1
|
Gholami M, Coleman-Fuller N, Salehirad M, Darbeheshti S, Motaghinejad M. Neuroprotective Effects of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors (Gliflozins) on Diabetes-Induced Neurodegeneration and Neurotoxicity: A Graphical Review. Int J Prev Med 2024; 15:28. [PMID: 39239308 PMCID: PMC11376549 DOI: 10.4103/ijpvm.ijpvm_5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetes is a chronic endocrine disorder that negatively affects various body systems, including the nervous system. Diabetes can cause or exacerbate various neurological disorders, and diabetes-induced neurodegeneration can involve several mechanisms such as mitochondrial dysfunction, activation of oxidative stress, neuronal inflammation, and cell death. In recent years, the management of diabetes-induced neurodegeneration has relied on several types of drugs, including sodium-glucose cotransporter-2 (SGLT2) inhibitors, also called gliflozins. In addition to exerting powerful effects in reducing blood glucose, gliflozins have strong anti-neuro-inflammatory characteristics that function by inhibiting oxidative stress and cell death in the nervous system in diabetic subjects. This review presents the molecular pathways involved in diabetes-induced neurodegeneration and evaluates the clinical and laboratory studies investigating the neuroprotective effects of gliflozins against diabetes-induced neurodegeneration, with discussion about the contributing roles of diverse molecular pathways, such as mitochondrial dysfunction, oxidative stress, neuro-inflammation, and cell death. Several databases-including Web of Science, Scopus, PubMed, Google Scholar, and various publishers, such as Springer, Wiley, and Elsevier-were searched for keywords regarding the neuroprotective effects of gliflozins against diabetes-triggered neurodegenerative events. Additionally, anti-neuro-inflammatory, anti-oxidative stress, and anti-cell death keywords were applied to evaluate potential neuronal protection mechanisms of gliflozins in diabetes subjects. The search period considered valid peer-reviewed studies published from January 2000 to July 2023. The current body of literature suggests that gliflozins can exert neuroprotective effects against diabetes-induced neurodegenerative events and neuronal dysfunction, and these effects are mediated via activation of mitochondrial function and prevention of cell death processes, oxidative stress, and inflammation in neurons affected by diabetes. Gliflozins can confer neuroprotective properties in diabetes-triggered neurodegeneration, and these effects are mediated by inhibiting oxidative stress, inflammation, and cell death.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Mahsa Salehirad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Darbeheshti
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
3
|
Smith CT, Wang Z, Lewis JS. Engineering antigen-presenting cells for immunotherapy of autoimmunity. Adv Drug Deliv Rev 2024; 210:115329. [PMID: 38729265 DOI: 10.1016/j.addr.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.
Collapse
Affiliation(s)
- Clinton T Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhenyu Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
La Sala L, Carlini V, Conte C, Macas-Granizo MB, Afzalpour E, Martin-Delgado J, D'Anzeo M, Pedretti RFE, Naselli A, Pontiroli AE, Cappato R. Metabolic disorders affecting the liver and heart: Therapeutic efficacy of miRNA-based therapies? Pharmacol Res 2024; 201:107083. [PMID: 38309383 DOI: 10.1016/j.phrs.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Liver and heart disease are major causes of death worldwide. It is known that metabolic alteration causing type 2 diabetes (T2D) and Nonalcoholic fatty liver (NAFLD) coupled with a derangement in lipid homeostasis, may exacerbate hepatic and cardiovascular diseases. Some pharmacological treatments can mitigate organ dysfunctions but the important side effects limit their efficacy leading often to deterioration of the tissues. It needs to develop new personalized treatment approaches and recent progresses of engineered RNA molecules are becoming increasingly viable as alternative treatments. This review outlines the current use of antisense oligonucleotides (ASOs), RNA interference (RNAi) and RNA genome editing as treatment for rare metabolic disorders. However, the potential for small non-coding RNAs to serve as therapeutic agents for liver and heart diseases is yet to be fully explored. Although miRNAs are recognized as biomarkers for many diseases, they are also capable of serving as drugs for medical intervention; several clinical trials are testing miRNAs as therapeutics for type 2 diabetes, nonalcoholic fatty liver as well as cardiac diseases. Recent advances in RNA-based therapeutics may potentially facilitate a novel application of miRNAs as agents and as druggable targets. In this work, we sought to summarize the advancement and advantages of miRNA selective therapy when compared to conventional drugs. In particular, we sought to emphasise druggable miRNAs, over ASOs or other RNA therapeutics or conventional drugs. Finally, we sought to address research questions related to efficacy, side-effects, and range of use of RNA therapeutics. Additionally, we covered hurdles and examined recent advances in the use of miRNA-based RNA therapy in metabolic disorders such as diabetes, liver, and heart diseases.
Collapse
Affiliation(s)
- Lucia La Sala
- IRCCS MultiMedica, 20138 Milan, Italy; Dept. of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | - Caterina Conte
- IRCCS MultiMedica, 20138 Milan, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | | | - Elham Afzalpour
- Dept. of Biomedical Sciences and Clinic, University of Milan, Milan, Italy
| | - Jimmy Martin-Delgado
- Hospital Luis Vernaza, Junta de Beneficiencia de Guayaquil, 090603 Guayaquil, Ecuador; Instituto de Investigacion e Innovacion en Salud Integral, Universidad Catolica de Santiago de Guayaquil, Guayaquil 090603, Ecuador
| | - Marco D'Anzeo
- AUO delle Marche, SOD Medicina di Laboratorio, Ancona, Italy
| | | | | | | | | |
Collapse
|
5
|
Yang X, Ma Z, Tan X, Shi Y, Yuan M, Chen G, Luo X, Hou L. Adoptive transfer of immature dendritic cells with high HO-1 expression delays the onset of T1DM in NOD mice. Life Sci 2023; 335:122273. [PMID: 37972884 DOI: 10.1016/j.lfs.2023.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
AIMS To investigate the potential of imDCs with high expression of HO-1 in preventing or delaying the onset of Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice. MATERIALS AND METHODS The phenotypic features of DCs in each group were assessed using flow cytometry. Western blot analysis was used to confirm the high expression of HO-1 in imDCs induced with CoPP. Additionally, flow cytometry was used to evaluate the suppressive capacity of CoPP-induced imDCs on splenic lymphocyte proliferation. Finally, the preventive effect of CoPP-induced imDCs was tested in NOD mice. KEY FINDINGS Compared to imDCs, CoPP-induced imDCs exhibited a reduced mean fluorescence intensity (MFI) of the co-stimulatory molecule CD80 on their surface (P < 0.05) and significantly increased HO-1 protein expression (P < 0.05). Following LPS stimulation, the MFI of co-stimulatory molecules CD80 and CD86 on the surface of CoPP-induced imDCs remained at a lower level (P < 0.05). Furthermore, there was a reduced proliferation rate of lymphocytes stimulated with anti-CD3/28 antibodies. The adoptive transfer of CoPP-imDCs significantly reduced the incidence of T1DM (16.66 % vs. control group: 66.67 %, P = 0.004). Furthermore, at 15 weeks of age, the insulitis score was also decreased in the CoPP-induced imDC treatment group (P < 0.05). There were no significant differences in serum insulin levels among all groups. SIGNIFICANCE ImDCs induced with CoPP and exhibiting high expression of HO-1 demonstrate a robust ability to inhibit immune responses and effectively reduce the onset of diabetes in NOD mice. This finding suggests that CoPP-induced imDCs could potentially serve as a promising treatment strategy for T1DM.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Ziyi Ma
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, People's Republic of China
| | - Yuzhen Shi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Mingming Yuan
- Department of Nail and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, People's Republic of China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
6
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Karami F, Jamaati H, Coleman-Fuller N, Zeini MS, Hayes AW, Gholami M, Salehirad M, Darabi M, Motaghinejad M. Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis. Pharmacol Rep 2023; 75:511-543. [PMID: 37093496 DOI: 10.1007/s43440-023-00469-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 04/25/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease that activates several molecular pathways involved in neurodegenerative disorders. Metformin, an anti-hyperglycemic drug used for treating DM, has the potential to exert a significant neuroprotective role against the detrimental effects of DM. This review discusses recent clinical and laboratory studies investigating the neuroprotective properties of metformin against DM-induced neurodegeneration and the roles of various molecular pathways, including mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and its related cascades. A literature search was conducted from January 2000 to December 2022 using multiple databases including Web of Science, Wiley, Springer, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, Scopus, and the Cochrane Library to collect and evaluate peer-reviewed literature regarding the neuroprotective role of metformin against DM-induced neurodegenerative events. The literature search supports the conclusion that metformin is neuroprotective against DM-induced neuronal cell degeneration in both peripheral and central nervous systems, and this effect is likely mediated via modulation of oxidative stress, inflammation, and cell death pathways.
Collapse
Affiliation(s)
- Fatemeh Karami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Maryam Shokrian Zeini
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health and Institute for Integrative Toxicology, Michigan State University, East Lansing, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Darabi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Aviña AE, De Paz D, Huang SC, Chen KH, Chang YC, Lee CM, Lin CH, Wei FC, Wang AYL. IL-10 modified mRNA monotherapy prolongs survival after composite facial allografting through the induction of mixed chimerism. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:610-627. [PMID: 36910717 PMCID: PMC9996371 DOI: 10.1016/j.omtn.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Vascularized composite allotransplantation has great potential in face transplantation by supporting functional restoration following tissue grafting. However, the need for lifelong administration of immunosuppressive drugs still limits its wide use. Modified mRNA (modRNA) technology provides an efficient and safe method to directly produce protein in vivo. Nevertheless, the use of IL-10 modRNA-based protein replacement, which exhibits anti-inflammatory properties, has not been shown to prolong composite facial allograft survival. In this study, IL-10 modRNA was demonstrated to produce functional IL-10 protein in vitro, which inhibited pro-inflammatory cytokines and in vivo formation of an anti-inflammatory environments. We found that without any immunosuppression, C57BL/6J mice with fully major histocompatibility complex (MHC)-mismatched facial allografts and local injection of IL-10 modRNA had a significantly prolonged survival rate. Decreased lymphocyte infiltration and pro-inflammatory T helper 1 subsets and increased anti-inflammatory regulatory T cells (Tregs) were seen in IL-10 modRNA-treated mice. Moreover, IL-10 modRNA induced multilineage chimerism, especially the development of donor Treg chimerism, which protected allografts from destruction because of recipient alloimmunity. These results support the use of monotherapy based on immunomodulatory IL-10 cytokines encoded by modRNA, which inhibit acute rejection and prolong allograft survival through the induction of donor Treg chimerism.
Collapse
Affiliation(s)
- Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Clinical Fellow, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital; Chang Gung University and Medical College, Taoyuan 333, Taiwan
| | - Dante De Paz
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Department of Head and Neck Surgery, National Police Hospital, Lima 15072, Peru
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, Chang Gung Memorial Hospital, New Taipei 236, Taiwan.,Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuan-Hung Chen
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chin-Ming Lee
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chia-Hsien Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
10
|
Jing Z, Li Y, Ma Y, Zhang X, Liang X, Zhang X. Leverage biomaterials to modulate immunity for type 1 diabetes. Front Immunol 2022; 13:997287. [PMID: 36405706 PMCID: PMC9667795 DOI: 10.3389/fimmu.2022.997287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 09/08/2024] Open
Abstract
The pathogeny of type 1 diabetes (T1D) is mainly provoked by the β-cell loss due to the autoimmune attack. Critically, autoreactive T cells firsthand attack β-cell in islet, that results in the deficiency of insulin in bloodstream and ultimately leads to hyperglycemia. Hence, modulating immunity to conserve residual β-cell is a desirable way to treat new-onset T1D. However, systemic immunosuppression makes patients at risk of organ damage, infection, even cancers. Biomaterials can be leveraged to achieve targeted immunomodulation, which can reduce the toxic side effects of immunosuppressants. In this review, we discuss the recent advances in harness of biomaterials to immunomodulate immunity for T1D. We investigate nanotechnology in targeting delivery of immunosuppressant, biological macromolecule for β-cell specific autoreactive T cell regulation. We also explore the biomaterials for developing vaccines and facilitate immunosuppressive cells to restore immune tolerance in pancreas.
Collapse
Affiliation(s)
- Zhangyan Jing
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumeng Ma
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaozhou Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xudong Zhang
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Postigo-Fernandez J, Firdessa-Fite R, Creusot RJ. Preclinical evaluation of a precision medicine approach to DNA vaccination in type 1 diabetes. Proc Natl Acad Sci U S A 2022; 119:e2110987119. [PMID: 35385352 PMCID: PMC9169641 DOI: 10.1073/pnas.2110987119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
Antigen-specific immunotherapy involves the delivery of self-antigens as proteins or peptides (or using nucleic acids encoding them) to reestablish tolerance. The Endotope platform supports the optimal presentation of endogenously expressed epitopes on appropriate major histocompatibility complex (MHC) class I and II molecules. Using specific epitopes that are disease-relevant (including neoepitopes and mimotopes) and restricted to the subject’s MHC haplotypes provides a more focused and tailored way of targeting autoreactive T cells. We evaluated the efficacy of an Endotope DNA vaccine tailored to the nonobese diabetic (NOD) mouse in parallel to one expressing the Proinsulin protein, a central autoantigen in NOD mice, and assessed the influence of several parameters (e.g., route, dosing frequency, disease stage) on diabetes prevention. Secretion of encoded peptides and intradermal delivery of DNA offered more effective disease prevention. Long-term weekly treatments were needed to achieve protection that can persist after discontinuation, likely mediated by regulatory T cells induced by at least one epitope. Although epitopes were presented for at least 2 wk, weekly treatments were needed, at least initially, to achieve significant protection. While Endotope and Proinsulin DNA vaccines were effective at both the prediabetic normoglycemic and dysglycemic stages of disease, Proinsulin provided better protection in the latter stage, particularly in animals with slower progression of disease, and Endotope limited insulitis the most in the earlier stage. Thus, our data support the possibility of applying a precision medicine approach based on tailored epitopes for the treatment of tissue-specific autoimmune diseases with DNA vaccines.
Collapse
Affiliation(s)
- Jorge Postigo-Fernandez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032
| | - Rebuma Firdessa-Fite
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032
| | - Rémi J. Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
12
|
Elkhalifa D, Rayan M, Negmeldin AT, Elhissi A, Khalil A. Chemically modified mRNA beyond COVID-19: Potential preventive and therapeutic applications for targeting chronic diseases. Biomed Pharmacother 2022; 145:112385. [PMID: 34915673 PMCID: PMC8552589 DOI: 10.1016/j.biopha.2021.112385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.
Collapse
Affiliation(s)
- Dana Elkhalifa
- Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | - Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T Negmeldin
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdelbary Elhissi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar; Office of the Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021; 131:1-15. [PMID: 34133982 PMCID: PMC8198544 DOI: 10.1016/j.actbio.2021.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/16/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Synthetic modified messenger RNA (mRNA) has manifested great potentials for therapeutic applications such as vaccines and gene therapies, with the recent mRNA vaccines for global pandemic COVID-19 (corona virus disease 2019) attracting the tremendous attention. The chemical modifications and delivery vehicles of synthetic mRNAs are the two key factors for their in vivo therapeutic applications. Chemical modifications like nucleoside methylation endow the synthetic mRNAs with high stability and reduced stimulation of innate immunity. The development of scalable production of synthetic mRNA and efficient mRNA formulation and delivery strategies in recent years have remarkably advanced the field. It is worth noticing that we had limited knowledge on the roles of mRNA modifications in the past. However, the last decade has witnessed not only new discoveries of several naturally occurring mRNA modifications but also substantial advances in understanding their roles on regulating gene expression. It is highly necessary to reconsider the therapeutic system made by synthetic modified mRNAs and delivery vectors. In this review, we will mainly discuss the roles of various chemical modifications on synthetic mRNAs, briefly summarize the progresses of mRNA delivery strategies, and highlight some latest mRNA therapeutics applications including infectious disease vaccines, cancer immunotherapy, mRNA-based genetic reprogramming and protein replacement, mRNA-based gene editing. Statement of significance The development of synthetic mRNA drug holds great promise but lies behind small molecule and protein drugs largely due to the challenging issues regarding its stability, immunogenicity and potency. In the last 15 years, these issues have beensubstantially addressed by synthesizing chemically modified mRNA and developing powerful delivery systems; the mRNA therapeutics has entered an exciting new era begun with the approved mRNA vaccines for the COVID-19 infection disease. Here, we provide recent progresses in understanding the biological roles of various RNA chemical modifications, in developing mRNA delivery systems, and in advancing the emerging mRNA-based therapeutic applications, with the purpose to inspire the community to spawn new ideas for curing diseases.
Collapse
|
14
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. Current advances in using tolerogenic dendritic cells as a therapeutic alternative in the treatment of type 1 diabetes. World J Diabetes 2021; 12:603-615. [PMID: 33995848 PMCID: PMC8107985 DOI: 10.4239/wjd.v12.i5.603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells of the pancreatic islets by autoreactive T cells, leading to high blood glucose levels and severe long-term complications. The typical treatment indicated in T1D is exogenous insulin administration, which controls glucose levels; however, it does not stop the autoimmune process. Various strategies have been implemented aimed at stopping β-cell destruction, such as cellular therapy. Dendritic cells (DCs) as an alternative in cellular therapy have gained great interest for autoimmune disease therapy due to their plasticity to acquire immunoregulatory properties both in vivo and in vitro, performing functions such as anti-inflammatory cytokine secretion and suppression of autoreactive lymphocytes, which are dependent of their tolerogenic phenotype, displayed by features such as semimature phenotype, low surface expression of stimulatory molecules to prime T cells, as well as the elevated expression of inhibitory markers. DCs may be obtained and propagated easily in optimal amounts from peripheral blood or bone marrow precursors, such as monocytes or hematopoietic stem cells, respectively; therefore, various protocols have been established for tolerogenic (tol)DCs manufacturing for therapeutic research in the treatment of T1D. In this review, we address the current advances in the use of tolDCs for T1D therapy, encompassing protocols for their manufacturing, the data obtained from preclinical studies carried out, and the status of clinical research evaluating the safety, feasibility, and effectiveness of tolDCs.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Honorio Torres-Aguilar
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
15
|
Rahman MM, Zhou N, Huang J. An Overview on the Development of mRNA-Based Vaccines and Their Formulation Strategies for Improved Antigen Expression In Vivo. Vaccines (Basel) 2021; 9:244. [PMID: 33799516 PMCID: PMC8001631 DOI: 10.3390/vaccines9030244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The mRNA-based vaccine approach is a promising alternative to traditional vaccines due to its ability for prompt development, high potency, and potential for secure administration and low-cost production. Nonetheless, the application has still been limited by the instability as well as the ineffective delivery of mRNA in vivo. Current technological improvements have now mostly overcome these concerns, and manifold mRNA vaccine plans against various forms of malignancies and infectious ailments have reported inspiring outcomes in both humans and animal models. This article summarizes recent mRNA-based vaccine developments, advances of in vivo mRNA deliveries, reflects challenges and safety concerns, and future perspectives, in developing the mRNA vaccine platform for extensive therapeutic use.
Collapse
Affiliation(s)
- Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
| | - Nan Zhou
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
| | - Jiandong Huang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
16
|
Phillips BE, Garciafigueroa Y, Engman C, Liu W, Wang Y, Lakomy RJ, Meng WS, Trucco M, Giannoukakis N. Arrest in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoantigen-Decorated All- trans Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Front Immunol 2021; 12:586220. [PMID: 33763059 PMCID: PMC7982719 DOI: 10.3389/fimmu.2021.586220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes (T1D) is a disorder of impaired glucoregulation due to lymphocyte-driven pancreatic autoimmunity. Mobilizing dendritic cells (DC) in vivo to acquire tolerogenic activity is an attractive therapeutic approach as it results in multiple and overlapping immunosuppressive mechanisms. Delivery of agents that can achieve this, in the form of micro/nanoparticles, has successfully prevented a number of autoimmune conditions in vivo. Most of these formulations, however, do not establish multiple layers of immunoregulation. all-trans retinoic acid (RA) together with transforming growth factor beta 1 (TGFβ1), in contrast, has been shown to promote such mechanisms. When delivered in separate nanoparticle vehicles, they successfully prevent the progression of early-onset T1D autoimmunity in vivo. Herein, we show that the approach can be simplified into a single microparticle formulation of RA + TGFβ1 with surface decoration with the T1D-relevant insulin autoantigen. We show that the onset of hyperglycemia is prevented when administered into non-obese diabetic mice that are at the mid-stage of active islet-selective autoimmunity. Unexpectedly, the preventive effects do not seem to be mediated by increased numbers of regulatory T-lymphocytes inside the pancreatic lymph nodes, at least following acute administration of microparticles. Instead, we observed a mild increase in the frequency of regulatory B-lymphocytes inside the mesenteric lymph nodes. These data suggest additional and potentially-novel mechanisms that RA and TGFβ1 could be modulating to prevent progression of mid-stage autoimmunity to overt T1D. Our data further strengthen the rationale to develop RA+TGFβ1-based micro/nanoparticle “vaccines” as possible treatments of pre-symptomatic and new-onset T1D autoimmunity.
Collapse
Affiliation(s)
- Brett E Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wen Liu
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States.,Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yiwei Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Robert J Lakomy
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Sultana N, Sharkar MTK, Hadas Y, Chepurko E, Zangi L. In Vitro Synthesis of Modified RNA for Cardiac Gene Therapy. Methods Mol Biol 2021; 2158:281-294. [PMID: 32857381 DOI: 10.1007/978-1-0716-0668-1_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modified mRNA (modRNA) is a promising new gene therapy approach that has safely and effectively delivered genes into different tissues, including the heart. Current efforts to use DNA-based or viral gene therapy to induce cardiac regeneration postmyocardial infarction (MI) or in heart failure (HF) have encountered key challenges, e.g., genome integration and delayed and noncontrolled expression. By contrast, modRNA is a transient, safe, non-immunogenic, and controlled gene delivery method that is not integrated into the genome. For most therapeutic applications, especially in regenerative medicine, the ability to deliver genes to the heart transiently and with control is vital for achieving therapeutic effect. Additionally, modRNA synthesis is comparatively simple and inexpensive compared to other gene delivery methods (e.g., protein), though a simple, clear in vitro transcription (IVT) protocol for synthesizing modRNA is needed for it to be more widely used. Here, we describe a simple and improved step-by-step IVT protocol to synthesize modRNA for in vitro or in vivo applications.
Collapse
Affiliation(s)
- Nishat Sultana
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yoav Hadas
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lior Zangi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and Challenges in the Delivery of mRNA-based Vaccines. Pharmaceutics 2020; 12:E102. [PMID: 32013049 PMCID: PMC7076378 DOI: 10.3390/pharmaceutics12020102] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
In the past few years, there has been increasing focus on the use of messenger RNA (mRNA) as a new therapeutic modality. Current clinical efforts encompassing mRNA-based drugs are directed toward infectious disease vaccines, cancer immunotherapies, therapeutic protein replacement therapies, and treatment of genetic diseases. However, challenges that impede the successful translation of these molecules into drugs are that (i) mRNA is a very large molecule, (ii) it is intrinsically unstable and prone to degradation by nucleases, and (iii) it activates the immune system. Although some of these challenges have been partially solved by means of chemical modification of the mRNA, intracellular delivery of mRNA still represents a major hurdle. The clinical translation of mRNA-based therapeutics requires delivery technologies that can ensure stabilization of mRNA under physiological conditions. Here, we (i) review opportunities and challenges in the delivery of mRNA-based therapeutics with a focus on non-viral delivery systems, (ii) present the clinical status of mRNA vaccines, and (iii) highlight perspectives on the future of this promising new type of medicine.
Collapse
Affiliation(s)
| | | | | | | | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
19
|
Spiering R, Jansen MAA, Wood MJ, Fath AA, Eltherington O, Anderson AE, Pratt AG, van Eden W, Isaacs JD, Broere F, Hilkens CMU. Targeting of tolerogenic dendritic cells to heat-shock proteins in inflammatory arthritis. J Transl Med 2019; 17:375. [PMID: 31727095 PMCID: PMC6857208 DOI: 10.1186/s12967-019-2128-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Autologous tolerogenic dendritic cells (tolDC) are a promising therapeutic strategy for inflammatory arthritis (IA) as they can regulate autoantigen-specific T cell responses. Here, we investigated two outstanding priorities for clinical development: (i) the suitability of using heat-shock proteins (HSP), abundant in inflamed synovia, as surrogate autoantigens to be presented by tolDC and (ii) identification of functional biomarkers that confirm tolDC regulatory activity. Methods Cell proliferation dye-labelled human peripheral blood mononuclear cells of IA (rheumatoid arthritis (RA) and psoriatic arthritis (PsA)) patients or healthy donors were cultured with HSP40-, HSP60- and HSP70-derived peptides or recall antigens (e.g. tuberculin purified protein derivative (PPD)) in the presence or absence of tolDC or control DC for 9 days. Functional characteristics of proliferated antigen-specific T-cells were measured using flow cytometry, gene expression profiling and cytokine secretion immunoassays. Repeated measures analysis of variance (ANOVA) with Bonferroni correction for comparisons between multiple groups and paired Student t test for comparisons between two groups were used to determine significance. Results All groups showed robust CD4+ T-cell responses towards one or more HSP-derived peptide(s) as assessed by a stimulation index > 2 (healthy donors: 78%, RA: 73%, PsA: 90%) and production of the cytokines IFNγ, IL-17A and GM-CSF. Addition of tolDC but not control DC induced a type 1 regulatory (Tr1) phenotype in the antigen-specific CD4+ T-cell population, as identified by high expression of LAG3, CD49b and secretion of IL-10. Furthermore, tolDC inhibited bystander natural killer (NK) cell activation in a TGFβ dependent manner. Conclusions HSP-specific CD4+ T-cells are detectable in the majority of RA and PsA patients and can be converted into Tr1 cells by tolDC. HSP-loaded tolDC may therefore be suitable for directing T regulatory responses to antigens in inflamed synovia of IA patients. Tr1 markers LAG3, CD49b and IL-10 are suitable biomarkers for future tolDC clinical trials.
Collapse
Affiliation(s)
- Rachel Spiering
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Manon A A Jansen
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Matthew J Wood
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Anshorulloh A Fath
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Oliver Eltherington
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Anderson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Willem van Eden
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - John D Isaacs
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Femke Broere
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.,Department of Clinical Sciences of Companion Animals, Faculty Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharien M U Hilkens
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. .,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK. .,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
20
|
Shtylla B, Gee M, Do A, Shabahang S, Eldevik L, de Pillis L. A Mathematical Model for DC Vaccine Treatment of Type I Diabetes. Front Physiol 2019; 10:1107. [PMID: 31555144 PMCID: PMC6742690 DOI: 10.3389/fphys.2019.01107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/12/2019] [Indexed: 01/28/2023] Open
Abstract
Type I diabetes (T1D) is an autoimmune disease that can be managed, but for which there is currently no cure. Recent discoveries, particularly in mouse models, indicate that targeted modulation of the immune response has the potential to move an individual from a diabetic to a long-term, if not permanent, healthy state. In this paper we develop a single compartment mathematical model that captures the dynamics of dendritic cells (DC and tDC), T cells (effector and regulatory), and macrophages in the development of type I diabetes. The model supports the hypothesis that differences in macrophage clearance rates play a significant role in determining whether or not an individual is likely to become diabetic subsequent to a significant immune challenge. With this model we are able to explore the effects of strengthening the anti-inflammatory component of the immune system in a vulnerable individual. Simulations indicate that there are windows of opportunity in which treatment intervention is more likely to be beneficial in protecting an individual from entering a diabetic state. This model framework can be used as a foundation for modeling future T1D treatments as they are developed.
Collapse
Affiliation(s)
- Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, United States
| | - Marissa Gee
- Mathematics Department, Harvey Mudd College, Claremont, CA, United States
| | - An Do
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA, United States
| | | | - Leif Eldevik
- Aditx Therapeutics, Inc., Loma Linda, CA, United States
| | - Lisette de Pillis
- Mathematics Department, Harvey Mudd College, Claremont, CA, United States
| |
Collapse
|
21
|
Funda DP, Palová-Jelínková L, Goliáš J, Kroulíková Z, Fajstová A, Hudcovic T, Špíšek R. Optimal Tolerogenic Dendritic Cells in Type 1 Diabetes (T1D) Therapy: What Can We Learn From Non-obese Diabetic (NOD) Mouse Models? Front Immunol 2019; 10:967. [PMID: 31139178 PMCID: PMC6527741 DOI: 10.3389/fimmu.2019.00967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are explored as a promising standalone or combination therapy in type 1 diabetes (T1D). The therapeutic application of tolDCs, including in human trials, has been tested also in other autoimmune diseases, however, T1D displays some unique features. In addition, unlike in several disease-induced animal models of autoimmune diseases, the prevalent animal model for T1D, the NOD mouse, develops diabetes spontaneously. This review compares evidence of various tolDCs approaches obtained from animal (mainly NOD) models of T1D with a focus on parameters of this cell-based therapy such as protocols of tolDC preparation, antigen-specific vs. unspecific approaches, doses of tolDCs and/or autoantigens, application schemes, application routes, the migration of tolDCs as well as their preventive, early pre-onset intervention or curative effects. This review also discusses perspectives of tolDC therapy and areas of preclinical research that are in need of better clarification in animal models in a quest for effective and optimal tolDC therapies of T1D in humans.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Zuzana Kroulíková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Alena Fajstová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|
22
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
23
|
Xu Y, Huang L, Kirschman JL, Vanover DA, Tiwari PM, Santangelo PJ, Shen X, Russell DG. Exploitation of Synthetic mRNA To Drive Immune Effector Cell Recruitment and Functional Reprogramming In Vivo. THE JOURNAL OF IMMUNOLOGY 2018; 202:608-617. [PMID: 30541883 DOI: 10.4049/jimmunol.1800924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Therapeutic strategies based on in vitro-transcribed mRNA (IVT) are attractive because they avoid the permanent signature of genomic integration that is associated with DNA-based therapy and result in the transient production of proteins of interest. To date, IVT has mainly been used in vaccination protocols to generate immune responses to foreign Ags. In this "proof-of-principle" study, we explore a strategy of combinatorial IVT to recruit and reprogram immune effector cells to acquire divergent biological functions in mice in vivo. First, we demonstrate that synthetic mRNA encoding CCL3 is able to recruit murine monocytes in a nonprogrammed state, exhibiting neither bactericidal nor tissue-repairing properties. However, upon addition of either Ifn-γ mRNA or Il-4 mRNA, we successfully polarized these cells to adopt either M1 or M2 macrophage activation phenotypes. This cellular reprogramming was demonstrated through increased expression of known surface markers and through the differential modulation of NADPH oxidase activity, or the superoxide burst. Our study demonstrates how IVT strategies can be combined to recruit and reprogram immune effector cells that have the capacity to fulfill complex biological tasks in vivo.
Collapse
Affiliation(s)
- Yitian Xu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Lu Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Pooja M Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Xiling Shen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853.,School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853; and.,Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - David G Russell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
24
|
Zhang H, De Smedt SC, Remaut K. Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA complexes. Acta Biomater 2018; 75:358-370. [PMID: 29753914 DOI: 10.1016/j.actbio.2018.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/13/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. STATEMENT OF SIGNIFICANCE The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, …), but should release the mRNA again in the intracellular environment. In this paper, we evaluated a method (Fluorescence Correlation Spectroscopy) that allows for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production.
Collapse
|
25
|
Funda DP, Goliáš J, Hudcovic T, Kozáková H, Špíšek R, Palová-Jelínková L. Antigen Loading (e.g., Glutamic Acid Decarboxylase 65) of Tolerogenic DCs (tolDCs) Reduces Their Capacity to Prevent Diabetes in the Non-Obese Diabetes (NOD)-Severe Combined Immunodeficiency Model of Adoptive Cotransfer of Diabetes As Well As in NOD Mice. Front Immunol 2018; 9:290. [PMID: 29503651 PMCID: PMC5820308 DOI: 10.3389/fimmu.2018.00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic DCs (tolDCs) are being researched as a promising intervention strategy also in autoimmune diseases including type 1 diabetes (T1D). T1D is a T-cell-mediated, organ-specific disease with several well-defined and rather specific autoantigens, i.e., proinsulin, insulin, glutamic acid decarboxylase 65 (GAD65), that have been used in animal as well as human intervention trials in attempts to achieve a more efficient, specific immunotherapy. In this study, we have tested tolerogenic DCs for their effectiveness to prevent adoptive transfer of diabetes by diabetogenic splenocytes into non-obese diabetes (NOD)-severe combined immunodeficiency (NOD-SCID) recipients. While i.p. application of tolDCs prepared from bone marrow of prediabetic NOD mice by vitamin D2 and dexamethasone significantly reduced diabetes transfer into the NOD-SCID females, this effect was completely abolished when tolDCs were loaded with the mouse recombinant GAD65, but also with a control protein—ovalbumin (OVA). The effect was not dependent on the presence of serum in the tolDC culture. Similar results were observed in NOD mice. Removal of possible bystander antigen-presenting cells within the diabetogenic splenocytes by negative magnetic sorting of T cells did not alter this surprising effect. Tolerogenic DCs loaded with an immunodominant mouse GAD65 peptide also displayed diminished diabetes-preventive effect. Tolerogenic DCs were characterized by surface maturation markers (CD40, CD80, CD86, MHC II) and the lipopolysaccharide stability test. Data from alloreactive T cell proliferation and cytokine induction assays (IFN-γ) did not reveal the differences observed in the diabetes incidence. Migration of tolDCs, tolDCs-GAD65 and tolDCs-OVA to spleen, mesenteric- and pancreatic lymph nodes displayed similar, mucosal pattern with highest accumulation in pancreatic lymph nodes present up to 9 days after the i.p. application. These data document that mechanisms by which tolDCs operate in vivo require much better understanding for improving efficacy of this promising cell therapy, especially in the presence of an antigen, e.g., GAD65.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Nový Hrádek, Czechia
| | - Hana Kozáková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Nový Hrádek, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|
26
|
Immature Dendritic Cell Therapy Confers Durable Immune Modulation in an Antigen-Dependent and Antigen-Independent Manner in Nonobese Diabetic Mice. J Immunol Res 2018; 2018:5463879. [PMID: 29651443 PMCID: PMC5832131 DOI: 10.1155/2018/5463879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 01/25/2023] Open
Abstract
Dendritic cell (DC) immunotherapy has been effective for prevention of type 1 diabetes (T1D) in NOD mice but fails to protect if initiated after active autoimmunity. As autoreactivity expands inter- and intramolecularly during disease progression, we investigated whether DCs unpulsed or pulsed with β cell antigenic dominant determinants (DD), subdominant determinants (SD), and ignored determinants (ID) could prevent T1D in mice with advanced insulitis. We found that diabetes was significantly delayed by DC therapy. Of interest, DCs pulsed with SD or ID appeared to provide better protection. T lymphocytes from DC-treated mice acquired spontaneous proliferating capability during in vitro culture, which could be largely eliminated by IL-2 neutralizing antibodies. This trend maintained even 29 weeks after discontinuing DC therapy and appeared antigen-independent. Furthermore, CD4+Foxp3+ T regulatory cells (Tregs) from DC-treated mice proliferated more actively in vitro compared to the controls, and Tregs from DC-treated mice showed significantly enhanced immunosuppressive activities in contrast to those from the controls. Our study demonstrates that DC therapy leads to long-lasting immunomodulatory effects in an antigen-dependent and antigen-independent manner and provides evidence for peptide-based intervention during a clinically relevant window to guide DC-based immunotherapy for autoimmune diabetes.
Collapse
|
27
|
van Eden W, Jansen MAA, de Wolf ACM, Ludwig IS, Leufkens P, Broere F. The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins. Front Immunol 2017; 8:1690. [PMID: 29250070 PMCID: PMC5717764 DOI: 10.3389/fimmu.2017.01690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs) are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs) have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.
Collapse
Affiliation(s)
- Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Manon A A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - A Charlotte Mt de Wolf
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Irene S Ludwig
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
28
|
Jansen MAA, Spiering R, Broere F, van Laar JM, Isaacs JD, van Eden W, Hilkens CMU. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases? Immunology 2017; 153:51-59. [PMID: 28804903 DOI: 10.1111/imm.12811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens.
Collapse
Affiliation(s)
- Manon A A Jansen
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Rachel Spiering
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Femke Broere
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Jacob M van Laar
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, the Netherlands
| | - John D Isaacs
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Willem van Eden
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Catharien M U Hilkens
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Lu S, Li J, Lui KO. Individual Variation in Conditional β Cell Ablation Mice Contributes Significant Biases in Evaluating β Cell Functional Recovery. Front Endocrinol (Lausanne) 2017; 8:242. [PMID: 28959236 PMCID: PMC5604075 DOI: 10.3389/fendo.2017.00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
Despite the βDTA (Ins2-rtTA; Tet-DTA) mice have been developed as a valuable tool to study β cell regeneration, their individual variation in therapeutic efficacy has not been characterized. Here, we demonstrated that the βDTA mice exhibited significant variations in both spontaneous and acquired β cell regeneration. We found that doxycycline (DOX)-induced β cell death was sufficient to cause polydipsia, translating even subtle difference in drinking habit into large variations in actual DOX intake among individuals within the same group. Accumulating evidence shows that transient expression of VEGFA enhances β cell functional recovery after injury. Therefore, we utilized the chemically modified mRNA (modRNA) technology to enable transient yet efficient VEGFA expression in the pancreas after DOX-induced β cell death. Surprisingly, under optimized DOX dose permissive of β cell regeneration, VEGFA modRNA only demonstrated marginal benefits on β cell functional recovery with large individual variations. We also revealed that the therapeutic efficacy of VEGFA modRNA on β cell regeneration was dependent on the degree of β cell loss induced by the accumulated DOX intake. Therefore, our results highlight a significant contribution of individual variation in the βDTA model and call for attention in evaluating potential efficacy of therapeutic agents in β cell regeneration studies.
Collapse
Affiliation(s)
- Song Lu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Jiatao Li
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Kathy O. Lui
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
- *Correspondence: Kathy O. Lui,
| |
Collapse
|
30
|
Dastagir SR, Postigo-Fernandez J, Xu C, Stoeckle JH, Firdessa-Fite R, Creusot RJ. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:27-38. [PMID: 28344989 PMCID: PMC5363322 DOI: 10.1016/j.omtm.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/13/2016] [Indexed: 10/28/2022]
Abstract
Antigen-specific immunotherapy of type 1 diabetes, typically via delivery of a single native β cell antigen, has had little clinical benefit to date. With increasing evidence that diabetogenic T cells react against multiple β cell antigens, including previously unappreciated neo-antigens that can be emulated by mimotopes, a shift from protein- to epitope-based therapy is warranted. To this end, we aimed to achieve efficient co-presentation of multiple major epitopes targeting both CD4+ and CD8+ diabetogenic T cells. We have compared native epitopes versus mimotopes as well as various targeting signals in an effort to optimize recognition by both types of T cells in vitro. Optimal engagement of all T cells was achieved with segregation of CD8 and CD4 epitopes, the latter containing mimotopes and driven by endosome-targeting signals, after delivery into either dendritic or stromal cells. The CD4+ T cell responses elicited by the endogenously delivered epitopes were comparable with high concentrations of soluble peptide and included functional regulatory T cells. This work has important implications for the improvement of antigen-specific therapies using an epitope-based approach to restore tolerance in type 1 diabetes and in a variety of other diseases requiring concomitant targeting of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Shamael R Dastagir
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jorge Postigo-Fernandez
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Chunliang Xu
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - James H Stoeckle
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Rebuma Firdessa-Fite
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Rémi J Creusot
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
31
|
Creusot RJ, Battaglia M, Roncarolo MG, Fathman CG. Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes. Stem Cells 2016; 34:809-19. [PMID: 26840009 PMCID: PMC5021120 DOI: 10.1002/stem.2290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
The evolution of Type 1 diabetes (T1D) therapy has been marked by consecutive shifts, from insulin replacement to immunosuppressive drugs and targeted biologics (following the understanding that T1D is an autoimmune disease), and to more disease‐specific or patient‐oriented approaches such as antigen‐specific and cell‐based therapies, with a goal to provide efficacy, safety, and long‐term protection. At the same time, another important paradigm shift from treatment of new onset T1D patients to prevention in high‐risk individuals has taken place, based on the hypothesis that therapeutic approaches deemed sufficiently safe may show better efficacy if applied early enough to maintain endogenous β cell function, a concept supported by many preclinical studies. This new strategy has been made possible by capitalizing on a variety of biomarkers that can more reliably estimate the risk and rate of progression of the disease. More advanced (“omic”‐based) biomarkers that also shed light on the underlying contributors of disease for each individual will be helpful to guide the choice of the most appropriate therapies, or combinations thereof. In this review, we present current efforts to stratify patients according to biomarkers and current alternatives to conventional drug‐based therapies for T1D, with a special emphasis on cell‐based therapies, their status in the clinic and potential for treatment and/or prevention. Stem Cells2016;34:809–819
Collapse
Affiliation(s)
- Remi J Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, USA
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria-Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine Stanford, CA, USA
| | - C Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
32
|
Lu S, Chow CC, Zhou J, Leung PS, Tsui SK, Lui KO. Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA. Methods Mol Biol 2016; 1428:307-17. [PMID: 27236809 DOI: 10.1007/978-1-4939-3625-0_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this chapter, we describe a highly efficient genetic modification strategy for human pancreatic progenitor cells using modified mRNA-encoding GFP and Neurogenin-3. The properties of modified mRNA offer an invaluable platform to drive protein expression, which has broad applicability in pathway regulation, directed differentiation, and lineage specification. This approach can also be used to regulate expression of other pivotal transcription factors during pancreas development and might have potential therapeutic values in regenerative medicine.
Collapse
Affiliation(s)
- Song Lu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Princes of Wales Hospital, Shatin, Hong Kong, SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Princes of Wales Hospital, Shatin, Hong Kong, SAR, China
| | - Christie C Chow
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Princes of Wales Hospital, Shatin, Hong Kong, SAR, China
| | - Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Po Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Stephen K Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Kathy O Lui
- Department of Chemical Pathology, The Chinese University of Hong Kong, Princes of Wales Hospital, Shatin, Hong Kong, SAR, China. .,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Princes of Wales Hospital, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
33
|
Inhibition of Autoimmune Diabetes in NOD Mice by miRNA Therapy. PLoS One 2015; 10:e0145179. [PMID: 26674203 PMCID: PMC4692265 DOI: 10.1371/journal.pone.0145179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023] Open
Abstract
Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testing potential therapeutics for attenuating the decrease in the Treg:Teff ratio and inhibiting disease pathogenesis. Here we show for the first time that a bioreactor manufactured therapeutic consisting of a complex of miRNA species (denoted as TA1) can effectively reset the NOD immune system from a proinflammatory to a tolerogenic state thus preventing or delaying autoimmune diabetes. Treatment of NOD mice with TA1 resulted in a systemic broad-spectrum upregulation of tolerogenic T cell subsets with a parallel downregulation of Teff subsets yielding a dramatic increase in the Treg:Teff ratio. Moreover, the murine-derived TA1 was highly effective in the inhibition of allorecognition of HLA-disparate human PBMC. TA1 demonstrated dose-responsiveness and exhibited equivalent or better inhibition of allorecognition driven proliferation than etanercept (a soluble TNF receptor). These findings demonstrate that miRNA-based therapeutics can effectively attenuate or arrest autoimmune disease processes and may be of significant utility in a broad range of autoimmune diseases including Type 1 diabetes.
Collapse
|
34
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
35
|
Yip L, Fuhlbrigge R, Taylor C, Creusot RJ, Nishikawa-Matsumura T, Whiting CC, Schartner JM, Akter R, von Herrath M, Fathman CG. Inflammation and hyperglycemia mediate Deaf1 splicing in the pancreatic lymph nodes via distinct pathways during type 1 diabetes. Diabetes 2015; 64:604-17. [PMID: 25187368 PMCID: PMC4303971 DOI: 10.2337/db14-0803] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Peripheral tolerance is partially controlled by the expression of peripheral tissue antigens (PTAs) in lymph node stromal cells (LNSCs). We previously identified a transcriptional regulator, deformed epidermal autoregulatory factor 1 (Deaf1), that can regulate PTA expression in LNSCs of the pancreatic lymph nodes (PLNs). During the pathogenesis of type 1 diabetes (T1D), Deaf1 is spliced to form the dominant-negative isoform Deaf1-Var1. Here we show that Deaf1-Var1 expression correlates with the severity of disease in NOD mice and is reduced in the PLNs of mice that do not develop hyperglycemia. Inflammation and hyperglycemia independently drive Deaf1 splicing through activation of the splicing factors Srsf10 and Ptbp2, respectively. Inflammation induced by injection of activated splenocytes increased Deaf1-Var1 and Srsf10, but not Ptbp2, in the PLNs of NOD.SCID mice. Hyperglycemia induced by treatment with the insulin receptor agonist S961 increased Deaf1-Var1 and Ptbp2, but not Srsf10, in the PLNs of NOD.B10 and NOD mice. Overexpression of PTBP2 and/or SRSF10 also increased human DEAF1-VAR1 and reduced PTA expression in HEK293T cells. These data suggest that during the progression of T1D, inflammation and hyperglycemia mediate the splicing of DEAF1 and loss of PTA expression in LNSCs by regulating the expression of SRSF10 and PTBP2.
Collapse
Affiliation(s)
- Linda Yip
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Rebecca Fuhlbrigge
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Cariel Taylor
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Remi J Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY
| | | | - Chan C Whiting
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Jill M Schartner
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Rahima Akter
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Matthias von Herrath
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - C Garrison Fathman
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| |
Collapse
|
36
|
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 2014; 13:759-80. [PMID: 25233993 DOI: 10.1038/nrd4278] [Citation(s) in RCA: 1401] [Impact Index Per Article: 140.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation of pluripotent stem cells and genome engineering using IVT mRNA-encoded designer nucleases. This Review provides a comprehensive overview of the current state of mRNA-based drug technologies and their applications, and discusses the key challenges and opportunities in developing these into a new class of drugs.
Collapse
Affiliation(s)
- Ugur Sahin
- 1] TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany. [2] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| | - Katalin Karikó
- 1] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany. [2] Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Özlem Türeci
- TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
37
|
Fuhlbrigge R, Yip L. Self-antigen expression in the peripheral immune system: roles in self-tolerance and type 1 diabetes pathogenesis. Curr Diab Rep 2014; 14:525. [PMID: 25030265 DOI: 10.1007/s11892-014-0525-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes (T1D) may result from a breakdown in peripheral tolerance that is partially controlled by the ectopic expression of peripheral tissue antigens (PTAs) in lymph nodes. Various subsets of lymph node stromal cells and certain hematopoietic cells play a role in maintaining T cell tolerance. These specialized cells have been shown to endogenously transcribe, process, and present a range of PTAs to naive T cells and mediate the clonal deletion or inactivation of autoreactive cells. During the progression of T1D, inflammation leads to reduced PTA expression in the pancreatic lymph nodes and the production of novel islet antigens that T cells are not tolerized against. These events allow for the escape and activation of autoreactive T cells and may contribute to the pathogenesis of T1D. In this review, we discuss recent findings in this area and propose possible therapies that may help reestablish self-tolerance during T1D.
Collapse
Affiliation(s)
- Rebecca Fuhlbrigge
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, 269 Campus Drive, CCSR Room 2240, Stanford, CA, 94305-5166, USA,
| | | |
Collapse
|
38
|
Creusot RJ, Giannoukakis N, Trucco M, Clare-Salzler MJ, Fathman CG. It's time to bring dendritic cell therapy to type 1 diabetes. Diabetes 2014; 63:20-30. [PMID: 24357690 PMCID: PMC3968436 DOI: 10.2337/db13-0886] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rémi J. Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY
| | - Nick Giannoukakis
- Division of Immunogenetics, Department of Pediatrics, John G. Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Massimo Trucco
- Division of Immunogenetics, Department of Pediatrics, John G. Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Michael J. Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - C. Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Corresponding author: C. Garrison Fathman,
| |
Collapse
|
39
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
40
|
Slagter-Jäger JG, Raney A, Lewis WE, DeBenedette MA, Nicolette CA, Tcherepanova IY. Evaluation of RNA Amplification Methods to Improve DC Immunotherapy Antigen Presentation and Immune Response. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e91. [PMID: 23653155 PMCID: PMC4817939 DOI: 10.1038/mtna.2013.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/19/2013] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DCs) transfected with total amplified tumor cell RNA have the potential to induce broad antitumor immune responses. However, analytical methods required for quantitatively assessing the integrity, fidelity, and functionality of the amplified RNA are lacking. We have developed a series of assays including gel electrophoresis, northern blot, capping efficiency, and microarray analysis to determine integrity and fidelity and a model system to assess functionality after transfection into human DCs. We employed these tools to demonstrate that modifications to our previously reported total cellular RNA amplification process including the use of the Fast Start High Fidelity (FSHF) PCR enzyme, T7 Powerswitch primer, post-transcriptional capping and incorporation of a type 1 cap result in amplification of longer transcripts, greater translational competence, and a higher fidelity representation of the starting total RNA population. To study the properties of amplified RNA after transfection into human DCs, we measured protein expression levels of defined antigens coamplified with the starting total RNA populations and measured antigen-specific T cell expansion in autologous DC-T cell co-cultured in vitro. We conclude from these analyses that the improved RNA amplification process results in superior protein expression levels and a greater capacity of the transfected DCs to induce multifunctional antigen-specific memory T cells.Molecular Therapy-Nucleic Acids (2013) 2, e91; doi:10.1038/mtna.2013.18; published online 7 May 2013.
Collapse
Affiliation(s)
| | - Alexa Raney
- Novartis, Holly Springs, North Carolina, USA
| | | | | | | | | |
Collapse
|
41
|
Junttila IS, Creusot RJ, Moraga I, Bates DL, Wong MT, Alonso MN, Suhoski MM, Lupardus P, Meier-Schellersheim M, Engleman EG, Utz PJ, Fathman CG, Paul WE, Garcia KC. Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat Chem Biol 2012; 8:990-8. [PMID: 23103943 PMCID: PMC3508151 DOI: 10.1038/nchembio.1096] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/20/2012] [Indexed: 01/28/2023]
Abstract
Cytokines dimerize their receptors, with the binding of the 'second chain' triggering signaling. In the interleukin (IL)-4 and IL-13 system, different cell types express varying numbers of alternative second receptor chains (γc or IL-13Rα1), forming functionally distinct type I or type II complexes. We manipulated the affinity and specificity of second chain recruitment by human IL-4. A type I receptor-selective IL-4 'superkine' with 3,700-fold higher affinity for γc was three- to ten-fold more potent than wild-type IL-4. Conversely, a variant with high affinity for IL-13Rα1 more potently activated cells expressing the type II receptor and induced differentiation of dendritic cells from monocytes, implicating the type II receptor in this process. Superkines showed signaling advantages on cells with lower second chain numbers. Comparative transcriptional analysis reveals that the superkines induce largely redundant gene expression profiles. Variable second chain numbers can be exploited to redirect cytokines toward distinct cell subsets and elicit new actions, potentially improving the selectivity of cytokine therapy.
Collapse
Affiliation(s)
- Ilkka S. Junttila
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- School of Medicine, University of Tampere, 33014, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, 33521, Tampere, Finland
| | - Remi J. Creusot
- Department of Medicine, Division of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305
| | - Ignacio Moraga
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, Structural Biology, and Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305
| | - Darren L. Bates
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, Structural Biology, and Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305
| | - Michael T. Wong
- Department of Medicine, Division of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305
| | - Michael N. Alonso
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305
| | - Megan M. Suhoski
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305
| | - Patrick Lupardus
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, Structural Biology, and Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Edgar G. Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305
| | - Paul J. Utz
- Department of Medicine, Division of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305
| | - C. Garrison Fathman
- Department of Medicine, Division of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, Structural Biology, and Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305
| |
Collapse
|
42
|
Slagter-Jäger JG, Nicolette CA, Tcherepanova IY. Evaluation of a microfluidics-based platform and slab electrophoresis for determination of size, integrity and quantification of in vitro transcribed RNA used as a component in therapeutic drug manufacturing. J Pharm Biomed Anal 2012; 70:657-63. [PMID: 22703839 DOI: 10.1016/j.jpba.2012.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/27/2012] [Accepted: 04/24/2012] [Indexed: 11/19/2022]
Abstract
Ribonucleic acid (RNA) is gaining utility as a key component of immunotherapeutics to transiently express antigens or to modulate endogenous gene expression for clinical applications. As a key ancillary component of clinical grade products, RNA requires a robust method for quality control. Here we evaluated the microfluidics based platform and slab electrophoresis for determination of integrity, concentration and size of four in vitro-transcribed RNA products with sizes of 1611, 808, 475 and 290 nucleotides (nts). Our data demonstrate that the Bioanalyzer can determine both size and integrity of the RNA, but the analysis suffers from a strong well position effect. For the RNAs tested, the integrity values obtained by the Bioanalyzer demonstrate a reverse correlation with the size of the molecule and are lower than those obtained using slab electrophoresis. Agarose gel electrophoresis produced the information on size of the RNA molecule with good precision, accuracy and reproducibility. We highlight observations which need to be taken into account when developing and qualifying a method of choice for assessment of in vitro-transcribed RNA using either approach.
Collapse
|
43
|
Current state of type 1 diabetes immunotherapy: incremental advances, huge leaps, or more of the same? Clin Dev Immunol 2011; 2011:432016. [PMID: 21785616 PMCID: PMC3139873 DOI: 10.1155/2011/432016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/28/2011] [Indexed: 01/09/2023]
Abstract
Thus far, none of the preclinically successful and promising immunomodulatory agents for type 1 diabetes mellitus (T1DM) has conferred stable, long-term insulin independence to diabetic patients. The majority of these immunomodulators are humanised antibodies that target immune cells or cytokines. These as well as fusion proteins and inhibitor proteins all share varying adverse event occurrence and severity. Other approaches have included intact putative autoantigens or autoantigen peptides. Considerable logistical outlays have been deployed to develop and to translate humanised antibodies targeting immune cells, cytokines, and cytokine receptors to the clinic. Very recent phase III trials with the leading agent, a humanised anti-CD3 antibody, call into question whether further development of these biologics represents a step forward or more of the same. Combination therapies of one or more of these humanised antibodies are also being considered, and they face identical, if not more serious, impediments and safety issues. This paper will highlight the preclinical successes and the excitement generated by phase II trials while offering alternative possibilities and new translational avenues that can be explored given the very recent disappointment in leading agents in more advanced clinical trials.
Collapse
|