients with ocular and adnexal malignancies. We identified 17,878 patients (20.4%) with ocular and orbital lymphomas, with an age-standardized incidence rate (ASIR) of 2.6 persons per million (ppm). The incidence was the highest in the orbit (ASIR = 1.24), followed by the conjunctiva (ASIR = 0.57). Non-Hodgkin B-cell lymphoma was the most prevalent subtype (85.4%), particularly marginal-zone lymphoma (45.7%). Racial disparities were noted, with Asia-Pacific Islanders showing the highest incidence (orbit, 1.3 ppm). The incidence increased significantly from 1995 to 2003 (Average Percent Change, APC = 2.1%) but declined thereafter until 2018 (APC = - 0.7%). 5-year relative survival (RS) rates varied, with the highest rate for conjunctival lymphoma (100%) and the lowest for intraocular lymphoma (70.6%). Survival rates have generally improved, with an annual increase in the 5-year RS of 0.45%. This study highlights the changing epidemiological landscape, pointing to initial increases and subsequent decreases in incidence until 2003, with survival improvements likely due to advancements in treatment. These findings underscore the need for further research to investigate the root causes of these shifts and the declining incidence of ocular lymphoma.
Collapse
Affiliation(s)
- Ahmad Samir Alfaar
- Medical Neuroscience PhD Program, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.
- Department of Ophthalmology, The Royal Liverpool University Hospital, Liverpool, UK.
| | - Yacoub A Yousef
- Department of Surgery/Ophthalmology, King Hussein Cancer Center, Amman, Jordan
| | - Matthew W Wilson
- St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Ophthalmology, University of Tennesse Health Science Center, Hamilton Eye Institute, Memphis, TN, USA
| | - Omneya Hassanain
- Research Department, Children's Cancer Hospital -Egypt, 57357, Cairo, Egypt
| | - Vinodh Kakkassery
- Ophthalmology Department, University Hospital of Schleswig-Holstein, Lübeck, Germany
- Ophthalmology Department, Klinikum Chemnitz, Chemnitz, Germany
| | - Mohanad Moustafa
- Ophthalmology Department, University Hospital Hairmyres, East Kilbride, Scotland, UK
| | - Ahmad Kunbaz
- Ophthalmology Department, Istanbul Medeniyet University, Istanbul, Turkey
| | - Amanne Esmael
- Ophthalmology Department, Cairo University, Cairo, Egypt
| | - Olaf Strauß
- Experimental Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| |
Collapse
|
4
|
Croley CR, Pumarol J, Delgadillo BE, Cook AC, Day F, Kaceli T, Ward CC, Husain I, Husain A, Banerjee S, Bishayee A. Signaling pathways driving ocular malignancies and their targeting by bioactive phytochemicals. Pharmacol Ther 2023:108479. [PMID: 37330112 DOI: 10.1016/j.pharmthera.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Ocular cancers represent a rare pathology. The American Cancer Society estimates that 3,360 cases of ocular cancer occur annually in the United States. The major types of cancers of the eye include ocular melanoma (also known as uveal melanoma), ocular lymphoma, retinoblastoma, and squamous cell carcinoma. While uveal melanoma is one of the primary intraocular cancers with the highest occurrence in adults, retinoblastoma remains the most common primary intraocular cancer in children, and squamous cell carcinoma presents as the most common conjunctival cancer. The pathophysiology of these diseases involves specific cell signaling pathways. Oncogene mutations, tumor suppressor mutations, chromosome deletions/translocations and altered proteins are all described as causal events in developing ocular cancer. Without proper identification and treatment of these cancers, vision loss, cancer spread, and even death can occur. The current treatments for these cancers involve enucleation, radiation, excision, laser treatment, cryotherapy, immunotherapy, and chemotherapy. These treatments present a significant burden to the patient that includes a possible loss of vision and a myriad of side effects. Therefore, alternatives to traditional therapy are urgently needed. Intercepting the signaling pathways for these cancers with the use of naturally occurring phytochemicals could be a way to relieve both cancer burden and perhaps even prevent cancer occurrence. This research aims to present a comprehensive review of the signaling pathways involved in various ocular cancers, discuss current therapeutic options, and examine the potential of bioactive phytocompounds in the prevention and targeted treatment of ocular neoplasms. The current limitations, challenges, pitfalls, and future research directions are also discussed.
Collapse
Affiliation(s)
- Courtney R Croley
- Healthcare Corporation of America, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Hudson, FL 34667, USA
| | - Joshua Pumarol
- Ross University School of Medicine, Miramar, FL 33027, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Andrew C Cook
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tea Kaceli
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Caroline C Ward
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Imran Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ali Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
5
|
Kirkegaard MK, Minderman M, Sjö LD, Pals ST, Eriksen PRG, Heegaard S. Prevalence and prognostic value of MYD88 and CD79B mutations in ocular adnexal large B-cell lymphoma: a reclassification of ocular adnexal large B-cell lymphoma. Br J Ophthalmol 2023; 107:576-581. [PMID: 34706861 DOI: 10.1136/bjophthalmol-2021-319580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/10/2021] [Indexed: 11/04/2022]
Abstract
AIMS To (1) reclassify ocular adnexal large B-cell lymphomas (OA-LBCLs) per 2016 WHO lymphoma classification and (2) determine the prevalence of MYD88 and CD79B mutations and their association with clinical parameters among OA-LBCLs. METHODS This study is a retrospective analysis of all OA-LBCLs diagnosed in Denmark between 1980 and 2018. Medical records and tissue samples were retrieved. Thirty-four OA-LBCLs were included. Fluorescence in situ hybridisation and Epstein-Barr-encoded RNA in situ hybridisation were used for the reclassification. Mutational status was established by allele-specific PCR and confirmed by Sanger sequencing. Primary endpoints were overall survival, disease-specific survival (DSS) and progression-free survival (PFS). RESULTS Two LBCL subtypes were identified: diffuse large B-cell lymphoma (DLBCL) (27 of 32; 84%) and high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 rearrangements (5 of 32; 16%). cMYC/BCL2 double-expressor DLBCLs had a poorer DSS than non-double-expressor DLBCLs (5-year DSS, 25% vs 78%) (HR 0.23; 95% CI 0.06 to 0.85; p=0.014). MYD88 mutations were present in 10 (29%) of 34 lymphomas and carried a poorer PFS than wild-type cases (5-year PFS, 0% vs 43%) (HR 0.78; 95% CI 0.61 to 0.98; p=0.039). CD79B mutations were present in 3 (9%) of 34 cases. CONCLUSION OA-LBCL consists mainly of two subtypes: DLBCL and HGBL with MYC and BCL2 and/or BCL6 rearrangements. MYD88 mutations are important drivers of OA-LBCL. MYD88 mutations, as well as cMYC/BCL2 double-expressor DLBCL, appear to be associated with a poor prognosis. Implementing MYD88 mutational analysis in routine diagnostics may improve OA-LBCL prognostication.
Collapse
Affiliation(s)
| | - Marthe Minderman
- Department of Pathology, Amsterdam University Medical Centers loc. AMC, Amsterdam, The Netherlands
| | - Lene Dissing Sjö
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steven T Pals
- Department of Pathology, Amsterdam University Medical Centers loc. AMC, Amsterdam, The Netherlands
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam, The Netherlands
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Patrick R G Eriksen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Pathology, Eye Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Wolf J, Reinhard T, Hajdu RI, Schlunck G, Auw-Haedrich C, Lange C. Transcriptional Profiling Identifies Prognostic Gene Signatures for Conjunctival Extranodal Marginal Zone Lymphoma. Biomolecules 2023; 13:115. [PMID: 36671500 PMCID: PMC9855408 DOI: 10.3390/biom13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
This study characterizes the transcriptional profile and the cellular tumor microenvironment of conjunctival extranodal marginal zone lymphoma (EMZL) and identifies prognostically relevant biomarkers. Ten formalin-fixed and paraffin-embedded conjunctival EMZL and eight healthy conjunctival specimens were analyzed by Massive Analysis of cDNA Ends (MACE) RNA sequencing. The 3417 upregulated genes in conjunctival EMZL were involved in processes such as B cell proliferation and Rac protein signaling, whereas the 1188 downregulated genes contributed most significantly to oxidative phosphorylation and UV protection. The tumor microenvironment, as determined by deconvolution analysis, was mainly composed of multiple B cell subtypes which reflects the tumor's B cell lineage. However, several T cell types, including T helper 2 cells and regulatory T cells, as well as innate immune cell types, such as anti-inflammatory macrophages and plasmacytoid dendritic cells, were also strongly enriched in conjunctival EMZL. A 13-biomarker prognostic panel, including S100A8 and S100A9, classified ocular and extraocular tumor recurrence, exceeded prognostic accuracy of Ann Arbor and American Joint Committee on Cancer (AJCC) staging, and demonstrated prognostic value for patient survival in 21 different cancer types in a database of 12,332 tumor patients. These findings may lead to new options of targeted therapy and may improve prognostic prediction for conjunctival EMZL.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94304, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rozina Ida Hajdu
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia Auw-Haedrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clemens Lange
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145 Münster, Germany
| |
Collapse
|
7
|
Ganesh SK, Ahmed AS. Uveitis masquerade syndromes: A case series. Oman J Ophthalmol 2022; 15:353-355. [PMID: 36760922 PMCID: PMC9905893 DOI: 10.4103/ojo.ojo_169_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 02/11/2023] Open
Abstract
The aim of this series is to report challenges faced in diagnosis of three cases of recurrent or atypical uveitis not responding to conventional treatment. A high index of suspicion, aided by newer techniques, such as cytology, immunohistochemistry, flow cytometry of ocular fluids, and contrast-enhanced magnetic resonance imaging, may be necessary for a prompt diagnosis of uveitis masquerade syndromes.
Collapse
Affiliation(s)
- Sudha K. Ganesh
- Department of Uvea, Sankara Nethralaya Medical Research Foundation, Chennai, Tamil Nadu, India,Address for correspondence: Dr. Sudha K. Ganesh, Department of Uvea, Sankara Nethralaya Medical Research Foundation, 18, College Road, Chennai - 600 006, Tamil Nadu, India. E-mail:
| | - Arshee S. Ahmed
- Department of Uvea, Sankara Nethralaya Medical Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Kirkegaard MK. Ocular adnexal lymphoma: Subtype‐specific clinical and genetic features. Acta Ophthalmol 2022; 100 Suppl 270:3-37. [DOI: 10.1111/aos.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marina Knudsen Kirkegaard
- Department of Pathology, Eye Section, Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| |
Collapse
|
9
|
Cani AK, Hu K, Liu CJ, Siddiqui J, Zheng Y, Han S, Nallandhighal S, Hovelson DH, Xiao L, Pham T, Eyrich NW, Zheng H, Vince R, Tosoian JJ, Palapattu GS, Morgan TM, Wei JT, Udager AM, Chinnaiyan AM, Tomlins SA, Salami SS. Development of a Whole-urine, Multiplexed, Next-generation RNA-sequencing Assay for Early Detection of Aggressive Prostate Cancer. Eur Urol Oncol 2022; 5:430-439. [PMID: 33812851 PMCID: PMC11345851 DOI: 10.1016/j.euo.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite biomarker development advances, early detection of aggressive prostate cancer (PCa) remains challenging. We previously developed a clinical-grade urine test (Michigan Prostate Score [MiPS]) for individualized aggressive PCa risk prediction. MiPS combines serum prostate-specific antigen (PSA), the TMPRSS2:ERG (T2:ERG) gene fusion, and PCA3 lncRNA in whole urine after digital rectal examination (DRE). OBJECTIVE To improve on MiPS with a novel next-generation sequencing (NGS) multibiomarker urine assay for early detection of aggressive PCa. DESIGN, SETTING, AND PARTICIPANTS Preclinical development and validation of a post-DRE urine RNA NGS assay (Urine Prostate Seq [UPSeq]) assessing 84 PCa transcriptomic biomarkers, including T2:ERG, PCA3, additional PCa fusions/isoforms, mRNAs, lncRNAs, and expressed mutations. Our UPSeq model was trained on 73 patients and validated on a held-out set of 36 patients representing the spectrum of disease (benign to grade group [GG] 5 PCa). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The area under the receiver operating characteristic curve (AUC) of UPSeq was compared with PSA, MiPS, and other existing models/biomarkers for predicting GG ≥3 PCa. RESULTS AND LIMITATIONS UPSeq demonstrated high analytical accuracy and concordance with MiPS, and was able to detect expressed germline HOXB13 and somatic SPOP mutations. In an extreme design cohort (n = 109; benign/GG 1 vs GG ≥3 PCa, stratified to exclude GG 2 cancer in order to capture signal difference between extreme ends of disease), UPSeq showed differential expression for T2:ERG.T1E4 (1.2 vs 78.8 median normalized reads, p < 0.00001) and PCA3 (1024 vs 2521, p = 0.02), additional T2:ERG splice isoforms, and other candidate biomarkers. Using machine learning, we developed a 15-transcript model on the training set (n = 73) that outperformed serum PSA and sequencing-derived MiPS in predicting GG ≥3 PCa in the held-out validation set (n = 36; AUC 0.82 vs 0.69 and 0.69, respectively). CONCLUSIONS These results support the potential utility of our novel urine-based RNA NGS assay to supplement PSA for improved early detection of aggressive PCa. PATIENT SUMMARY We have developed a new urine-based test for the detection of aggressive prostate cancer, which promises improvement upon current biomarker tests.
Collapse
Affiliation(s)
- Andi K Cani
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Hu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chia-Jen Liu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yingye Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sumin Han
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Daniel H Hovelson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Trinh Pham
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicholas W Eyrich
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Heng Zheng
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Randy Vince
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeffrey J Tosoian
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ganesh S Palapattu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John T Wei
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aaron M Udager
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Simpa S Salami
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
McGrath LA, Ryan DA, Warrier SK, Coupland SE, Glasson WJ. Conjunctival Lymphoma. Eye (Lond) 2022; 37:837-848. [PMID: 35882984 PMCID: PMC10049989 DOI: 10.1038/s41433-022-02176-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Lymphoma of the conjunctiva is an ocular malignancy derived from clonal proliferation of lymphocytes. The majority of conjunctival lymphoma is extranodal marginal zone B-Cell lymphoma (EMZL), however diffuse large B-cell (DLBCL), follicular (FL), mantle cell (MCL) and T- cell subtypes are also seen. Clinical manifestations are non-specific, but include unilateral or bilateral painless salmon-pink conjunctival lesions. Approaches to treatment have centered around local immunomodulation, often with Interferon-α2b or Rituximab (anti-CD20 monoclonal antibody) with or without radiation. Although conjunctival lymphoma is generally considered an indolent disease, recent advances in next-generation sequencing have improved clinicians' ability to predict future recurrence or systemic disease through assessment of cytogenic and molecular features. In this paper, we review the classification, clinical features, diagnostic techniques, and emerging strategies for management and prognostication of conjunctival lymphomas.
Collapse
Affiliation(s)
- Lindsay A McGrath
- Queensland Ocular Oncology Service, Terrace Eye Centre, Brisbane, QLD, Australia. .,University of Queensland, School of Medicine, Brisbane, QLD, Australia.
| | - David A Ryan
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Sunil K Warrier
- Queensland Ocular Oncology Service, Terrace Eye Centre, Brisbane, QLD, Australia
| | - Sarah E Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK.,Department. of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - William J Glasson
- Queensland Ocular Oncology Service, Terrace Eye Centre, Brisbane, QLD, Australia.,University of Queensland, School of Medicine, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Schiemenz C, Lüken S, Klassen AM, Ranjbar M, Illerhaus G, Fend F, Heindl LM, Chronopoulos A, Grisanti S, Kakkassery V. [Clinical procedures for intraocular lymphomas]. DIE OPHTHALMOLOGIE 2022; 119:675-685. [PMID: 35925411 DOI: 10.1007/s00347-022-01651-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The classification of intraocular lymphomas is based on their anatomical location. They are divided into uveal lymphomas with involvement of the choroid, ciliary body or iris and vitreoretinal lymphomas with isolated or combined involvement of the vitreous body and/or retina. Over the last decades it has become increasingly possible to work out the clinical and pathobiological features of the various subtypes, thereby reducing the diagnostic hurdles and creating improved treatment options. OBJECTIVE A summary of the various types of intraocular lymphoma in terms of clinical features, diagnostics, treatment and prognosis is given as well as recommendations for follow-up care. METHODS A selective literature search was carried out on the subject of intraocular lymphomas using PubMed and Google Scholar. RESULTS Intraocular lymphomas affect different structures, so that the symptoms can also be very different. The diagnostic spectrum ranges from typical ocular examination methods to sample biopsies with subsequent cytological, histological and molecular pathological processing. The treatment pillars available are percutaneous irradiation and intravitreal drug administration as local treatment and systemic treatment or a combination of systemic and local treatment. The prognosis depends mainly on the subtype of the lymphoma and the extent of the infestation when the diagnosis is confirmed. Even though some effective treatment options are now available, it has not yet been possible to significantly reduce the mortality rate. CONCLUSION Many different options are available for the diagnostics and treatment of intraocular lymphomas, which require close interdisciplinary cooperation. The further developments in the field of molecular pathology allow a faster and more accurate diagnosis and could open up new treatment options in the future.
Collapse
Affiliation(s)
- C Schiemenz
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| | - S Lüken
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - A M Klassen
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - M Ranjbar
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - G Illerhaus
- Klinik für Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Klinikum der Landeshauptstadt Stuttgart gKAöR | Standort Mitte, Katharinenhospital, Stuttgart, Deutschland
- Stuttgart Cancer Center, Tumorzentrum Eva Mayr-Stihl, Stuttgart, Deutschland
| | - F Fend
- Institut für Pathologie und Neuropathologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
- Comprehensive Cancer Center, Tübingen-Stuttgart, Deutschland
| | - L M Heindl
- Zentrum für Augenheilkunde, Medizinische Fakultät und Universitätsklinikum Köln, Universität zu Köln, Köln, Deutschland
- Centrum für Integrierte Onkologie (CIO) Aachen-Bonn-Köln-Düsseldorf, Köln, Deutschland
| | - A Chronopoulos
- Augenklinik, Klinikum Ludwigshafen, Ludwigshafen, Deutschland
| | - S Grisanti
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - V Kakkassery
- Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| |
Collapse
|
12
|
Genomic landscape of Epstein-Barr virus-positive extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue. Mod Pathol 2022; 35:938-945. [PMID: 34952945 DOI: 10.1038/s41379-021-01002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus (EBV)-positive extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas) were initially described in solid organ transplant recipients, and, more recently, in other immunodeficiency settings. The overall prevalence of EBV-positive MALT lymphomas has not been established, and little is known with respect to their genomic characteristics. Eight EBV-positive MALT lymphomas were identified, including 1 case found after screening a series of 88 consecutive MALT lymphomas with EBER in situ hybridization (1%). The genomic landscape was assessed in 7 of the 8 cases with a targeted high throughput sequencing panel and array comparative genomic hybridization. Results were compared to published data for MALT lymphomas. Of the 8 cases, 6 occurred post-transplant, 1 in the setting of primary immunodeficiency, and 1 case was age-related. Single pathogenic/likely pathogenic mutations were identified in 4 of 7 cases, including mutations in IRF8, BRAF, TNFAIP3, and SMARCA4. Other than TNFAIP3, these genes are mutated in <3% of EBV-negative MALT lymphomas. Copy number abnormalities were identified in 6 of 7 cases with a median of 6 gains and 2 losses per case, including 4 cases with gains in regions encompassing several IRF family or interacting genes (IRF2BP2, IRF2, and IRF4). There was no evidence of trisomies of chromosomes 3 or 18. In summary, EBV-positive MALT lymphomas are rare and, like other MALT lymphomas, are usually genetically non-complex. Conversely, while EBV-negative MALT lymphomas typically show mutational abnormalities in the NF-κB pathway, other than the 1 TNFAIP3-mutated case, no other NF-κB pathway mutations were identified in the EBV-positive cases. EBV-positive MALT lymphomas often have either mutations or copy number abnormalities in IRF family or interacting genes, suggesting that this pathway may play a role in these lymphomas.
Collapse
|
13
|
Zhao A, Wu F, Wang Y, Li J, Xu W, Liu H. Analysis of Genetic Alterations in Ocular Adnexal Mucosa-Associated Lymphoid Tissue Lymphoma With Whole-Exome Sequencing. Front Oncol 2022; 12:817635. [PMID: 35359413 PMCID: PMC8962736 DOI: 10.3389/fonc.2022.817635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Next-generation sequencing studies on ocular adnexal marginal zone lymphoma of mucosa-associated lymphoid tissue (OAML) have to date revealed several targets of genetic aberrations. However, most of our current understanding of the pathogenesis and prognosis of OAML is primarily based on studies conducted in populations from Europe and the US. Furthermore, the majority were based on formalin-fixed paraffin-embedded (FFPE) tissue, which generally has poor integrity and creates many sequencing artifacts. To better investigate the coding genome landscapes of OAML, especially in the Chinese population, we performed whole-exome sequencing of 21 OAML cases with fresh frozen tumor tissue and matched peripheral blood samples. IGLL5, as a novel recurrently mutated gene, was found in 24% (5/21) of patients, with a higher relapse rate (P=0.032). In addition, mutations of MSH6, DIS3, FAT1, and TMEM127 were found in 10% of cases. These novel somatic mutations indicate the existence of additional/alternative lymphomagenesis pathways in OAML. Moreover, the difference between our and previous studies suggests genetic heterogeneity of OAML between Asian and Western individuals.
Collapse
Affiliation(s)
- Andi Zhao
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Fangtian Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yue Wang
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| |
Collapse
|
14
|
Johansson P, Eckstein A, Küppers R. The Biology of Ocular Adnexal Marginal Zone Lymphomas. Cancers (Basel) 2022; 14:1264. [PMID: 35267569 PMCID: PMC8908984 DOI: 10.3390/cancers14051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
This review focuses on the biology of ocular adnexal marginal zone B-cell lymphomas of the mucosa-associated lymphatic tissue (MALT) (OAMZL) subtype. The ocular adnexa includes all structures and tissues within the orbit except for the eye bulb. In the region of the ocular adnexa, MALT lymphomas represent the most common subtype of lymphoma, accounting for around 8% of all non-Hodgkin lymphomas. These lymphomas are often preceded by inflammatory precursor lesions. Either autoantigens or infectious antigens may lead to disease development by functioning as continuous antigenic triggers. This triggering leads to a constitutive activation of the NF-κB signaling pathway. The role of antigenic stimulation in the pathogenesis of OAMZL is supported by the detection of somatic mutations (partially with further intraclonal diversity) in their rearranged immunoglobulin V genes; hence, their derivation from germinal-center-experienced B cells, by a restricted IGHV gene usage, and the validation of autoreactivity of the antibodies in selected cases. In the established lymphomas, NF-κB activity is further enforced by mutations in various genes regulating NF-κB activity (e.g., TNFAIP3, MYD88), as well as recurrent chromosomal translocations affecting NF-κB pathway components in a subset of cases. Further pathogenetic mechanisms include mutations in genes of the NOTCH pathway, and of epigenetic regulators. While gene expression and sequencing studies are available, the role of differential methylation of lymphoma cells, the role of micro-RNAs, and the contribution of the microenvironment remain largely unexplored.
Collapse
Affiliation(s)
- Patricia Johansson
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Anja Eckstein
- Molecular Ophthalmology Group, Department of Ophthalmology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
15
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Recent Advances in the Genetic of MALT Lymphomas. Cancers (Basel) 2021; 14:cancers14010176. [PMID: 35008340 PMCID: PMC8750177 DOI: 10.3390/cancers14010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Mucosa-associated lymphoid tissue (MALT) lymphoma is the most common subtype of marginal zone lymphomas. These B-cell neoplasms may arise from many organs and usually have an indolent behavior. Recurrent chromosomal translocations and cytogenetic alterations are well characterized, some of them being associated to specific sites. Through next-generation sequencing technologies, the mutational landscape of MALT lymphomas has been explored and available data to date show that there are considerable variations in the incidence and spectrum of mutations among MALT lymphoma of different sites. Interestingly, most of these mutations affect several common pathways and some of them are potentially targetable. Gene expression profile and epigenetic studies have also added new information, potentially useful for diagnosis and treatment. This article provides a comprehensive review of the genetic landscape in MALT lymphomas. Abstract Mucosa-associated lymphoid tissue (MALT) lymphomas are a diverse group of lymphoid neoplasms with B-cell origin, occurring in adult patients and usually having an indolent clinical behavior. These lymphomas may arise in different anatomic locations, sharing many clinicopathological characteristics, but also having substantial variances in the aetiology and genetic alterations. Chromosomal translocations are recurrent in MALT lymphomas with different prevalence among different sites, being the 4 most common: t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). Several chromosomal numerical abnormalities have also been described, but probably represent secondary genetic events. The mutational landscape of MALT lymphomas is wide, and the most frequent mutations are: TNFAIP3, CREBBP, KMT2C, TET2, SPEN, KMT2D, LRP1B, PRDM1, EP300, TNFRSF14, NOTCH1/NOTCH2, and B2M, but many other genes may be involved. Similar to chromosomal translocations, certain mutations are enriched in specific lymphoma types. In the same line, variation in immunoglobulin gene usage is recognized among MALT lymphoma of different anatomic locations. In the last decade, several studies have analyzed the role of microRNA, transcriptomics and epigenetic alterations, further improving our knowledge about the pathogenic mechanisms in MALT lymphoma development. All these advances open the possibility of targeted directed treatment and push forward the concept of precision medicine in MALT lymphomas.
Collapse
|
17
|
Magistri M, Happ LE, Ramdial J, Lu X, Stathias V, Kunkalla K, Agarwal N, Jiang X, Schürer SC, Dubovy SR, Chapman JR, Vega F, Dave S, Lossos IS. The Genetic Landscape of Ocular Adnexa MALT Lymphoma Reveals Frequent Aberrations in NFAT and MEF2B Signaling Pathways. CANCER RESEARCH COMMUNICATIONS 2021; 1:1-16. [PMID: 35528192 PMCID: PMC9075502 DOI: 10.1158/2767-9764.crc-21-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
A comprehensive constellation of somatic non-silent mutations and copy number (CN) variations in ocular adnexa marginal zone lymphoma (OAMZL) is unknown. By utilizing whole-exome sequencing in 69 tumors we define the genetic landscape of OAMZL. Mutations and CN changes in CABIN1 (30%), RHOA (26%), TBL1XR1 (22%), and CREBBP (17%) and inactivation of TNFAIP3 (26%) were among the most common aberrations. Candidate cancer driver genes cluster in the B-cell receptor (BCR), NFkB, NOTCH and NFAT signaling pathways. One of the most commonly altered genes is CABIN1, a calcineurin inhibitor acting as a negative regulator of the NFAT and MEF2B transcriptional activity. CABIN1 deletions enhance BCR-stimulated NFAT and MEF2B transcriptional activity, while CABIN1 mutations enhance only MEF2B transcriptional activity by impairing binding of mSin3a to CABIN1. Our data provide an unbiased identification of genetically altered genes that may play a role in the molecular pathogenesis of OAMZL and serve as therapeutic targets.
Collapse
Affiliation(s)
- Marco Magistri
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Lanie E. Happ
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Jeremy Ramdial
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - XiaoQing Lu
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
- Center for Computational Science, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Kranthi Kunkalla
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Nitin Agarwal
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Xiaoyu Jiang
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
- Center for Computational Science, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Sander R. Dubovy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jennifer R. Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Francisco Vega
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Izidore S. Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
18
|
Balikov DA, Hu K, Liu CJ, Betz BL, Chinnaiyan AM, Devisetty LV, Venneti S, Tomlins SA, Cani AK, Rao RC. Comparative Molecular Analysis of Primary Central Nervous System Lymphomas and Matched Vitreoretinal Lymphomas by Vitreous Liquid Biopsy. Int J Mol Sci 2021; 22:9992. [PMID: 34576156 PMCID: PMC8471952 DOI: 10.3390/ijms22189992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is a lymphoid malignancy of the brain that occurs in ~1500 patients per year in the US. PCNSL can spread to the vitreous and retina, where it is known as vitreoretinal lymphoma (VRL). While confirmatory testing for diagnosis is dependent on invasive brain tissue or cerebrospinal fluid sampling, the ability to access the vitreous as a proximal biofluid for liquid biopsy to diagnose PCNSL is an attractive prospect given ease of access and minimization of risks and complications from other biopsy strategies. However, the extent to which VRL, previously considered genetically identical to PCNSL, resembles PCNSL in the same individual with respect to genetic alterations, diagnostic strategies, and precision-medicine based approaches has hitherto not been explored. Furthermore, the degree of intra-patient tumor genomic heterogeneity between the brain and vitreous sites has not been studied. In this work, we report on targeted DNA next-generation sequencing (NGS) of matched brain and vitreous samples in two patients who each harbored VRL and PCSNL. Our strategy showed enhanced sensitivity for molecular diagnosis confirmation over current clinically used vitreous liquid biopsy methods. We observed a clonal relationship between the eye and brain samples in both patients, which carried clonal CDKN2A deep deletions, a highly recurrent alteration in VRL patients, as well as MYD88 p.L265P activating mutation in one patient. Several subclonal alterations, however, in the genes SETD2, BRCA2, TERT, and broad chromosomal regions showed heterogeneity between the brain and the eyes, between the two eyes, and among different regions of the PCNSL brain lesion. Taken together, our data show that NGS of vitreous liquid biopsies in PCNSL patients with VRL highlights shared and distinct genetic alterations that suggest a common origin for these lymphomas, but with additional site-specific alterations. Liquid biopsy of VRL accurately replicates the findings for PCNSL truncal (tumor-initiating) genomic alterations; it can also nominate precision medicine interventions and shows intra-patient heterogeneity in subclonal alterations. To the best of our knowledge, this study represents the first interrogation of genetic underpinnings of PCNSL with matched VRL samples. Our findings support continued investigation into the utility of vitreous liquid biopsy in precision diagnosis and treatment of PCNSL/VRL.
Collapse
Affiliation(s)
- Daniel A. Balikov
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
| | - Kevin Hu
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bryan L. Betz
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laxmi V. Devisetty
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott A. Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andi K. Cani
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Hematology/Oncology Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajesh C. Rao
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48109, USA; (D.A.B.); (L.V.D.)
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (C.-J.L.); (B.L.B.); (A.M.C.); (S.V.); (S.A.T.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Cani AK, Toral MA, Balikov DA, Betz BL, Hu K, Liu CJ, Prifti MV, Chinnaiyan AM, Tomlins SA, Mahajan VB, Rao RC. Molecular Characterization of a Rare Case of Bilateral Vitreoretinal T Cell Lymphoma through Vitreous Liquid Biopsy. Int J Mol Sci 2021; 22:6099. [PMID: 34198843 PMCID: PMC8201094 DOI: 10.3390/ijms22116099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 02/04/2023] Open
Abstract
Vitreoretinal lymphoma (VRL) is an uncommon eye malignancy, and VRLs of T cell origin are rare. They are difficult to treat, and their molecular underpinnings, including actionable genomic alterations, remain to be elucidated. At present, vitreous fluid liquid biopsies represent a valuable VRL sample for molecular analysis to study VRLs. In this study, we report the molecular diagnostic workup of a rare case of bilateral T cell VRL and characterize its genomic landscape, including identification of potentially targetable alterations. Using next-generation sequencing of vitreous-derived DNA with a pan-cancer 126-gene panel, we found a copy number gain of BRAF and copy number loss of tumor suppressor DNMT3A. To the best of our knowledge, this represents the first exploration of the T cell VRL cancer genome and supports vitreous liquid biopsy as a suitable approach for precision oncology treatments.
Collapse
Affiliation(s)
- Andi K. Cani
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Marcus A. Toral
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA;
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA 52242, USA
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
| | - Daniel A. Balikov
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Bryan L. Betz
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (B.L.B.); (K.H.); (C.-J.L.); (S.A.T.)
| | - Kevin Hu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (B.L.B.); (K.H.); (C.-J.L.); (S.A.T.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (B.L.B.); (K.H.); (C.-J.L.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew V. Prifti
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Arul M. Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (B.L.B.); (K.H.); (C.-J.L.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott A. Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (B.L.B.); (K.H.); (C.-J.L.); (S.A.T.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
- Palo Alto Veterans Health Care System, Palo Alto, CA 94304, USA
| | - Rajesh C. Rao
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA;
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (B.L.B.); (K.H.); (C.-J.L.); (S.A.T.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48105, USA;
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
20
|
Vela V, Juskevicius D, Prince SS, Cathomas G, Dertinger S, Diebold J, Bubendorf L, Horcic M, Singer G, Zettl A, Dirnhofer S, Tzankov A, Menter T. Deciphering the genetic landscape of pulmonary lymphomas. Mod Pathol 2021; 34:371-379. [PMID: 32855441 DOI: 10.1038/s41379-020-00660-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Pulmonary lymphoid malignancies comprise various entities, 80% of them are pulmonary marginal zone B-cell lymphomas (PMZL). So far, little is known about point mutations in primary pulmonary lymphomas. We characterized the genetic landscape of primary pulmonary lymphomas using a customized high-throughput sequencing gene panel covering 146 genes. Our cohort consisted of 28 PMZL, 14 primary diffuse large B-cell lymphomas (DLBCL) of the lung, 7 lymphomatoid granulomatoses (LyG), 5 mature small B-cell lymphomas and 16 cases of reactive lymphoid lesions. Mutations were detected in 22/28 evaluable PMZL (median 2 mutation/case); 14/14 DLBCL (median 3 mutations/case) and 4/7 LyG (1 mutation/case). PMZL showed higher prevalence for mutations in chromatin modifier-encoding genes (44% of mutant genes), while mutations in genes related to the NF-κB pathway were less common (24% of observed mutations). There was little overlap between mutations in PMZL and DLBCL. MALT1 rearrangements were more prevalent in PMZL than BCL10 aberrations, and both were absent in DLBCL. LyG were devoid of gene mutations associated with immune escape. The mutational landscape of PMZL differs from that of extranodal MZL of other locations and also from splenic MZL. Their landscape resembles more that of nodal MZL, which also show a predominance of mutations of chromatin modifiers. The different mutational composition of pulmonary DLBCL compared to PMZL suggests that the former probably do not present transformations. DLBCL bear more mutations/case and immune escape gene mutations compared to LyG, suggesting that EBV infection in LyG may substitute for mutations.
Collapse
Affiliation(s)
- Visar Vela
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Darius Juskevicius
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Spasenija Savic Prince
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | | | - Joachim Diebold
- Institute of Pathology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Milo Horcic
- Institute for Histologic und Cytologic Diagnostics AG, Aarau, Switzerland
| | - Gad Singer
- Institute of Pathology, Cantonal Hospital Baden, Baden, Switzerland
| | - Andreas Zettl
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Adiga S, Mehta A, Singh U, Singh C, Sharma R, Banerjee N, Lad D, Rastogi P. Waldenström Macroglobulinemia of the orbit: A diagnostic challenge. Eur J Ophthalmol 2020; 32:NP246-NP250. [PMID: 33183084 DOI: 10.1177/1120672120963459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ocular adnexal lymphomas (OAL) constitute 55% of all orbital tumors. Waldenström Macroglobulinemia (WM) presenting as an orbital mass with diffuse extraocular muscle (EOM) involvement is rare. We report an elderly patient who presented to the ophthalmologist for an orbital mass which on evaluation, turned out to an ocular adnexal WM. OBSERVATIONS A 75 years old man presented with a palpable mass in the left anterior superior orbit and bilateral restricted ocular motility in all gazes. Computed tomography scan revealed a hyperdense mass with diffuse thickening of extraocular muscles and enlarged lacrimal gland on the left side. Incisional biopsy of the mass revealed a lymphoproliferative neoplasm with plasmacytic morphology. Immunohistochemistry (IHC) of the orbital mass as well as the bone marrow was sought, lymphoplasmacytic lymphoma (CD20+, CD38+, MUM1+, BCL 2+, CD3-, CD5-, CD10-, CD23-, cyclin D1). Bone marrow flow cytometry showed CD5-, CD10- kappa restricted B cell neoplasm. Serum analysis significantly elevated IgM levels. This indicated a diagnosis of ocular adnexal Waldenström Macroglobulinemia. CONCLUSION AND IMPORTANCE This case highlights the importance of clinical evaluation, histopathology, and immunohistochemistry for phenotyping of ocular adnexal lymphomas.
Collapse
Affiliation(s)
- Sushant Adiga
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Mehta
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Usha Singh
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Charanpreet Singh
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rintu Sharma
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nirmalya Banerjee
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepesh Lad
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pulkit Rastogi
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
22
|
|
23
|
Jangam D, Sridhar K, Butzmann A, Samghabadi P, Plowey ED, Ohgami RS. TBL1XR1 Mutations in Primary Marginal Zone Lymphomas of Ocular Adnexa are Associated with Unique Morphometric Phenotypes. Curr Eye Res 2020; 45:1583-1589. [PMID: 32339039 DOI: 10.1080/02713683.2020.1762228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Extranodal marginal zone B-cell lymphoma (EMZL) of mucosa-associated lymphoid tissue (MALT) that affects the ocular adnexa, also known as ocular adnexal MALT lymphomas (OAML), are low-grade lymphomas that mostly affect elderly individuals. This study was conducted to explore the genetic and microbial drivers of OMAL, and unique morphometric phenotypes associated with these mutations and infections. MATERIALS AND METHODS In this study, we performed targeted deep sequencing of 8 OAML cases to identify its potential genetic and microbial drivers. We additionally performed computational digital image analysis of cases to determine if morphologic features corresponded to genetic mutations and disease biology. RESULTS We identified TBL1XR1 as recurrently mutated in OAML (4/8), and mutations in several other oncogenes, tumor suppressors, transcription regulators, and chromatin remodeling genes. Morphologically, OAML cases with mutations in TBL1XR1 showed lymphoma cells with significantly lower circularity and solidity by computational digital image analysis (p-value <0.0001). Additionally, cases of OAML with mutations in TBL1XR1 showed equivalent or increased vascular density compared to cases without mutations in TBL1XR1. Finally, we did not find any infectious microbial organisms associated with OAML. CONCLUSIONS Our study showed recurrent mutations in TBL1XR1 are associated with unique morphometric phenotypes in OMAL cases. Additionally, mutations in genes associated with the methylation status of histone 3, nuclear factor (NF)-κB pathway, and NOTCH pathway were enriched in OMAL cases. Our findings have biologic and clinical implications as mutations in TBL1XR1 and other genes have the potential to be used as markers for the diagnosis of OAML, and also demonstrate a specific biologic phenotypic manifestation of TBL1XR1 mutations.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Pathology, Stanford University , Stanford, CA, USA
| | - Kaushik Sridhar
- Department of Pathology, University of California , San Francisco, CA, USA
| | - Alexandra Butzmann
- Department of Pathology, Stanford University , Stanford, CA, USA.,Department of Pathology, University of California , San Francisco, CA, USA
| | | | - Edward D Plowey
- Department of Pathology, Stanford University , Stanford, CA, USA
| | - Robert S Ohgami
- Department of Pathology, Stanford University , Stanford, CA, USA.,Department of Pathology, University of California , San Francisco, CA, USA
| |
Collapse
|
24
|
Next-generation sequencing implicates oncogenic roles for p53 and JAK/STAT signaling in microcystic adnexal carcinomas. Mod Pathol 2020; 33:1092-1103. [PMID: 31857679 DOI: 10.1038/s41379-019-0424-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Microcystic adnexal carcinoma is a locally aggressive sweat gland carcinoma characterized by its infiltrative growth and histopathologic overlap with benign adnexal tumors, often posing challenges to both diagnosis and management. Understanding the molecular underpinnings of microcystic adnexal carcinoma may allow for more accurate diagnosis and identify potential targetable oncogenic drivers. We characterized 18 microcystic adnexal carcinomas by targeted, multiplexed PCR-based DNA next-generation sequencing of the coding sequence of over 400 cancer-relevant genes. The majority of cases had relatively few (<8) prioritized somatic mutations, and lacked an ultraviolet (UV) signature. The most recurrent mutation was TP53 inactivation in four (22%) tumors. Frame-preserving insertions affecting the kinase domain of JAK1 were detected in three (17%) cases, and were nonoverlapping with TP53 mutations. Seven (39%) cases demonstrated copy number gain of at least one oncogene. By immunohistochemistry, p53 expression was significantly higher in microcystic adnexal carcinomas with TP53 mutations compared with those without such mutations and syringomas. Similarly, phospho-STAT3 expression was significantly higher in microcystic adnexal carcinomas harboring JAK1 kinase insertions compared with those with wild-type JAK1 and syringomas. In conclusion, microcystic adnexal carcinomas are molecularly heterogeneous tumors, with inactivated p53 or activated JAK/STAT signaling in a subset. Unlike most other nonmelanoma skin cancers involving sun-exposed areas, most microcystic adnexal carcinomas lack evidence of UV damage, and hence likely originate from a relatively photo-protected progenitor population in the dermis. These findings have implications for the biology, diagnosis, and treatment of microcystic adnexal carcinomas, including potential for therapeutic targeting of p53 or the JAK/STAT pathway in advanced tumors.
Collapse
|
25
|
Vela V, Juskevicius D, Gerlach MM, Meyer P, Graber A, Cathomas G, Dirnhofer S, Tzankov A. High throughput sequencing reveals high specificity of TNFAIP3 mutations in ocular adnexal marginal zone B-cell lymphomas. Hematol Oncol 2020; 38:284-292. [PMID: 32012328 DOI: 10.1002/hon.2718] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 11/08/2022]
Abstract
The majority of ocular adnexal (OA) lymphomas (OAL) are extranodal marginal zone lymphomas (MZL). First high throughput sequencing (HTS) studies on OA-MZL showed inconsistent results and the distribution of mutations in reactive lymphoid lesions of this anatomic region has not yet been sufficiently addressed. We characterized OAL and lymphoid lesions of the OA by targeted HTS. The study included 34 OA-MZL, 11 chronic conjunctivitis, five mature small cell B-cell lymphomas spreading to the OA, five diseases with increase of IgG4+ plasma cells, three Burkitt lymphomas (BL), three diffuse large B-cell lymphomas (DLBCL), three mantle cell lymphomas, three idiopathic orbital inflammations/orbital pseudo tumors (PT), and three OA lymphoid hyperplasia. All cases were negative for Chlamydia. The mutational number was highest in BL and lowest in PT. The most commonly (and exclusively) mutated gene in OA-MZL was TNFAIP3 (10 of 34 cases). Altogether, 20 out of 34 patients harbored mutually exclusive mutations of either TNFAIP3, BCL10, MYD88, ATM, BRAF, or NFKBIE, or nonexclusive mutations of IRF8, TNFRSF14, KLHL6, and TBL1XR1, all encoding for NK-κB pathway compounds or regulators. Thirteen patients (38%) had, to a great part, mutually exclusive mutations of chromatin modifier-encoding genes: KMT2D, CREBBP, BCL7A, DNMT3A, EP300, or HIST1H1E. Only four patients harbored co-occurring mutations of genes encoding for NK-κB compounds and chromatin modifiers. Finally, PTEN, KMT2D, PRDM1, and HIST1H2BK mutations were observable in reactive lymphoid lesions too, while such instances were devoid of NF-κB compound mutations and/or mutations of acetyltransferase-encoding genes. In conclusion, 80% of OA-MZL display mutations of either NK-κB compounds or chromatin modifiers. Lymphoid lesions of the OA bearing NF-κB compound mutations and/or mutations of acetyltransferase-encoding genes highly likely represent lymphomas.
Collapse
Affiliation(s)
- Visar Vela
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Darius Juskevicius
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Magdalena M Gerlach
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Peter Meyer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Eye Clinic, University Hospital Basel, Basel, Switzerland
| | - Anne Graber
- Cantonal Institute of Pathology, Liestal, Switzerland
| | | | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Vermaat JS, Somers SF, de Wreede LC, Kraan W, de Groen RAL, Schrader AMR, Kerver ED, Scheepstra CG, Berenschot H, Deenik W, Wegman J, Broers R, de Boer JPD, Nijland M, van Wezel T, Veelken H, Spaargaren M, Cleven AH, Kersten MJ, Pals ST. MYD88 mutations identify a molecular subgroup of diffuse large B-cell lymphoma with an unfavorable prognosis. Haematologica 2020; 105:424-434. [PMID: 31123031 PMCID: PMC7012469 DOI: 10.3324/haematol.2018.214122] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
The 2016 World Health Organization classification defines diffuse large B-cell lymphoma (DLBCL) subtypes based on Epstein-Barr virus (EBV) infection and oncogenic rearrangements of MYC/BCL2/BCL6 as drivers of lymphomagenesis. A subset of DLBCL, however, is characterized by activating mutations in MYD88/CD79B We investigated whether MYD88/CD79B mutations could improve the classification and prognostication of DLBCL. In 250 primary DLBCL, MYD88/CD79B mutations were identified by allele-specific polymerase chain reaction or next-generation-sequencing, MYC/BCL2/BCL6 rearrangements were analyzed by fluorescence in situ hybridization, and EBV was studied by EBV-encoded RNA in situ hybridization. Associations of molecular features with clinicopathologic characteristics, outcome, and prognosis according to the International Prognostic Index (IPI) were investigated. MYD88 and CD79B mutations were identified in 29.6% and 12.3%, MYC, BCL2, and BCL6 rearrangements in 10.6%, 13.6%, and 20.3%, and EBV in 11.7% of DLBCL, respectively. Prominent mutual exclusivity between EBV positivity, rearrangements, and MYD88/CD79B mutations established the value of molecular markers for the recognition of biologically distinct DLBCL subtypes. MYD88-mutated DLBCL had a significantly inferior 5-year overall survival than wild-type MYD88 DLBCL (log-rank; P=0.019). DLBCL without any of the studied aberrations had superior overall survival compared to cases carrying ≥1 aberrancy (log-rank; P=0.010). MYD88 mutations retained their adverse prognostic impact upon adjustment for other genetic and clinical variables by multivariable analysis and improved the prognostic performance of the IPI. This study demonstrates the clinical utility of defining MYD88-mutated DLBCL as a distinct molecular subtype with adverse prognosis. Our data call for sequence analysis of MYD88 in routine diagnostics of DLBCL to optimize classification and prognostication, and to guide the development of improved treatment strategies.
Collapse
Affiliation(s)
- Joost S Vermaat
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam .,Lymphoma and Myeloma Center Amsterdam-LYMMCARE, and Cancer Center Amsterdam (CCA), Amsterdam.,Department of Hematology, Leiden University Medical Center, Leiden
| | | | - Liesbeth C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden
| | - Willem Kraan
- Lymphoma and Myeloma Center Amsterdam-LYMMCARE, and Cancer Center Amsterdam (CCA), Amsterdam.,Department of Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam
| | | | | | - Emile D Kerver
- Department of Internal Medicine & Hematology, Onze Lieve Vrouwe Gasthuis, Amsterdam
| | | | - Henriëtte Berenschot
- Department of Internal Medicine & Hematology, Albert Schweitzer Hospital, Dordrecht
| | - Wendy Deenik
- Department of Internal Medicine & Hematology, Tergooi Hospital, Hilversum
| | - Jurgen Wegman
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam.,Department of Internal Medicine & Hematology, Deventer Hospital, Deventer
| | - Rianne Broers
- Department of Internal Medicine & Hematology, Waterland Hospital, Purmerend
| | - Jan-Paul D de Boer
- Department of Medical Oncology & Hematology, Antoni van Leeuwenhoekziekenhuis, Amsterdam
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden
| | - Marcel Spaargaren
- Lymphoma and Myeloma Center Amsterdam-LYMMCARE, and Cancer Center Amsterdam (CCA), Amsterdam.,Department of Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam
| | - Arjen H Cleven
- Department of Pathology, Leiden University Medical Center, Leiden
| | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam.,Lymphoma and Myeloma Center Amsterdam-LYMMCARE, and Cancer Center Amsterdam (CCA), Amsterdam
| | - Steven T Pals
- Lymphoma and Myeloma Center Amsterdam-LYMMCARE, and Cancer Center Amsterdam (CCA), Amsterdam.,Department of Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam
| |
Collapse
|
27
|
Lim MS, Bailey NG, King RL, Piris M. Molecular Genetics in the Diagnosis and Biology of Lymphoid Neoplasms. Am J Clin Pathol 2019; 152:277-301. [PMID: 31278738 DOI: 10.1093/ajcp/aqz078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The 2017 Workshop of the Society for Hematopathology/European Association for Haematopathology reviewed the role of molecular genetics in the diagnosis and biology of lymphoid neoplasms. METHODS The Workshop Panel reviewed 82 cases. RESULTS Molecular genetic testing reveals alterations that expand the spectrum of diseases such as DUSP22 rearrangement in ALK-negative anaplastic large cell lymphoma, large B-cell lymphoma with IRF4 rearrangement, MYD88 mutations in B-cell lymphomas, Burkitt-like lymphoma with 11q aberrations, and diagnostic criteria for high-grade B-cell lymphomas. Therapeutic agents and natural tumor progression may be associated with transcriptional reprogramming that lead to transdifferentiation and lineage switch. CONCLUSIONS Application of emerging technical advances has revealed the complexity of genetic events in lymphomagenesis, progression, and acquired resistance to therapies. They also contribute to enhanced understanding of the biology of indolent vs aggressive behavior, clonal evolution, tumor progression, and transcriptional reprogramming associated with transdifferentiation events that may occur subsequent to therapy.
Collapse
Affiliation(s)
- Megan S Lim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | | | - Miguel Piris
- Department of Pathology, Centro de Investigación Biomédica en Red de Oncología, Hospital Universitario Fundación Jimenez Diaz, Madrid, Spain
| |
Collapse
|
28
|
Mombaerts I, Ramberg I, Coupland SE, Heegaard S. Diagnosis of orbital mass lesions: clinical, radiological, and pathological recommendations. Surv Ophthalmol 2019; 64:741-756. [PMID: 31276737 DOI: 10.1016/j.survophthal.2019.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
The orbit can harbor mass lesions of various cellular origins. The symptoms vary considerably according to the nature, location, and extent of the disease and include common signs of proptosis, globe displacement, eyelid swelling, and restricted eye motility. Although radiological imaging tools are improving, with each imaging pattern having its own differential diagnosis, orbital mass lesions often pose a diagnostic challenge. To provide an accurate, specific, and sufficiently comprehensive diagnosis, to optimize clinical management and estimate prognosis, pathological examination of a tissue biopsy is essential. Diagnostic orbital tissue biopsy is obtained through a minimally invasive orbitotomy procedure or, in selected cases, fine needle aspiration. The outcome of successful biopsy, however, is centered on its representativeness, processing, and interpretation. Owing to the often small volume of the orbital biopsies, artifacts in the specimens should be limited by careful peroperative tissue handling, fixation, processing, and storage. Some orbital lesions can be characterized on the basis of cytomorphology alone, whereas others need ancillary molecular testing to render the most reliable diagnosis of therapeutic, prognostic, and predictive value. Herein, we review the diagnostic algorithm for orbital mass lesions, using clinical, radiological, and pathological recommendations, and discuss the methods and potential pitfalls in orbital tissue biopsy acquisition and analysis.
Collapse
Affiliation(s)
- Ilse Mombaerts
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium.
| | - Ingvild Ramberg
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Section of Eye Pathology, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sarah E Coupland
- Department of Cellular and Molecular Pathology, University of Liverpool, Liverpool, UK; Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Liverpool, UK
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Section of Eye Pathology, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
29
|
Zhu W, Li D, Xiao L. Upregulation of valosin-containing protein (VCP) is associated with poor prognosis and promotes tumor progression of orbital B-cell lymphoma. Onco Targets Ther 2019; 12:243-253. [PMID: 30643422 PMCID: PMC6312057 DOI: 10.2147/ott.s182118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Objective This study aimed to investigate the relationship between VCP expression and the prognosis of orbital B-cell lymphoma patients and the influence of downregulation of VCP on the apoptosis and invasion abilities of lymphoma cells. Methods We recruited 66 orbital B-cell lymphoma patients. VCP expression in 66 samples of orbital B-cell lymphoma was determined by immunohistochemistry using monoclonal VCP antibodies. Based on VCP-expression levels detected by immunohistochemistry, we chose ten cases of orbital tumor paraffin tissue from the patients. Total RNA was extracted and differences in VCP gene-expression levels compared among patients using quantitative reverse-transcription (qRT) PCR. We used siRNA to knock down VCP in the lymphoma cell lines Raji and SUDHL4. qRT-PCR and Western blot were applied to detect VCP mRNA and protein expression, respectively. SUDHL48 assays were applied to investigate cell proliferation. Hoechst 33258 staining and flow-cytometry analysis were applied to investigate cell apoptosis. Transwell assays were applied to investigate invasive ability. Survival analysis was used to evaluate prognostic values. Results Expression levels of VCP were correlated with the stage, tumor grade, and recurrence rate of patients. VCP mRNA-expression levels were consistent with VCP-expression levels in orbital B-cell lymphoma tissue. Moreover, survival analysis revealed that lower VCP-expression levels were correlated with longer overall survival of orbital B-cell lymphoma patients. Down-regulation of VCP with siRNA did not inhibit cell proliferation. However, it dramatically increased apoptosis and suppressed the invasion of B-cell lymphoma cells. Conclusion VCP expression played an important role in the progression of orbital B-cell lymphoma. VCP could be a useful marker for predicting the prognosis of orbital B-cell lymphoma patients. VCP may be a potential therapeutic target for orbital B-cell lymphoma.
Collapse
Affiliation(s)
- Wenwen Zhu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Di Li
- Institute of Rehabilitation Medicine of China, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Lihua Xiao
- Institute of Orbital Disease, General Hospital of Chinese People's Armed Police Forces, Beijing, China,
| |
Collapse
|
30
|
Kalogeropoulos D, Vartholomatos G, Mitra A, Elaraoud I, Ch'ng SW, Zikou A, Papoudou-Bai A, Moschos MM, Kanavaros P, Kalogeropoulos C. Primary vitreoretinal lymphoma. Saudi J Ophthalmol 2019; 33:66-80. [PMID: 30930667 PMCID: PMC6424706 DOI: 10.1016/j.sjopt.2018.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/03/2018] [Accepted: 12/30/2018] [Indexed: 11/30/2022] Open
Abstract
Primary vitreoretinal lymphoma (PVRL) is a rare ocular lymphoid malignancy, which consists a subset of primary central system lymphoma (PCNSL) and the most common type of intraocular lymphoma. The involvement of eyes is estimated to be approximately 20% of PCNSL, but the brain involvement may be up to 80% of PVRL. Typically, PVRL is a high grade B-cell malignancy of the retina and needs to be assorted from choroidal low-grade B-cell lymphomas. Very often PVRL masquerades and can be erroneously diagnosed as chronic uveitis, white dot syndromes or other neoplasms. Establishing an accurate diagnosis may involve cytology/pathology, immunohistochemistry, flow cytometry, molecular pathology and cytokine profile analysis. There is inadequate information about PVRL’s true incidence, ethnic/geographical variation and pathogenetic mechanisms. The therapeutic approach of PVRL involves aggressive chemotherapy and radiation therapy. Although PVRL tends to have a good response to the initial treatment, the prognosis is poor and the survival restricted due to the high relapse rates and CNS involvement.
Collapse
Affiliation(s)
- Dimitrios Kalogeropoulos
- Birmingham and Midland Eye Centre, Birmingham, United Kingdom.,Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios Vartholomatos
- Hematology Laboratory, Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Arijit Mitra
- Birmingham and Midland Eye Centre, Birmingham, United Kingdom
| | | | - Soon Wai Ch'ng
- Birmingham and Midland Eye Centre, Birmingham, United Kingdom
| | - Anastasia Zikou
- Department of Radiology, Faculty of Medicine, School of Health Science, University of Ioannina, Greece
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Marilita M Moschos
- First Department of Ophthalmology, General Hospital of Athens G. Gennimatas, Medical School, National and Kapodistrian University of Athens, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Chris Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
31
|
Behdad A, Zhou XY, Gao J, Raparia K, Dittman D, Green SJ, Qi C, Betz B, Bryar P, Chen Q, Chen YH. High Frequency of MYD88 L265P Mutation in Primary Ocular Adnexal Marginal Zone Lymphoma and Its Clinicopathologic Correlation: A Study From a Single Institution. Arch Pathol Lab Med 2018; 143:483-493. [PMID: 30444439 DOI: 10.5858/arpa.2018-0092-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The pathogenesis of primary ocular adnexal marginal zone lymphoma (POAMZL) remains unclear. The reported associations with Chlamydia psittaci infection and MYD88 mutations are highly variable. OBJECTIVE.— To examine MYD88 L265P mutation in ocular marginal zone lymphomas and correlate with clinicopathologic features and Chlamydia infection. DESIGN.— Presence of MYD88 L265P mutation and Chlamydia infection in lymphoma was analyzed by using sensitive polymerase chain reaction (PCR) methods. RESULTS.— The MYD88 L265P mutation was identified in 8 of 22 POAMZLs (36%), including 2 of 3 cases in which PCR failed to detect clonal IGH gene rearrangement; none of the 4 secondary marginal zone lymphomas were positive. Test results for Chlamydia were negative in all cases. Patients with and without the MYD88 mutation had similar clinicopathologic features. CONCLUSIONS.— The MYD88 mutational analysis provides important information in diagnostic workup of POAMZL. The frequent MYD88 mutation suggests a critical role of this aberration in the pathogenesis of POAMZL and may serve as a therapeutic target for patients with progressive disease.
Collapse
Affiliation(s)
- Amir Behdad
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Xiao Yi Zhou
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Juehua Gao
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Kirtee Raparia
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - David Dittman
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Stefan J Green
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Chao Qi
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Bryan Betz
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Paul Bryar
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Qing Chen
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Yi-Hua Chen
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| |
Collapse
|
32
|
Lynch RC, Gratzinger D, Advani RH. Clinical Impact of the 2016 Update to the WHO Lymphoma Classification. Curr Treat Options Oncol 2018; 18:45. [PMID: 28670664 DOI: 10.1007/s11864-017-0483-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OPINION STATEMENT The 2016 revision of the WHO classification of lymphoid neoplasms includes new entities along with a clearer definition of provisional and definitive subtypes based on better understanding of the molecular drivers of lymphomas. These changes impact current treatment paradigms and provide a framework for future clinical trials. Additionally, this update recognizes several premalignant or predominantly indolent entities and underscores the importance of avoiding unnecessarily aggressive treatment in the latter subsets.
Collapse
Affiliation(s)
- Ryan C Lynch
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ranjana H Advani
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford University Medical Center, 875 Blake Wilbur Drive, Suite CC-2338, Stanford, CA, 94305-5821, USA.
| |
Collapse
|
33
|
Abstract
There are three different marginal zone lymphomas (MZLs): the extranodal MZL of mucosa-associated lymphoid tissue (MALT) type (MALT lymphoma), the splenic MZL, and the nodal MZL. The three MZLs share common lesions and deregulated pathways but also present specific alterations that can be used for their differential diagnosis. Although trisomies of chromosomes 3 and 18, deletions at 6q23, deregulation of nuclear factor kappa B, and chromatin remodeling genes are frequent events in all of them, the three MZLs differ in the presence of recurrent translocations, mutations affecting the NOTCH pathway, and the transcription factor Kruppel like factor 2 ( KLF2) or the receptor-type protein tyrosine phosphatase delta ( PTPRD). Since a better understanding of the molecular events underlying each subtype may have practical relevance, this review summarizes the most recent and main advances in our understanding of the genetics and biology of MZLs.
Collapse
Affiliation(s)
- Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Emanuele Zucca
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| |
Collapse
|
34
|
|
35
|
Recurrent mutations in NF-κB pathway components, KMT2D, and NOTCH1/2 in ocular adnexal MALT-type marginal zone lymphomas. Oncotarget 2018; 7:62627-62639. [PMID: 27566587 PMCID: PMC5308752 DOI: 10.18632/oncotarget.11548] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
The pathogenesis of ocular adnexal marginal zone lymphomas of mucosa-associated lymphatic tissue-type (OAML) is still poorly understood. We analyzed 63 cases of such lymphomas for non-synonymous mutations in 24 candidate genes by amplicon sequencing. We validated frequent mutations in the NF-κB regulators MYD88, TNFAIP3 and TNIP1 in OAML, but also identified recurrent mutations in several additional components of the NF-κB pathway, including BCL10 and NFKBIA. Overall, 60% of cases had mutations in at least one component of NF-κB signaling, pointing to a central role of its genetic deregulation in OAML pathogenesis. Mutations in NOTCH1 and NOTCH2 were each found in 8% of cases, indicating a pathogenetic function of these factors in OAML. KMT2D was identified as the first epigenetic regulator with mutations in OAML, being mutated in 22% of cases. Mutations in MYD88 were associated with an inferior disease-free survival. Overall, we identified here highly recurrent genetic lesions in components of the NF-κB pathway, of NOTCH1 and NOTCH2 as well as KMT2D in OAML and thereby provide major novel insights into the pathogenesis of this B cell malignancy.
Collapse
|
36
|
Cani AK, Hovelson DH, Demirci H, Johnson MW, Tomlins SA, Rao RC. Next generation sequencing of vitreoretinal lymphomas from small-volume intraocular liquid biopsies: new routes to targeted therapies. Oncotarget 2018; 8:7989-7998. [PMID: 28002793 PMCID: PMC5352376 DOI: 10.18632/oncotarget.14008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022] Open
Abstract
Background Vitreoretinal lymphoma (VRL), the most common lymphoma of the eye, is a rare form of primary CNS lymphoma (PCNSL). Most frequently a high-grade diffuse large B cell lymphoma, VRL can cause vision loss and its prognosis remains dismal: the overall survival time is 3 years after diagnosis. Radiotherapy and chemotherapy are used but remain frequently ineffective, and no standardized treatment regimen exists. Furthermore, no biologically targeted treatments, based on the genetic profile of the tumor, are available, as VRL has hitherto not comprehensively been profiled. To address these unmet needs, we hypothesized that a next generation sequencing (NGS)-based, National Cancer Institute (NCI) MATCH Trial-modified panel would be able to identify actionable genomic alterations from small-volume, intraocular liquid biopsies. Methods and Findings In this retrospective study, we collected diluted vitreous biopsies from 4 patients with a high suspicion for VRL. Following cytological confirmation of lymphoma (all were diffuse large B cell lymphomas), we subjected genomic DNA from the biopsies to NGS, using a panel containing 126 genes (3,435 amplicons across several hotspots per gene), which was modified from that of the NCI MATCH Trial, a new trial that has matched patients with cancers that have not responded (or never responded), to investigational therapeutics based on their prioritized mutation profile rather than site of tumor origin. Using a validated bioinformatics pipeline, we assessed for the presence of actionable mutations and copy number alterations. In all four small-volume, intraocular liquid biopsies, we obtained sufficient genomic DNA for analysis, even in diluted samples in which the undiluted vitreous was used for cytology and flow cytometry. Using NGS, we found targetable heterozygous gain-of-function mutations in the MYD88 oncogene, and confirmed in our cohort the presence the L265 mutations, previously described using PCR-based assays. For the first time in VRL, we also identified the MYD88 S243N mutation. We also identified two-copy copy number losses in the tumor suppressor CDKN2A in all four cases, and one copy loss of the tumor suppressor PTEN in one sample. In one case, in which vitreous biopsies were originally read as cytologically negative, but which was confirmed as lymphoma when a lesion appeared in the brain two years later, our NGS-based approach detected tumoral DNA in the banked, original liquid biopsy. Conclusions We performed the first systematic exploration of the actionable cancer genome in VRL. Our NGS-based approach identified exploitable genomic alterations such as gain-of-function MYD88 oncogene mutations and loss of the tumor suppressor CDKN2A, and thus illuminates new routes to biologically targeted therapies for VRL, a cancer with a dismal prognosis. This precision medicine strategy could be used to nominate novel, targeted therapies in lymphomas and other blinding and deadly ocular, orbital, and ocular adnexal diseases for which few treatments exist.
Collapse
Affiliation(s)
- Andi K Cani
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, US.,Department of Pathology, University of Michigan, Ann Arbor, MI, US
| | - Daniel H Hovelson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, US.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, US
| | - Hakan Demirci
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, US
| | - Mark W Johnson
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, US
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, US.,Department of Pathology, University of Michigan, Ann Arbor, MI, US.,Department of Urology, University of Michigan, Ann Arbor, MI, US.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, US.,A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, US
| | - Rajesh C Rao
- Department of Pathology, University of Michigan, Ann Arbor, MI, US.,Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, US.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, US.,A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, US.,Section of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor, Healthcare System, Ann Arbor, MI, US
| |
Collapse
|
37
|
Ocular adnexal marginal zone lymphoma of mucosa-associated lymphoid tissue. Clin Exp Med 2017; 18:151-163. [PMID: 28939925 DOI: 10.1007/s10238-017-0474-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
Ocular adnexal lymphomas are a group of heterogeneous neoplasms representing approximately 1-2% of non-Hodgkin lymphomas and 8% of extranodal lymphomas. The incidence of primary ocular adnexal lymphoid tumors has raised over the last decades, and this could be probably attributed to the more sophisticated diagnostic techniques. Due to the wide spectrum of clinical manifestations, ocular tissue biopsy is important in order to set a precise diagnosis based on histological, immunophenotypical and, in some cases, molecular findings. The most common subtype, which may account for up to 80% of primary ocular adnexal lymphomas, is extranodal marginal zone lymphoma (EMZL) of mucosa-associated lymphoid tissue. This lymphoma is usually asymptomatic in the early phase of the disease causing a delay in the final diagnosis and prompt therapy. The pathogenesis of a proportion of these tumors has been linked to chronic inflammatory stimulation from specific infectious factors (e.g., Chlamydia psittaci) or to autoimmunity. The further improvement in diagnostic methods and the further understanding of the pathogenesis of ocular adnexal EMZL may contribute to the establishment of a more successful multidisciplinary therapeutic planning.
Collapse
|
38
|
Lazo de la Vega L, McHugh JB, Cani AK, Kunder K, Walocko FM, Liu CJ, Hovelson DH, Robinson D, Chinnaiyan AM, Tomlins SA, Harms PW. Comprehensive Molecular Profiling of Olfactory Neuroblastoma Identifies Potentially Targetable FGFR3 Amplifications. Mol Cancer Res 2017; 15:1551-1557. [PMID: 28775129 DOI: 10.1158/1541-7786.mcr-17-0135] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022]
Abstract
Olfactory neuroblastomas (ONBs), also known as esthesioneuroblastomas, are malignant round-cell tumors that represent up to 5% of sinonasal malignancies. Despite their aggressive course, molecular studies of ONBs have been limited, and targeted therapies are lacking. To identify potential oncogenic drivers and targetable pathways in ONBs, we characterized 20 ONBs, including archived ONBs profiled by targeted, multiplexed PCR (mxPCR)-based DNA next-generation sequencing (NGS) of the coding sequence of over 400 cancer-relevant genes (n = 16), mxPCR-based RNA NGS of 108 target genes (n = 15), and 2 ONBs profiled by comprehensive hybrid-capture-based clinical grade NGS of >1,500 genes. Somatic mutations were infrequent in our cohort, with 7 prioritized nonsynonymous mutations in 5 of 18 (28%) ONBs, and no genes were recurrently mutated. We detected arm/chromosome-level copy-number alterations in all tumors, most frequently gains involving all or part of chromosome 20, chromosome 5, and chromosome 11. Recurrent focal amplifications, often but not exclusively in the context of arm-level gains, included CCND1 [n = 4/18 (22%) tumors] and the targetable receptor tyrosine kinase FGFR3 [n = 5/18 (28%) tumors]. Targeted RNA NGS confirmed high expression of FGFR3 in ONB (at levels equivalent to bladder cancer), with the highest expression observed in FGFR3-amplified ONB cases. Importantly, our findings suggest that FGFR3 may be a therapeutic target in a subset of these aggressive tumors.Implications: ONBs harbor recurrent chromosomal copy-number changes, including FGFR3 amplification associated with overexpression. Hence, FGFR3 may represent a novel therapeutic target in these tumors. Mol Cancer Res; 15(11); 1551-7. ©2017 AACR.
Collapse
Affiliation(s)
- Lorena Lazo de la Vega
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jonathan B McHugh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andi K Cani
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Komal Kunder
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Chia-Jen Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel H Hovelson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dan Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan. .,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan. .,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
39
|
The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP. Oncotarget 2017; 8:17038-17049. [PMID: 28152507 PMCID: PMC5370020 DOI: 10.18632/oncotarget.14928] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022] Open
Abstract
Ocular marginal zone lymphoma is a common type of low-grade B-cell lymphoma. To investigate the genomic changes that occur in ocular marginal zone lymphoma, we analyzed 10 cases of ocular marginal zone lymphoma using whole-genome and RNA sequencing and an additional 38 cases using targeted sequencing. Major genetic alterations affecting genes involved in nuclear factor (NF)-κB pathway activation (60%), chromatin modification and transcriptional regulation (44%), and B-cell differentiation (23%) were identified. In whole-genome sequencing, the 6q23.3 region containing TNFAIP3 was deleted in 5 samples (50%). In addition, 5 structural variation breakpoints in the first intron of IL20RA located in the 6q23.3 region was found in 3 samples (30%). In targeted sequencing, a disruptive mutation of TNFAIP3 was the most common alteration (54%), followed by mutations of TBL1XR1 (18%), cAMP response element binding proteins (CREBBP) (17%) and KMT2D (6%). All TBL1XR1 mutations were located within the WD40 domain, and TBL1XR1 mutants transfected into 293T cells increased TBL1XR1 binding with nuclear receptor corepressor (NCoR), leading to increased degradation of NCoR and the activation of NF-κB and JUN target genes. This study confirms genes involving in the activation of the NF-kB signaling pathway is the major driver in the oncogenesis of ocular MZL.
Collapse
|
40
|
Avedschmidt SE, Stagner AM, Eagle RC, Harocopos GJ, Dou Y, Rao RC. The Targetable Epigenetic Tumor Protein EZH2 is Enriched in Intraocular Medulloepithelioma. Invest Ophthalmol Vis Sci 2017; 57:6242-6246. [PMID: 27842164 PMCID: PMC5114033 DOI: 10.1167/iovs.16-20463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Intraocular medulloepithelioma (IM), the second most common primary neuroepithelial tumor of the eye, can lead to blindness in the affected eye and in rare cases, is deadly. Intraocular medulloepithelioma lacks targetable biomarkers for potential pharmacologic therapy. The purpose of this study was to identify actionable, tumor-specific proteins for potential diagnostic or therapeutic strategies. We hypothesize that the tumor-specific epigenetic enzyme EZH2 is selectively expressed in IM. Methods We conducted a retrospective case series study of five IM from five eyes of four children and one adult. Hematoxylin and eosin (H&E) stains of sections from formalin-fixed, paraffin-embedded blocks of IM tumors were used to localize IM tumor cells in each case. Using an EZH2-specific antibody for immunohistochemistry, we semiquantitatively calculated the proportion of IM tumor cells positive for EZH2, and also assayed for EZH2 staining intensity. Results We found that EZH2 was expressed in all IM cases but this protein was absent in nontumor ciliary body or retinal tissues. However, not all IM tumor cells expressed EZH2. Similar to retinoblastoma, moderately to poorly differentiated (primitive appearing) IM tumor cells strongly expressed EZH2; expression was weaker or absent in areas of well-formed neuroepithelial units. Conclusions To our knowledge, this is the first study to identify an actionable tumor-specific maker, EZH2, in IM. Our findings point to the possibility of exploring the potential of EZH2 inhibitors, already in clinical trials for other cancers, for IM.
Collapse
Affiliation(s)
- Sarah E Avedschmidt
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Anna M Stagner
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States 3Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Ralph C Eagle
- Department of Ophthalmic Pathology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - George J Harocopos
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States 6Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States 7Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States 8Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Rajesh C Rao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States 8Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States 9Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States 10A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, United States 11Section of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
| |
Collapse
|
41
|
Clinicopathologic significance of MYD88 L265P mutation in diffuse large B-cell lymphoma: a meta-analysis. Sci Rep 2017; 7:1785. [PMID: 28496180 PMCID: PMC5431939 DOI: 10.1038/s41598-017-01998-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/06/2017] [Indexed: 11/08/2022] Open
Abstract
The precise clinicopathologic significance of myeloid differentiation primary response gene (MYD88) L265P mutation in diffuse large B-cell lymphomas (DLBCLs) remains elusive. To investigate the frequency and clinicopathologic significance of the MYD88 L265P mutation in DLBCLs, we conducted a meta-analysis of 40 published studies on 2736 DLBCL patients. We collected relevant published research findings identified using the PubMed and Embase databases. The effect sizes of outcome parameters were calculated using a random-effects model. In this meta-analysis, the MYD88 L265P mutation in DLBCL showed a significant difference according to tumor sites. The overall incidence of the MYD88 L265P mutation in DLBCLs, excluding the central nervous system and testicular DLBCLs, was 16.5%. Notably, the MYD88 L265P mutation rates of CNS and testicular DLBCL patients were 60% and 77%, respectively. Interestingly, the MYD88 L265P mutation was more frequently detected in activated B-cell-like (ABC) or non-germinal center B-cell-like (GCB) than GCB subtype (OR = 3.414, p < 0.001). The MYD88 L265P mutation was significantly associated with old age and poor overall survival, but not with sex and clinical stage. This pooled analysis demonstrates that the MYD88 L265P mutation is significantly associated with the tumor sites and molecular subtypes in DLBCL patients.
Collapse
|
42
|
Alegría-Landa V, Prieto-Torres L, Santonja C, Córdoba R, Manso R, Requena L, Rodríguez-Pinilla SM. MYD88L265P mutation in cutaneous involvement by Waldenström macroglobulinemia. J Cutan Pathol 2017; 44:625-631. [DOI: 10.1111/cup.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Lucía Prieto-Torres
- Department of Pathology; Hospital Clínico Universitario Lozano Blesa; Zaragoza Spain
| | - Carlos Santonja
- Lymphoma Unit, Oncohealth Institute; Fundación Jiménez Díaz, Universidad Autónoma; Madrid Spain
| | - Raul Córdoba
- Department of Hematology; Fundación Jiménez Díaz, Universidad Autónoma; Madrid Spain
| | - Rebeca Manso
- Lymphoma Unit, Oncohealth Institute; Fundación Jiménez Díaz, Universidad Autónoma; Madrid Spain
| | - Luis Requena
- Department of Dermatology, Fundación Jiménez Díaz; Universidad Autónoma; Madrid Spain
| | | |
Collapse
|
43
|
Ghassibi MP, Ulloa-Padilla JP, Dubovy SR. Neural Tumors of the Orbit -- What Is New? Asia Pac J Ophthalmol (Phila) 2017; 6:273-282. [PMID: 28558180 DOI: 10.22608/apo.2017157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/07/2017] [Indexed: 01/01/2023] Open
Abstract
Primary neural tumors of the orbit account for approximately 10% of all orbital tumors. Different tumor entities include meningiomas, optic nerve gliomas, neurofibromas, schwannomas, malignant peripheral nerve sheath tumors, and granular cell tumors. This review summarizes current concepts regarding epidemiology, clinical presentation, diagnosis, pathology, immunohistochemistry, prognosis, and treatment for neural tumors of the orbit based on the available literature.
Collapse
Affiliation(s)
- Mark P Ghassibi
- Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jan P Ulloa-Padilla
- Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Sander R Dubovy
- Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
44
|
Araujo I, Coupland SE. Primary Vitreoretinal Lymphoma -- A Review. Asia Pac J Ophthalmol (Phila) 2017; 6:283-289. [PMID: 28558176 DOI: 10.22608/apo.2017150] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/24/2017] [Indexed: 11/08/2022] Open
Abstract
Primary vitreoretinal lymphoma (PVRL) is the most common intraocular lymphoma occurring in the eye. It is a high-grade typically B-cell malignancy, arising in the retina, and is often associated with central nervous system (CNS) disease and thereby a poor prognosis. It needs to be distinguished from choroidal low-grade B-cell lymphomas, which do not disseminate to the brain and have a good prognosis. Because of the rarity of PVRL, information is lacking regarding its true incidence, its geographical or ethnic variation, and underlying risk factors apart from immunosuppression associated with human immunodeficiency virus (HIV) and Epstein Barr virus. PVRL often presents masquerading as other intraocular diseases and is therefore often associated with diagnostic delays. This is compounded by the fragility of the neoplastic B cells, which hampers vitrectomy yields and pathological work-up. The latter includes cytomorphology and immunoprofiling, with adjunctive tests such as cytokine analysis, polymerase chain reaction for clonality, MYD88 mutational testing, and possibly bespoke next generation sequencing. Recent examinations of PVRL and CNS lymphoma (CNSL) using whole genome sequencing confirm that these tumors arise from activated postgerminal center cells, reflecting their aggressive course in most cases. The treatment of PVRL varies between centers and is dependent on presence or absence of concomitant CNS disease. The prognosis remains poor, and yet progress is steadily being made through international collaborative clinical trials.
Collapse
Affiliation(s)
- Iguaracyra Araujo
- Department of Pathology and Forensic Medicine, University Hospital Professor Edgard Santos, Salvador, Brazil
| | - Sarah E Coupland
- Department of Cellular Pathology, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, England
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, England
| |
Collapse
|
45
|
EBV-Negative Monomorphic B-Cell Posttransplant Lymphoproliferative Disorder with Marked Morphologic Pleomorphism and Pathogenic Mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53. Case Rep Hematol 2017; 2017:5083463. [PMID: 28487787 PMCID: PMC5402239 DOI: 10.1155/2017/5083463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/18/2017] [Accepted: 03/19/2017] [Indexed: 01/05/2023] Open
Abstract
Posttransplant lymphoproliferative disorders (PTLDs) are a diverse group of lymphoid or plasmacytic proliferations frequently driven by Epstein-Barr virus (EBV). EBV-negative PTLDs appear to represent a distinct entity. This report describes an unusual case of a 33-year-old woman that developed a monomorphic EBV-negative PTLD consistent with diffuse large B-cell lymphoma (DLBCL) 13 years after heart-lung transplant. Histological examination revealed marked pleomorphism of the malignant cells including nodular areas reminiscent of classical Hodgkin lymphoma (cHL) with abundant large, bizarre Hodgkin-like cells. By immunostaining, the malignant cells were immunoreactive for CD45, CD20, CD79a, PAX5, BCL6, MUM1, and p53 and negative for CD15, CD30, latent membrane protein 1 (LMP1), and EBV-encoded RNA (EBER). Flow cytometry demonstrated lambda light chain restricted CD5 and CD10 negative B-cells. Fluorescence in situ hybridization studies (FISH) were negative for cMYC, BCL2, and BCL6 rearrangements but showed deletion of TP53 and monosomy of chromosome 17. Next-generation sequencing studies (NGS) revealed numerous genetic alterations including 6 pathogenic mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53(x2) genes and 30 variants of unknown significance (VOUS) in ABL1, ASXL1, ATM, BCOR, BCORL1, BRNIP3, CDH2, CDKN2A, DNMT3A, ETV6, EZH2, FBXW7, KIT, NF1, RUNX1, SETPB1, SF1, SMC1A, STAG2, TET2, TP53, and U2AF2.
Collapse
|
46
|
Verdijk RM. Lymphoproliferative Tumors of the Ocular Adnexa. Asia Pac J Ophthalmol (Phila) 2017; 6:132-142. [PMID: 28399341 DOI: 10.22608/apo.2016209] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 11/08/2022] Open
Abstract
The ocular adnexa include the eyelids, conjunctiva, lacrimal apparatus, and orbital soft tissue. One percent of all lymphomas and approximately 8% of all extranodal lymphomas arise in the ocular adnexa and their incidence is increasing. Reactive lymphoid hyperplasia comprises 16% of all lymphoproliferative tumors of the ocular adnexa. The relative frequencies of ocular adnexal lymphoma presentation are in the orbit, 37%; conjunctiva, 29%; lacrimal apparatus, 20%; and eyelid, 14%. The most frequent primary lymphoma types of the ocular adnexa are extranodal marginal zone lymphoma, 62%; follicular lymphoma, 17%; and diffuse large B-cell lymphoma, 10%. The eyelids show the highest proportion of secondary lymphoma involvement, 49% of all eyelid lymphoproliferative lesions, compared with 24% in all ocular adnexa. The specific aspects of the site, histologic, immunohistochemical, cytogenetic, and molecular findings of the most relevant lymphoma types occurring in the various parts of the ocular adnexa will be discussed in relation to clinical parameters and relevance for therapy choice. Furthermore, the implications of the updated version of the World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues in relation to ocular adnexal lymphoma are reviewed.
Collapse
Affiliation(s)
- Robert M Verdijk
- Department of Pathology, section Ophthalmic Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam; and Rotterdam Eye Hospital, Rotterdam, Netherlands
| |
Collapse
|
47
|
Sassone M, Ponzoni M, Ferreri AJM. Ocular adnexal marginal zone lymphoma: Clinical presentation, pathogenesis, diagnosis, prognosis, and treatment. Best Pract Res Clin Haematol 2016; 30:118-130. [PMID: 28288706 DOI: 10.1016/j.beha.2016.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023]
Abstract
Ocular adnexal marginal zone lymphoma (OAML) represents 1-2% of all non Hodgkin lymphomas. In the last few years many advances in understanding the pathogenesis and the molecular basis involved in its development have been done. Many potential risk factors have been proposed; a dysregulation of immune response in association with a chronic antigenic stimulation, have been hypothesized as possible pathogenic mechanism. In particular, Chlamydia psittaci infection has been related to OAML arising, and eradicating antibiotic therapy has been addressed as a safe and cost-effective approach. Management of OAML is still heterogeneous and matter of debate. There is no consensus about the best upfront treatment and therapeutic decision should take into account several patient-, lymphoma- and treatment-related factors. Novel agents and chemotherapy-free strategies are being investigated to reduce side effects and improve tumor control. This review is focused in recent knowledge improvements in this lymphoma.
Collapse
Affiliation(s)
- Marianna Sassone
- Unit of Lymphoid Malignancies, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maurilio Ponzoni
- Unit of Lymphoid Malignancies, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; Università Vita e Salute, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Andrés J M Ferreri
- Unit of Lymphoid Malignancies, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
48
|
Kalpadakis C, Pangalis GA, Vassilakopoulos TP, Roumelioti M, Sachanas S, Korkolopoulou P, Koulieris E, Moschogiannis M, Yiakoumis X, Tsirkinidis P, Pontikoglou C, Rondoyianni D, Papadaki HA, Panayiotidis P, Angelopoulou MK. Detection of L265P MYD-88
mutation in a series of clonal B-cell lymphocytosis of marginal zone origin (CBL-MZ). Hematol Oncol 2016; 35:542-547. [DOI: 10.1002/hon.2361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Maria Roumelioti
- 1st Department of Propedeutics; Laikon General Hospital; University of Athens; Athens Greece
| | - Sotirios Sachanas
- Department of Haematology; Athens Medical Center Psychikon Branch; Athens Greece
| | | | - Efstathios Koulieris
- Department of Haematology; Athens Medical Center Psychikon Branch; Athens Greece
| | - Maria Moschogiannis
- Department of Haematology; Athens Medical Center Psychikon Branch; Athens Greece
| | - Xanthi Yiakoumis
- Department of Haematology; Athens Medical Center Psychikon Branch; Athens Greece
| | - Pantelis Tsirkinidis
- Department of Haematology; Athens Medical Center Psychikon Branch; Athens Greece
| | | | - Dimitra Rondoyianni
- Department of Anatomic Pathology; Evangelismos Hospital of Athens; Athens Greece
| | - Helen A. Papadaki
- Department of Haematology; University of Crete; Heraklion Crete Greece
| | | | - Maria K. Angelopoulou
- Department of Haematology; Laikon General Hospital; University of Athens; Athens Greece
| |
Collapse
|
49
|
Zhan C, Qi R, Wei G, Guven-Maiorov E, Nussinov R, Ma B. Conformational dynamics of cancer-associated MyD88-TIR domain mutant L252P (L265P) allosterically tilts the landscape toward homo-dimerization. Protein Eng Des Sel 2016; 29:347-54. [PMID: 27503954 PMCID: PMC5001137 DOI: 10.1093/protein/gzw033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022] Open
Abstract
MyD88 is an essential adaptor protein, which mediates the signaling of the toll-like and interleukin-1 receptors' superfamily. The MyD88 L252P (L265P) mutation has been identified in diffuse large B-cell lymphoma. The identification of this mutation has been a major advance in the diagnosis of patients with aldenstrom macroglobulinemia and related lymphoid neoplasms. Here we used computational methods to characterize the conformational effects of the mutation. Our molecular dynamics simulations revealed that the mutation allosterically quenched the global conformational dynamics of the toll/IL-1R (TIR) domain, and readjusted its salt bridges and dynamic community network. Specifically, the mutation changed the orientation and reduced the fluctuation of α-helix 3, possibly through eliminating/weakening ~8 salt bridges and enhancing the salt bridge D225-K258. Using the energy landscape of the TIR domains of MyD88, we identified two dynamic conformational basins, which correspond to the binding sites used in homo- and hetero-oligomerization, respectively. Our results indicate that the mutation stabilizes the core of the homo-dimer interface of the MyD88-TIR domain, and increases the population of homo-dimer-compatible conformational states in MyD88 family proteins. However, the dampened motion restricts its ability to heterodimerize with other TIR domains, thereby curtailing physiological signaling. In conclusion, the L252P both shifts the landscape toward homo-dimerization and restrains the dynamics of the MyD88-TIR domain, which disfavors its hetero-dimerization with other TIR domains. We further put these observations within the framework of MyD88-mediated cell signaling.
Collapse
Affiliation(s)
- Chendi Zhan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai, P. R. China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai, P. R. China
| | - Emine Guven-Maiorov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|