1
|
Jiang B, Wang S, Song G, Jiang Q, Fan M, Fang C, Li X, Soh CL, Manes TD, Cheru N, Qin L, Ren P, Jortner B, Wang Q, Quaranta E, Yoo P, Geirsson A, Davis RP, Tellides G, Pober JS, Jane-Wit D. Hedgehog-induced ZFYVE21 promotes chronic vascular inflammation by activating NLRP3 inflammasomes in T cells. Sci Signal 2023; 16:eabo3406. [PMID: 36943921 PMCID: PMC10061549 DOI: 10.1126/scisignal.abo3406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The zinc finger protein ZFYVE21 is involved in immune signaling. Using humanized mouse models, primary human cells, and patient samples, we identified a T cell-autonomous role for ZFYVE21 in promoting chronic vascular inflammation associated with allograft vasculopathy. Ischemia-reperfusion injury (IRI) stimulated endothelial cells to produce Hedgehog (Hh) ligands, which in turn induced the production of ZFYVE21 in a population of T memory cells with high amounts of the Hh receptor PTCH1 (PTCHhi cells, CD3+CD4+CD45RO+PTCH1hiPD-1hi), vigorous recruitment to injured endothelia, and increased effector responses in vivo. After priming by interferon-γ (IFN-γ), Hh-induced ZFYVE21 activated NLRP3 inflammasome activity in T cells, which potentiated IFN-γ responses. Hh-induced NLRP3 inflammasomes and T cell-specific ZFYVE21 augmented the vascular sequelae of chronic inflammation in mice engrafted with human endothelial cells or coronary arteries that had been subjected to IRI before engraftment. Moreover, the population of PTCHhi T cells producing high amounts of ZFYVE21 was expanded in patients with renal transplant-associated IRI, and sera from these patients expanded this population in control T cells in a manner that depended on Hh signaling. We conclude that Hh-induced ZFYVE21 activates NLRP3 inflammasomes in T cells, thereby promoting chronic inflammation.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shaoxun Wang
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
| | - Guiyu Song
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Quan Jiang
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew Fan
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caodi Fang
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xue Li
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chien Lin Soh
- University of Cambridge, School of Clinical Medicine, Hills Rd., Cambridge CB2 0SP, UK
| | - Thomas D Manes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nardos Cheru
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pengwei Ren
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bianca Jortner
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qianxun Wang
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emma Quaranta
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Yoo
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arnar Geirsson
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert P Davis
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dan Jane-Wit
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
2
|
Lau CI, Yánez DC, Papaioannou E, Ross S, Crompton T. Sonic Hedgehog signalling in the regulation of barrier tissue homeostasis and inflammation. FEBS J 2022; 289:8050-8061. [PMID: 34614300 DOI: 10.1111/febs.16222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023]
Abstract
Epithelial barrier tissues such as the skin and airway form an essential interface between the mammalian host and its external environment. These physical barriers are crucial to prevent damage and disease from environmental insults and allergens. Failure to maintain barrier function against such risks can lead to severe inflammatory disorders, including atopic dermatitis and asthma. Here, we discuss the role of the morphogen Sonic Hedgehog in postnatal skin and lung and the impact of Shh signalling on repair, inflammation, and atopic disease in these tissues.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, UK.,School of Medicine, Universidad San Francisco de Quito, Ecuador
| | - Eleftheria Papaioannou
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
3
|
Zeng LH, Barkat MQ, Syed SK, Shah S, Abbas G, Xu C, Mahdy A, Hussain N, Hussain L, Majeed A, Khan KUR, Wu X, Hussain M. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022; 11:1774. [PMID: 35681469 PMCID: PMC9179967 DOI: 10.3390/cells11111774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Muhammad Qasim Barkat
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore 54000, Pakistan;
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Chengyun Xu
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul 34000, Turkey;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Mulatn 60000, Pakistan;
| | - Kashif-ur-Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
4
|
Association between PTCH1 gene polymorphisms and chronic obstructive pulmonary disease susceptibility in a Chinese Han population: a case-control study. Chin Med J (Engl) 2021; 133:2071-2077. [PMID: 32769486 PMCID: PMC7478574 DOI: 10.1097/cm9.0000000000000858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Supplemental Digital Content is available in the text Background Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Genome-wide association studies in non-Asian population revealed a link between COPD and mutations in the PTCH1 gene encoding Patched1, a receptor in the Hedgehog signaling pathway important for lung morphogenesis and pulmonary function. The aim of this study was to investigate the association between PTCH1 polymorphisms and the COPD risk in the Chinese Han population. Methods We performed a case-control study including 296 patients with COPD and 300 healthy individuals. Single-nucleotide polymorphisms in the PTCH1 gene were identified and genotyped based on the linkage disequilibrium analysis in all participants. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated using logistic regression analysis after adjustment for age, gender, and smoking. Results In total, 28 single-nucleotide polymorphisms were identified in patients with COPD. Among them, “A” allele of rs28491365 (OR: 1.388, 95% CI: 1.055–1.827, P = 0.018), and “G” alleles of rs10512248 (OR: 1.299, 95% CI: 1.021–1.653, P = 0.033) and rs28705285 (OR: 1.359, 95% CI: 1.024–1.803, P = 0.033; respectively) were significantly associated with an increased COPD risk. Genetic model analysis revealed that the “T/T” genotype of rs34695652 was associated with a decreased COPD risk under the recessive model (OR: 0.490, 95% CI: 0.270–0.880, P = 0.010), whereas rs28504650/rs10512248 haplotype CG was significantly associated with an increased COPD risk after adjustment for age, gender, and smoking status (OR: 6.364, 95% CI: 1.220–33.292, P = 0.028). Conclusions The study provides a new insight into the role of PTCH1 polymorphisms in the susceptibility to COPD in the Chinese Han population.
Collapse
|
5
|
Dane DM, Cao K, Zhang YA, H Kernstine K, Gazdhar A, Geiser T, Hsia CCW. Inhalational delivery of induced pluripotent stem cell secretome improves postpneumonectomy lung structure and function. J Appl Physiol (1985) 2020; 129:1051-1061. [PMID: 32909918 DOI: 10.1152/japplphysiol.00205.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell-free secretory products (secretome) of human induced pluripotent stem cells (iPSCs) have been shown to attenuate tissue injury and facilitate repair and recovery. To examine whether iPSC secretome facilitates mechanically induced compensatory responses following unilateral pneumonectomy (PNX), litter-matched young adult female hounds underwent right PNX (removing 55%-58% of lung units), followed by inhalational delivery of either the nebulized-conditioned media containing induced pluripotent stem cell secretome (iPSC CM) or control cell-free media (CFM); inhalation was repeated every 5 days for 10 treatments. Lung function was measured under anesthesia pre-PNX and 10 days after the last treatment (8 wk post-PNX); detailed quantitative analysis of lung ultrastructure was performed postmortem. Pre-PNX lung function was similar between groups. Compared with CFM control, treatment with iPSC CM attenuated the post-PNX decline in lung diffusing capacity for carbon monoxide and membrane diffusing capacity, accompanied by a 24% larger postmortem lobar volume and distal air spaces. Alveolar double-capillary profiles were 39% more prevalent consistent with enhanced intussusceptive angiogenesis. Frequency distribution of the harmonic mean thickness of alveolar blood-gas barrier shifted toward the lowest values, whereas alveolar septal tissue volume and arithmetic septal thickness were similar, indicating septal remodeling and reduced diffusive resistance of the blood-gas barrier. Thus, repetitive inhalational delivery of iPSC secretome enhanced post-PNX alveolar angiogenesis and septal remodeling that are associated with improved gas exchange compensation. Results highlight the plasticity of the remaining lung units following major loss of lung mass that are responsive to broad-based modulation provided by the iPSC secretome.NEW & NOTEWORTHY To examine whether the secreted products of human induced pluripotent stem cells (iPSCs) facilitate innate adaptive responses following loss of lung tissue, adult dogs underwent surgical removal of one lung, then received repeated administration of iPSC secretory products via inhalational delivery compared with control treatment. Inhalation of iPSC secretory products enhanced capillary formation and beneficial structural remodeling in the remaining lung, leading to improved lung function.
Collapse
Affiliation(s)
- D Merrill Dane
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Khoa Cao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yu-An Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kemp H Kernstine
- Department of Cardiothoracic and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Li J, Zong D, Chen Y, Chen P. Anti-apoptotic effect of the Shh signaling pathway in cigarette smoke extract induced MLE 12 apoptosis. Tob Induc Dis 2019; 17:49. [PMID: 31516492 PMCID: PMC6662799 DOI: 10.18332/tid/109753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Many studies have shown that COPD is associated with apoptosis of bronchial or alveolar epithelial cells. Alveolar type II epithelial cells (AECII) play an important role in the pathogenetic process. Cigarette smoke extract (CSE) can induce apoptosis of AECII. The Sonic hedgehog (Shh) pathway is involved in many adult lung diseases. We aimed to verify the anti-apoptotic effect of Shh in the AECII apoptosis induced by CSE. METHODS Mouse lung epithelial type II cells, MLE 12, were treated by 5% CSE for 24 hours. Apoptosis was measured using flow cytometry and expression of the anti-apoptotic factor BCL-2. The role of the hedgehog pathway in cell apoptosis was assessed by real-time RT-PCT and western blotting to measure the expression of Sonic hedgehog, Patched 1, and Gli1. Recombinant mouse Sonic hedgehog was used to overexpress the Shh pathway. RESULTS CSE could induce MLE 12 apoptosis. Sonic hedgehog, Patched 1 and the Gli1 were decreased in the CSE induced MLE 12 apoptosis. Overexpression Shh could partially reverse the CSE induced apoptosis. CONCLUSIONS Activation of the Shh pathway may relieve the CSE induced MLE 12 apoptosis.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Dandan Zong
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
7
|
Wang XZ, Zhang HH, Qian YL, Tang LF. Sonic hedgehog (Shh) and CC chemokine ligand 2 signaling pathways in asthma. J Chin Med Assoc 2019; 82:343-350. [PMID: 31058710 DOI: 10.1097/jcma.0000000000000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways in which many cells are involved, including mast cells, eosinophils, T lymphocytes, and so on. During the process, many chemokines and mediators are released to engage in recruiting and activating eosinophils and other inflammatory cells. Also, some signaling pathways are involved in the pathobiology of asthma. Sonic hedgehog (Shh) is one of the members of hedgehog gene families. Shh signaling plays a critical role in the embryonic development, including the lung. Previous findings from our team reveal that Shh is involved in the asthma pathogenesis. Recombinant Shh could induce the CC chemokine ligand 2 (CCL2) overexpressing and Smo inhibitor GDC-O449 could inhibit CCL2 expression in airway epithelial cells, monocytes, or macrophages. Hence, we reviewed the effects of Shh and CCL2 signaling pathways, and the interaction between signaling pathways in asthma.
Collapse
Affiliation(s)
- Xiang-Zhi Wang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hang-Hu Zhang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Yu-Ling Qian
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lan-Fang Tang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Deng M, Li J, Gan Y, Chen Y, Chen P. Changes in the number of CD31 -CD45 -Sca-1 + cells and Shh signaling pathway involvement in the lungs of mice with emphysema and relevant effects of acute adenovirus infection. Int J Chron Obstruct Pulmon Dis 2017; 12:861-872. [PMID: 28352167 PMCID: PMC5359003 DOI: 10.2147/copd.s129871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background COPD is a leading cause of mortality worldwide, and cigarette smoke is a pivotal risk factor. Adenovirus is a common cause of acute exacerbations of COPD and expedites COPD progression. Lung stem/progenitor cells play an important role in the development of COPD, while the relevant mechanism remains elusive. Here, we investigated the number of lung CD31−CD45−Sca-1+ cells and sonic hedgehog (Shh) signaling pathway expression levels in cigarette smoke extract (CSE)-induced emphysema mice, as well as the relevant effects of acute adenovirus infection (AAI). Materials and methods BALB/c mice were treated with CSE by intraperitoneal injection and/or adenovirus endotracheal instillation at different time points for 28 days. Lung function, lung histomorphology, CD31−CD45−Sca-1+ cell count, and expression levels of major components in the Shh signaling pathway in the lungs were measured. Results CSE intraperitoneal injection and adenovirus endotracheal instillation successfully induced emphysema and AAI in mice, respectively. In the lungs of emphysema mice, both the number of CD31−CD45−Sca-1+ cells and expression levels of Shh signaling pathway molecules were reduced. However, AAI increased the number of inhibited CD31−CD45−Sca-1+ cells and activated the suppression of the Shh signaling pathway. Conclusion Both CD31−CD45−Sca-1+ cell numbers and Shh signaling pathway expression levels were downregulated in the lungs of emphysema mice induced by CSE intraperitoneal injection, which likely contributes to the pathogenesis of emphysema. Additionally, these inhibited lung CD31−CD45−Sca-1+ cells and Shh signaling pathway molecules were upregulated during AAI, indicating that they play a protective role in the epithelial repair process after AAI injury.
Collapse
Affiliation(s)
- Minhua Deng
- Respiratory Medicine Department, PLA Rocket Force General Hospital, Beijing; Respiratory Medicine Department
| | | | - Ye Gan
- Rehabilitation Department, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | | | | |
Collapse
|
9
|
Hedgehog and Resident Vascular Stem Cell Fate. Stem Cells Int 2015; 2015:468428. [PMID: 26064136 PMCID: PMC4438189 DOI: 10.1155/2015/468428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/01/2015] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog pathway is a pivotal morphogenic driver during embryonic development and a key regulator of adult stem cell self-renewal. The discovery of resident multipotent vascular stem cells and adventitial progenitors within the vessel wall has transformed our understanding of the origin of medial and neointimal vascular smooth muscle cells (SMCs) during vessel repair in response to injury, lesion formation, and overall disease progression. This review highlights the importance of components of the Hh and Notch signalling pathways within the medial and adventitial regions of adult vessels, their recapitulation following vascular injury and disease progression, and their putative role in the maintenance and differentiation of resident vascular stem cells to vascular lineages from discrete niches within the vessel wall.
Collapse
|
10
|
Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014; 141:3445-57. [PMID: 25183867 DOI: 10.1242/dev.083691] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
11
|
Bertoncello I, McQualter JL. Endogenous lung stem cells: what is their potential for use in regenerative medicine? Expert Rev Respir Med 2014; 4:349-62. [DOI: 10.1586/ers.10.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
McGowan SE, McCoy DM. Platelet-derived growth factor-A and sonic hedgehog signaling direct lung fibroblast precursors during alveolar septal formation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L229-39. [PMID: 23748534 DOI: 10.1152/ajplung.00011.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar septal formation is required to support the respiration of growing mammals; in humans effacement of the alveolar surface and impaired gas exchange are critical features of emphysema and pulmonary fibrosis. Platelet-derived growth factor-A (PDGF-A) and its receptor PDGF-receptor-α (PDGFRα) are required for secondary septal elongation in mice during postnatal days 4 through 12 and they regulate the proliferation and septal location of interstitial fibroblasts. We examined lung fibroblasts (LF) to learn whether PDGFRα expression distinguished a population of precursor cells, with enhanced proliferative and migratory capabilities. We identified a subpopulation of LF that expresses sonic hedgehog (Shh) and stem cell antigen-1 (Sca1). PDGF-A and Shh both increased cytokinesis and chemotaxis in vitro, but through different mechanisms. In primary LF cultures, Shh signaled exclusively through a noncanonical pathway involving generation of Rac1-GTP, whereas both the canonical and noncanonical pathways were used by the Mlg neonatal mouse LF cell line. LF preferentially oriented their primary cilia toward their anterior pole during migration. Furthermore, a larger proportion of PDGFRα-expressing LF, which are more abundant at the septal tips, bore primary cilia compared with other alveolar cells. In pulmonary emphysema, destroyed alveolar septa do not regenerate, in part because cells fail to assume a configuration that allows efficient gas exchange. Better understanding how LF are positioned during alveolar development could identify signaling pathways, which promote alveolar septal regeneration.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service, Iowa City, IA, USA.
| | | |
Collapse
|
13
|
Zhang J, Jeradi S, Strähle U, Akimenko MA. Laser ablation of the sonic hedgehog-a-expressing cells during fin regeneration affects ray branching morphogenesis. Dev Biol 2012; 365:424-33. [PMID: 22445510 DOI: 10.1016/j.ydbio.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 02/21/2012] [Accepted: 03/08/2012] [Indexed: 01/16/2023]
Abstract
The zebrafish fin is an excellent system to study the mechanisms of dermal bone patterning. Fin rays are segmented structures that form successive bifurcations both during ontogenesis and regeneration. Previous studies showed that sonic hedgehog (shha) may regulate regenerative bone patterning based on its expression pattern and functional analysis. The present study investigates the role of the shha-expressing cells in the patterning of fin ray branches. The shha expression domain in the basal epidermis of each fin ray splits into two prior to ray bifurcation. In addition, the osteoblast proliferation profile follows the dynamic expression pattern of shha. A zebrafish transgenic line, 2.4shh:gfpABC#15, in which GFP expression recapitulates the endogenous expression of shha, was used to specifically ablate shha-expressing cells with a laser beam. Such ablations lead to a delay in the sequence of events leading to ray bifurcation without affecting the overall growth of the fin ray. These results suggest that shha-expressing cells direct localized osteoblast proliferation and thus regulate branching morphogenesis. This study reveals the fin ray as a new accessible system to investigate epithelial-mesenchymal interactions leading to organ branching.
Collapse
Affiliation(s)
- Jing Zhang
- CAREG, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|