1
|
McDiarmid AH, Gospodinova KO, Elliott RJR, Dawson JC, Graham RE, El-Daher MT, Anderson SM, Glen SC, Glerup S, Carragher NO, Evans KL. Morphological profiling in human neural progenitor cells classifies hits in a pilot drug screen for Alzheimer's disease. Brain Commun 2024; 6:fcae101. [PMID: 38576795 PMCID: PMC10994270 DOI: 10.1093/braincomms/fcae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Alzheimer's disease accounts for 60-70% of dementia cases. Current treatments are inadequate and there is a need to develop new approaches to drug discovery. Recently, in cancer, morphological profiling has been used in combination with high-throughput screening of small-molecule libraries in human cells in vitro. To test feasibility of this approach for Alzheimer's disease, we developed a cell morphology-based drug screen centred on the risk gene, SORL1 (which encodes the protein SORLA). Increased Alzheimer's disease risk has been repeatedly linked to variants in SORL1, particularly those conferring loss or decreased expression of SORLA, and lower SORL1 levels are observed in post-mortem brain samples from individuals with Alzheimer's disease. Consistent with its role in the endolysosomal pathway, SORL1 deletion is associated with enlarged endosomes in neural progenitor cells and neurons. We, therefore, hypothesized that multi-parametric, image-based cell phenotyping would identify features characteristic of SORL1 deletion. An automated morphological profiling method (Cell Painting) was adapted to neural progenitor cells and used to determine the phenotypic response of SORL1-/- neural progenitor cells to treatment with compounds from a small internationally approved drug library (TargetMol, 330 compounds). We detected distinct phenotypic signatures for SORL1-/- neural progenitor cells compared to isogenic wild-type controls. Furthermore, we identified 16 compounds (representing 14 drugs) that reversed the mutant morphological signatures in neural progenitor cells derived from three SORL1-/- induced pluripotent stem cell sub-clones. Network pharmacology analysis revealed the 16 compounds belonged to five mechanistic groups: 20S proteasome, aldehyde dehydrogenase, topoisomerase I and II, and DNA synthesis inhibitors. Enrichment analysis identified DNA synthesis/damage/repair, proteases/proteasome and metabolism as key pathways/biological processes. Prediction of novel targets revealed enrichment in pathways associated with neural cell function and Alzheimer's disease. Overall, this work suggests that (i) a quantitative phenotypic metric can distinguish induced pluripotent stem cell-derived SORL1-/- neural progenitor cells from isogenic wild-type controls and (ii) phenotypic screening combined with multi-parametric high-content image analysis is a viable option for drug repurposing and discovery in this human neural cell model of Alzheimer's disease.
Collapse
Affiliation(s)
- Amina H McDiarmid
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Katerina O Gospodinova
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard J R Elliott
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - John C Dawson
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Rebecca E Graham
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Marie-Therese El-Daher
- Medical Research Council Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Susan M Anderson
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Sophie C Glen
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Neil O Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Kathryn L Evans
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
2
|
Tobeh NS, Bruce KD. Emerging Alzheimer's disease therapeutics: promising insights from lipid metabolism and microglia-focused interventions. Front Aging Neurosci 2023; 15:1259012. [PMID: 38020773 PMCID: PMC10630922 DOI: 10.3389/fnagi.2023.1259012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
More than 55 million people suffer from dementia, with this number projected to double every 20 years. In the United States, 1 in 3 aged individuals dies from Alzheimer's disease (AD) or another type of dementia and AD kills more individuals than breast cancer and prostate cancer combined. AD is a complex and multifactorial disease involving amyloid plaque and neurofibrillary tangle formation, glial cell dysfunction, and lipid droplet accumulation (among other pathologies), ultimately leading to neurodegeneration and neuronal death. Unfortunately, the current FDA-approved therapeutics do not reverse nor halt AD. While recently approved amyloid-targeting antibodies can slow AD progression to improve outcomes for some patients, they are associated with adverse side effects, may have a narrow therapeutic window, and are expensive. In this review, we evaluate current and emerging AD therapeutics in preclinical and clinical development and provide insight into emerging strategies that target brain lipid metabolism and microglial function - an approach that may synergistically target multiple mechanisms that drive AD neuropathogenesis. Overall, we evaluate whether these disease-modifying emerging therapeutics hold promise as interventions that may be able to reverse or halt AD progression.
Collapse
Affiliation(s)
- Nour S Tobeh
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Richter E, Lohmann CH, Dell’Accio F, Goettsch C, Bertrand J. Sortilin Is Upregulated in Osteoarthritis-Dependent Cartilage Calcification and Associated with Cellular Senescence. Int J Mol Sci 2023; 24:12343. [PMID: 37569721 PMCID: PMC10418692 DOI: 10.3390/ijms241512343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage calcification, loss of articular cartilage, bone changes, pain, and disability. Cartilage calcification is one hallmark of OA and is predominantly caused by basic calcium crystals formed due to an imbalance of the pyrophosphate pathway. Sortilin is a transmembrane protein that contributes to vascular calcification in atherosclerosis by externalizing alkaline phosphatase (ALP)-containing vesicles. Calcification in atherosclerosis and osteoarthritis has been associated with cellular senescence. The aim of this study was to investigate the potential role of sortilin and senescence in osteoarthritis-dependent cartilage calcification. Osteoarthritic cartilage from human knee joints was collected after joint replacement, and samples were analyzed by immunohistochemistry and quantitative RT-PCR analysis. Human chondrocytes were treated with osteogenic medium for up to 21 days to induce calcification. Western blots for sortilin and ALP, as well as an ALP activity assay, were performed. Human chondrocytes were treated with mitomycin C to induce senescence, and sortilin expression was quantified at the protein and gene levels. Sections of knee joints from a murine model of osteoarthritis were stained for sortilin and p16 and analyzed by immunohistochemistry. Treatment of wild-type chondrocytes using an osteogenic medium similar to human chondrocytes was performed. Osteoarthritic cartilage from mouse and human knee joints showed an increased number of sortilin and p16-positive chondrocytes compared to healthy cartilage. This observation was corroborated by increased gene expression of sortilin and p16 in mild and moderate osteoarthritic cartilage samples. To investigate the mechanism of sortilin regulation, human chondrocytes were treated with osteogenic medium to induce calcification. Sortilin protein levels and expression were increased after 7 days of stimulation, whereas ALP levels and activity were upregulated after 21 days of stimulation. Similar observations were made in a murine osteoarthritis model. Mechanistically, senescent chondrocytes induced by mitomycin C showed an upregulation of sortilin and ALP gene expression compared to non-senescent chondrocytes. Our data indicate that sortilin and ALP are upregulated during cartilage calcification, which is associated with chondrocyte senescence and thus might contribute to the pathogenesis of osteoarthritis. Cellular senescence seems to induce sortilin expression.
Collapse
Affiliation(s)
- Elisabeth Richter
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (E.R.); (C.H.L.)
| | - Christoph H. Lohmann
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (E.R.); (C.H.L.)
| | - Francesco Dell’Accio
- William Harvey Research Institute, Queen Mary University London, London EC1M 6BQ, UK;
| | - Claudia Goettsch
- Department of Internal Medicine I-Cardiology, RWTH Aachen University, 52062 Aachen, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (E.R.); (C.H.L.)
| |
Collapse
|
4
|
Qiu G, Zhu FQ, Xu C. Identification of two pathogenic mutations in SORL1 in early-onset Alzheimer's disease. J Clin Neurosci 2021; 89:243-248. [PMID: 34119275 DOI: 10.1016/j.jocn.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
The sortilin-related receptor 1 (SORL1) gene has been the subject of many studies focusing on frequent polymorphisms, which is associated with increased risk for Alzheimer's Disease (AD). By whole-exome sequencing (WES), we identified two pathogenic missense mutations c.579C > G (p.F193L) and c.1397A > G (p.N466S) in SORL1. The two mutations were located in the same protein domain, and the two unrelated probands both had an onset of memory problems at less than 65 years of age, but their clinical manifestations and cranial imaging are different. The protein structure and function affected by these mutations were predicted using bioinformatics analysis, which suggested they were pathogenic. 3D protein structural analysis revealed that these amino acid substitutions might result in instability of protein structure and adverse intramolecular interactions. These findings suggest that both F193L and N466S should be thought as potential causative mutations in early-onset Alzheimer's disease (EOAD) patients. Further functional studies are warranted to evaluate their roles in the pathogenesis of AD.
Collapse
Affiliation(s)
- Guozhen Qiu
- The Third Affiliated Hospital of Shenzhen University, Cognitive Impairment Ward of Neurology Department, Shenzhen, Guangdong Province, China.
| | - Fei-Qi Zhu
- The Third Affiliated Hospital of Shenzhen University, Cognitive Impairment Ward of Neurology Department, Shenzhen, Guangdong Province, China
| | - Chunyan Xu
- The Third Affiliated Hospital of Shenzhen University, Cognitive Impairment Ward of Neurology Department, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
6
|
Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants. Int J Genomics 2019; 2019:2085496. [PMID: 30733955 PMCID: PMC6348822 DOI: 10.1155/2019/2085496] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
The incidence of neurodevelopmental and neurodegenerative diseases worldwide has dramatically increased over the last decades. Although the aetiology remains uncertain, evidence is now growing that exposure to persistent organic pollutants during sensitive neurodevelopmental periods such as early life may be a strong risk factor, predisposing the individual to disease development later in life. Epidemiological studies have associated environmentally persistent organic pollutant exposure to brain disorders including neuropathies, cognitive, motor, and sensory impairments; neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD); and neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). In many ways, this expands the classical “Developmental Origins of Health and Disease” paradigm to include exposure to pollutants. This model has been refined over the years to give the current “three-hit” model that considers the individual's genetic factors as a first “hit.” It has an immediate interaction with the early-life exposome (including persistent organic pollutants) that can be considered to be a second “hit.” Together, these first two “hits” produce a quiescent or latent phenotype, most probably encoded in the epigenome, which has become susceptible to a third environmental “hit” in later life. It is only after the third “hit” that the increased risk of disease symptoms is crystallised. However, if the individual is exposed to a different environment in later life, they would be expected to remain healthy. In this review, we examine the effect of exposure to persistent organic pollutants and particulate matters in early life and the relationship to subsequent neurodevelopmental and neurodegenerative disorders. The roles of those environmental factors which may affect epigenetic DNA methylation and therefore influence normal neurodevelopment are then evaluated.
Collapse
|
7
|
Stepler KE, Robinson RAS. The Potential of ‘Omics to Link Lipid Metabolism and Genetic and Comorbidity Risk Factors of Alzheimer’s Disease in African Americans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:1-28. [DOI: 10.1007/978-3-030-05542-4_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF, Yang CH. The rs1277306 Variant of the REST Gene Confers Susceptibility to Cognitive Aging in an Elderly Taiwanese Population. Dement Geriatr Cogn Disord 2018; 43:119-127. [PMID: 28142142 DOI: 10.1159/000455833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS There is growing evidence that the RE1-silencing transcription factor (REST) gene may contribute to cognitive aging and Alzheimer diseases. In this replication study, we reassessed whether single nucleotide polymorphisms (SNPs) within the REST gene are linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. METHODS A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) scores were performed for all subjects to weigh cognitive functions. RESULTS Our data showed that the REST rs1277306 SNP was significantly associated with cognitive aging among all subjects (p = 0.0052). Furthermore, the association remained significant for individuals without APOE ε4 allele (p = 0.0092), but not for individuals with at least 1 APOE ε4 allele. This association remained significant after Bonferroni correction. Additionally, we found the interactions between the rs1713985 and rs1277306 SNPs on cognitive aging (p = 0.016). However, the 3-marker haplotype derived from the rs1713985, rs3796529, and rs7680734 SNPs in the REST gene demonstrated no association with cognitive aging. CONCLUSION Our study indicates that the REST gene may contribute to susceptibility to cognitive aging independently as well as through SNP-SNP and APOE-REST interactions.
Collapse
Affiliation(s)
- Eugene Lin
- TickleFish Systems Corporation, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhou FQ, Jiang J, Griffith CM, Patrylo PR, Cai H, Chu Y, Yan XX. Lack of human-like extracellular sortilin neuropathology in transgenic Alzheimer's disease model mice and macaques. Alzheimers Res Ther 2018; 10:40. [PMID: 29690919 PMCID: PMC5978992 DOI: 10.1186/s13195-018-0370-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disorder bearing multiple pathological hallmarks suggestive of complex cellular/molecular interplay during pathogenesis. Transgenic mice and nonhuman primates are used as disease models for mechanistic and translational research into AD; the extent to which these animal models recapitulate AD-type neuropathology is an issue of importance. Putative C-terminal fragments from sortilin, a member of the vacuolar protein sorting 10 protein (Vps10p) family, have recently been shown to deposit in the neuritic β-amyloid (Aβ) plaques in the human brain. METHODS We set out to explore if extracellular sortilin neuropathology exists in AD-related transgenic mice and nonhuman primates. Brains from different transgenic strains and ages developed overt cerebral Aβ deposition, including the β-amyloid precursor protein and presenilin 1 double-transgenic (APP/PS1) mice at ~ 14 months of age, the five familial Alzheimer's disease mutations transgenic (5×FAD) mice at ~ 8 months, the triple-transgenic Alzheimer's disease (3×Tg-AD) mice at ~ 22 months, and aged monkeys (Macaca mulatta and Macaca fascicularis) were examined. Brain samples from young transgenic mice, middle-aged/aged monkeys, and AD humans were used as negative and positive pathological controls. RESULTS The C-terminal sortilin antibody, which labeled senile plaques in the AD human cerebral sections, did not display extracellular immunolabeling in the transgenic mouse or aged monkey brain sections with Aβ deposition. In Western blot analysis, sortilin fragments ~ 15 kDa were not detectable in transgenic mouse cortical lysates, but they occurred in control AD lysates. CONCLUSIONS In reference to their human brain counterparts, neuritic plaques seen in transgenic AD model mouse brains represent an incomplete form of this AD pathological hallmark. The species difference in neuritic plaque constituents also indicates more complex secondary proteopathies in the human brain relative to rodents and nonhuman primates during aging and in AD.
Collapse
Affiliation(s)
- Feng-Qin Zhou
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
| | - Chelsea M. Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901 USA
| | - Peter R. Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901 USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612 USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan China
| |
Collapse
|
10
|
Xu W, Fang F, Ding J, Wu C. Dysregulation of Rab5-mediated endocytic pathways in Alzheimer's disease. Traffic 2018; 19:253-262. [PMID: 29314494 PMCID: PMC5869093 DOI: 10.1111/tra.12547] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
Increasing evidence has pointed to that dysregulation of the endo-lysosomal system is an early cellular phenotype of pathogenesis for Alzheimer's disease (AD). Rab5, a small GTPase, plays a critical role in mediating these processes. Abnormal overactivation of Rab5 has been observed in post-mortem brain samples of Alzheimer's patients as well as brain samples of mouse models of AD. Recent genome-wide association studies of AD have identified RIN3 (Ras and Rab interactor 3) as a novel risk factor for the disease. RIN3 that functions as a guanine nucleotide exchange factor for Rab5 may serve as an important activator for Rab5 in AD pathogenesis. In this review, we present recent research highlights on the possible roles of dysregulation of Rab5-mediated endocytic pathways in contributing to early pathogenesis of AD.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Fang Fang
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jianqing Ding
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
林 芳, 刘 鑫, 谢 婧, 罗 静, 奉 夏, 侯 德. [Verification of a sporadic Alzheimer disease model in SORL1 gene knockout mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:289-295. [PMID: 29643034 PMCID: PMC6744166 DOI: 10.3969/j.issn.1673-4254.2018.03.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To compare the behavioral and pathological features of SORL1 gene knockout mice with those of normal mice and APP/PSE1 mice to verify the feasibility of using SORL1 knockout mice as a model of sporadic Alzheimer disease. METHODS SORL1 gene of fertilized mouse eggs were edited using Crispr/Case9 technique. SORL1-/- mice were screened and identified by detecting the DNA sequence, and Western blotting was used to detect the expression of SORL1. SORL1-/- mice, control mice and APP/PSE1 mice all underwent Morris water maze test to assess their learning and memory abilities with positioning navigation and space exploration experiments. The expression of APP and Aβ in the brain of the mice was detected using immunohistochemistry and Western blotting, respectively. RESULTS DNA sequencing showed CAAT deletion in SORL1 gene in two chromosomes of SORL1-/- mice, and the control mice had intact SORL1 gene without the deletion; Western blotting did not detect the expression of the SORL1 in the brain of SORL1-/- mice. Morris water maze test showed that in positioning navigation experiment, the average avoidance latency was similar between SORL1-/- mice and APP/PSE1 mice (P>0.05) but increased significantly in both mice as compared with the control group (P<0.05); similar results were obtained in the space exploration experiment. Immunohistochemistry and Western blotting revealed significantly increased APP and Aβ expression in the brain tissue of both SORL1-/- mice and APP/PSE1 mice compared with the control mice without significant differences between the two transgenic mice. CONCLUSION SORL1-/- mice exhibit similar behavioral and pathological changes with APP/PSE1 mice and can be used as a model of sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- 芳波 林
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 鑫 刘
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 婧雯 谢
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 静 罗
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 夏露 奉
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 德仁 侯
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
12
|
林 芳, 刘 鑫, 谢 婧, 罗 静, 奉 夏, 侯 德. [Verification of a sporadic Alzheimer disease model in SORL1 gene knockout mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:289-295. [PMID: 29643034 PMCID: PMC6744166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To compare the behavioral and pathological features of SORL1 gene knockout mice with those of normal mice and APP/PSE1 mice to verify the feasibility of using SORL1 knockout mice as a model of sporadic Alzheimer disease. METHODS SORL1 gene of fertilized mouse eggs were edited using Crispr/Case9 technique. SORL1-/- mice were screened and identified by detecting the DNA sequence, and Western blotting was used to detect the expression of SORL1. SORL1-/- mice, control mice and APP/PSE1 mice all underwent Morris water maze test to assess their learning and memory abilities with positioning navigation and space exploration experiments. The expression of APP and Aβ in the brain of the mice was detected using immunohistochemistry and Western blotting, respectively. RESULTS DNA sequencing showed CAAT deletion in SORL1 gene in two chromosomes of SORL1-/- mice, and the control mice had intact SORL1 gene without the deletion; Western blotting did not detect the expression of the SORL1 in the brain of SORL1-/- mice. Morris water maze test showed that in positioning navigation experiment, the average avoidance latency was similar between SORL1-/- mice and APP/PSE1 mice (P>0.05) but increased significantly in both mice as compared with the control group (P<0.05); similar results were obtained in the space exploration experiment. Immunohistochemistry and Western blotting revealed significantly increased APP and Aβ expression in the brain tissue of both SORL1-/- mice and APP/PSE1 mice compared with the control mice without significant differences between the two transgenic mice. CONCLUSION SORL1-/- mice exhibit similar behavioral and pathological changes with APP/PSE1 mice and can be used as a model of sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- 芳波 林
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 鑫 刘
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 婧雯 谢
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 静 罗
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 夏露 奉
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 德仁 侯
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
13
|
Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF. Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. Oncotarget 2018; 8:24077-24087. [PMID: 28199971 PMCID: PMC5421828 DOI: 10.18632/oncotarget.15269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies and meta-analyses implicated that increased risk of developing Alzheimers diseases (AD) has been associated with the ABCA7, APOE, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB1, HLA-DRB4, INPP5D, MEF2C, MS4A4A, MS4A4E, MS4A6E, NME8, PICALM, PLD3, PTK2B, RIN3, SLC24A4, SORL1, and ZCWPW1 genes. In this study, we assessed whether single nucleotide polymorphisms (SNPs) within these 27 AD-associatedgenes are linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. We also analyzed the interactions between lifestyle and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) scores were performed for all subjects to evaluate cognitive functions. Out of the 588 SNPs tested in this study, only the association between CASS4-rs911159 and cognitive aging persisted significantly (P = 2.2 × 10−5) after Bonferroni correction. Our data also showed a nominal association of cognitive aging with the SNPs in six more key AD-associated genes, including EPHA1-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, PLD3-rs11672825, RIN3-rs1885747, and SLC24A4-rs67063100 (P = 0.0018∼0.0097). Additionally, we found the interactions among CASS4-rs911159, EPHA-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, or SLC24A4-rs67063100 on cognitive aging (P = 0.004∼0.035). Moreover, our analysis suggested the interactions of SLC24A4-rs67063100 or MEF2C-rs9293506 with lifestyle such as alcohol consumption, smoking status, physical activity, or social support on cognitive aging (P = 0.008∼0.041). Our study indicates that the AD-associated genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-lifestyle interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc., Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
14
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|
15
|
Rindflesch TC, Blake CL, Fiszman M, Kilicoglu H, Rosemblat G, Schneider J, Zeiss CJ. Informatics Support for Basic Research in Biomedicine. ILAR J 2017; 58:80-89. [PMID: 28838071 DOI: 10.1093/ilar/ilx004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/13/2017] [Indexed: 11/13/2022] Open
Abstract
Informatics methodologies exploit computer-assisted techniques to help biomedical researchers manage large amounts of information. In this paper, we focus on the biomedical research literature (MEDLINE). We first provide an overview of some text mining techniques that offer assistance in research by identifying biomedical entities (e.g., genes, substances, and diseases) and relations between them in text.We then discuss Semantic MEDLINE, an application that integrates PubMed document retrieval, concept and relation identification, and visualization, thus enabling a user to explore concepts and relations from within a set of retrieved citations. Semantic MEDLINE provides a roadmap through content and helps users discern patterns in large numbers of retrieved citations. We illustrate its use with an informatics method we call "discovery browsing," which provides a principled way of navigating through selected aspects of some biomedical research area. The method supports an iterative process that accommodates learning and hypothesis formation in which a user is provided with high level connections before delving into details.As a use case, we examine current developments in basic research on mechanisms of Alzheimer's disease. Out of the nearly 90 000 citations returned by the PubMed query "Alzheimer's disease," discovery browsing led us to 73 citations on sortilin and that disorder. We provide a synopsis of the basic research reported in 15 of these. There is wide-spread consensus among researchers working with a range of animal models and human cells that increased sortilin expression and decreased receptor expression are associated with amyloid beta and/or amyloid precursor protein.
Collapse
Affiliation(s)
- Thomas C Rindflesch
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois, Urbana-Champaign; Center for Informatics in Science and Scholarship. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois. Yale University School of Medicine, New Haven, Connecticut
| | - Catherine L Blake
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois, Urbana-Champaign; Center for Informatics in Science and Scholarship. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois. Yale University School of Medicine, New Haven, Connecticut
| | - Marcelo Fiszman
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois, Urbana-Champaign; Center for Informatics in Science and Scholarship. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois. Yale University School of Medicine, New Haven, Connecticut
| | - Halil Kilicoglu
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois, Urbana-Champaign; Center for Informatics in Science and Scholarship. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois. Yale University School of Medicine, New Haven, Connecticut
| | - Graciela Rosemblat
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois, Urbana-Champaign; Center for Informatics in Science and Scholarship. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois. Yale University School of Medicine, New Haven, Connecticut
| | - Jodi Schneider
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois, Urbana-Champaign; Center for Informatics in Science and Scholarship. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois. Yale University School of Medicine, New Haven, Connecticut
| | - Caroline J Zeiss
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois, Urbana-Champaign; Center for Informatics in Science and Scholarship. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland. School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois. Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Van Pelt DW, Guth LM, Wang AY, Horowitz JF. Factors regulating subcutaneous adipose tissue storage, fibrosis, and inflammation may underlie low fatty acid mobilization in insulin-sensitive obese adults. Am J Physiol Endocrinol Metab 2017; 313:E429-E439. [PMID: 28679624 PMCID: PMC5668599 DOI: 10.1152/ajpendo.00084.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/30/2017] [Indexed: 11/22/2022]
Abstract
Although the rate of fatty acid release from adipose tissue into the systemic circulation is very high in most obese adults, some obese adults maintain relatively low rates of fatty acid release, which helps protect them against the development of systemic insulin resistance. The primary aim of this study was to identify factors in adipose tissue that may underlie low vs. high rates of fatty acid mobilization in a relatively homogeneous cohort of obese adults. We measured systemic fatty acid rate of appearance (FA Ra) via 13C-palmitate isotope dilution, and we obtained subcutaneous abdominal adipose tissue samples from 30 obese adults (BMI: 38 ± 1 kg/m2, age: 30 ± 2 yr) after an overnight fast. We then measured insulin sensitivity using a hyperinsulinemic-euglycemic clamp. Confirming our previous work, insulin sensitivity was inversely proportional to FA Ra (R2 = 0.50; P < 0.001). Immunoblot analysis of subcutaneous adipose tissue samples revealed that, compared with obese adults with high FA Ra, those with low FA Ra had lower markers of lipase activation and higher abundance of glycerol-3-phosphate acyltransferase, which is a primary enzyme for fatty acid esterification. Microarray and pathway analysis provided evidence of lower fibrosis and lower SAPK/JNK pathway activation in obese adults with low FA Ra compared with those with high FA Ra. Our findings suggest that alterations in factors regulating triglyceride storage in adipose tissue, along with lower fibrosis and inflammatory pathway activation, may underlie maintenance of a relatively low FA Ra in obesity, which may help protect against the development of insulin resistance.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Guth
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Abigail Y Wang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Hu X, Hu ZL, Li Z, Ruan CS, Qiu WY, Pan A, Li CQ, Cai Y, Shen L, Chu Y, Tang BS, Cai H, Zhou XF, Ma C, Yan XX. Sortilin Fragments Deposit at Senile Plaques in Human Cerebrum. Front Neuroanat 2017. [PMID: 28638323 PMCID: PMC5461299 DOI: 10.3389/fnana.2017.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genetic variations in the vacuolar protein sorting 10 protein (Vps10p) family have been linked to Alzheimer’s disease (AD). Here we demonstrate deposition of fragments from the Vps10p member sortilin at senile plaques (SPs) in aged and AD human cerebrum. Sortilin changes were characterized in postmortem brains with antibodies against the extracellular and intracellular C-terminal domains. The two antibodies exhibited identical labeling in normal human cerebrum, occurring in the somata and dendrites of cortical and hippocampal neurons. The C-terminal antibody also marked extracellular lesions in some aged and all AD cases, appearing as isolated fibrils, mini-plaques, dense-packing or circular mature-looking plaques. Sortilin and β-amyloid (Aβ) deposition were correlated overtly in a region/lamina- and case-dependent manner as analyzed in the temporal lobe structures, with co-localized immunofluorescence seen at individual SPs. However, sortilin deposition rarely occurred around the pia, at vascular wall or in areas with typical diffuse Aβ deposition, with the labeling not enhanced by section pretreatment with heating or formic acid. Levels of a major sortilin fragment ~15 kDa, predicted to derive from the C-terminal region, were dramatically elevated in AD relative to control cortical lysates. Thus, sortilin fragments are a prominent constituent of the extracellularly deposited protein products at SPs in human cerebrum.
Collapse
Affiliation(s)
- Xia Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Zhao-Lan Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Zheng Li
- Cancer Research Institute, Central South UniversityChangsha, China
| | - Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South AustraliaAdelaide, SA, Australia
| | - Wen-Ying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South UniversityChangsha, China
| | - Yaping Chu
- Department of Neurological Sciences, Rush University Medical CenterChicago, IL, United States
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South UniversityChangsha, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesda, MD, United States
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South AustraliaAdelaide, SA, Australia
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
18
|
Genetic epistasis regulates amyloid deposition in resilient aging. Alzheimers Dement 2017; 13:1107-1116. [PMID: 28322202 DOI: 10.1016/j.jalz.2017.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) interacts with important genetic Alzheimer's disease (AD) risk factors. Specifically, variants within the SORL1 gene determine BDNF's ability to reduce amyloid β (Aβ) in vitro. We sought to test whether functional BDNF variation interacts with SORL1 genotypes to influence expression and downstream AD-related processes in humans. METHODS We analyzed postmortem brain RNA sequencing and neuropathological data for 441 subjects from the Religious Orders Study/Memory and Aging Project and molecular and structural neuroimaging data for 1285 subjects from the Alzheimer's Disease Neuroimaging Initiative. RESULTS We found one SORL1 RNA transcript strongly regulated by SORL1-BDNF interactions in elderly without pathological AD and showing stronger associations with diffuse than neuritic Aβ plaques. The same SORL1-BDNF interactions also significantly influenced Aβ load as measured with [18F]Florbetapir positron emission tomography. DISCUSSION Our results bridge the gap between risk and resilience factors for AD, demonstrating interdependent roles of established SORL1 and BDNF functional genotypes.
Collapse
|
19
|
Andersen OM, Rudolph IM, Willnow TE. Risk factor SORL1: from genetic association to functional validation in Alzheimer's disease. Acta Neuropathol 2016; 132:653-665. [PMID: 27638701 PMCID: PMC5073117 DOI: 10.1007/s00401-016-1615-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/12/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) represents one of the most dramatic threats to healthy aging and devising effective treatments for this devastating condition remains a major challenge in biomedical research. Much has been learned about the molecular concepts that govern proteolytic processing of the amyloid precursor protein to amyloid-β peptides (Aβ), and how accelerated accumulation of neurotoxic Aβ peptides underlies neuronal cell death in rare familial but also common sporadic forms of this disease. Out of a plethora of proposed modulators of amyloidogenic processing, one protein emerged as a key factor in AD pathology, a neuronal sorting receptor termed SORLA. Independent approaches using human genetics, clinical pathology, or exploratory studies in animal models all converge on this receptor that is now considered a central player in AD-related processes by many. This review will provide a comprehensive overview of the evidence implicating SORLA-mediated protein sorting in neurodegenerative processes, and how receptor gene variants in the human population impair functional receptor expression in sporadic but possibly also in autosomal-dominant forms of AD.
Collapse
Affiliation(s)
- Olav M Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Aarhus, Denmark.
| | - Ina-Maria Rudolph
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
20
|
Li H, Lv C, Yang C, Wei D, Chen K, Li S, Zhang Z. SORL1 rs1699102 polymorphism modulates age-related cognitive decline and gray matter volume reduction in non-demented individuals. Eur J Neurol 2016; 24:187-194. [PMID: 27779372 DOI: 10.1111/ene.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/16/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE SORL1 rs1699102 is associated with the risk of late-onset Alzheimer's disease. However, the effects of this single nucleotide polymorphism on cognition and brain structure during normal aging are unclear. This study aimed to examine the effects of the rs1699102 polymorphism on age-related cognitive decline and cortical gray matter reduction in the Chinese Han population. METHODS A total of 780 non-demented adults completed a battery of neuropsychological tests. High-resolution T1-weighted structural magnetic resonance imaging data from 89 of these subjects were also collected using a Siemens Trio 3.0 Tesla scanner. RESULTS The T allele carriers displayed an accelerated age-related change in episodic memory and processing speed tests relative to the CC genotype. A similar pattern was observed in the age-related gray matter volume (GMV) reduction of the right middle temporal pole. The GMV in this region was significantly positively correlated with the episodic memory scores. CONCLUSIONS The SORL1 gene rs1699102 polymorphism has been found to be associated with age-related cognitive decline and GMV reduction of the right middle temporal pole in older adults. These findings elucidate how the SORL1 variants shape the neural system to modulate age-related cognitive decline and support the hypothesis that SORL1 may represent a candidate gene for late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- He Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Chenlong Lv
- Consulting Center of Biomedical Statistics, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Kewei Chen
- Computational Image Analysis Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Shaowu Li
- Dept of Functional Neuroimaging, Beijing Neurosurgical Institute, Beijing, P. R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
21
|
Voineskos AN, Felsky D, Wheeler AL, Rotenberg DJ, Levesque M, Patel S, Szeszko PR, Kennedy JL, Lencz T, Malhotra AK. Limited Evidence for Association of Genome-Wide Schizophrenia Risk Variants on Cortical Neuroimaging Phenotypes. Schizophr Bull 2016; 42:1027-36. [PMID: 26712857 PMCID: PMC4903045 DOI: 10.1093/schbul/sbv180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND There are now over 100 established genetic risk variants for schizophrenia; however, their influence on brain structure and circuitry across the human lifespan are not known. METHODS We examined healthy individuals 8-86 years of age, from the Centre for Addiction and Mental Health, the Zucker Hillside Hospital, and the Philadelphia Neurodevelopmental Cohort. Following thorough quality control procedures, we investigated associations of established genetic risk variants with heritable neuroimaging phenotypes relevant to schizophrenia, namely thickness of frontal and temporal cortical regions (n = 565) and frontotemporal and interhemispheric white matter tract fractional anisotropy (FA) (n = 530). RESULTS There was little evidence for association of risk variants with imaging phenotypes. No association with cortical thickness of any region was present. Only rs12148337, near a long noncoding RNA region, was associated with white matter FA (splenium of corpus callosum) following multiple comparison correction (corrected p = .012); this single nucleotide polymorphism was also associated with genu FA and superior longitudinal fasciculus FA at p <.005 (uncorrected). There was no association of polygenic risk score with white matter FA or cortical thickness. CONCLUSIONS In sum, our findings provide limited evidence for association of schizophrenia risk variants with cortical thickness or diffusion imaging white matter phenotypes. When taken with recent lack of association of these variants with subcortical brain volumes, our results either suggest that structural neuroimaging approaches at current resolution are not sufficiently sensitive to detect effects of these risk variants or that multiple comparison correction in correlated phenotypes is too stringent, potentially "eliminating" biologically important signals.
Collapse
Affiliation(s)
- Aristotle N. Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,These authors contributed equally to the article.,*To whom correspondence should be addressed; Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, Ontario M5R 1T8, Canada; tel: 416-535-8501 x33977, fax: 416-260-4162, e-mail:
| | - Daniel Felsky
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,These authors contributed equally to the article
| | - Anne L. Wheeler
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - David J. Rotenberg
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Melissa Levesque
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sejal Patel
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Philip R. Szeszko
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| | - James L. Kennedy
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Todd Lencz
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| | - Anil K. Malhotra
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| |
Collapse
|
22
|
Piscopo P, Tosto G, Belli C, Talarico G, Galimberti D, Gasparini M, Canevelli M, Poleggi A, Crestini A, Albani D, Forloni G, Lucca U, Quadri P, Tettamanti M, Fenoglio C, Scarpini E, Bruno G, Vanacore N, Confaloni A. SORL1 Gene is Associated with the Conversion from Mild Cognitive Impairment to Alzheimer's Disease. J Alzheimers Dis 2016; 46:771-6. [PMID: 25881907 DOI: 10.3233/jad-141551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several studies have established the sortilin-related receptor gene (SORL1) as a susceptibility locus for Alzheimer's disease (AD). Single nucleotide polymorphisms of SORL1 reported in literature as being associated with AD were investigated in an Italian case-control data set, and their role as a risk factor of conversion to AD was studied in an independent sample of subjects diagnosed with mild cognitive impairment (MCI) at baseline. rs641120, rs2070045, and rs1010159 were genotyped in 734 subjects diagnosed with AD (n = 338) and MCI (n = 181) and in healthy controls (n = 215). Our results confirmed the association between rs641120 and AD (p = 0.01). In the MCI cohort, rs1010159 was associated with conversion to AD (HR = 1.56, p = 0.002). Taken together, these findings confirm that SORL1 is associated with AD and might be a potential tool for identifying MCI subjects at high risk of conversion to AD.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Tosto
- Memory Clinic, Department of Neurology and Psychiatry, University of Rome "Sapienza", Italy
| | - Chiara Belli
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina Talarico
- Memory Clinic, Department of Neurology and Psychiatry, University of Rome "Sapienza", Italy
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Gasparini
- Memory Clinic, Department of Neurology and Psychiatry, University of Rome "Sapienza", Italy
| | - Marco Canevelli
- Memory Clinic, Department of Neurology and Psychiatry, University of Rome "Sapienza", Italy
| | - Anna Poleggi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Alessio Crestini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Diego Albani
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Gianluigi Forloni
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Ugo Lucca
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Pierluigi Quadri
- Geriatric Division, Ospedali Regionali of Lugano and Mendrisio, Switzerland
| | - Mauro Tettamanti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Bruno
- Memory Clinic, Department of Neurology and Psychiatry, University of Rome "Sapienza", Italy
| | - Nicola Vanacore
- Department of National Centre of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Annamaria Confaloni
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Huang CC, Liu ME, Kao HW, Chou KH, Yang AC, Wang YH, Chen TR, Tsai SJ, Lin CP. Effect of Alzheimer's Disease Risk Variant rs3824968 at SORL1 on Regional Gray Matter Volume and Age-Related Interaction in Adult Lifespan. Sci Rep 2016; 6:23362. [PMID: 26996954 PMCID: PMC4800313 DOI: 10.1038/srep23362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/01/2016] [Indexed: 11/09/2022] Open
Abstract
Sortilin receptor 1 (SORL1) is involved in cellular trafficking of amyloid precursor protein and plays an essential role in amyloid-beta peptide generation in Alzheimer disease (AD). The major A allele in a SORL1 single nucleotide polymorphism (SNP), rs3824968, is associated with an increased AD risk. However, the role of SORL1 rs3824968 in the normal ageing process has rarely been examined in relation to brain structural morphology. This study investigated the association between SORL1 rs3824968 and grey matter (GM) volume in a nondemented Chinese population of 318 adults within a wide age range (21-92 years). Through voxel-based morphometry, we found that participants carrying SORL1 allele A exhibited significantly smaller GM volumes in the right posterior cingulate, left middle occipital, medial frontal, and superior temporal gyri. Considerable interaction between age and SORL1 suggested a detrimental and accelerated ageing effect of allele A on putamen. These findings provide evidence that SORL1 rs3824968 modulates regional GM volume and is associated with brain trajectory during the adult lifespan.
Collapse
Affiliation(s)
- Chu-Chung Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Mu-En Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Wen Kao
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Hsien Chou
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, Taiwan
| | - Ying-Hsiu Wang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tong-Ru Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Modulation effect of the SORL1 gene on functional connectivity density in healthy young adults. Brain Struct Funct 2015; 221:4103-4110. [DOI: 10.1007/s00429-015-1149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
|
25
|
Seifan A, Schelke M, Obeng-Aduasare Y, Isaacson R. Early Life Epidemiology of Alzheimer's Disease--A Critical Review. Neuroepidemiology 2015; 45:237-54. [PMID: 26501691 DOI: 10.1159/000439568] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND As adult brain structure is primarily established in early life, genetic and environmental exposures in infancy and childhood influence the risk for Alzheimer disease (AD). In this systematic review, we identified several early life risk factors and discussed the evidence and underlying mechanism for each. SUMMARY Early risk factors for AD may alter brain anatomy, causing vulnerability to AD-related dementia later in life. In the perinatal period, both genes and learning disabilities have been associated with the development of distinct AD phenotypes. During early childhood, education and intellect, as well as body growth, may predispose to AD through alterations in cognitive and brain reserve, though the specific mediators of neural injury are disputed. Childhood socioeconomic status (SES) may predispose to AD by influencing adult SES and cognition. Association of these risk factors with underlying AD pathology (rather than just clinical diagnosis) has not been sufficiently examined. KEY MESSAGES Factors that impede or alter brain growth during early life could render certain brain regions or networks selectively vulnerable to the onset, accumulation or spread of AD-related pathology during later life. Careful life-course epidemiology could provide clues as to why the brain systematically degenerates during AD.
Collapse
Affiliation(s)
- Alon Seifan
- Alzheimer Prevention Clinic and Memory Disorders Program, Department of Neurology Weill Cornell Medical College, New York, N.Y., USA
| | | | | | | |
Collapse
|
26
|
Cai Z, Wang C, He W, Tu H, Tang Z, Xiao M, Yan LJ. Cerebral small vessel disease and Alzheimer's disease. Clin Interv Aging 2015; 10:1695-704. [PMID: 26604717 PMCID: PMC4629951 DOI: 10.2147/cia.s90871] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a group of pathological processes with multifarious etiology and pathogenesis that are involved into the small arteries, arterioles, venules, and capillaries of the brain. CSVD mainly contains lacunar infarct or lacunar stroke, leukoaraiosis, Binswanger's disease, and cerebral microbleeds. CSVD is an important cerebral microvascular pathogenesis as it is the cause of 20% of strokes worldwide and the most common cause of cognitive impairment and dementia, including vascular dementia and Alzheimer's disease (AD). It has been well identified that CSVD contributes to the occurrence of AD. It seems that the treatment and prevention for cerebrovascular diseases with statins have such a role in the same function for AD. So far, there is no strong evidence-based medicine to support the idea, although increasing basic studies supported the fact that the treatment and prevention for cerebrovascular diseases will benefit AD. Furthermore, there is still lack of evidence in clinical application involved in specific drugs to benefit both AD and CSVD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Hanjun Tu
- Department of Basic Research Center, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Zhengang Tang
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
27
|
Seifan A, Assuras S, Huey ED, Mez J, Tsapanou A, Caccappolo E. Childhood Learning Disabilities and Atypical Dementia: A Retrospective Chart Review. PLoS One 2015; 10:e0129919. [PMID: 26106899 PMCID: PMC4481274 DOI: 10.1371/journal.pone.0129919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Objective To further our understanding of the association between self-reported childhood learning disabilities (LDs) and atypical dementia phenotypes (Atypical Dementia), including logopenic primary progressive aphasia (L-PPA), Posterior Cortical Atrophy (PCA), and Dysexecutive-type Alzheimer’s Disease (AD). Methods This retrospective case series analysis of 678 comprehensive neuropsychological assessments compared rates of self-reported LD between dementia patients diagnosed with Typical AD and those diagnosed with Atypical Dementia. 105 cases with neuroimaging or CSF data available and at least one neurology follow-up were identified as having been diagnosed by the neuropsychologist with any form of neurodegenerative dementia. These cases were subject to a consensus diagnostic process among three dementia experts using validated clinical criteria for AD and PPA. LD was considered Probable if two or more statements consistent with prior LD were documented within the Social & Developmental History of the initial neuropsychological evaluation. Results 85 subjects (Typical AD n=68, Atypical AD n=17) were included in the final analysis. In logistic regression models adjusted for age, gender, handedness, education and symptom duration, patients with Probable LD, compared to patients without Probable LD, were significantly more likely to be diagnosed with Atypical Dementia vs. Typical AD (OR 13.1, 95% CI 1.3-128.4). All three of the L-PPA cases reporting a childhood LD endorsed childhood difficulty with language. By contrast, both PCA cases reporting Probable childhood LD endorsed difficulty with attention and/or math. Conclusions In people who develop dementia, childhood LD may predispose to atypical phenotypes. Future studies are required to confirm whether atypical neurodevelopment predisposes to regional-specific neuropathology in AD and other dementias.
Collapse
Affiliation(s)
- Alon Seifan
- Department of Neurology Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| | - Stephanie Assuras
- Department of Neuropsychology, Columbia University, New York, New York, United States of America
| | - Edward D. Huey
- Department of Neurology Columbia University, New York, New York, United States of America
- Gertrude H. Sergievsky Center, Columbia University, New York, New York, United States of America
- Cognitive neuroscience division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Angeliki Tsapanou
- Cognitive neuroscience division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Elise Caccappolo
- Department of Neuropsychology, Columbia University, New York, New York, United States of America
| |
Collapse
|
28
|
Petersen RB, Lissemore FM, Appleby B, Aggarwal N, Boyatzis R, Casadesus G, Cummings J, Jack A, Perry G, Safar J, Sajatovic M, Surewicz WK, Wang Y, Whitehouse P, Lerner A. From Neurodegeneration to Brain Health: An Integrated Approach. J Alzheimers Dis 2015; 46:271-83. [DOI: 10.3233/jad-150043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert B. Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Brian Appleby
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Neelum Aggarwal
- Department of Neurology, Rush University Medical Center, Chicago, IL, USA
| | - Richard Boyatzis
- Departments of Organizational Behavior, Cognitive Science, and Psychology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Jeff Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anthony Jack
- Department of Philosophy, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- Department of Biology, University of Texas, San Antonio, TX, USA
| | - Jiri Safar
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Martha Sajatovic
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Yanming Wang
- Departments of Radiology, Chemistry, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Peter Whitehouse
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Alan Lerner
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
29
|
Liang Y, Li H, Lv C, Shu N, Chen K, Li X, Zhang J, Hu L, Zhang Z. Sex moderates the effects of the Sorl1 gene rs2070045 polymorphism on cognitive impairment and disruption of the cingulum integrity in healthy elderly. Neuropsychopharmacology 2015; 40:1519-27. [PMID: 25598427 PMCID: PMC4397410 DOI: 10.1038/npp.2015.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/13/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
The SORL1 rs2070045 polymorphism was reported to be associated with SorLA expression in the brain and the risk of late-onset Alzheimer's disease (AD). However, the influence of this polymorphism on cognitive functioning is likely to be moderated by sex. This study aimed to examine the sex moderation on the effects of rs2070045 on neuropsychological performance and the cingulum integrity in Chinese Han population. In this study, 780 non-demented older adults completed a battery of neuropsychological scales. Diffusion tensor images (DTI) of 126 subjects were acquired. We adopted the atlas-based segmentation strategy for calculating the DTI indices of the bilateral cingulum and cingulum hippocampal part for each subject. We used a multivariate analysis of variance (MANOVA) to compare the cognitive performance and DTI differences between the rs2070045 genotype. Controlling for age, education, and the APOE ɛ4 status, the influence of sex on the effects of the rs2070045 polymorphism on executive function was observed. We also found an interaction between sex and the rs2070045 polymorphism on the white matter (WM) microstructure of the left cingulum hippocampal part. Furthermore, the mean diffusivity and axial diffusivity of the tract were associated with Trail Making Test performance in T/T men. These results hint that sex moderates the association between the rs2070045 polymorphism and executive function, as well as the WM integrity of the left cingulum hippocampal part. Our findings underscore the importance of considering the influence of sex when examining the candidate genes for cognitive abilities and AD.
Collapse
Affiliation(s)
- Ying Liang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China
| | - He Li
- BABRI Centre, Beijing Normal University, Beijing, China,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenlong Lv
- BABRI Centre, Beijing Normal University, Beijing, China,Consulting Center of Biomedical Statistics, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China
| | - Kewei Chen
- Computational Image Analysis Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China
| | - Liangping Hu
- Consulting Center of Biomedical Statistics, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China,BABRI Centre, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China, Tel: +86 1058802005, Fax: +86 1058802005, E-mail:
| |
Collapse
|
30
|
Zhang F, Liu X, Wang B, Cheng Z, Zhao X, Zhu J, Wang D, Wang Y, Dong A, Li P, Jin C. An exploratory study of the association between SORL1 polymorphisms and sporadic Alzheimer's disease in the Han Chinese population. Neuropsychiatr Dis Treat 2015; 11:1443-8. [PMID: 26109858 PMCID: PMC4472075 DOI: 10.2147/ndt.s85370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In previous studies, we reported that the sortilin-related receptor, L (DLR class) A repeats containing (SORL1) gene single nucleotide polymorphisms (SNPs) are associated with the risk of sporadic Alzheimer's disease (SAD) in the Han Chinese population. To further explore the relationships between SORL1 genetic variants and SAD, we conducted a two-step study. Sequencing analysis in 50 case samples identified 14 SNPs within the promoter and untranslated region of the SORL1 gene. Subsequent genotyping analysis in 106 patients with SAD and 179 healthy controls detected a significant association between the "G" allele of SNP rs1133174 in the 3' untranslated region of the SORL1 gene and SAD risk (odds ratio =1.92, 95% confidence interval [95% CI] =1.28-2.90, adjusted P=0.028). In addition, "G" allele carriers of rs1133174 (GA + GG) have a 2.15-fold increased risk of SAD compared to noncarriers (AA) (adjusted P=0.042). However, no significant positive associations were observed in the other 13 SNPs within the SORL1 gene. These preliminary findings suggest that the SORL1 SNP rs1133174 may be a potential risk locus for SAD in the Han Chinese population.
Collapse
Affiliation(s)
- Feng Zhang
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China ; Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xiaowei Liu
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Bailing Wang
- Qingdao Mental Health Center, Qingdao, Shandong Province, People's Republic of China
| | - Zaohuo Cheng
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xingfu Zhao
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Jianzhong Zhu
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Degang Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Ying Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Aiguo Dong
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Pengpeng Li
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Chunhui Jin
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| |
Collapse
|
31
|
Bennett DA, Yu L, Yang J, Srivastava GP, Aubin C, De Jager PL. Epigenomics of Alzheimer's disease. Transl Res 2015; 165:200-20. [PMID: 24905038 PMCID: PMC4233194 DOI: 10.1016/j.trsl.2014.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a large and growing public health problem. It is characterized by the accumulation of amyloid β peptides and abnormally phosphorylated tau proteins that are associated with cognitive decline and dementia. Much has been learned about the genomics of AD from linkage analyses and, more recently, genome-wide association studies. Several but not all aspects of the genomic landscape are involved in amyloid β metabolism. The moderate concordance of disease among twins suggests other factors, potentially epigenomic factors, are related to AD. We are at the earliest stages of examining the relation of the epigenome to the clinical and pathologic phenotypes that characterize AD. Our literature review suggests that there is some evidence of age-related changes in human brain methylation. Unfortunately, studies of AD have been relatively small with limited coverage of methylation sites and microRNA, let alone other epigenomic marks. We are in the midst of 2 large studies of human brains including coverage of more than 420,000 autosomal cytosine-guanine dinucleotides with the Illumina Infinium HumanMethylation450 BeadArray, and histone acetylation with chromatin immunoprecipitation sequencing. We present descriptive data to help inform other researchers what to expect from these approaches to better design and power their studies. We then discuss future directions to inform on the epigenomic architecture of AD.
Collapse
Affiliation(s)
- David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill
| | - Gyan P Srivastava
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| | - Cristin Aubin
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| |
Collapse
|