1
|
Nyati S, Stricker H, Barton KN, Li P, Elshaikh M, Ali H, Brown SL, Hwang C, Peabody J, Freytag SO, Movsas B, Siddiqui F. A phase I clinical trial of oncolytic adenovirus mediated suicide and interleukin-12 gene therapy in patients with recurrent localized prostate adenocarcinoma. PLoS One 2023; 18:e0291315. [PMID: 37713401 PMCID: PMC10503775 DOI: 10.1371/journal.pone.0291315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/06/2023] [Indexed: 09/17/2023] Open
Abstract
In a phase I dose escalation and safety study (NCT02555397), a replication-competent oncolytic adenovirus expressing yCD, TK and hIL-12 (Ad5-yCD/mutTKSR39rep-hIL-12) was administered in 15 subjects with localized recurrent prostate cancer (T1c-T2) at increasing doses (1 × 1010, to 1 × 1012 viral particles) followed by 7-day treatment of 5-fluorocytosine (5-FC) and valganciclovir (vGCV). The primary endpoint was toxicity through day 30 while the secondary and exploratory endpoints were quantitation of IL-12, IFNγ, CXCL10 and peripheral blood mononuclear cells (PBMC). The study maximum tolerated dose (MTD) was not reached indicating 1012 viral particles was safe. Total 115 adverse events were observed, most of which (92%) were grade 1/2 that did not require any treatment. Adenoviral DNA was detected only in two patients. Increase in IL-12, IFNγ, and CXCL10 was observed in 57%, 93%, and 79% patients, respectively. Serum cytokines demonstrated viral dose dependency, especially apparent in the highest-dose cohorts. PBMC analysis revealed immune system activation after gene therapy in cohort 5. The PSA doubling time (PSADT) pre and post treatment has a median of 1.55 years vs 1.18 years. This trial confirmed that replication-competent Ad5-IL-12 adenovirus (Ad5-yCD/mutTKSR39rep-hIL-12) was well tolerated when administered locally to prostate tumors.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Radiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Hans Stricker
- Vattikuti Urology Institute, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Kenneth N. Barton
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Pin Li
- Department of Public Health Sciences, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Mohamed Elshaikh
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Haythem Ali
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Clara Hwang
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - James Peabody
- Vattikuti Urology Institute, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Svend O. Freytag
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
2
|
Vorobjeva IV, Zhirnov OP. Modern approaches to treating cancer with oncolytic viruses. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-91-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
According to the World Health Organization, cancer is the second leading cause of death in the world. This serves as a powerful incentive to search for new effective cancer treatments. Development of new oncolytic viruses capable of selectively destroying cancer cells is one of the modern approaches to cancer treatment. The advantage of this method – the selective lysis of tumor cells with the help of viruses – leads to an increase in the antitumor immune response of the body, that in turn promotes the destruction of the primary tumor and its metastases. Significant progress in development of this method has been achieved in the last decade. In this review we analyze the literature data on families of oncolytic viruses that have demonstrated a positive therapeutic effect against malignant neoplasms in various localizations. We discuss the main mechanisms of the oncolytic action of viruses and assess their advantages over other methods of cancer therapy as well as the prospects for their use in clinical practice.
Collapse
Affiliation(s)
- I. V. Vorobjeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology
| | - O. P. Zhirnov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology; The Russian-German Academy of Medical and Biotechnological Sciences
| |
Collapse
|
3
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Barton KN, Siddiqui F, Pompa R, Freytag SO, Khan G, Dobrosotskaya I, Ajlouni M, Zhang Y, Cheng J, Movsas B, Kwon D. Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:94-104. [PMID: 33575474 PMCID: PMC7851493 DOI: 10.1016/j.omto.2020.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
The safety of oncolytic adenovirus-mediated suicide and interleukin-12 (IL12) gene therapy was evaluated in metastatic pancreatic cancer patients. In this phase I study, a replication-competent adenovirus (Ad5-yCD/mutTKSR39rep-hIL-12) expressing yCD/mutTKSR39 (yeast cytidine deaminase/mutant S39R HSV-1 thymidine kinase) and human IL-12 (IL12) was injected into tumors of 12 subjects with metastatic pancreatic cancer (T2N0M1-T4N1M1) at escalating doses (1 × 1011, 3 × 1011, or 1 × 1012 viral particles). Subjects received 5-fluorocytosine (5-FC) therapy for 7 days followed by chemotherapy (FOLFIRINOX or gemcitabine/albumin-bound paclitaxel) starting 21 days after adenovirus injection. The study endpoint was toxicity through day 21. Experimental endpoints included measurements of serum IL12, interferon gamma (IFNG), and CXCL10 to assess immune system activation. Peripheral blood mononuclear cells and proliferation markers were analyzed by flow cytometry. Twelve patients received Ad5-yCD/mutTKSR39rep-hIL-12 and oral 5-FC. Approximately 94% of the 121 adverse events observed were grade 1/2 requiring no medical intervention. Ad5-yCD/mutTKSR39rep-hIL-12 DNA was detected in the blood of two patients. Elevated serum IL12, IFNG, and CXCL10 levels were detected in 42%, 75%, and 92% of subjects, respectively. Analysis of immune cell populations indicated activation after Ad5-yCD/mutTKSR39rep-hIL-12 administration. The median survival of patients in the third cohort is 18.1 (range, 3.5–20.0) months. The study maximum tolerated dose (MTD) was not reached.
Collapse
Affiliation(s)
- Kenneth N Barton
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Robert Pompa
- Department of Gastroenterology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Svend O Freytag
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Gazala Khan
- Department of Oncology Hematology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Irina Dobrosotskaya
- Department of Oncology Hematology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Munther Ajlouni
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yingshu Zhang
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Jingfang Cheng
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - David Kwon
- Division of Surgical Oncology, Department of Surgery, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
5
|
Cao GD, He XB, Sun Q, Chen S, Wan K, Xu X, Feng X, Li PP, Chen B, Xiong MM. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front Oncol 2020; 10:1786. [PMID: 33014876 PMCID: PMC7509414 DOI: 10.3389/fonc.2020.01786] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer has always been an enormous threat to human health and survival. Surgery, radiotherapy, and chemotherapy could improve the survival of cancer patients, but most patients with advanced cancer usually have a poor survival or could not afford the high cost of chemotherapy. The emergence of oncolytic viruses provided a new strategy for us to alleviate or even cure malignant tumors. An oncolytic virus can be described as a genetically engineered or naturally existing virus that can selectively replicate in cancer cells and then kill them without damaging the healthy cells. There have been many kinds of oncolytic viruses, such as herpes simplex virus, adenovirus, and Coxsackievirus. Moreover, they have different clinical applications in cancer treatment. This review focused on the clinical application of oncolytic virus and predicted the prospect by analyzing the advantages and disadvantages of oncolytic virotherapy.
Collapse
Affiliation(s)
- Guo-dong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-bo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Sun
- Jiangsu Key Laboratory of Biological Cancer, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xudong Feng
- Department of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Peng-ping Li
- Department of General Surgery, The First People’s Hospital of Xiaoshan District, Hangzhou, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mao-ming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Yang Y, Xu W, Peng D, Wang H, Zhang X, Wang H, Xiao F, Zhu Y, Ji Y, Gulukota K, Helseth DL, Mangold KA, Sullivan M, Kaul K, Wang E, Prabhakar BS, Li J, Wu X, Wang L, Seth P. An Oncolytic Adenovirus Targeting Transforming Growth Factor β Inhibits Protumorigenic Signals and Produces Immune Activation: A Novel Approach to Enhance Anti-PD-1 and Anti-CTLA-4 Therapy. Hum Gene Ther 2019; 30:1117-1132. [PMID: 31126191 DOI: 10.1089/hum.2019.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In an effort to develop a new therapy for cancer and to improve antiprogrammed death inhibitor-1 (anti-PD-1) and anticytotoxic T lymphocyte-associated protein (anti-CTLA-4) responses, we have created a telomerase reverse transcriptase promoter-regulated oncolytic adenovirus rAd.sT containing a soluble transforming growth factor receptor II fused with human IgG Fc fragment (sTGFβRIIFc) gene. Infection of breast and renal tumor cells with rAd.sT produced sTGFβRIIFc protein with dose-dependent cytotoxicity. In immunocompetent mouse 4T1 breast tumor model, intratumoral delivery of rAd.sT inhibited both tumor growth and lung metastases. rAd.sT downregulated the expression of several transforming growth factor β (TGFβ) target genes involved in tumor growth and metastases, inhibited Th2 cytokine expression, and induced Th1 cytokines and chemokines, and granzyme B and perforin expression. rAd.sT treatment also increased the percentage of CD8+ T lymphocytes, promoted the generation of CD4+ T memory cells, reduced regulatory T lymphocytes (Tregs), and reduced bone marrow-derived suppressor cells. Importantly, rAd.sT treatment increased the percentage of CD4+ T lymphocytes, and promoted differentiation and maturation of antigen-presenting dendritic cells in the spleen. In the immunocompetent mouse Renca renal tumor model, similar therapeutic effects and immune activation results were observed. In the 4T1 mammary tumor model, rAd.sT improved the inhibition of tumor growth and lung and liver metastases by anti-PD-1 and anti-CTLA-4 antibodies. Analysis of the human breast and kidney tumors showed that a significant number of tumor tissues expressed high levels of TGFβ and TGFβ-inducible genes. Therefore, rAd.sT could be a potential enhancer of anti-PD-1 and anti-CTLA-4 therapy for treating breast and kidney cancers.
Collapse
Affiliation(s)
- Yuefeng Yang
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, an Affiliate of the University of Chicago, Evanston, Illinois
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, an Affiliate of the University of Chicago, Evanston, Illinois
| | - Di Peng
- Department of Urology, The Third Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Hao Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaoyan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yitan Zhu
- Program of Computational Genomics and Medicine, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Yuan Ji
- Program of Computational Genomics and Medicine, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Kamalakar Gulukota
- Center for Personalized Medicine, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Donald L Helseth
- Center for Personalized Medicine, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Kathy A Mangold
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Megan Sullivan
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Karen Kaul
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Edward Wang
- Biostatistics and Clinical Research Informatics, Department of Surgery; NorthShore University HealthSystem, Evanston, Illinois
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois
| | - Jinnan Li
- Department of Urology, The Third Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Xuejie Wu
- Department of Urology, The Third Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Lisheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, an Affiliate of the University of Chicago, Evanston, Illinois
| |
Collapse
|
7
|
NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition. Front Med 2019; 13:646-657. [DOI: 10.1007/s11684-018-0643-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
|
8
|
Urnauer S, Schmohl KA, Tutter M, Schug C, Schwenk N, Morys S, Ziegler S, Bartenstein P, Clevert DA, Wagner E, Spitzweg C. Dual-targeted NIS polyplexes-a theranostic strategy toward tumors with heterogeneous receptor expression. Gene Ther 2019; 26:93-108. [PMID: 30683895 DOI: 10.1038/s41434-019-0059-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity, within and between tumors, may have severe implications for tumor therapy, especially for targeted gene therapy, where single-targeted approaches often result in limited efficacy and therapy resistance. Polymer-formulated nonviral vectors provide a potent delivery platform for cancer therapy. To improve applicability for future clinical use in a broad range of patients and cancer types, a dual-targeting approach was performed. Synthetic LPEI-PEG2kDa-based polymer backbones were coupled to two tumor-specific peptide ligands GE11 (EGFR-targeting) and cMBP (cMET-targeting). The dual-targeting approach was used to deliver the theranostic sodium iodide symporter (NIS) gene to hepatocellular cancer. NIS as auspicious theranostic gene allows noninvasive imaging of functional NIS gene expression and effective anticancer radioiodide therapy. Enhanced tumor-specific transduction efficiency of dual-targeted polyplexes compared to single-targeted polyplexes was demonstrated in vitro using tumor cell lines with different EGFR and cMET expression and in vivo by 124I-PET-imaging. Therapeutic efficacy of the bispecific concept was mirrored by significantly reduced tumor growth and perfusion, which was associated with prolonged animal survival. In conclusion, the dual-targeting approach highlights the benefits of a bifunctional strategy for a future clinical translation of the bioimaging-based NIS-mediated radiotherapy allowing efficient targeting of heterogeneic tumors with variable receptor expression levels.
Collapse
Affiliation(s)
- Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Mariella Tutter
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Germany
| | - Dirk-André Clevert
- Department of Clinical Radiology, University Hospital of Munich, LMU Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany.
| |
Collapse
|
9
|
Ali AA, Halldén G. Development of Oncolytic Adenoviruses for the Management of Prostate Cancer. Prostate Cancer 2018. [DOI: 10.5772/intechopen.73515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
10
|
Wu ZJ, Tang FR, Ma ZW, Peng XC, Xiang Y, Zhang Y, Kang J, Ji J, Liu XQ, Wang XW, Xin HW, Ren BX. Oncolytic Viruses for Tumor Precision Imaging and Radiotherapy. Hum Gene Ther 2018; 29:204-222. [PMID: 29179583 DOI: 10.1089/hum.2017.189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In 2003 in China, Peng et al. invented the recombinant adenovirus expressing p53 (Gendicine) for clinical tumor virotherapy. This was the first clinically approved gene therapy and tumor virotherapy drug in the world. An oncolytic herpes simplex virus expressing granulocyte-macrophage colony-stimulating factor (Talimogene laherparepvec) was approved for melanoma treatment in the United States in 2015. Since then, oncolytic viruses have been attracting more and more attention in the field of oncology, and may become novel significant modalities of tumor precision imaging and radiotherapy after further improvement. Oncolytic viruses carrying reporter genes can replicate and express genes of interest selectively in tumor cells, thus improving in vivo noninvasive precision molecular imaging and radiotherapy. Here, the latest developments and molecular mechanisms of tumor imaging and radiotherapy using oncolytic viruses are reviewed, and perspectives are given for further research. Various types of tumors are discussed, and special attention is paid to gastrointestinal tumors.
Collapse
Affiliation(s)
- Zi J Wu
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China .,2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China .,3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| | - Feng R Tang
- 4 Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore , Create Tower, Singapore
| | - Zhao-Wu Ma
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Xiao-Chun Peng
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Ying Xiang
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Yanling Zhang
- 5 Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou, China .,6 School of Biotechnology, Southern Medical University , Guangzhou, China
| | - Jingbo Kang
- 7 The Navy General Hospital Tumor Diagnosis and Treatment Center , Beijing, China
| | - Jiafu Ji
- 8 Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute , Beijing, China
| | - Xiao Q Liu
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China .,2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China .,3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| | - Xian-Wang Wang
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Hong-Wu Xin
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Bo X Ren
- 2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China .,3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| |
Collapse
|
11
|
Zwarthoed C, Chatti K, Guglielmi J, Hichri M, Compin C, Darcourt J, Vassaux G, Benisvy D, Pourcher T, Cambien B. Single-Photon Emission Computed Tomography for Preclinical Assessment of Thyroid Radioiodide Uptake Following Various Combinations of Preparative Measures. Thyroid 2016; 26:1614-1622. [PMID: 27349131 DOI: 10.1089/thy.2015.0652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND MicroSPECT/CT imaging was used to quantitatively evaluate how iodide uptake in the mouse thyroid is influenced by (i) route of iodine administration; (ii) injection of recombinant human thyrotropin (rhTSH); and (iii) low iodide diet (LID) in euthyroid and triiodothyronine (T3)-treated mice. METHODS Pertechnetate (99mTcO4-) and 123I thyroid uptake in euthyroid and T3-treated animals fed either a normal-iodine diet (NID) or an LID, treated or not with rhTSH, and radiotracer administered intravenously, subcutaneously, intraperitoneally or by gavage, were assessed using microSPECT/CT imaging. Western blotting was performed to measure sodium/iodide symporter expression levels in the thyroid. RESULTS Systemic administration of radioiodide resulted in a higher (2.35-fold in NID mice) accumulation of iodide in the thyroid than oral administration. Mice fed LID with systemic radioiodide administration showed a further two-fold increase in thyroid iodide uptake to yield a ∼5-fold increase in uptake compared to the standard NID/oral route. Although rhTSH injections stimulated thyroid activity in both euthyroid and T3-treated mice fed the NID, uptake levels for T3-treated mice remained low compared with those for the euthyroid mice. Combining LID and rhTSH in T3-treated mice resulted in a 2.8-fold higher uptake compared with NID/T3/rhTSH mice and helped restore thyroid activity to levels equivalent to those of euthyroid animals. CONCLUSIONS Systemic radioiodide administration results in higher thyroidal iodide levels than oral administration, particularly in LID-fed mice. These data highlight the importance of LID, both in euthyroid and T3-treated, rhTSH-injected mice. Extrapolated to human patients, and in the context of clinical guidelines for the preparation of differentiated thyroid cancer patients, our data indicate that LID can potentiate the efficacy of rhTSH treatment in T3-treated patients.
Collapse
Affiliation(s)
- Colette Zwarthoed
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
- 3 Department of Nuclear Medicine, Centre Antoine Lacassagne , Nice, France
| | - Kaouthar Chatti
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
| | - Julien Guglielmi
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
| | - Maha Hichri
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
| | - Cathy Compin
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
| | - Jacques Darcourt
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
- 3 Department of Nuclear Medicine, Centre Antoine Lacassagne , Nice, France
| | - Georges Vassaux
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
| | - Danielle Benisvy
- 3 Department of Nuclear Medicine, Centre Antoine Lacassagne , Nice, France
| | - Thierry Pourcher
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
| | - Béatrice Cambien
- 1 Laboratory of Transporters, Imaging, Radiotherapy in Oncology, Unité Mixte de Recherche E4320, Institut de Biosciences et Biotechnologies , CEA, Nice, France
- 2 Université de Nice-Sophia Antipolis , Nice, France
| |
Collapse
|
12
|
Abstract
Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Katrina Sweeney
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| |
Collapse
|
13
|
Urnauer S, Morys S, Krhac Levacic A, Müller AM, Schug C, Schmohl KA, Schwenk N, Zach C, Carlsen J, Bartenstein P, Wagner E, Spitzweg C. Sequence-defined cMET/HGFR-targeted Polymers as Gene Delivery Vehicles for the Theranostic Sodium Iodide Symporter (NIS) Gene. Mol Ther 2016; 24:1395-404. [PMID: 27157666 DOI: 10.1038/mt.2016.95] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
The sodium iodide symporter (NIS) as well-characterized theranostic gene represents an outstanding tool to target different cancer types allowing noninvasive imaging of functional NIS expression and therapeutic radioiodide application. Based on its overexpression on the surface of most cancer types, the cMET/hepatocyte growth factor receptor serves as ideal target for tumor-selective gene delivery. Sequence-defined polymers as nonviral gene delivery vehicles comprising polyethylene glycol (PEG) and cationic (oligoethanoamino) amide cores coupled with a cMET-binding peptide (cMBP2) were complexed with NIS-DNA and tested for receptor-specificity, transduction efficiency, and therapeutic efficacy in hepatocellular cancer cells HuH7. In vitro iodide uptake studies demonstrated high transduction efficiency and cMET-specificity of NIS-encoding polyplexes (cMBP2-PEG-Stp/NIS) compared to polyplexes without targeting ligand (Ala-PEG-Stp/NIS) and without coding DNA (cMBP2-PEG-Stp/Antisense-NIS). Tumor recruitment and vector biodistribution were investigated in vivo in a subcutaneous xenograft mouse model showing high tumor-selective iodide accumulation in cMBP2-PEG-Stp/NIS-treated mice (6.6 ± 1.6% ID/g (123)I, biological half-life 3 hours) by (123)I-scintigraphy. Therapy studies with three cycles of polyplexes and (131)I application resulted in significant delay in tumor growth and prolonged survival. These data demonstrate the enormous potential of cMET-targeted sequence-defined polymers combined with the unique theranostic function of NIS allowing for optimized transfection efficiency while eliminating toxicity.
Collapse
Affiliation(s)
- Sarah Urnauer
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Ana Krhac Levacic
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Andrea M Müller
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | | | | | - Christian Zach
- Department of Nuclear Medicine, LMU Munich, Munich, Germany
| | | | | | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | | |
Collapse
|
14
|
Garg H, Joshi A. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification. Hum Gene Ther 2016; 27:400-15. [PMID: 26800572 DOI: 10.1089/hum.2015.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy.
Collapse
Affiliation(s)
- Himanshu Garg
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center , El Paso, Texas
| | - Anjali Joshi
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center , El Paso, Texas
| |
Collapse
|
15
|
Micci MA, Boone DR, Parsley MA, Wei J, Patrikeev I, Motamedi M, Hellmich HL. Development of a novel imaging system for cell therapy in the brain. Stem Cell Res Ther 2015; 6:131. [PMID: 26194790 PMCID: PMC4534109 DOI: 10.1186/s13287-015-0129-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/19/2015] [Accepted: 07/09/2015] [Indexed: 01/19/2023] Open
Abstract
Introduction Stem cells have been evaluated as a potential therapeutic approach for several neurological disorders of the central and peripheral nervous system as well as for traumatic brain and spinal cord injury. Currently, the lack of a reliable and safe method to accurately and non-invasively locate the site of implantation and track the migration of stem cells in vivo hampers the development of stem cell therapy and its clinical application. In this report, we present data that demonstrate the feasibility of using the human sodium iodide symporter (hNIS) as a reporter gene for tracking neural stem cells (NSCs) after transplantation in the brain by using single-photon emission tomography/computed tomography (SPECT/CT) imaging. Methods NSCs were isolated from the hippocampus of adult rats (Hipp-NSCs) and transduced with a lentiviral vector containing the hNIS gene. Hipp-NSCs expressing the hNIS (NIS-Hipp-NSCs) were characterized in vitro and in vivo after transplantation in the rat brain and imaged by using technetium-99m (99mTc) and a small rodent SPECT/CT apparatus. Comparisons were made between Hipp-NSCs and NIS-Hipp-NSCs, and statistical analysis was performed by using two-tailed Student’s t test. Results Our results show that the expression of the hNIS allows the repeated visualization of NSCs in vivo in the brain by using SPECT/CT imaging and does not affect the ability of Hipp-NSCs to generate neuronal and glial cells in vitro and in vivo. Conclusions These data support the use of the hNIS as a reporter gene for non-invasive imaging of NSCs in the brain. The repeated, non-invasive tracking of implanted cells will accelerate the development of effective stem cell therapies for traumatic brain injury and other types of central nervous system injury.
Collapse
Affiliation(s)
- Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Debbie R Boone
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Margaret A Parsley
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Jingna Wei
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Igor Patrikeev
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Helen L Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| |
Collapse
|
16
|
Preclinical toxicology of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for prostate cancer. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30008-0. [PMID: 26767191 PMCID: PMC4707660 DOI: 10.1038/mto.2015.6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to examine the toxicity of combining oncolytic adenovirus-mediated cytotoxic and interleukin 12 (IL-12) gene therapy in a preclinical model to support future phase 1 trials. One hundred and twenty C57BL/6 male mice received an intraprostatic injection of saline (n = 24) or an oncolytic adenovirus (Ad5-yCD/mutTKSR39rep-mIL12) expressing two suicide genes and mouse IL-12 (n = 96). The adenovirus was administered at three dose levels (1.3 × 106, 1.3 × 107, 1.3 × 108 vp/kg) followed by 2 weeks of 5-flurocytosine (5-FC) and gancliclovir (GCV) prodrug therapy. There were no premature deaths. Daily observations of animals did not reveal any obvious clinical problems throughout the 78-day in-life phase of the study. Animals in the highest adenovirus dose group exhibited lymphopenia and transaminitis on day 3, both of which resolved by day 17. Except for mild inflammation of the prostate and seminal vesicles, histopathology of major organs was largely unremarkable. IL-12 and interferon-gamma levels in prostate and serum peaked on day 3 and were either undetectable or returned to baseline levels by day 17. No adenoviral DNA was detected in serum in any group at any time point. The results demonstrate that local administration of an oncolytic adenovirus expressing two suicide genes and IL-12 is well tolerated and support moving this investigational approach into human trials.
Collapse
|
17
|
Gibson H, Munns S, Freytag S, Barton K, Veenstra J, Bettahi I, Bissonette J, Wei WZ. Immunotherapeutic intervention with oncolytic adenovirus in mouse mammary tumors. Oncoimmunology 2015; 4:e984523. [PMID: 25949865 PMCID: PMC4368120 DOI: 10.4161/2162402x.2014.984523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
The goal is to elucidate the immune modulating activity of an adenovirus (Adv) vector which showed therapeutic activity in human clinical trials. The oncolytic adenovirus (Adv/CD-TK) expressing two suicide genes was tested in two HER2/neu positive BALB/c mouse mammary tumor systems: rat neu-induced TUBO and human HER2-transfected D2F2/E2. Intra-tumoral (i.t.) Adv/CD-TK injection of TUBO tumor plus systemic prodrug therapy showed limited antitumor activity, not exceeding that by the virus itself. Antibody (Ab) to the virus was induced in Adv-/Luc-treated mice, to coincide with the loss of transgene expression. Low replication activity of adenoviruses in rodent cells may limit viral persistence. Host immunity against Adv or Adv-infected cells further mutes suicide gene activity. Treatment of TUBO tumors with Adv/CD-TK alone, however, induced neu-specific Ab responses. Treatment with Adv/CD-TK/GM (Adv/GM) that also expressed mouse granulocyte macrophage colony stimulating factor (GM-CSF), but without prodrug treatment, delayed tumor growth, enhanced anti-neu Ab production and conferred complete protection against secondary tumor challenge. D2F2/E2 tumor-bearing mice showed decreased tumor growth following i.t. Adv/GM treatment and they generated greater HER2-specific T-cell responses. These data suggest that i.t. injection of Adv itself induces immune reactivity to tumor-associated antigens and the encoded cytokine, GM-CSF, amplifies that immune response, resulting in tumor growth inhibition. Incorporation of suicide gene therapy did not improve the efficacy of Adv therapy in this mouse mammary tumor system. Oncolytic adenoviral therapy may be streamlined and improved by substituting the suicide genes with immune modulating genes to exploit tumor immunity for therapeutic benefit.
Collapse
Key Words
- 5-FC, 5-fluorocytosine
- 5-FU, 5-fluorouracil
- Ab, antibody
- Adv, adenovirus
- CD, cytosine deaminase
- GCV, ganciclovir
- GCV-MP, ganciclovir monophosphate
- GFP, green fluorescent protein
- GM-CSF, granulocyte macrophage colony stimulating factor
- HER2/neu
- HSV-1, herpes simplex virus 1
- IFNγ, interferon gamma
- IL-12, interleukin 12
- IgG, immunoglobulin
- MOI, multiplicity of infection
- PFU, plaque-forming unit
- PSA, prostate-specific antigen
- SC, splenocytes
- SFU, spot forming units
- TK, thymidine kinase
- adenovirus
- granulocyte macrophage colony stimulating factor
- i.p., intra-peritoneal
- i.t., intra-tumoral
- immunotherapy
- mAb, monoclonal antibody
- mouse mammary tumor
- s.c., subcutaneous
- suicide gene
Collapse
Affiliation(s)
- Heather Gibson
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Stephanie Munns
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Svend Freytag
- Department of Radiation Oncology; Henry Ford Health System ; Detroit, MI USA
| | - Kenneth Barton
- Department of Radiation Oncology; Henry Ford Health System ; Detroit, MI USA
| | - Jesse Veenstra
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Ilham Bettahi
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Jayne Bissonette
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Wei-Zen Wei
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| |
Collapse
|
18
|
Gao XF, Zhou T, Chen GH, Xu CL, Ding YL, Sun YH. Radioiodine therapy for castration-resistant prostate cancer following prostate-specific membrane antigen promoter-mediated transfer of the human sodium iodide symporter. Asian J Androl 2014; 16:120-3. [PMID: 24369144 PMCID: PMC3901869 DOI: 10.4103/1008-682x.122354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Radioiodine therapy, the most effective form of systemic radiotherapy available, is currently useful only for thyroid cancer because of the thyroid-specific expression of the human sodium iodide symporter (hNIS). Here, we explore the efficacy of a novel form of gene therapy using prostate-specific membrane antigen (PSMA) promoter-mediated hNIS gene transfer followed by radioiodine administration for the treatment of castration-resistant prostate cancer (CRPC). The androgen-dependent C33 LNCaP cell line and the androgen-independent C81 LNCaP cell line were transfected by adenovirus. PSMA promoter-hNIS (Ad.PSMApro-hNIS) or adenovirus.cytomegalovirus–hNIS containing the cytomegalovirus promoter (Ad.CMV-hNIS) or a control virus. The iodide uptake was measured in vitro. The in vivo iodide uptake by C81 cell xenografts in nude mice injected with an adenovirus carrying the hNIS gene linked to PSMA and the corresponding tumor volume fluctuation were assessed. Iodide accumulation was shown in different LNCaP cell lines after Ad.PSMApro-hNIS and Ad.CMV-hNIS infection, but not in different LNCaP cell lines after adenovirus.cytomegalovirus (Ad.CMV) infection. At each time point, higher iodide uptake was shown in the C81 cells infected with Ad.PSMApro-hNIS than in the C33 cells (P < 0.05). An in vivo animal model showed a significant difference in 131I radioiodine uptake in the tumors infected with Ad.PSMApro-hNIS, Ad.CMV-hNIS and control virus (P < 0.05) and a maximum reduction of tumor volume in mice infected with Ad.PSMApro-hNIS. These results show prostate-specific expression of the hNIS gene delivered by the PSMA promoter and effective radioiodine therapy of CRPC by the PSMA promoter-driven hNIS transfection.
Collapse
Affiliation(s)
| | | | | | | | - Ye-Lei Ding
- Department of Urology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
19
|
Freytag SO, Stricker H, Lu M, Elshaikh M, Aref I, Pradhan D, Levin K, Kim JH, Peabody J, Siddiqui F, Barton K, Pegg J, Zhang Y, Cheng J, Oja-Tebbe N, Bourgeois R, Gupta N, Lane Z, Rodriguez R, DeWeese T, Movsas B. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 2014; 89:268-76. [PMID: 24837889 DOI: 10.1016/j.ijrobp.2014.02.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. METHODS AND MATERIALS Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. RESULTS Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. CONCLUSIONS Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.
Collapse
Affiliation(s)
- Svend O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan.
| | - Hans Stricker
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Mei Lu
- Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Mohamed Elshaikh
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Ibrahim Aref
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Deepak Pradhan
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Kenneth Levin
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - James Peabody
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Kenneth Barton
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Jan Pegg
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Yingshu Zhang
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Jingfang Cheng
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Nancy Oja-Tebbe
- Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Renee Bourgeois
- Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Nilesh Gupta
- Pathology, Henry Ford Health System, Detroit, Michigan
| | - Zhaoli Lane
- Pathology, Henry Ford Health System, Detroit, Michigan
| | - Ron Rodriguez
- Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore DeWeese
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
20
|
Cambien B, Franken PR, Lamit A, Mauxion T, Richard-Fiardo P, Guglielmi J, Crescence L, Mari B, Pourcher T, Darcourt J, Bardiès M, Vassaux G. ⁹⁹mTcO₄--, auger-mediated thyroid stunning: dosimetric requirements and associated molecular events. PLoS One 2014; 9:e92729. [PMID: 24663284 PMCID: PMC3963936 DOI: 10.1371/journal.pone.0092729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/25/2014] [Indexed: 01/31/2023] Open
Abstract
Low-energy Auger and conversion electrons deposit their energy in a very small volume (a few nm3) around the site of emission. From a radiotoxicological point of view the effects of low-energy electrons on normal tissues are largely unknown, understudied, and generally assumed to be negligible. In this context, the discovery that the low-energy electron emitter, 99mTc, can induce stunning on primary thyrocytes in vitro, at low absorbed doses, is intriguing. Extrapolated in vivo, this observation suggests that a radioisotope as commonly used in nuclear medicine as 99mTc may significantly influence thyroid physiology. The aims of this study were to determine whether 99mTc pertechnetate (99mTcO4−) is capable of inducing thyroid stunning in vivo, to evaluate the absorbed dose of 99mTcO4− required to induce this stunning, and to analyze the biological events associated/concomitant with this effect. Our results show that 99mTcO4−–mediated thyroid stunning can be observed in vivo in mouse thyroid. The threshold of the absorbed dose in the thyroid required to obtain a significant stunning effect is in the range of 20 Gy. This effect is associated with a reduced level of functional Na/I symporter (NIS) protein, with no significant cell death. It is reversible within a few days. At the cellular and molecular levels, a decrease in NIS mRNA, the generation of double-strand DNA breaks, and the activation of the p53 pathway are observed. Low-energy electrons emitted by 99mTc can, therefore, induce thyroid stunning in vivo in mice, if it is exposed to an absorbed dose of at least 20 Gy, a level unlikely to be encountered in clinical practice. Nevertheless this report presents an unexpected effect of low-energy electrons on a normal tissue in vivo, and provides a unique experimental setup to understand the fine molecular mechanisms involved in their biological effects.
Collapse
Affiliation(s)
- Béatrice Cambien
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
- * E-mail:
| | - Philippe R. Franken
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Audrey Lamit
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Thibault Mauxion
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie, Toulouse, France
| | - Peggy Richard-Fiardo
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Julien Guglielmi
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Lydie Crescence
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Bernard Mari
- Université de Nice-Sophia Antipolis, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire-IPMC, CNRS UMR 7275, Sophia Antipolis, France
| | - Thierry Pourcher
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Jacques Darcourt
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Manuel Bardiès
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie, Toulouse, France
| | - Georges Vassaux
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| |
Collapse
|
21
|
Kuzmich AI, Kopantsev EP, Vinogradova TV, Sverdlov ED. Comparative activity of several promoters in driving NIS expression in melanoma cells. Mol Biol 2014. [DOI: 10.1134/s0026893314010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hemminki A. Oncolytic immunotherapy: where are we clinically? SCIENTIFICA 2014; 2014:862925. [PMID: 24551478 PMCID: PMC3914551 DOI: 10.1155/2014/862925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/16/2013] [Indexed: 05/08/2023]
Abstract
Following a century of preclinical and clinical work, oncolytic viruses are now proving themselves in randomized phase 3 trials. Interestingly, human data indicates that these agents have potent immunostimulatory activity, raising the possibility that the key consequence of oncolysis might be induction of antitumor immunity, especially in the context of viruses harboring immunostimulatory transgenes. While safety and efficacy of many types of oncolytic viruses, including adenovirus, herpes, reo, and vaccinia seem promising, few mechanisms of action studies have been performed with human substrates. Thus, the relative contribution of "pure" oncolysis, the immune response resulting from oncolysis, and the added benefit of adding a transgene remain poorly understood. Here, the available clinical data on oncolytic viruses is reviewed, with emphasis on immunological aspects.
Collapse
Affiliation(s)
- Akseli Hemminki
- Cancer Gene Therapy Group, Haartman Institute, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
- TILT Biotherapeutics Ltd., P. Hesperiankatu 37A22, 00260 Helsinki, Finland
- *Akseli Hemminki:
| |
Collapse
|
23
|
Dmitriev IP, Kashentseva EA, Kim KH, Matthews QL, Krieger SS, Parry JJ, Nguyen KN, Akers WJ, Achilefu S, Rogers BE, Alvarez RD, Curiel DT. Monitoring of biodistribution and persistence of conditionally replicative adenovirus in a murine model of ovarian cancer using capsid-incorporated mCherry and expression of human somatostatin receptor subtype 2 gene. Mol Imaging 2014; 13:7290.2014.00024. [PMID: 25249483 DOI: 10.2310/7290.2014.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR) subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications.
Collapse
|
24
|
Varma NRS, Barton KN, Janic B, Shankar A, Iskander ASM, Ali MM, Arbab AS. Monitoring adenoviral based gene delivery in rat glioma by molecular imaging. World J Clin Oncol 2013; 4:91-101. [PMID: 24926429 PMCID: PMC4053711 DOI: 10.5306/wjco.v4.i4.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/21/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether endothelial progenitor cells (EPCs) can be used as delivery vehicle for adenoviral vectors and imaging probes for gene therapy in glioblastoma.
METHODS: To use cord blood derived EPCs as delivery vehicle for adenoviral vectors and imaging probes for glioma gene therapy, a rat model of human glioma was made by implanting U251 cells orthotopically. EPCs were transfected with an adenovirus (AD5/carrying hNIS gene) and labeled with iron oxide and inoculated them directly into the tumor 14 d following implantation of U251 cells. Magnetic resonance imaging (MRI) was used to in vivo track the migration of EPCs in the tumor. The expression of gene products was determined by in vivo Tc-99m single photon emission computed tomography (SPECT). The findings were validated with immunohistochemistry (IHC).
RESULTS: EPCs were successfully transfected with the adenoviral vectors carrying hNIS which was proved by significantly (P < 0.05) higher uptake of Tc-99m in transfected cells. Viability of EPCs following transfection and iron labeling was not altered. In vivo imaging showed the presence of iron positive cells and the expression of transgene (hNIS) product on MRI and SPECT, respectively, all over the tumors following administration of transfected and iron labeled EPCs in the tumors. IHC confirmed the distribution of EPC around the tumor away from the injection site and also showed transgene expression in the tumor. The results indicated the EPCs’ ability to deliver adenoviral vectors into the glioma upon intratumor injection.
CONCLUSION: EPCs can be used as vehicle to deliver adenoviral vector to glioma and also act as imaging probe at the same time.
Collapse
|
25
|
Gholami S, Chen CH, Lou E, Belin LJ, Fujisawa S, Longo VA, Chen NG, Gönen M, Zanzonico PB, Szalay AA, Fong Y. Vaccinia virus GLV-1h153 in combination with 131I shows increased efficiency in treating triple-negative breast cancer. FASEB J 2013; 28:676-82. [PMID: 24186964 DOI: 10.1096/fj.13-237222] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the therapeutic efficacy of a replication-competent oncolytic vaccinia virus, GLV-1h153, carrying human sodium iodide symporter (hNIS), in combination with radioiodine in an orthotopic triple-negative breast cancer (TNBC) murine model. In vitro viral infection was confirmed by immunoblotting and radioiodine uptake assays. Orthotopic xenografts (MDA-MB-231 cells) received intratumoral injection of GLV-1h153 or PBS. One week after viral injection, xenografts were randomized into 4 treatment groups: GLV-1h153 alone, GLV-1h153 and (131)I (∼ 5 mCi), (131)I alone, or PBS, and followed for tumor growth. Kruskal-Wallis and Wilcoxon tests were performed for statistical analysis. Radiouptake assay showed a 178-fold increase of radioiodine uptake in hNIS-expressing infected cells compared with PBS control. Systemic (131)I-iodide in combination with GLV-1h153 resulted in a 6-fold increase in tumor regression (24 compared to 146 mm(3) for the virus-only treatment group; P<0.05; d 40). We demonstrated that a novel vaccinia virus, GLV-1h153, expresses hNIS, increases the expression of the symporter in TNBC cells, and serves both as a gene marker for noninvasive imaging of virus and as a vehicle for targeted radionuclide therapy with (131)I.
Collapse
Affiliation(s)
- Sepideh Gholami
- 1Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li H, Nakashima H, Decklever TD, Nace RA, Russell SJ. HSV-NIS, an oncolytic herpes simplex virus type 1 encoding human sodium iodide symporter for preclinical prostate cancer radiovirotherapy. Cancer Gene Ther 2013; 20:478-85. [PMID: 23868101 PMCID: PMC3747331 DOI: 10.1038/cgt.2013.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Several clinical trials have shown that oncolytic herpes simplex virus type 1 (oHSV-1) can be safely administered to patients. However, virus replication in tumor tissue has generally not been monitored in these oHSV clinical trials, and the data suggest that its oncolytic potency needs to be improved. To facilitate noninvasive monitoring of the in vivo spread of an oHSV and to increase its antitumor efficacy, the gene coding for human sodium iodide symporter (NIS) was incorporated into a recombinant oHSV genome and the corresponding virus (oHSV-NIS) rescued in our laboratory. Our data demonstrate that a human prostate cancer cell line, LNCap, efficiently concentrates radioactive iodine after the cells have been infected in vitro or in vivo. In vivo replication of oHSV-NIS in tumors was noninvasively monitored by computed tomography/single-photon emission computed tomography imaging of the biodistribution of pertechnetate and was confirmed. LNCap xenografts in nude mice were eradicated by intratumoral administration of oHSV-NIS. Systemic administration of oHSV-NIS prolonged the survival of tumor-bearing mice, and the therapeutic effect was further enhanced by administration of 131I after the intratumoral spread of the virus had peaked. oHSV-NIS has the potential to substantially enhance the outcomes of standard therapy for patients with prostate cancer.
Collapse
Affiliation(s)
- H Li
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
27
|
Freytag SO, Barton KN, Zhang Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther 2013; 20:1131-9. [PMID: 23842593 DOI: 10.1038/gt.2013.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 01/23/2023]
Abstract
Oncolytic adenovirus-mediated suicide gene therapy has been shown to improve local tumor control in preclinical tumor models and in the clinic. Although local tumor control is important, for most human cancers, new therapies must also target metastatic disease if they are to have an impact on survival. Here, we test the hypothesis that adding cytokine gene therapy to our multimodal platform improves both local and metastatic tumor control in a preclinical model of prostate cancer. An oncolytic adenovirus (Ad5-yCD/mutTKSR39rep-mIL12) expressing two suicide genes and mouse interleukin-12 (IL-12) was generated. Relative to an adenovirus lacking IL-12 (Ad5-yCD/mutTKSR39rep), Ad5-yCD/mutTKSR39rep-mIL12 improved local and metastatic tumor control in the TRAMP-C2 prostate adenocarcinoma model, resulting in a significant increase in survival. Ad5-yCD/mutTKSR39rep-mIL12 resulted in high levels of IL-12 and interferon gamma in serum and tumor, increased natural killer (NK) and cytotoxic T-lymphocyte lytic activities, and the development of tumor-specific antitumor immunity. Immune cell depletion studies indicated that both the innate and adaptive arms of immunity were required for maximal Ad5-yCD/mutTKSR39rep-mIL12 activity. The results demonstrate that the addition of IL-12 significantly improves the efficacy of oncolytic adenovirus-mediated suicide gene therapy and provide the scientific basis for future trials targeting locally aggressive cancers.
Collapse
Affiliation(s)
- S O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | | | | |
Collapse
|
28
|
Adrenal gland infection by serotype 5 adenovirus requires coagulation factors. PLoS One 2013; 8:e62191. [PMID: 23638001 PMCID: PMC3636216 DOI: 10.1371/journal.pone.0062191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR) or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin) as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT) imaging of gene expression to determine whether local virus administration (direct injection in the kidney) could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.
Collapse
|
29
|
Gholami S, Chen CH, Belin LJ, Lou E, Fujisawa S, Antonacci C, Carew A, Chen NG, De Brot M, Zanzonico PB, Szalay AA, Fong Y. Vaccinia virus GLV-1h153 is a novel agent for detection and effective local control of positive surgical margins for breast cancer. Breast Cancer Res 2013; 15:R26. [PMID: 23506710 PMCID: PMC3672815 DOI: 10.1186/bcr3404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 02/13/2013] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Surgery is currently the definitive treatment for early-stage breast cancer. However, the rate of positive surgical margins remains unacceptably high. The human sodium iodide symporter (hNIS) is a naturally occurring protein in human thyroid tissue, which enables cells to concentrate radionuclides. The hNIS has been exploited to image and treat thyroid cancer. We therefore investigated the potential of a novel oncolytic vaccinia virus GLV1h-153 engineered to express the hNIS gene for identifying positive surgical margins after tumor resection via positron emission tomography (PET). Furthermore, we studied its role as an adjuvant therapeutic agent in achieving local control of remaining tumors in an orthotopic breast cancer model. METHODS GLV-1h153, a replication-competent vaccinia virus, was tested against breast cancer cell lines at various multiplicities of infection (MOIs). Cytotoxicity and viral replication were determined. Mammary fat pad tumors were generated in athymic nude mice. To determine the utility of GLV-1h153 in identifying positive surgical margins, 90% of the mammary fat pad tumors were surgically resected and subsequently injected with GLV-1h153 or phosphate buffered saline (PBS) in the surgical wound. Serial Focus 120 microPET images were obtained six hours post-tail vein injection of approximately 600 μCi of 124I-iodide. RESULTS Viral infectivity, measured by green fluorescent protein (GFP) expression, was time- and concentration-dependent. All cell lines showed less than 10% of cell survival five days after treatment at an MOI of 5. GLV-1h153 replicated efficiently in all cell lines with a peak titer of 27 million viral plaque forming units (PFU) ( <10,000-fold increase from the initial viral dose ) by Day 4. Administration of GLV-1h153 into the surgical wound allowed positive surgical margins to be identified via PET scanning. In vivo, mean volume of infected surgically resected residual tumors four weeks after treatment was 14 mm3 versus 168 mm3 in untreated controls (P < 0.05). CONCLUSIONS This is the first study to our knowledge to demonstrate a novel vaccinia virus carrying hNIS as an imaging tool in identifying positive surgical margins of breast cancers in an orthotopic murine model. Moreover, our results suggest that GLV-1h153 is a promising therapeutic agent in achieving local control for positive surgical margins in resected breast tumors.
Collapse
|
30
|
Li G, Xiang L, Yang W, Wang Z, Wang J, Chen K. Efficient multicistronic co-expression of hNIS and hTPO in prostate cancer cells for nonthyroidal tumor radioiodine therapy. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2012; 2:483-498. [PMID: 23145364 PMCID: PMC3484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
Radioiodine therapy has proven to be a safe and effective approach in the treatment of differentiated thyroid cancer. Similar treatment strategies have been exploited in nonthyroidal malignancies by transfecting hNIS gene into tumor cells or xenografts. However, rapid radioiodine efflux is often observed after radioiodine uptake, limiting the overall antitumor effects. In this study, we aimed at constructing multicistronic co-expression of hNIS and hTPO genes in tumor cells to enhance the radioiodine uptake and prolong the radioiodine retention. Driven by the cytomegalovirus promoter, hNIS and hTPO were simultaneously inserted into the expression cassette of adenoviral vector. An Ad5 viral vector (Ad-CMV-hTPO-T2A-hNIS) was assembled as a gene therapy vehicle by Gateway technology and 2A method. The co-expression of hNIS and hTPO genes was confirmed by a double-label immunofluorescence assay. The radioiodine ((125)I) uptake and efflux effects induced by co-expression of hNIS and hTPO genes were determined in transfected and non-transfected PC-3 cells. Significantly higher uptake (6.58 ± 0.56 fold, at 1 h post-incubation) and prolonged retention (5.47 ± 0.36 fold, at 1 h of cell efflux) of radioiodine ((125)I) were observed in hNIS and hTPO co-expressed PC-3 cells as compared to non-transfected PC-3 cells. We concluded that the new virus vector displayed favorable radioiodine uptake and retention properties in hNIS-hTPO transfected PC-3 cells. Our study will provide valuable information on improving the efficacy of hNIS-hTPO co-mediated radioiodine gene therapy.
Collapse
Affiliation(s)
- Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an, Shaanxi, China, 710032
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern CaliforniaCA 90033, USA
| | - Lei Xiang
- Department of Pediatrics, Shaanxi Maternal and Child Care Service CenterXi’an, Shaanxi, China, 710003
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an, Shaanxi, China, 710032
| | - Zhe Wang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an, Shaanxi, China, 710032
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an, Shaanxi, China, 710032
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern CaliforniaCA 90033, USA
| |
Collapse
|
31
|
Sodium iodide symporter (NIS)-mediated radiovirotherapy of hepatocellular cancer using a conditionally replicating adenovirus. Gene Ther 2012; 20:625-33. [PMID: 23038026 DOI: 10.1038/gt.2012.79] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we determined the in vitro and in vivo efficacy of sodium iodide symporter (NIS) gene transfer and the therapeutic potential of oncolytic virotherapy combined with radioiodine therapy using a conditionally replicating oncolytic adenovirus. For this purpose, we used a replication-selective adenovirus in which the E1a gene is driven by the mouse alpha-fetoprotein (AFP) promoter and the human NIS gene is inserted in the E3 region (Ad5-E1/AFP-E3/NIS). Human hepatocellular carcinoma cells (HuH7) infected with Ad5-E1/AFP-E3/NIS concentrated radioiodine at a level that was sufficiently high for a therapeutic effect in vitro. In vivo experiments demonstrated that 3 days after intratumoral (i.t.) injection of Ad5-E1/AFP-E3/NIS HuH7 xenograft tumors accumulated approximately 25% ID g(-1) (percentage of the injected dose per gram tumor tissue) (123)I as shown by (123)I gamma camera imaging. A single i.t. injection of Ad5-E1/AFP-E3/NIS (virotherapy) resulted in a significant reduction of tumor growth and prolonged survival, as compared with injection of saline. Combination of oncolytic virotherapy with radioiodine treatment (radiovirotherapy) led to an additional reduction of tumor growth that resulted in markedly improved survival as compared with virotherapy alone. In conclusion, local in vivo NIS gene transfer using a replication-selective oncolytic adenovirus is able to induce a significant therapeutic effect, which can be enhanced by additional (131)I application.
Collapse
|
32
|
Viral dose, radioiodide uptake, and delayed efflux in adenovirus-mediated NIS radiovirotherapy correlates with treatment efficacy. Gene Ther 2012; 20:567-74. [PMID: 22972493 PMCID: PMC3525803 DOI: 10.1038/gt.2012.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have constructed a prostate tumor-specific conditionally replicating adenovirus (CRAd), named Ad5PB_RSV-NIS, which expresses the human sodium iodine symporter (NIS) gene. LNCaP tumors were established in nude mice and infected with this CRAd to study tumor viral spread, NIS expression, and efficacy. Using quantitative PCR, we found a linear correlation between the viral dose and viral genome copy numbers recovered after tumor infection. Confocal microscopy showed a linear correlation between adenovirus density and NIS expression. Radioiodide uptake vs virus dose-response curves revealed that the dose response curve was not linear and displayed a lower threshold of detection at 10(7) vp (virus particles) and an upper plateau of uptake at 10(11) vp. The outcome of radiovirotherapy was highly dependent upon viral dose. At 10(10) vp, no significant differences were observed between virotherapy alone or radiovirotherapy. However, when radioiodide therapy was combined with virotherapy at a dose of 10(11) vp, significant improvement in survival was observed, indicating a relationship between viral dose-response uptake and the efficacy of radiovirotherapy. The reasons behind the differences in radioiodide therapy efficacy can be ascribed to more efficient viral tumor spread and a decrease in the rate of radioisotope efflux. Our results have important implications regarding the desirable and undesirable characteristics of vectors for clinical translation of virus-mediated NIS transfer therapy.
Collapse
|
33
|
Hong S, Zhang P, Zhang H, Jia L, Qu X, Yang Q, Rong F, Kong B. Enforced effect of tk-MCP-1 fusion gene in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:74. [PMID: 22971726 PMCID: PMC3515507 DOI: 10.1186/1756-9966-31-74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/01/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The efficiency of HSV-tk/GCV system is not high because of insufficient gene transfer and incompletely initiative of host antineoplastic potency. The present study was designed to assess the antitumor efficacy of tk-MCP-1 on ovarian cancer in vitro and vivo. METHODS A novel bicistronic expression system can help to improve the expression level of a gene in a stable manner. pLXSN/tk-MCP-1 co-expressing tk and MCP-1 genes was constructed using a pLXSN retroviral vector and an internal ribosome entry site sequence by restriction enzyme. Western blot was performed to determine tk and MCP-1 expression in the infected SKOV3. The GCV-sensitively tumoricidal activities of SKOV3/tk-MCP-1 with or without monocytes were compared to those of SKOV3 expressing HSV-tk or MCP-1. We investigated the growth of subcutaneous tumors in SCID mice immuno-reconstituted, and evaluated the antitumor effect of MCP-1 in conjunction with suicide gene. RESULTS The significant GCV-sensitively tumoricidal activity of pLXSN/tk-MCP-1 was observed when compared with those of pLXSN/tk, pLXSN/MCP-1 and pLXSN/neo, especially when monocytes were added. The growth of subcutaneous tumors in SCID mice immuno-reconstituted was markedly suppressed by co-delivery of HSV-tk and MCP-1 genes, and the enhanced antitumor effect was associated with the recruitment of monocytes. CONCLUSION These results demonstrated pLXSN/tk-MCP-1 presented an enhanced antitumor effects on ovarian cancer by orchestration of immune responses.
Collapse
Affiliation(s)
- Shuhui Hong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Ji'nan 250012, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Penheiter AR, Russell SJ, Carlson SK. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 2012; 12:33-47. [PMID: 22263922 PMCID: PMC3367315 DOI: 10.2174/156652312799789235] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employing radionuclides for positron emission tomography (PET) or singlephoton emission computed tomography (SPECT) offer the highest sensitivity and the greatest promise for deep tissue imaging in humans. Within the category of radionuclide reporters, the thyroidal sodium iodide symporter (NIS) has emerged as one of the most promising for preclinical and translational research. NIS has been incorporated into a remarkable variety of viral and non-viral vectors in which its functionality is conveniently determined by in vitro iodide uptake assays prior to live animal imaging. This review on the NIS reporter will focus on 1) differences between endogenous NIS and heterologously-expressed NIS, 2) qualitative or comparative use of NIS as an imaging reporter in preclinical and translational gene therapy, oncolytic viral therapy, and cell trafficking research, and 3) use of NIS as an absolute quantitative reporter.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
35
|
Richard-Fiardo P, Franken PR, Lamit A, Marsault R, Guglielmi J, Cambien B, Graslin F, Lindenthal S, Darcourt J, Pourcher T, Vassaux G. Normalisation to blood activity is required for the accurate quantification of Na/I symporter ectopic expression by SPECT/CT in individual subjects. PLoS One 2012; 7:e34086. [PMID: 22470517 PMCID: PMC3309932 DOI: 10.1371/journal.pone.0034086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
Abstract
The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used (99m)Tc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data (activity expressed as %ID/g or %ID/cc) leads to 'noisy', and sometimes incoherent, results. This variability is due to the fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically. Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical studies in biotherapy.
Collapse
Affiliation(s)
- Peggy Richard-Fiardo
- INSERM U948, Biothérapies Hépatiques, CHU Hôtel Dieu, Nantes, France
- CHU de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Philippe R. Franken
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Audrey Lamit
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Robert Marsault
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Julien Guglielmi
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Béatrice Cambien
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Fanny Graslin
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Sabine Lindenthal
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Jacques Darcourt
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Thierry Pourcher
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Georges Vassaux
- INSERM U948, Biothérapies Hépatiques, CHU Hôtel Dieu, Nantes, France
- CHU de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- * E-mail:
| |
Collapse
|
36
|
King BJ, Plante MK, Kida M, Mann-Gow TK, Odland R, Zvara P. Comparison of intraprostatic ethanol diffusion using a microporous hollow fiber catheter versus a standard needle. J Urol 2012; 187:1898-902. [PMID: 22425049 DOI: 10.1016/j.juro.2011.12.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 12/01/2022]
Abstract
PURPOSE Transurethral intraprostatic ethanol chemoablation of the prostate has shown promising preliminary clinical results for benign prostatic hyperplasia with some variability in clinical outcome. This is likely due to the uneven prostate diffusion caused by varying resistance of the tissue type in which the tip of the needle is embedded. We examined whether the distribution of the injectable in the canine prostate could be improved using a microporous hollow fiber catheter (Twin Star Medical, Minneapolis, Minnesota). MATERIALS AND METHODS The prostate was exposed in 9 mongrel dogs. A single injection of 98% ethanol was delivered in each lobe using a microporous hollow fiber catheter and a standard needle. Prostates were harvested and fixed in 10% formalin. After injection 2.5 mm step sections were obtained and scanned. The ethanol induced tissue lesions were traced on hematoxylin and eosin sections. Three-dimensional reconstructions were created and the volume of each prostate lesion was calculated using stereology. RESULTS Ethanol induced tissue changes were seen bilaterally in 8 of 9 ethanol injected prostates. In all cases the lesion created by microporous hollow fiber catheter injection was larger than that in the contralateral lobe injected with the control needle. When data were pooled, the hollow fiber catheter injection produced significantly greater tissue changes than the control needle injection (p = 0.03). CONCLUSIONS Improved distribution and absent backflow were seen when using the microporous hollow fiber catheter, supporting its potential as a new method to treat prostate disease.
Collapse
Affiliation(s)
- Benjamin J King
- Department of Surgery, Division of Urology, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | | | |
Collapse
|
37
|
Duffy MR, Parker AL, Bradshaw AC, Baker AH. Manipulation of adenovirus interactions with host factors for gene therapy applications. Nanomedicine (Lond) 2012; 7:271-88. [DOI: 10.2217/nnm.11.186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine based on the use of adenovirus vectors for therapeutic gene delivery shows broad potential. Specific targeting for many gene therapy applications, such as metastatic cancers or cardiovascular diseases requires intravascular delivery of the vector. However, a major barrier to successful adenovirus vector targeting follows systemic delivery, as upon contact with the bloodstream the virus interacts with a variety of host proteins, in particular coagulation factor X, which mediates profound liver gene transfer. This inherent hepatic tropism combined with macrophage scavenging minimizes the efficacy of the virus at the desired sites and induces toxic side effects. Understanding the complex, multifaceted interactions of adenovirus with host factors is of vital importance to the design of safer vectors with improved efficacy and pharmacokinetic profiles. Increased knowledge of adenovirus biology provides the opportunity to develop innovative strategies to detarget the virus from the liver following intravascular delivery and redirect the vector to disease areas.
Collapse
Affiliation(s)
- Margaret R Duffy
- British Heart Foundation Glasgow Cardiovascular Research Center, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Alan L Parker
- British Heart Foundation Glasgow Cardiovascular Research Center, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Angela C Bradshaw
- British Heart Foundation Glasgow Cardiovascular Research Center, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- British Heart Foundation Glasgow Cardiovascular Research Center, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|