1
|
Chen J, Liu Y, Zhou K, Zhang W, Wen B, Xu K, Liu Y, Chen L, Huang Y, He B, Hang W, Chen J. DISC1 inhibits GSK3β activity to prevent tau hyperphosphorylation under diabetic encephalopathy. Biofactors 2023; 49:173-184. [PMID: 36070513 DOI: 10.1002/biof.1884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Diabetic encephalopathy (DE) is a common complication of type 2 diabetes (T2D), especially in those patients with long T2D history. Persistent high glucose (HG) stimulation leads to neuron damage and manifests like Alzheimer's disease's pathological features such as neurofilament tangle. However, the precise mechanism of high-glucose-induced tau hyperphosphorylation is not fully revealed. We here gave evidence that Disrupted in schizophrenia 1 protein (DISC1) could interact with glycogen synthase kinase 3β (GSK3β) and inhibit its activity to prevent tau hyperphosphorylation. By using DB/DB mice as animal model and HG-treated N2a cell as cell model, we found that DISC1 was downregulated both in vivo and in vitro, complicated with Tau hyperphosphorylation and GSK3β activation. Further, we identified DISC1 interacted with GSK3β by its 198th-237th amino acid residues. Overexpression of full length DISC1 but not mutated DISC1 lacking this domain could prevent HG induced tau hyperphosphorylation. Taken together, our work revealed DISC1 could be an important negative modulators of tau phosphorylation, and suggested that preservation of DISC1 could prevent HG induced neuron damage.
Collapse
Affiliation(s)
- Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Keru Zhou
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Bin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yazhou Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Chen
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Oliver GR, Tang X, Schultz-Rogers LE, Vidal-Folch N, Jenkinson WG, Schwab TL, Gaonkar K, Cousin MA, Nair A, Basu S, Chanana P, Oglesbee D, Klee EW. A tailored approach to fusion transcript identification increases diagnosis of rare inherited disease. PLoS One 2019; 14:e0223337. [PMID: 31577830 PMCID: PMC6774566 DOI: 10.1371/journal.pone.0223337] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND RNA sequencing has been proposed as a means of increasing diagnostic rates in studies of undiagnosed rare inherited disease. Recent studies have reported diagnostic improvements in the range of 7.5-35% by profiling splicing, gene expression quantification and allele specific expression. To-date however, no study has systematically assessed the presence of gene-fusion transcripts in cases of germline disease. Fusion transcripts are routinely identified in cancer studies and are increasingly recognized as having diagnostic, prognostic or therapeutic relevance. Isolated reports exist of fusion transcripts being detected in cases of developmental and neurological phenotypes, and thus, systematic application of fusion detection to germline conditions may further increase diagnostic rates. However, current fusion detection methods are unsuited to the investigation of germline disease due to performance biases arising from their development using tumor, cell-line or in-silico data. METHODS We describe a tailored approach to fusion candidate identification and prioritization in a cohort of 47 undiagnosed, suspected inherited disease patients. We modify an existing fusion transcript detection algorithm by eliminating its cell line-derived filtering steps, and instead, prioritize candidates using a custom workflow that integrates genomic and transcriptomic sequence alignment, biological and technical annotations, customized categorization logic, and phenotypic prioritization. RESULTS We demonstrate that our approach to fusion transcript identification and prioritization detects genuine fusion events excluded by standard analyses and efficiently removes phenotypically unimportant candidates and false positive events, resulting in a reduced candidate list enriched for events with potential phenotypic relevance. We describe the successful genetic resolution of two previously undiagnosed disease cases through the detection of pathogenic fusion transcripts. Furthermore, we report the experimental validation of five additional cases of fusion transcripts with potential phenotypic relevance. CONCLUSIONS The approach we describe can be implemented to enable the detection of phenotypically relevant fusion transcripts in studies of rare inherited disease. Fusion transcript detection has the potential to increase diagnostic rates in rare inherited disease and should be included in RNA-based analytical pipelines aimed at genetic diagnosis.
Collapse
Affiliation(s)
- Gavin R. Oliver
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Laura E. Schultz-Rogers
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - W. Garrett Jenkinson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Krutika Gaonkar
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Margot A. Cousin
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Asha Nair
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shubham Basu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Pritha Chanana
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric W. Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
3
|
Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol Psychiatry 2019; 24:936-951. [PMID: 30089789 DOI: 10.1038/s41380-018-0133-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.
Collapse
|
4
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
5
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
6
|
Furukubo-Tokunaga K, Kurita K, Honjo K, Pandey H, Ando T, Takayama K, Arai Y, Mochizuki H, Ando M, Kamiya A, Sawa A. DISC1 causes associative memory and neurodevelopmental defects in fruit flies. Mol Psychiatry 2016; 21:1232-43. [PMID: 26976042 PMCID: PMC4993648 DOI: 10.1038/mp.2016.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 01/18/2023]
Abstract
Originally found in a Scottish family with diverse mental disorders, the DISC1 protein has been characterized as an intracellular scaffold protein that associates with diverse binding partners in neural development. To explore its functions in a genetically tractable system, we expressed the human DISC1 in fruit flies (Drosophila melanogaster). As in mammalian neurons, DISC1 is localized to diverse subcellular domains of developing fly neurons including the nuclei, axons and dendrites. Overexpression of DISC1 impairs associative memory. Experiments with deletion/mutation constructs have revealed the importance of amino-terminal domain (46-290) for memory suppression whereas carboxyl domain (598-854) and the amino-terminal residues (1-45) including the nuclear localization signal (NLS1) are dispensable. DISC1 overexpression also causes suppression of axonal and dendritic branching of mushroom body neurons, which mediate a variety of cognitive functions in the fly brain. Analyses with deletion/mutation constructs reveal that protein domains 598-854 and 349-402 are both required for the suppression of axonal branching, while amino-terminal domains including NLS1 are dispensable. In contrast, NLS1 was required for the suppression of dendritic branching, suggesting a mechanism involving gene expression. Moreover, domain 403-596 is also required for the suppression of dendritic branching. We also show that overexpression of DISC1 suppresses glutamatergic synaptogenesis in developing neuromuscular junctions. Deletion/mutation experiments have revealed the importance of protein domains 403-596 and 349-402 for synaptic suppression, while amino-terminal domains including NLS1 are dispensable. Finally, we show that DISC1 functionally interacts with the fly homolog of Dysbindin (DTNBP1) via direct protein-protein interaction in developing synapses.
Collapse
Affiliation(s)
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ken Honjo
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tetsuya Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kojiro Takayama
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroaki Mochizuki
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mai Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
7
|
Thomson PA, Duff B, Blackwood DHR, Romaniuk L, Watson A, Whalley HC, Li X, Dauvermann MR, Moorhead TWJ, Bois C, Ryan NM, Redpath H, Hall L, Morris SW, van Beek EJR, Roberts N, Porteous DJ, St Clair D, Whitcher B, Dunlop J, Brandon NJ, Hughes ZA, Hall J, McIntosh A, Lawrie SM. Balanced translocation linked to psychiatric disorder, glutamate, and cortical structure/function. NPJ SCHIZOPHRENIA 2016; 2:16024. [PMID: 27602385 PMCID: PMC4994153 DOI: 10.1038/npjschz.2016.24] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
Abstract
Rare genetic variants of large effect can help elucidate the pathophysiology of brain disorders. Here we expand the clinical and genetic analyses of a family with a (1;11)(q42;q14.3) translocation multiply affected by major psychiatric illness and test the effect of the translocation on the structure and function of prefrontal, and temporal brain regions. The translocation showed significant linkage (LOD score 6.1) with a clinical phenotype that included schizophrenia, schizoaffective disorder, bipolar disorder, and recurrent major depressive disorder. Translocation carriers showed reduced cortical thickness in the left temporal lobe, which correlated with general psychopathology and positive psychotic symptom severity. They showed reduced gyrification in prefrontal cortex, which correlated with general psychopathology severity. Translocation carriers also showed significantly increased activation in the caudate nucleus on increasing verbal working memory load, as well as statistically significant reductions in the right dorsolateral prefrontal cortex glutamate concentrations. These findings confirm that the t(1;11) translocation is associated with a significantly increased risk of major psychiatric disorder and suggest a general vulnerability to psychopathology through altered cortical structure and function, and decreased glutamate levels.
Collapse
Affiliation(s)
- Pippa A Thomson
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, University of Edinburgh, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital , Edinburgh, UK
| | - Barbara Duff
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Douglas H R Blackwood
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Liana Romaniuk
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Andrew Watson
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Xiang Li
- Clinical Research Imaging Centre (CRIC), The Queen's Medical Research Institute, University of Edinburgh , UK
| | - Maria R Dauvermann
- McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, MA, USA
| | - T William J Moorhead
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Catherine Bois
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Niamh M Ryan
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, University of Edinburgh, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital , Edinburgh, UK
| | - Holly Redpath
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Lynsey Hall
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Stewart W Morris
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, University of Edinburgh, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital , Edinburgh, UK
| | - Edwin J R van Beek
- Clinical Research Imaging Centre (CRIC), The Queen's Medical Research Institute, University of Edinburgh , UK
| | - Neil Roberts
- Clinical Research Imaging Centre (CRIC), The Queen's Medical Research Institute, University of Edinburgh , UK
| | - David J Porteous
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, University of Edinburgh, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital , Edinburgh, UK
| | - David St Clair
- Institute of Medical Sciences, University of Aberdeen , Aberdeen, UK
| | - Brandon Whitcher
- Clinical & Translational Imaging Group, Pfizer Global Research , Cambridge, MA, USA
| | - John Dunlop
- Neuroscience Research Unit, Pfizer Global Research, Cambridge, MA, USA; AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, MA, USA
| | - Nicholas J Brandon
- Neuroscience Research Unit, Pfizer Global Research, Cambridge, MA, USA; AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, MA, USA
| | - Zoë A Hughes
- Neuroscience Research Unit, Pfizer Global Research , Cambridge, MA, USA
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building , Cardiff, UK
| | - Andrew McIntosh
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Deanery of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park , Edinburgh, UK
| |
Collapse
|
8
|
Disrupted-in-schizophrenia 1 (DISC1) and Syntaphilin collaborate to modulate axonal mitochondrial anchoring. Mol Brain 2016; 9:69. [PMID: 27370822 PMCID: PMC4930613 DOI: 10.1186/s13041-016-0250-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/24/2016] [Indexed: 01/28/2023] Open
Abstract
In neuronal axons, the ratio of motile-to-stationary mitochondria is tightly regulated by neuronal activation, thereby meeting the need for local calcium buffering and maintaining the ATP supply. However, the molecular players and detailed regulatory mechanisms behind neuronal mitochondrial movement are not completely understood. Here, we found that neuronal activation-induced mitochondrial anchoring is regulated by Disrupted-in-schizophrenia 1 (DISC1), which is accomplished by functional association with Syntaphilin (SNPH). DISC1 deficiency resulted in reduced axonal mitochondrial movement, which was partially reversed by concomitant SNPH depletion. In addition, a SNPH deletion mutant lacking the sequence for interaction with DISC1 exhibited an enhanced mitochondrial anchoring effect than wild-type SNPH. Moreover, upon neuronal activation, mitochondrial movement was preserved by DISC1 overexpression, not showing immobilized response of mitochondria. Taken together, we propose that DISC1 in association with SNPH is a component of a modulatory complex that determines mitochondrial anchoring in response to neuronal activation.
Collapse
|
9
|
Tomoda T, Sumitomo A, Jaaro-Peled H, Sawa A. Utility and validity of DISC1 mouse models in biological psychiatry. Neuroscience 2016; 321:99-107. [PMID: 26768401 PMCID: PMC4803604 DOI: 10.1016/j.neuroscience.2015.12.061] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022]
Abstract
We have seen an era of explosive progress in translating neurobiology into etiological understanding of mental disorders for the past 10-15 years. The discovery of Disrupted-in-schizophrenia 1 (DISC1) gene was one of the major driving forces that have contributed to the progress. The finding that DISC1 plays crucial roles in neurodevelopment and synapse regulation clearly underscored the utility and validity of DISC1-related biology in advancing our understanding of pathophysiological processes underlying psychiatric conditions. Despite recent genetic studies that failed to identify DISC1 as a risk gene for sporadic cases of schizophrenia, DISC1 mutant mice, coupled with various environmental stressors, have proven successful in satisfying face validity as models of a wide range of human psychiatric conditions. Investigating mental disorders using these models is expected to further contribute to the circuit-level understanding of the pathological mechanisms, as well as to the development of novel therapeutic strategies in the future.
Collapse
Affiliation(s)
- T Tomoda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - A Sumitomo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - H Jaaro-Peled
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
10
|
Niwa M, Lee RS, Tanaka T, Okada K, Kano SI, Sawa A. A critical period of vulnerability to adolescent stress: epigenetic mediators in mesocortical dopaminergic neurons. Hum Mol Genet 2016; 25:1370-81. [PMID: 26908623 DOI: 10.1093/hmg/ddw019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
The molecular basis of vulnerability to stress during the adolescent period is largely unknown. To identify potential molecular mediators that may play a role in stress-induced behavioral deficits, we imposed social isolation on a genetically vulnerable mouse model. We report that 3-week (5-8 weeks of age) adolescent stress in combination with disrupted-in-schizophrenia 1 (Disc1) genetic risk elicits alterations in DNA methylation of a specific set of genes, tyrosine hydroxylase, brain-derived neurotrophic factor and FK506 binding protein 5. The epigenetic changes in the mesocortical dopaminergic neurons were prevented when animals were treated with a glucocorticoid receptor (GR) antagonist RU486 during social isolation, which implicates the role for glucocorticoid signaling in this pathological event. We define the critical period of GR intervention as the first 1-week period during the stress regimen, suggesting that this particular week in adolescence may be a specific period of maturation and function of mesocortical dopaminergic neurons and their sensitivity to glucocorticoids. Our study may also imply the clinical significance of early detection and prophylactic intervention against conditions associated with adolescent social stress in individuals with genetic risk.
Collapse
Affiliation(s)
- Minae Niwa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA
| | - Richard S Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA
| | - Teppei Tanaka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA
| | - Kinya Okada
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA
| | - Shin-Ichi Kano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Bodea CA, Middleton FA, Melhem NM, Klei L, Song Y, Tiobech J, Marumoto P, Yano V, Faraone SV, Roeder K, Myles-Worsley M, Devlin B, Byerley W. Analysis of Shared Haplotypes amongst Palauans Maps Loci for Psychotic Disorders to 4q28 and 5q23-q31. Complex Psychiatry 2016; 2:173-184. [DOI: 10.1159/000450726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/19/2016] [Indexed: 11/19/2022] Open
Abstract
To localize genetic variation affecting risk for psychotic disorders in the population of Palau, we genotyped DNA samples from 203 Palauan individuals diagnosed with psychotic disorders, broadly defined, and 125 control subjects using a genome-wide single nucleotide polymorphism array. Palau has unique features advantageous for this study: due to its population history, Palauans are substantially interrelated; affected individuals often, but not always, cluster in families; and we have essentially complete ascertainment of affected individuals. To localize risk variants to genomic regions, we evaluated long-shared haplotypes, ≥10 Mb, identifying clusters of affected individuals who share such haplotypes. This extensive sharing, typically identical by descent, was significantly greater in cases than population controls, even after controlling for relatedness. Several regions of the genome exhibited substantial excess of shared haplotypes for affected individuals, including 3p21, 3p12, 4q28, and 5q23-q31. Two of these regions, 4q28 and 5q23-q31, showed significant linkage by traditional LOD score analysis and could harbor variants of more sizeable risk for psychosis or a multiplicity of risk variants. The pattern of haplotype sharing in 4q28 highlights <i>PCDH10</i>, encoding a cadherin-related neuronal receptor, as possibly involved in risk.
Collapse
|
12
|
Norkett R, Modi S, Birsa N, Atkin TA, Ivankovic D, Pathania M, Trossbach SV, Korth C, Hirst WD, Kittler JT. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites. J Biol Chem 2015; 291:613-29. [PMID: 26553875 PMCID: PMC4705382 DOI: 10.1074/jbc.m115.699447] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.
Collapse
Affiliation(s)
- Rosalind Norkett
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Souvik Modi
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Nicol Birsa
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Talia A Atkin
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Davor Ivankovic
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Manav Pathania
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Svenja V Trossbach
- the Department of Neuropathology, Heinrich Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| | - Carsten Korth
- the Department of Neuropathology, Heinrich Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| | - Warren D Hirst
- the Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139, and
| | - Josef T Kittler
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
13
|
Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1. Transl Psychiatry 2015; 5:e569. [PMID: 25989143 PMCID: PMC4471291 DOI: 10.1038/tp.2015.60] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 02/08/2023] Open
Abstract
Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal-PFC connectivity. Altered hippocampal-PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1-PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity.
Collapse
|
14
|
Norlelawati AT, Kartini A, Norsidah K, Ramli M, Tariq AR, Wan Rohani WT. Disrupted-in-Schizophrenia-1 SNPs and Susceptibility to Schizophrenia: Evidence from Malaysia. Psychiatry Investig 2015; 12:103-11. [PMID: 25670952 PMCID: PMC4310907 DOI: 10.4306/pi.2015.12.1.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Even though the role of the DICS1 gene as a risk factor for schizophrenia is still unclear, there is substantial evidence from functional and cell biology studies that supports the connection of the gene with schizophrenia. The studies associating the DISC1 gene with schizophrenia in Asian populations are limited to East-Asian populations. Our study examined several DISC1 markers of schizophrenia that were identified in the Caucasian and East-Asian populations in Malaysia and assessed the role of rs2509382, which is located at 11q14.3, the mutual translocation region of the famous DISC1 translocation [t (1; 11) (p42.1; q14.3)]. METHODS We genotyped eleven single-neucleotide polymorphism (SNPs) within or related to DISC1 (rs821597, rs821616, rs4658971, rs1538979, rs843979, rs2812385, rs1407599, rs4658890, and rs2509382) using the PCR-RFLP methods. RESULTS In all, there were 575 participants (225 schizophrenic patients and 350 healthy controls) of either Malay or Chinese ethnicity. The case-control analyses found two SNPs that were associated with schizophrenia [rs4658971 (p=0.030; OR=1.43 (1.35-1.99) and rs1538979-(p=0.036; OR=1.35 (1.02-1.80)] and rs2509382-susceptibility among the males schizophrenics [p=0.0082; OR=2.16 (1.22-3.81)]. This is similar to the meta-analysis findings for the Caucasian populations. CONCLUSION The study supports the notion that the DISC1 gene is a marker of schizophrenia susceptibility and that rs2509382 in the mutual DISC1 translocation region is a susceptibility marker for schizophrenia among males in Malaysia. However, the finding of the study is limited due to possible genetic stratification and the small sample size.
Collapse
Affiliation(s)
- A. Talib Norlelawati
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Abdullah Kartini
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Kuzaifah Norsidah
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Musa Ramli
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Abdul Razak Tariq
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Wan Taib Wan Rohani
- Faculty of Medicine, University of Sultan Zainal Abidin, Terengganu, Malaysia
| |
Collapse
|
15
|
Ji B, Higa KK, Kim M, Zhou L, Young JW, Geyer MA, Zhou X. Inhibition of protein translation by the DISC1-Boymaw fusion gene from a Scottish family with major psychiatric disorders. Hum Mol Genet 2014; 23:5683-705. [PMID: 24908665 DOI: 10.1093/hmg/ddu285] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The t(1; 11) translocation appears to be the causal genetic lesion with 70% penetrance for schizophrenia, major depression and other psychiatric disorders in a Scottish family. Molecular studies identified the disruption of the disrupted-in-schizophrenia 1 (DISC1) gene by chromosome translocation at chromosome 1q42. Our previous studies, however, revealed that the translocation also disrupted another gene, Boymaw (also termed DISC1FP1), on chromosome 11. After translocation, two fusion genes [the DISC1-Boymaw (DB7) and the Boymaw-DISC1 (BD13)] are generated between the DISC1 and Boymaw genes. In the present study, we report that expression of the DB7 fusion gene inhibits both intracellular NADH oxidoreductase activities and protein translation. We generated humanized DISC1-Boymaw mice with gene targeting to examine the in vivo functions of the fusion genes. Consistent with the in vitro studies on the DB7 fusion gene, protein translation activity is decreased in the hippocampus and in cultured primary neurons from the brains of the humanized mice. Expression of Gad67, Nmdar1 and Psd95 proteins are also reduced. The humanized mice display prolonged and increased responses to the NMDA receptor antagonist, ketamine, on various mouse genetic backgrounds. Abnormal information processing of acoustic startle and depressive-like behaviors are also observed. In addition, the humanized mice display abnormal erythropoiesis, which was reported to associate with depression in humans. Expression of the DB7 fusion gene may reduce protein translation to impair brain functions and thereby contribute to the pathogenesis of major psychiatric disorders.
Collapse
Affiliation(s)
- Baohu Ji
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kerin K Higa
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Minjung Kim
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lynn Zhou
- La Jolla High School, 750 Nautilus St., San Diego, CA 92037, USA and
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| |
Collapse
|
16
|
Thomson PA, Parla JS, McRae AF, Kramer M, Ramakrishnan K, Yao J, Soares DC, McCarthy S, Morris SW, Cardone L, Cass S, Ghiban E, Hennah W, Evans KL, Rebolini D, Millar JK, Harris SE, Starr JM, MacIntyre DJ, McIntosh AM, Watson JD, Deary IJ, Visscher PM, Blackwood DH, McCombie WR, Porteous DJ. 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 2014; 19:668-75. [PMID: 23732877 PMCID: PMC4031635 DOI: 10.1038/mp.2013.68] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10(-5), OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Collapse
Affiliation(s)
- P A Thomson
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J S Parla
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - A F McRae
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - K Ramakrishnan
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J Yao
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D C Soares
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S W Morris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - L Cardone
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Cass
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - E Ghiban
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - W Hennah
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - K L Evans
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D Rebolini
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J K Millar
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S E Harris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D J MacIntyre
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Generation Scotland7
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh and Glasgow, UK
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J D Watson
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - P M Visscher
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D J Porteous
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| |
Collapse
|
17
|
DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan. Mol Psychiatry 2014; 19:141-3. [PMID: 24457522 PMCID: PMC4238281 DOI: 10.1038/mp.2013.160] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Pierce S, Spurrell C, Coe BP, Krumm N, Lee MK, Sebat J, McClellan JM, King MC. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am J Hum Genet 2013; 93:697-710. [PMID: 24094746 PMCID: PMC3791253 DOI: 10.1016/j.ajhg.2013.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/15/2013] [Accepted: 09/10/2013] [Indexed: 12/28/2022] Open
Abstract
Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency < 0.001 in an independent series of 20,000 controls. Four of 124 affected individuals and zero of 290 control individuals harbored such events (p = 0.002); a 47 kb duplication disrupted MATK and ZFR2, a 58 kb duplication disrupted PLEKHD1 and SLC39A9, a 121 kb duplication disrupted DNAJA2 and NETO2, and a 150 kb deletion disrupted MAP3K3 and DDX42. Each fusion produced a stable protein when exogenously expressed in cultured cells. We examined whether these chimeras differed from their parent genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization.
Collapse
Affiliation(s)
- Caitlin Rippey
- Departments of Medicine and of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
20
|
Debono R, Topless R, Markie D, Black MA, Merriman TR. Analysis of the DISC1 translocation partner (11q14.3) in genetic risk of schizophrenia. GENES BRAIN AND BEHAVIOR 2012; 11:859-63. [PMID: 22891933 DOI: 10.1111/j.1601-183x.2012.00832.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/04/2012] [Accepted: 08/02/2012] [Indexed: 11/27/2022]
Abstract
The Disrupted-in-Schizophrenia 1 (DISC1) locus on human chromosome 1 was identified as a consequence of its involvement in a balanced translocation (1;11)(q42.1;q14.3) segregating with major psychiatric disorders in a Scottish family. Recently a comprehensive meta-analysis of genome-wide association scan data found no evidence that common variants of DISC1 (1q42.1) are associated with schizophrenia. Our aim was to test for association of variants in the 11q14.3 translocation region with schizophrenia. The 11q14.3 region was examined by meta-analysis of genome-wide scan data made available by the Genetic Association Information Network (GAIN) and other investigators (non-GAIN) through dbGap. P-values were adjusted for multiple testing using the false discovery rate (FDR) approach. There were no single-nucleotide polymorphisms (SNPs) significant (P < 0.05) after correction for multiple testing in the combined schizophrenia dataset. However, one SNP (rs2509382) was significantly associated in the male-only analysis with P(FDR) = 0.024. Whilst the relevance of the (1;11)(q42.1;q14.3) translocation to psychiatric disorders is currently specific to the Scottish family, genetic material in the chromosome 11 region may contain risk variants for psychiatric disorders in the wider population. The association found in this region does warrant follow-up analysis in further sample sets.
Collapse
Affiliation(s)
- R Debono
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
21
|
Eykelenboom JE, Briggs GJ, Bradshaw NJ, Soares DC, Ogawa F, Christie S, Malavasi EL, Makedonopoulou P, Mackie S, Malloy MP, Wear MA, Blackburn EA, Bramham J, McIntosh AM, Blackwood DH, Muir WJ, Porteous DJ, Millar JK. A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins. Hum Mol Genet 2012; 21:3374-86. [PMID: 22547224 PMCID: PMC3392113 DOI: 10.1093/hmg/dds169] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/24/2012] [Indexed: 02/03/2023] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1-597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117).
Collapse
Affiliation(s)
- Jennifer E. Eykelenboom
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Gareth J. Briggs
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Nicholas J. Bradshaw
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dinesh C. Soares
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Fumiaki Ogawa
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Sheila Christie
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Elise L.V. Malavasi
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Paraskevi Makedonopoulou
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shaun Mackie
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Mary P. Malloy
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Martin A. Wear
- Institute of Structural and Molecular Biology, Centre for Translational and Chemical Biology, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK and
| | - Elizabeth A. Blackburn
- Institute of Structural and Molecular Biology, Centre for Translational and Chemical Biology, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK and
| | - Janice Bramham
- Institute of Structural and Molecular Biology, Centre for Translational and Chemical Biology, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK and
| | - Andrew M. McIntosh
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
- University Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Douglas H. Blackwood
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
- University Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Walter J. Muir
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
- University Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - David J. Porteous
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - J. Kirsty Millar
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
22
|
Holt R, Sykes NH, Conceição IC, Cazier JB, Anney RJL, Oliveira G, Gallagher L, Vicente A, Monaco AP, Pagnamenta AT. CNVs leading to fusion transcripts in individuals with autism spectrum disorder. Eur J Hum Genet 2012; 20:1141-7. [PMID: 22549408 PMCID: PMC3476715 DOI: 10.1038/ejhg.2012.73] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is strong evidence that rare copy number variants (CNVs) have a role in susceptibility to autism spectrum disorders (ASDs). Much research has focused on how CNVs mediate a phenotypic effect by altering gene expression levels. We investigated an alternative mechanism whereby CNVs combine the 5′ and 3′ ends of two genes, creating a ‘fusion gene'. Any resulting mRNA with an open reading frame could potentially alter the phenotype via a gain-of-function mechanism. We examined 2382 and 3096 rare CNVs from 996 individuals with ASD and 1287 controls, respectively, for potential to generate fusion transcripts. There was no increased burden in individuals with ASD; 122/996 cases harbored at least one rare CNV of this type, compared with 179/1287 controls (P=0.89). There was also no difference in the overall frequency distribution between cases and controls. We examined specific examples of such CNVs nominated by case–control analysis and a candidate approach. Accordingly, a duplication involving REEP1-POLR1A (found in 3/996 cases and 0/1287 controls) and a single occurrence CNV involving KIAA0319-TDP2 were tested. However, no fusion transcripts were detected by RT-PCR. Analysis of additional samples based on cell line availability resulted in validation of a MAPKAPK5-ACAD10 fusion transcript in two probands. However, this variant was present in controls at a similar rate and is unlikely to influence ASD susceptibility. In summary, although we find no evidence that fusion-gene generating CNVs lead to ASD susceptibility, discovery of a MAPKAPK5-ACAD10 transcript with an estimated frequency of ∼1/200 suggests that gain-of-function mechanisms should be considered in future CNVs studies.
Collapse
Affiliation(s)
- Richard Holt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12:707-22. [PMID: 22095064 DOI: 10.1038/nrn3120] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the underlying genetic architecture of psychiatric disorders has blown away the diagnostic boundaries that are defined by currently used diagnostic manuals. The disrupted in schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of an inherited chromosomal translocation, which segregates with major mental illnesses. In addition, many biological studies have indicated a role for DISC1 in early neurodevelopment and synaptic regulation. Given that DISC1 is thought to drive a range of endophenotypes that underlie major mental conditions, elucidating the biology of DISC1 may enable the construction of new diagnostic categories for mental illnesses with a more meaningful biological foundation.
Collapse
|
24
|
Balu DT, Coyle JT. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2011; 35:848-70. [PMID: 20951727 PMCID: PMC3005823 DOI: 10.1016/j.neubiorev.2010.10.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/06/2010] [Accepted: 10/10/2010] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world's population. One of the cardinal pathological features of schizophrenia is perturbation in synaptic connectivity. Although the etiology of schizophrenia is unknown, it appears to be a developmental disorder involving the interaction of a potentially large number of risk genes, with no one gene producing a strong effect except rare, highly penetrant copy number variants. The purpose of this review is to detail how putative schizophrenia risk genes (DISC-1, neuregulin/ErbB4, dysbindin, Akt1, BDNF, and the NMDA receptor) are involved in regulating neuroplasticity and how alterations in their expression may contribute to the disconnectivity observed in schizophrenia. Moreover, this review highlights how many of these risk genes converge to regulate common neurotransmitter systems and signaling pathways. Future studies aimed at elucidating the functions of these risk genes will provide new insights into the pathophysiology of schizophrenia and will likely lead to the nomination of novel therapeutic targets for restoring proper synaptic connectivity in the brain in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | | |
Collapse
|