1
|
Franks H, Wang R, Li M, Wang B, Wildmann A, Ortyl T, O’Brien S, Young D, Liao FF, Sakata K. Heat shock factor HSF1 regulates BDNF gene promoters upon acute stress in the hippocampus, together with pCREB. J Neurochem 2023; 165:131-148. [PMID: 36227087 PMCID: PMC10097844 DOI: 10.1111/jnc.15707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
Heat shock factor 1 (HSF1) is a master stress-responsive transcriptional factor, protecting cells from death. However, its gene regulation in vivo in the brain in response to neuronal stimuli remains elusive. Here, we investigated its direct regulation of the brain-derived neurotrophic factor (BDNF) gene (Bdnf) in response to acute neuronal stress stimuli in the brain. The results of immunohistochemistry and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that administration of kainic acid (a glutamate receptor agonist inducing excitotoxity) to young adult mice induced HSF1 nuclear translocation and its binding to multiple Bdnf promoters in the hippocampus. Footshock, a physical stressor used for learning, also induced HSF1 binding to selected Bdnf promoters I and IV. This is, to our knowledge, the first demonstration of HSF1 gene regulation in response to neuronal stimuli in the hippocampus in vivo. HSF1 binding sites (HSEs) in Bdnf promoters I and IV were also detected when immunoprecipitated by an antibody of phosphorylated (p)CREB (cAMP-responsive element-binding protein), suggesting their possible interplay in acute stress-induced Bdnf transcription. Interestingly, their promoter binding patterns differed by KA and footshock, suggesting that HSF1 and pCREB orchestrate to render fine-tuned promoter control depending on the types of stress. Further, HSF1 overexpression increased Bdnf promoter activity in a luciferase assay, while virus infection of constitutively active-form HSF1 increased levels of BDNF mRNA and protein in vitro in primary cultured neurons. These results indicated that HSF1 activation of Bdnf promoter was sufficient to induce BDNF expression. Taken together, these results suggest that HSF1 promoter-specific control of Bdnf gene regulation plays an important role in neuronal protection and plasticity in the hippocampus in response to acute stress, possibly interplaying with pCREB.
Collapse
Affiliation(s)
- Hunter Franks
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ruishan Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Mingqi Li
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Bin Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ashton Wildmann
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Tyler Ortyl
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Shannon O’Brien
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Deborah Young
- Department of Pharmacology & Clinical Pharmacology, The
University of Auckland, Auckland, New Zealand
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Li Y, Wang D, Ping X, Zhang Y, Zhang T, Wang L, Jin L, Zhao W, Guo M, Shen F, Meng M, Chen X, Zheng Y, Wang J, Li D, Zhang Q, Hu C, Xu L, Ma X. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 2022; 185:949-966.e19. [PMID: 35247329 DOI: 10.1016/j.cell.2022.02.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Beige fat plays key roles in the regulation of systemic energy homeostasis; however, detailed mechanisms and safe strategy for its activation remain elusive. In this study, we discovered that local hyperthermia therapy (LHT) targeting beige fat promoted its activation in humans and mice. LHT achieved using a hydrogel-based photothermal therapy activated beige fat, preventing and treating obesity in mice without adverse effects. HSF1 is required for the effects since HSF1 deficiency blunted the metabolic benefits of LHT. HSF1 regulates Hnrnpa2b1 (A2b1) transcription, leading to increased mRNA stability of key metabolic genes. Importantly, analysis of human association studies followed by functional analysis revealed that the HSF1 gain-of-function variant p.P365T is associated with improved metabolic performance in humans and increased A2b1 transcription in mice and cells. Overall, we demonstrate that LHT offers a promising strategy against obesity by inducing beige fat activation via HSF1-A2B1 transcriptional axis.
Collapse
Affiliation(s)
- Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Ping
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yankang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ting Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Askar MH, Hussein AM, Al-Basiony SF, Meseha RK, Metias EF, Salama MM, Antar A, El-Sayed A. Effects of Exercise and Ferulic Acid on Alpha Synuclein and Neuroprotective Heat Shock Protein 70 in An Experimental Model of Parkinsonism Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:156-169. [PMID: 30113007 DOI: 10.2174/1871527317666180816095707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & OBJECTIVE This study investigated the effects of ferulic acid (FR), muscle exercise (Ex) and combination of them on rotenone (Rot)-induced Parkinson disease (PD) in mice as well as their underlying mechanisms. METHOD 56 male C57BL/6 mice were allocated into 8 equal groups, 1) Normal control (CTL), 2) FR (mice received FR at 20 mg/kg/day), 3) Ex (mice received swimming Ex) and 4) Ex + FR (mice received FR and Ex), 5) Rot (mice received Rot 3 mg/Kg i.p. for 70 days), 6) ROT+ FR (mice received Rot + FR at 20 mg/kg/day), 7) ROT+ Ex (mice received Rot + swimming Ex) and 8) ROT+ Ex + FR (mice received Rot + FR and Ex). ROT group showed significant impairment in motor performance and significant reduction in tyrosine hydroxylase (TH) density and Hsp70 expression (p< 0.05) with Lewy bodies (alpha synuclein) aggregates in corpus striatum. Also, ROT+FR, ROT+EX and ROT + Ex+ FR groups showed significant improvement in behavioral and biochemical changes, however the effect of FR alone was more potent than Ex alone (p< 0.05) and addition of Ex to FR caused no more significant improvement than FR alone. CONCLUSION We concluded that, FR and Ex improved the motor performance in rotenone-induced PD rodent model which might be due to increased Hsp70 expression and TH density in corpus striatum and combination of both did not offer more protection than FR alone.
Collapse
Affiliation(s)
- Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Soheir F Al-Basiony
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Refka K Meseha
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Mohamed M Salama
- Department of Clinical Toxicology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Ashraf Antar
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Aya El-Sayed
- MERC, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| |
Collapse
|
4
|
Pandey M, Nabi J, Tabassum N, Pottoo FH, Khatik R, Ahmad N. Molecular Chaperones in Neurodegeneration. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular chaperones are essential players to this protein quality control network that functions to prevent protein misfolding, refold misfolded proteins, or degrade them, thereby maintaining neuronal proteostasis. Moreover, overexpression of cellular chaperones is considered to inhibit protein aggregation and apoptosis in various experimental models of neurodegeneration. Alterations or downregulation of chaperone machinery by age-related decline, molecular crowding, or genetic mutations are regarded as key pathological hallmarks of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Prion diseases. Therefore, chaperones may serve as potential therapeutic targets in these diseases. This chapter presents a generalized view of misfolding and aggregation of proteins in neurodegeneration and then critically analyses some of the known cellular chaperones and their role in several neurodegenerative disorders.
Collapse
Affiliation(s)
- Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, India
| | - Jahangir Nabi
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Renuka Khatik
- Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Saudi Arabia
| |
Collapse
|
5
|
Chaari A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int J Biol Macromol 2019; 131:396-411. [DOI: 10.1016/j.ijbiomac.2019.02.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
6
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Studying the effects of haplotype partitioning methods on the RA-associated genomic results from the North American Rheumatoid Arthritis Consortium (NARAC) dataset. J Adv Res 2019; 18:113-126. [PMID: 30891314 PMCID: PMC6403413 DOI: 10.1016/j.jare.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Haplotype blocks methods plays a complementary role to the single-SNP approaches. CIT, FGT, SSLD, and single-SNP methods should be applied to discover the markers. Selection of the method used for the association has an impact on the biomarkers. SSLD method detected more significant SNPs than CIT, FGT, and single-SNP methods. The 383 SNPs discovered by all methods are significantly associated with RA.
The human genome, which includes thousands of genes, represents a big data challenge. Rheumatoid arthritis (RA) is a complex autoimmune disease with a genetic basis. Many single-nucleotide polymorphism (SNP) association methods partition a genome into haplotype blocks. The aim of this genome wide association study (GWAS) was to select the most appropriate haplotype block partitioning method for the North American Rheumatoid Arthritis Consortium (NARAC) dataset. The methods used for the NARAC dataset were the individual SNP approach and the following haplotype block methods: the four-gamete test (FGT), confidence interval test (CIT), and solid spine of linkage disequilibrium (SSLD). The measured parameters that reflect the strength of the association between the biomarker and RA were the P-value after Bonferroni correction and other parameters used to compare the output of each haplotype block method. This work presents a comparison among the individual SNP approach and the three haplotype block methods to select the method that can detect all the significant SNPs when applied alone. The GWAS results from the NARAC dataset obtained with the different methods are presented. The individual SNP, CIT, FGT, and SSLD methods detected 541, 1516, 1551, and 1831 RA-associated SNPs respectively, and the individual SNP, FGT, CIT, and SSLD methods detected 65, 156, 159, and 450 significant SNPs respectively, that were not detected by the other methods. Three hundred eighty-three SNPs were discovered by the haplotype block methods and the individual SNP approach, while 1021 SNPs were discovered by all three haplotype block methods. The 383 SNPs detected by all the methods are promising candidates for studying RA susceptibility. A hybrid technique involving all four methods should be applied to detect the significant SNPs associated with RA in the NARAC dataset, but the SSLD method may be preferred because of its advantages when only one method was used.
Collapse
Affiliation(s)
- Mohamed N Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Mai S Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ayman M Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Ekimova IV, Plaksina DV, Pastukhov YF, Lapshina KV, Lazarev VF, Mikhaylova ER, Polonik SG, Pani B, Margulis BA, Guzhova IV, Nudler E. New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson's disease. Exp Neurol 2018; 306:199-208. [PMID: 29704482 DOI: 10.1016/j.expneurol.2018.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/17/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
Abstract
Molecular chaperone HSP70 (HSPA1A) has therapeutic potential in conformational neurological diseases. Here we evaluate the neuroprotective function of the chaperone in a rat model of Parkinson's disease (PD). We show that the knock-down of HSP70 (HSPA1A) in dopaminergic neurons of the Substantia nigra causes an almost 2-fold increase in neuronal death and multiple motor disturbances in animals. Conversely, pharmacological activation of HSF1 transcription factor and enhanced expression of inducible HSP70 with the echinochrome derivative, U-133, reverses the process of neurodegeneration, as evidenced by а increase in the number of tyrosine hydroxylase-containing neurons, and prevents the motor disturbances that are typical of the clinical stage of the disease. The neuroprotective effect caused by the elevation of HSP70 in nigral neurons is due to the ability of the chaperone to prevent α-synuclein aggregation and microglia activation. Our findings support the therapeutic relevance of HSP70 induction for the prevention and/or deceleration of PD-like neurodegeneration.
Collapse
Affiliation(s)
- Irina V Ekimova
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia.
| | - Daria V Plaksina
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Yuri F Pastukhov
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Ksenia V Lapshina
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Vladimir F Lazarev
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Elena R Mikhaylova
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Sergey G Polonik
- G.B.Elyakov Pacific Institute of Bioorganic Chemistry of Far East Branch of Russian Academy of Sciences, pr. 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine NY, NY 10016, USA
| | - Boris A Margulis
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Irina V Guzhova
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine NY, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine NY, NY 10016, USA.
| |
Collapse
|
8
|
Goenka A, Parihar R, Ganesh S. Heat Shock-Induced Transcriptional and Translational Arrest in Mammalian Cells. HEAT SHOCK PROTEINS AND STRESS 2018. [DOI: 10.1007/978-3-319-90725-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Wang B, Liu Y, Huang L, Chen J, Li JJ, Wang R, Kim E, Justicia C, Sakata K, Chen H, Planas A, Ostrom RS, Li W, Yang G, McDonald MP, Chen R, Heck D, Liao FF, Liao FF. A CNS-permeable Hsp90 inhibitor rescues synaptic dysfunction and memory loss in APP-overexpressing Alzheimer's mouse model via an HSF1-mediated mechanism. Mol Psychiatry 2017; 22:990-1001. [PMID: 27457810 PMCID: PMC5323357 DOI: 10.1038/mp.2016.104] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/27/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2022]
Abstract
Induction of neuroprotective heat-shock proteins via pharmacological Hsp90 inhibitors is currently being investigated as a potential treatment for neurodegenerative diseases. Two major hurdles for therapeutic use of Hsp90 inhibitors are systemic toxicity and limited central nervous system permeability. We demonstrate here that chronic treatment with a proprietary Hsp90 inhibitor compound (OS47720) not only elicits a heat-shock-like response but also offers synaptic protection in symptomatic Tg2576 mice, a model of Alzheimer's disease, without noticeable systemic toxicity. Despite a short half-life of OS47720 in mouse brain, a single intraperitoneal injection induces rapid and long-lasting (>3 days) nuclear activation of the heat-shock factor, HSF1. Mechanistic study indicates that the remedial effects of OS47720 depend upon HSF1 activation and the subsequent HSF1-mediated transcriptional events on synaptic genes. Taken together, this work reveals a novel role of HSF1 in synaptic function and memory, which likely occurs through modulation of the synaptic transcriptome.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Yu Liu
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Lianyan Huang
- Department of Anesthesiology, New York University School of Medicine, New York, NY 10016
| | - Jianjun Chen
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Jing jing Li
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Ruishan Wang
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Eunhee Kim
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Carles Justicia
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research (IIBB-CSIC), Rossello 161, planta 6, 08036-Barcelona, Spain
| | - Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Anna Planas
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research (IIBB-CSIC), Rossello 161, planta 6, 08036-Barcelona, Spain
| | - Rennolds S Ostrom
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Guang Yang
- Department of Anesthesiology, New York University School of Medicine, New York, NY 10016
| | - Michael P. McDonald
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163,Department of Neurology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Ruihong Chen
- Oncosynergy, Inc; 409 Illinois St., San Francisco, CA, 94158
| | - Detlef Heck
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163,Correspondence should be addressed to Francesca-Fang Liao, Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163.
| | - F-F Liao
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| |
Collapse
|
10
|
Bose S, Cho J. Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders. Ageing Res Rev 2017; 35:155-175. [PMID: 27702699 DOI: 10.1016/j.arr.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Protein misfolding, which is known to cause several serious diseases, is an emerging field that addresses multiple therapeutic areas. Misfolding of a disease-specific protein in the central nervous system ultimately results in the formation of toxic aggregates that may accumulate in the brain, leading to neuronal cell death and dysfunction, and associated clinical manifestations. A large number of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, Huntington's, and prion diseases, are primarily caused by protein misfolding and aggregation. Notably, the cellular system is equipped with a protein quality control system encompassing chaperones, ubiquitin proteasome system, and autophagy, as a defense mechanism that monitors protein folding and eliminates inappropriately folded proteins. As the intrinsic molecular mechanisms of protein misfolding become more clearly understood, the novel therapeutic approaches in this arena are gaining considerable interest. The present review will describe the chaperones network and different approaches as the therapeutic targets for neurodegenerative diseases. Current and emerging therapeutic approaches to combat neurodegenerative diseases, addressing the roles of molecular, chemical, and pharmacological chaperones, as well as heat shock factor-1 and the unfolded protein response, are also discussed in detail.
Collapse
Affiliation(s)
- Shambhunath Bose
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
11
|
Török N, Majláth Z, Szalárdy L, Vécsei L. Investigational α-synuclein aggregation inhibitors: hope for Parkinson’s disease. Expert Opin Investig Drugs 2016; 25:1281-1294. [DOI: 10.1080/13543784.2016.1237501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nóra Török
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsófia Majláth
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
12
|
Zhang CW, Adeline HB, Chai BH, Hong ET, Ng CH, Lim KL. Pharmacological or Genetic Activation of Hsp70 Protects against Loss of Parkin Function. NEURODEGENER DIS 2016; 16:304-16. [DOI: 10.1159/000443668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
|
13
|
Rao G, Croft B, Teng C, Awasthi V. Ubiquitin-Proteasome System in Neurodegenerative Disorders. JOURNAL OF DRUG METABOLISM & TOXICOLOGY 2015; 6:187. [PMID: 30761219 PMCID: PMC6370320 DOI: 10.4172/2157-7609.1000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular proteostasis is a highly dynamic process and is primarily carried out by the degradation tools of ubiquitin-proteasome system (UPS). Abnormalities in UPS function result in the accumulation of damaged or misfolded proteins which can form intra- and extracellular aggregated proteinaceous deposits leading to cellular dysfunction and/or death. Deposition of abnormal protein aggregates and the cellular inability to clear them have been implicated in the pathogenesis of a number of neurodegenerative disorders such as Alzheimer's and Parkinson's. Contrary to the upregulation of proteasome function in oncogenesis and the use of proteasome inhibition as a therapeutic strategy, activation of proteasome function would serve therapeutic objectives of treatment of neurodegenerative diseases. This review describes the current understanding of the role of the proteasome in neurodegenerative disorders and potential utility of proteasomal modulation therein.
Collapse
Affiliation(s)
- Geeta Rao
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Brandon Croft
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Chengwen Teng
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Johnson CR, Weems AD, Brewer JM, Thorner J, McMurray MA. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast. Mol Biol Cell 2015; 26:1323-44. [PMID: 25673805 PMCID: PMC4454179 DOI: 10.1091/mbc.e14-11-1531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases.
Collapse
Affiliation(s)
- Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jennifer M Brewer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
15
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
16
|
San Sebastian W, Samaranch L, Kells AP, Forsayeth J, Bankiewicz KS. Gene therapy for misfolding protein diseases of the central nervous system. Neurotherapeutics 2013; 10:498-510. [PMID: 23700209 PMCID: PMC3701766 DOI: 10.1007/s13311-013-0191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein aggregation as a result of misfolding is a common theme underlying neurodegenerative diseases. Accordingly, most recent studies aim to prevent protein misfolding and/or aggregation as a strategy to treat these pathologies. For instance, state-of-the-art approaches, such as silencing protein overexpression by means of RNA interference, are being tested with positive outcomes in preclinical models of animals overexpressing the corresponding protein. Therapies designed to treat central nervous system diseases should provide accurate delivery of the therapeutic agent and long-term or chronic expression by means of a nontoxic delivery vehicle. After several years of technical advances and optimization, gene therapy emerges as a promising approach able to fulfill those requirements. In this review we will summarize the latest improvements achieved in gene therapy for central nervous system diseases associated with protein misfolding (e.g., amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, Huntington's, and prion diseases), as well as the most recent approaches in this field to treat these pathologies.
Collapse
Affiliation(s)
- Waldy San Sebastian
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Lluis Samaranch
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Adrian P. Kells
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Krystof S. Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| |
Collapse
|
17
|
Danzer KM, McLean PJ. Drug targets from genetics: α-synuclein. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 10:712-23. [PMID: 21838671 DOI: 10.2174/187152711797247867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/22/2011] [Accepted: 07/24/2011] [Indexed: 02/08/2023]
Abstract
One of the critical issues in Parkinson disease (PD) research is the identity of the specific toxic, pathogenic moiety. In PD, mutations in α-synuclein (αsyn) or multiplication of the SNCA gene encoding αsyn, result in a phenotype of cellular inclusions, cell death, and brain dysfunction. While the historical point of view has been that the macroscopic aggregates containing αsyn are the toxic species, in the last several years evidence has emerged that suggests instead that smaller soluble species--likely oligomers containing misfolded αsyn--are actually the toxic moiety and that the fibrillar inclusions may even be a cellular detoxification pathway and less harmful. If soluble misfolded species of αsyn are the toxic moieties, then cellular mechanisms that degrade misfolded αsyn would be neuroprotective and a rational target for drug development. In this review we will discuss the fundamental mechanisms underlying αsyn toxicity including oligomer formation, oxidative stress, and degradation pathways and consider rational therapeutic strategies that may have the potential to prevent or halt αsyn induced pathogenesis in PD.
Collapse
Affiliation(s)
- Karin M Danzer
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, USA
| | | |
Collapse
|
18
|
Dimant H, Ebrahimi-Fakhari D, McLean PJ. Molecular chaperones and co-chaperones in Parkinson disease. Neuroscientist 2012; 18:589-601. [PMID: 22829394 DOI: 10.1177/1073858412441372] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parkinson disease, a progressive neurodegenerative disorder, is caused by the pathological accumulation of proteins, including the ubiquitous presynaptic protein α-synuclein. Alterations in the metabolism of α-synuclein have clearly been linked to neurodegeneration, and early steps in the pathological sequence of this protein include the formation of oligomers, fibrils, and small aggregates. Targeting these early steps of oligomerization is one of the main therapeutic approaches in the quest to develop disease-modifying agents. Molecular chaperones, molecules that can mediate the proper folding and refolding of client proteins, are vital to cell function and survival and thus have been explored as potential therapeutic agents. Important to Parkinson disease, chaperones are capable of preventing α-synuclein misfolding, oligomerization, and aggregate formation as shown in vitro and in Parkinson disease animal models. Furthermore, chaperones and associated co-chaperones are closely linked to pathways of protein degradation, like the ubiquitin-proteasome system and autophagy, and are thus able to remove irreversibly misfolded proteins. In this review, we summarize the role of molecular chaperones in Parkinson disease models and discuss the importance of preserving protein homeostasis to prevent neurodegeneration. We also review the growing number of exciting studies that have targeted molecular chaperone function as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hemi Dimant
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02219, USA
| | | | | |
Collapse
|
19
|
Kalia SK, Kalia LV, McLean PJ. Molecular chaperones as rational drug targets for Parkinson's disease therapeutics. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2011; 9:741-53. [PMID: 20942788 DOI: 10.2174/187152710793237386] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/30/2010] [Indexed: 12/19/2022]
Abstract
Parkinson's disease is a neurodegenerative movement disorder that is caused, in part, by the loss of dopaminergic neurons within the substantia nigra pars compacta of the basal ganglia. The presence of intracellular protein aggregates, known as Lewy bodies and Lewy neurites, within the surviving nigral neurons is the defining neuropathological feature of the disease. Accordingly, the identification of specific genes mutated in families with Parkinson's disease and of genetic susceptibility variants for idiopathic Parkinson's disease has implicated abnormalities in proteostasis, or the handling and elimination of misfolded proteins, in the pathogenesis of this neurodegenerative disorder. Protein folding and the refolding of misfolded proteins are regulated by a network of interactive molecules, known as the chaperone system, which is composed of molecular chaperones and co-chaperones. The chaperone system is intimately associated with the ubiquitin-proteasome system and the autophagy-lysosomal pathway which are responsible for elimination of misfolded proteins and protein quality control. In addition to their role in proteostasis, some chaperone molecules are involved in the regulation of cell death pathways. Here we review the role of the molecular chaperones Hsp70 and Hsp90, and the cochaperones Hsp40, BAG family members such as BAG5, CHIP and Hip in modulating neuronal death with a focus on dopaminergic neurodegeneration in Parkinson's disease. We also review current progress in preclinical studies aimed at targetting the chaperone system to prevent neurodegeneration. Finally, we discuss potential future chaperone-based therapeutics for the symptomatic treatment and possible disease modification of Parkinson's disease.
Collapse
Affiliation(s)
- S K Kalia
- Department of Neurology, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
20
|
Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Molecular chaperones in Parkinson's disease--present and future. JOURNAL OF PARKINSON'S DISEASE 2011; 1:299-320. [PMID: 22279517 PMCID: PMC3264060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Parkinson's disease, like many other neurodegenerative disorders, is characterized by the progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. The cascade by which the small synaptic protein α-synuclein misfolds to form distinctive protein aggregates, termed Lewy bodies and Lewy neurites, has been the subject of intensive research for more than a decade. Genetic and pathological studies in Parkinson's disease patients as well as experimental studies in disease models have clearly established altered protein metabolism as a key element in the pathogenesis of Parkinson's disease. Alterations in protein metabolism include misfolding and aggregation, post-translational modification and dysfunctional degradation of cytotoxic protein species. Protein folding and re-folding are both mediated by a highly conserved network of molecules, called molecular chaperones and co-chaperones. In addition to the regulatory role in protein folding, molecular chaperone function is intimately associated with pathways of protein degradation, such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway, to effectively remove irreversibly misfolded proteins. Because of the central role of molecular chaperones in maintaining protein homeostasis, we herein review our current knowledge on the involvement of molecular chaperones and co-chaperones in Parkinson's disease. We further discuss the capacity of molecular chaperones to prevent or modulate neurodegeneration, an important concept for future neuroprotective strategies and summarize the current progress in preclinical studies in models of Parkinson's disease and other neurodegenerative disorders. Finally we include a discussion on the future potential of using molecular chaperones as a disease modifying therapy.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Ruprecht-Karls University Heidelberg, School of Medicine, Heidelberg, Germany
| | - Lara Wahlster
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Ruprecht-Karls University Heidelberg, School of Medicine, Heidelberg, Germany
| | - Pamela J. McLean
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
21
|
Versatile somatic gene transfer for modeling neurodegenerative diseases. Neurotox Res 2009; 16:329-42. [PMID: 19669852 DOI: 10.1007/s12640-009-9080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/26/2009] [Accepted: 06/29/2009] [Indexed: 12/20/2022]
Abstract
A growing variety of technical approaches allow control over the expression of selected genes in living organisms. The ability to deliver functional exogenous genes involved in neurodegenerative diseases has opened pathological processes to experimental analysis and targeted therapeutic development in rodent and primate preclinical models. Biological adaptability, economic animal use, and reduced model development costs complement improved control over spatial and temporal gene expression compared with conventional transgenic models. A review of viral vector studies, typically adeno-associated virus or lentivirus, for expression of three proteins that are central to major neurodegenerative diseases, will illustrate how this approach has powered new advances and opportunities in CNS disease research.
Collapse
|