1
|
Shorrock HK, Aliyeva A, Frias JA, DeMeo VA, Lennon CD, DeMeo CC, Mascorro AK, Shaughnessy S, Mazdiyasni H, Cleary JD, Reddy K, Vangaveti S, Shin DS, Berglund JA. CAG repeat-selective compounds reduce abundance of expanded CAG RNAs in patient cell and murine models of SCAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608349. [PMID: 39211226 PMCID: PMC11360937 DOI: 10.1101/2024.08.17.608349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogenous group of devastating neurodegenerative conditions for which clinical care currently focuses on managing symptoms. Across these diseases there is an unmet need for therapies that address underlying disease mechanisms. We utilised the shared CAG repeat expansion mutation causative for a large subgroup of SCAs, to develop a novel disease-gene independent and mechanism agnostic small molecule screening approach to identify compounds with therapeutic potential across multiple SCAs. Using this approach, we identified the FDA approved microtubule inhibitor Colchicine and a novel CAG-repeat binding compound that reduce expression of disease associated transcripts across SCA1, 3 and 7 patient derived fibroblast lines and the Atxn1 154Q/2Q SCA1 mouse model in a repeat selective manner. Furthermore, our lead candidate rescues dysregulated alternative splicing in Atxn1 154Q/2Q mice. This work provides the first example of small molecules capable of targeting the underlying mechanism of disease across multiple CAG SCAs.
Collapse
|
2
|
Eisel MLS, Burns M, Ashizawa T, Byrne B, Corti M, Subramony SH. Emerging therapies in hereditary ataxias. Trends Mol Med 2024:S1471-4914(24)00194-1. [PMID: 39153956 DOI: 10.1016/j.molmed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Recent investigations have defined the pathophysiological basis of many hereditary ataxias (HAs), including loss-of-function as well as gain-of-function mechanisms at either the RNA or protein level. Preclinical studies have assessed gene editing, gene and protein replacement, gene enhancement, and gene knockdown strategies. Methodologies include viral vector delivery of genes, oligonucleotide therapies, cell-penetrating peptides, synthetic transcription factors, and technologies to deliver therapies to defined targets. In this review, we focus on Friedreich ataxia (FRDA) and the polyglutamine ataxias in which translational research is active. However, much remains to be done to identify safe and effective molecules, create ideal delivery methods, and perform innovative clinical trials to prove the safety and efficacy of treatments for these rare but devastating diseases.
Collapse
Affiliation(s)
- Mallory L S Eisel
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Matthew Burns
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Weill Cornell Medicine at Houston Methodist Hospital, Houston, TX, USA
| | - Barry Byrne
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sub H Subramony
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
3
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I exerts its anticancer effects by inducing cell cycle arrest via the KAT2a-ube2C/E2F1 pathway and inhibiting HepG2-induced macrophage M2 polarization. Biochem Biophys Res Commun 2024; 738:150508. [PMID: 39151295 DOI: 10.1016/j.bbrc.2024.150508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, particularly prevalent in China, where it accounts for nearly half of the world's new cases and deaths each year, but has limited therapeutic options. This study systematically investigated the impact of cucurbitacin I on HCC cell lines including SK-Hep-1, Huh-7, and HepG2. The results revealed that cucurbitacin I not only inhibited cell proliferation, cell migration and colony formation, but also induced apoptosis in HCC cells. The apoptotic induction was accompanied by a decrease in the expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl2), and an elevation in the expression levels of pro-apoptotic factors, including tumor protein p53 (P53), bcl2 associated X-apoptosis regulator (Bax), and caspase3 (Cas3). Additionally, cucurbitacin I caused cell cycle arrest by modulating the lysine acetyltransferase 2A (KAT2A)-E2F transcription factor 1 (E2F1)/Ubiquitin-conjugating enzyme E2 C (UBE2C) signaling axis. In terms of regulation on tumor microenvironment, cucurbitacin I was demonstrated the ability to inhibit HCC cell-induced M2 polarization of macrophages. This comprehensive study unveils the multifaceted anti-cancer mechanisms of cucurbitacin I, providing robust support for its potential application in the treatment of HCC, offering new avenues for the future development of HCC treatment strategies.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Yunfei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
4
|
Feng H, Clatot J, Kaneko K, Flores-Mendez M, Wengert ER, Koutcher C, Hoddeson E, Lopez E, Lee D, Arias L, Liang Q, Zhang X, Somarowthu A, Covarrubias M, Gunthorpe MJ, Large CH, Akizu N, Goldberg EM. Targeted therapy improves cellular dysfunction, ataxia, and seizure susceptibility in a model of a progressive myoclonus epilepsy. Cell Rep Med 2024; 5:101389. [PMID: 38266642 PMCID: PMC10897515 DOI: 10.1016/j.xcrm.2023.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
The recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.1, specifically expressed in high-frequency-firing neurons. Variant subunits act via loss of function; hence, EPM7 pathogenesis may involve impaired excitability of Kv3.1-expressing neurons, while enhancing Kv3 activity could represent a viable therapeutic strategy. We generate a mouse model, Kcnc1-p.Arg320His/+, which recapitulates the core features of EPM7, including progressive ataxia and seizure susceptibility. Kv3.1-expressing cerebellar granule cells and neocortical parvalbumin-positive GABAergic interneurons exhibit abnormalities consistent with Kv3 channel dysfunction. A Kv3-specific positive modulator (AUT00206) selectively enhances the firing frequency of Kv3.1-expressing neurons and improves motor function and seizure susceptibility in Kcnc1-Arg320His/+ mice. This work identifies a cellular and circuit basis of dysfunction in EPM7 and demonstrates that Kv3 positive modulators such as AUT00206 have therapeutic potential for the treatment of EPM7.
Collapse
Affiliation(s)
- Huijie Feng
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jerome Clatot
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Anesthesiology, Nihon University, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Marco Flores-Mendez
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric R Wengert
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carly Koutcher
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Hoddeson
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Lopez
- The University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | - Demetrius Lee
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Leroy Arias
- The University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin J Gunthorpe
- Autifony Therapeutics, Ltd., Stevenage Bioscience Catalyst, Stevenage SG1 2FX, UK
| | - Charles H Large
- Autifony Therapeutics, Ltd., Stevenage Bioscience Catalyst, Stevenage SG1 2FX, UK
| | - Naiara Akizu
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pathology & Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
- Federica Pilotto
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
6
|
Santos C, Malheiro S, Correia M, Damásio J. Gene Suppression Therapies in Hereditary Cerebellar Ataxias: A Systematic Review of Animal Studies. Cells 2023; 12:cells12071037. [PMID: 37048110 PMCID: PMC10093402 DOI: 10.3390/cells12071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Hereditary cerebellar ataxias (HCAs) are a heterogenous group of neurodegenerative disorders associated with severe disability. Treatment options are limited and overall restricted to symptomatic approaches, leading to poor prognoses. In recent years, there has been extensive research on gene suppression therapies (GSTs) as a new hope for disease-modifying strategies. In this article, we aim to perform a review of in vivo studies investigating the efficacy and safety profile of GSTs in HCAs. Methods: A structured PubMed® search on GSTs in HCAs from January 1993 up to October 2020 was performed. Inclusion and exclusion criteria were defined, and the selection process was conducted accordingly. The screening process was independently carried out by two authors and was initially based on title and abstract, followed by full-text reading. The risk-of-bias assessment was performed with SYRCLE’s tool. A data extraction sheet was created to collect relevant information from each selected article. Results: The initial search yielded 262 papers, of which 239 were excluded. An additional article was obtained following reference scrutiny, resulting in a total of 24 articles for final analysis. Most studies were not clear on the tools used to assess bias. In SCA1, SCA2, MJD/SCA3 and SCA7, RNA interference (iRNA) and antisense oligonucleotide (ASO) therapies proved to be well tolerated and effective in suppressing mutant proteins, improving neuropathological features and the motor phenotype. In SCA6, the phenotype was improved, but no investigation of adverse effects was performed. In FRDA, only the suppression efficacy of the electroporation of the clustered regularly interspaced short palindromic repeats associated with Cas9 enzyme system (CRISPR-Cas9) system was tested and confirmed. Conclusion: The literature reviewed suggests that GSTs are well tolerated and effective in suppressing the targeted proteins, improving neuropathological features and the motor phenotype in vivo. Nonetheless, there is no guarantee that these results are free of bias. Moreover, further investigation is still needed to clarify the GST effect on HCAs such as FRDA, SCA6 and SCA2.
Collapse
|
7
|
Prakasam R, Bonadiman A, Andreotti R, Zuccaro E, Dalfovo D, Marchioretti C, Tripathy D, Petris G, Anderson EN, Migazzi A, Tosatto L, Cereseto A, Battaglioli E, Sorarù G, Lim WF, Rinaldi C, Sambataro F, Pourshafie N, Grunseich C, Romanel A, Pandey UB, Contestabile A, Ronzitti G, Basso M, Pennuto M. LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice. Nat Commun 2023; 14:603. [PMID: 36746939 PMCID: PMC9902531 DOI: 10.1038/s41467-023-36186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Spinobulbar muscular atrophy (SBMA) is caused by CAG expansions in the androgen receptor gene. Androgen binding to polyQ-expanded androgen receptor triggers SBMA through a combination of toxic gain-of-function and loss-of-function mechanisms. Leveraging cell lines, mice, and patient-derived specimens, we show that androgen receptor co-regulators lysine-specific demethylase 1 (LSD1) and protein arginine methyltransferase 6 (PRMT6) are overexpressed in an androgen-dependent manner specifically in the skeletal muscle of SBMA patients and mice. LSD1 and PRMT6 cooperatively and synergistically transactivate androgen receptor, and their effect is enhanced by expanded polyQ. Pharmacological and genetic silencing of LSD1 and PRMT6 attenuates polyQ-expanded androgen receptor transactivation in SBMA cells and suppresses toxicity in SBMA flies, and a preclinical approach based on miRNA-mediated silencing of LSD1 and PRMT6 attenuates disease manifestations in SBMA mice. These observations suggest that targeting overexpressed co-regulators can attenuate androgen receptor toxic gain-of-function without exacerbating loss-of-function, highlighting a potential therapeutic strategy for patients with SBMA.
Collapse
Affiliation(s)
- Ramachandran Prakasam
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Angela Bonadiman
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gianluca Petris
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, UK
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alice Migazzi
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Laura Tosatto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Anna Cereseto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gianni Sorarù
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Wooi Fang Lim
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fabio Sambataro
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Naemeh Pourshafie
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Giuseppe Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
- Genethon, 91000, Evry, France
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Maria Pennuto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
8
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
9
|
Vázquez-Mojena Y, León-Arcia K, González-Zaldivar Y, Rodríguez-Labrada R, Velázquez-Pérez L. Gene Therapy for Polyglutamine Spinocerebellar Ataxias: Advances, Challenges, and Perspectives. Mov Disord 2021; 36:2731-2744. [PMID: 34628681 DOI: 10.1002/mds.28819] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.
Collapse
|
10
|
The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021; 135:231-257. [PMID: 33443284 DOI: 10.1042/cs20200986] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
General control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification. Besides, GCN5 regulates a wide range of biological events such as gene regulation, cellular proliferation, metabolism and inflammation. Imbalance in the GCN5 activity has been reported in many disorders such as cancer, metabolic disorders, autoimmune disorders and neurological disorders. Therefore, unravelling the role of GCN5 in different diseases progression is a prerequisite for both understanding and developing novel therapeutic agents of these diseases. In this review, we have discussed the structural features, the biological function of GCN5 and the mechanical link with the diseases associated with its imbalance. Moreover, the present GCN5 modulators and their limitations will be presented in a medicinal chemistry perspective.
Collapse
|
11
|
Borbolla-Jiménez FV, Del Prado-Audelo ML, Cisneros B, Caballero-Florán IH, Leyva-Gómez G, Magaña JJ. New Perspectives of Gene Therapy on Polyglutamine Spinocerebellar Ataxias: From Molecular Targets to Novel Nanovectors. Pharmaceutics 2021; 13:1018. [PMID: 34371710 PMCID: PMC8309146 DOI: 10.3390/pharmaceutics13071018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular pathways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis, ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic intervention, and there is no therapeutic approach to prevent or reverse disease progression. This review provides a compilation of the experimental advances obtained in cell-based and animal models toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of their potential application in clinical trials. In the second part, we describe the promising potential of nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of nanoparticle (NP) systems with different physicochemical and functionalization characteristics has been approached, in order to determine their ability to evade the immune system response and to enhance brain delivery of molecular tools. In the final part of this review, the imminent application of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Farmacia, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| |
Collapse
|
12
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Current Status of Gene Therapy Research in Polyglutamine Spinocerebellar Ataxias. Int J Mol Sci 2021; 22:ijms22084249. [PMID: 33921915 PMCID: PMC8074016 DOI: 10.3390/ijms22084249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) are a group of 6 rare autosomal dominant diseases, which arise from an abnormal CAG repeat expansion in the coding region of their causative gene. These neurodegenerative ataxic disorders are characterized by progressive cerebellar degeneration, which translates into progressive ataxia, the main clinical feature, often accompanied by oculomotor deficits and dysarthria. Currently, PolyQ SCAs treatment is limited only to symptomatic mitigation, and no therapy is available to stop or delay the disease progression, which culminates with death. Over the last years, many promising gene therapy approaches were investigated in preclinical studies and could lead to a future treatment to stop or delay the disease development. Here, we summed up the most promising of these therapies, categorizing them in gene augmentation therapy, gene silencing strategies, and gene edition approaches. While several of the reviewed strategies are promising, there is still a gap from the preclinical results obtained and their translation to clinical studies. However, there is an increase in the number of approved gene therapies, as well as a constant development in their safety and efficacy profiles. Thus, it is expected that in a near future some of the promising strategies reviewed here could be tested in a clinical setting and if successful provide hope for SCAs patients.
Collapse
|
14
|
Amado DA, Davidson BL. Gene therapy for ALS: A review. Mol Ther 2021; 29:3345-3358. [PMID: 33839324 DOI: 10.1016/j.ymthe.2021.04.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has historically posed unique challenges for gene-therapy-based approaches, due to a paucity of therapeutic targets as well as the difficulty of accessing both the brain and spinal cord. Recent advances in our understanding of disease mechanism and ALS genetics, however, have combined with tremendous strides in CNS targeting, gene delivery, and gene editing and knockdown techniques to open new horizons of therapeutic possibility. Gene therapy clinical trials are currently underway for ALS patients with SOD1 mutations, C9orf72 hexanucleotide repeat expansions, ATXN2 trinucleotide expansions, and FUS mutations, as well as sporadic disease without known genetic cause. In this review, we provide an in-depth exploration of the state of ALS-directed gene therapy, including antisense oligonucleotides, RNA interference, CRISPR, adeno-associated virus (AAV)-mediated trophic support, and antibody-based methods. We discuss how each of these approaches has been implemented across known genetic causes as well as sporadic ALS, reviewing preclinical studies as well as completed and ongoing human clinical trials. We highlight the transformative potential of these evolving technologies as the gene therapy field advances toward a true disease-modifying treatment for this devastating illness.
Collapse
Affiliation(s)
- Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Beverly L Davidson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Kotowska-Zimmer A, Pewinska M, Olejniczak M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1640. [PMID: 33386705 DOI: 10.1002/wrna.1640] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) technology has been used for almost two decades to study gene functions and in therapeutic approaches. It uses cellular machinery and small, designed RNAs in the form of synthetic small interfering RNAs (siRNAs) or vector-based short hairpin RNAs (shRNAs), and artificial miRNAs (amiRNAs) to inhibit a gene of interest. Artificial miRNAs, known also as miRNA mimics, shRNA-miRs, or pri-miRNA-like shRNAs have the most complex structures and undergo two-step processing in cells to form mature siRNAs, which are RNAi effectors. AmiRNAs are composed of a target-specific siRNA insert and scaffold based on a natural primary miRNA (pri-miRNA). siRNAs serve as a guide to search for complementary sequences in transcripts, whereas pri-miRNA scaffolds ensure proper processing and transport. The dynamics of siRNA maturation and siRNA levels in the cell resemble those of endogenous miRNAs; therefore amiRNAs are safer than other RNAi triggers. Delivered as viral vectors and expressed under tissue-specific polymerase II (Pol II) promoters, amiRNAs provide long-lasting silencing and expression in selected tissues. Therefore, amiRNAs are useful therapeutic tools for a broad spectrum of human diseases, including neurodegenerative diseases, cancers and viral infections. Recent reports on the role of sequence and structure in pri-miRNA processing may contribute to the improvement of the amiRNA tools. In addition, the success of a recently initiated clinical trial for Huntington's disease could pave the way for other amiRNA-based therapies, if proven effective and safe. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anna Kotowska-Zimmer
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| | - Marianna Pewinska
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| |
Collapse
|
16
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
17
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|
18
|
Park JY, Joo K, Woo SJ. Ophthalmic Manifestations and Genetics of the Polyglutamine Autosomal Dominant Spinocerebellar Ataxias: A Review. Front Neurosci 2020; 14:892. [PMID: 32973440 PMCID: PMC7472957 DOI: 10.3389/fnins.2020.00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a part of the cerebellar neurodegenerative disease group that is diverse in genetics and phenotypes. It usually shows autosomal dominant inheritance. SCAs, always together with the cerebellar degeneration, may exhibit clinical deficits in brainstem or eye, especially retina or optic nerve. Interestingly, autosomal dominant SCAs share a common genetic mechanism; the length of the glutamine chain is abnormally expanded due to the increase in the cytosine–adenine–guanine (CAG) repeats of the disease causing gene. Studies have suggested that the mutant ataxin induces alteration of protein conformation and abnormal aggregation resulting in nuclear inclusions, and causes cellular loss of photoreceptors through a toxic effect. As a result, these pathologic changes induce a downregulation of genes involved in the phototransduction, development, and differentiation of photoreceptors such as CRX, one of the photoreceptor transcription factors. However, the exact mechanism of neuronal degeneration by mutant ataxin restricted to only certain type of neuronal cell including cerebellar Purkinje neurons and photoreceptor is still unclear. The most common SCAs are types 1, 2, 3, 6, 7, and 17 which contain about 80% of autosomal dominant SCA cases. Various aspects of eye movement abnormalities are evident depending on the degree of cerebellar and brainstem degeneration in SCAs. In addition, certain types of SCAs such as SCA7 are characterized by both cerebellar ataxia and visual loss mainly due to retinal degeneration. The severity of the retinopathy can vary from occult macular photoreceptor disruption to extensive retinal atrophy and is correlated with the number of CAG repeats. The value of using optical coherence tomography in conjunction with electrodiagnostic and genetic testing is emphasized as the combination of these tests can provide critical information regarding the etiology, morphological evaluation, and functional significances. Therefore, ophthalmologists need to recognize and differentiate SCAs in order to properly diagnose and evaluate the disease. In this review, we have described and discussed SCAs showing ophthalmic abnormalities with particular attention to their ophthalmic features, neurodegenerative mechanisms, genetics, and future perspectives.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Metabolic and Organelle Morphology Defects in Mice and Human Patients Define Spinocerebellar Ataxia Type 7 as a Mitochondrial Disease. Cell Rep 2020; 26:1189-1202.e6. [PMID: 30699348 PMCID: PMC6420346 DOI: 10.1016/j.celrep.2019.01.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a retinal-cerebellar degenerative disorder caused by CAG-polyglutamine (polyQ) repeat expansions in the ataxin-7 gene. As many SCA7 clinical phenotypes occur in mitochondrial disorders, and magnetic resonance spectroscopy of patients revealed altered energy metabolism, we considered a role for mitochondrial dysfunction. Studies of SCA7 mice uncovered marked impairments in oxygen consumption and respiratory exchange. When we examined cerebellar Purkinje cells in mice, we observed mitochondrial network abnormalities, with enlarged mitochondria upon ultrastructural analysis. We developed stem cell models from patients and created stem cell knockout rescue systems, documenting mitochondrial morphology defects, impaired oxidative metabolism, and reduced expression of nicotinamide adenine dinucleotide (NAD+) production enzymes in SCA7 models. We observed NAD+ reductions in mitochondria of SCA7 patient NPCs using ratiometric fluorescent sensors and documented alterations in tryptophan-kynurenine metabolism in patients. Our results indicate that mitochondrial dysfunction, stemming from decreased NAD+, is a defining feature of SCA7.
Collapse
|
20
|
Gonzalez-Alegre P. Recent advances in molecular therapies for neurological disease: triplet repeat disorders. Hum Mol Genet 2020; 28:R80-R87. [PMID: 31227833 DOI: 10.1093/hmg/ddz138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Triplet repeat diseases (TRDs) are caused by pathogenic expansions of trinucleotide sequence repeats within coding and non-coding regions of different genes. They are typically progressive, very disabling and frequently involve the nervous system. Currently available symptomatic therapies provide modest benefit at best. The development of interventions that interfere with the natural history of these diseases is a priority. A common pathogenic process shared by most TRDs is the presence of toxicity from the messenger RNA or protein encoded by the gene harboring the abnormal expansion. Strategies to interfere with the expression of these genes using different molecular approaches are being pursued and have reached the clinical stage. This review will summarize the significant progress made in this field in the last few years, focusing on three main areas: the discovery of biomarkers of disease progression and target engagement, advances in preclinical studies for the polyglutamine ataxias and the initial clinical application in myotonic dystrophy type 1 and Huntington's disease.
Collapse
Affiliation(s)
- Pedro Gonzalez-Alegre
- Department of Neurology, the University of Pennsylvania, Philadelphia, PA 19104, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Abstract
Cerebellar ataxia can be caused by a variety of disorders, including degenerative processes, autoimmune and paraneoplastic illness as well as by gene mutations inherited in autosomal dominant, autosomal recessive, or X-linked fashions. In this review, we highlight the treatments for cerebellar ataxia in a systematic way, to provide guidance for clinicians who treat patients with cerebellar ataxia. In addition, we review therapies currently under development for ataxia, which we feel is currently one of the most exciting fields in neurology.
Collapse
|
22
|
Gandini J, Manto M. How does editing the genome improve targeting DNA and RNA for cerebellar ataxias? FUTURE NEUROLOGY 2020. [DOI: 10.2217/fnl-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jordi Gandini
- Cerebellar Ataxia Unit, Department of Neurology, CHU-Charleroi, Charleroi, Belgium
| | - Mario Manto
- Cerebellar Ataxia Unit, Department of Neurology, CHU-Charleroi, Charleroi, Belgium
- Department of Neuroscience, University of Mons, Mons, Belgium
| |
Collapse
|
23
|
Recent Advances in the Treatment of Cerebellar Disorders. Brain Sci 2019; 10:brainsci10010011. [PMID: 31878024 PMCID: PMC7017280 DOI: 10.3390/brainsci10010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Various etiopathologies affect the cerebellum, resulting in the development of cerebellar ataxias (CAs), a heterogeneous group of disorders characterized clinically by movement incoordination, affective dysregulation, and cognitive dysmetria. Recent progress in clinical and basic research has opened the door of the ‘‘era of therapy” of CAs. The therapeutic rationale of cerebellar diseases takes into account the capacity of the cerebellum to compensate for pathology and restoration, which is collectively termed cerebellar reserve. In general, treatments of CAs are classified into two categories: cause-cure treatments, aimed at arresting disease progression, and neuromodulation therapies, aimed at potentiating cerebellar reserve. Both forms of therapies should be introduced as soon as possible, at a time where cerebellar reserve is still preserved. Clinical studies have established evidence-based cause-cure treatments for metabolic and immune-mediated CAs. Elaborate protocols of rehabilitation and non-invasive cerebellar stimulation facilitate cerebellar reserve, leading to recovery in the case of controllable pathologies (metabolic and immune-mediated CAs) and delay of disease progression in the case of uncontrollable pathologies (degenerative CAs). Furthermore, recent advances in molecular biology have encouraged the development of new forms of therapies: the molecular targeting therapy, which manipulates impaired RNA or proteins, and the neurotransplantation therapy, which delays cell degeneration and facilitates compensatory functions. The present review focuses on the therapeutic rationales of these recently developed therapeutic modalities, highlighting the underlying pathogenesis.
Collapse
|
24
|
Lalonde R, Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. THE CEREBELLUM 2019; 18:615-634. [PMID: 30820866 DOI: 10.1007/s12311-019-01017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chance discovery of spontaneous mutants with atrophy of the cerebellar cortex has unearthed genes involved in optimizing motor coordination. Rotorod, stationary beam, and suspended wire tests are useful in delineating behavioral phenotypes of spontaneous mutants with cerebellar atrophy such as Grid2Lc, Grid2ho, Rorasg, Agtpbp1pcd, Relnrl, and Dab1scm. Likewise, transgenic or null mutants serving as experimental models of spinocerebellar ataxia (SCA) are phenotyped with the same tests. Among experimental models of autosomal dominant SCA, rotorod deficits were reported in SCA1 to 3, SCA5 to 8, SCA14, SCA17, and SCA27 and stationary beam deficits in SCA1 to 3, SCA5, SCA6, SCA13, SCA17, and SCA27. Beam tests are sensitive to experimental therapies of various kinds including molecules affecting glutamate signaling, mesenchymal stem cells, anti-oligomer antibodies, lentiviral vectors carrying genes, interfering RNAs, or neurotrophic factors, and interbreeding with other mutants.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, and Pathogens EA7300, and CHRU of Nancy, University of Lorraine, 54500, Vandoeuvre-les-Nancy, France
| |
Collapse
|
25
|
Abstract
Spinocerebellar ataxia type 17 (SCA17) is caused by polyglutamine (polyQ) expansion in the TATA box-binding protein (TBP), which functions as a general transcription factor. Like other polyQ expansion-mediated diseases, SCA17 is characterized by late-onset and selective neurodegeneration, despite the disease protein being ubiquitously expressed in the body. To date, the pathogenesis of polyQ diseases is not fully understood, and there are no effective treatments for these devastating disorders. The well-characterized function of TBP and typical neurodegeneration in SCA17 give us opportunities to understand how polyQ expansion causes selective neurodegeneration and to develop effective therapeutics. In this review, we discuss the molecular mechanisms behind SCA17, focusing on transcriptional dysregulation as its major cause. Mounting evidence suggests that reversing transcriptional alterations induced by mutant TBP and reducing the expression of mutant TBP are promising strategies to treat SCA17.
Collapse
Affiliation(s)
- Qiong Liu
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yongcheng Pan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.
| | - Shihua Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Niewiadomska-Cimicka A, Trottier Y. Molecular Targets and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. Neurotherapeutics 2019; 16:1074-1096. [PMID: 31432449 PMCID: PMC6985300 DOI: 10.1007/s13311-019-00778-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France.
| |
Collapse
|
27
|
Abstract
The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant neurodegenerative disorders that present principally with progressive ataxia. Within the past few years, studies of pathogenic mechanisms in the SCAs have led to the development of promising therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats. Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade are one promising approach not only for polyglutamine SCAs but also for the many other SCAs caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators from the United States and Europe are now collaborating to share data from their respective SCA cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and early symptomatic stages of disease, will improve the prospects for success in clinical trials of disease-modifying drugs. In addition, investigators are seeking validated clinical outcome measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts of disease activity and progression, but more work is needed to establish disease-specific biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that the development of successful therapies for one or more SCAs is not far away.
Collapse
|
28
|
Verma AK, Khan E, Bhagwat SR, Kumar A. Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders. Mol Neurobiol 2019; 57:566-584. [DOI: 10.1007/s12035-019-01724-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
|
29
|
Szpisjak L, Zadori D, Klivenyi P, Vecsei L. Clinical Characteristics and Possible Drug Targets in Autosomal Dominant Spinocerebellar Ataxias. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:279-293. [DOI: 10.2174/1871527318666190311155846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
Background & Objective:
The autosomal dominant spinocerebellar ataxias (SCAs) belong
to a large and expanding group of neurodegenerative disorders. SCAs comprise more than 40 subtypes
characterized by progressive ataxia as a common feature. The most prevalent diseases among SCAs
are caused by CAG repeat expansions in the coding-region of the causative gene resulting in polyglutamine
(polyQ) tract formation in the encoded protein. Unfortunately, there is no approved therapy to
treat cerebellar motor dysfunction in SCA patients. In recent years, several studies have been conducted
to recognize the clinical and pathophysiological aspects of the polyQ SCAs more accurately.
This scientific progress has provided new opportunities to develop promising gene therapies, including
RNA interference and antisense oligonucleotides.
Conclusion:
The aim of the current work is to give a brief summary of the clinical features of SCAs
and to review the cardinal points of pathomechanisms of the most common polyQ SCAs. In addition,
we review the last few year’s promising gene suppression therapies of the most frequent polyQ SCAs
in animal models, on the basis of which human trials may be initiated in the near future.
Collapse
Affiliation(s)
- Laszlo Szpisjak
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Denes Zadori
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Laszlo Vecsei
- Department of Neurology, University of Szeged, Szeged, Hungary
| |
Collapse
|
30
|
Dong X, Cong S. The Emerging Role of microRNAs in Polyglutamine Diseases. Front Mol Neurosci 2019; 12:156. [PMID: 31275113 PMCID: PMC6593396 DOI: 10.3389/fnmol.2019.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding molecules that regulate a large amount of post-transcriptional repressor genes by recognizing semi-complementary target sequences that are normally located in the 3' UTR of the mRNA. Altered expression of miRNA has been related to several pathological processes, including polyglutamine (Poly Q) diseases. Specific expression patterns in the circulating fluids and brain parenchyma have been speculated as potential biomarkers for Poly Q disease diagnosis and prognosis. Several miRNAs have been consistently identified in diseases including Huntington's disease (HD) and spinocerebellar ataxia (SCA). In our review, we describe the emerging role of miRNAs in Poly Q diseases and provide an overview on general miRNA biology, implications in pathophysiology, and their potential roles as future biomarkers and applications for therapy.
Collapse
Affiliation(s)
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Ashizawa AT, Holt J, Faust K, Liu W, Tiwari A, Zhang N, Ashizawa T. Intravenously Administered Novel Liposomes, DCL64, Deliver Oligonucleotides to Cerebellar Purkinje Cells. THE CEREBELLUM 2019; 18:99-108. [PMID: 29987489 DOI: 10.1007/s12311-018-0961-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cerebellar Purkinje cells (PCs) show conspicuous damages in many ataxic disorders. Targeted delivery of short nucleic acids, such as antisense oligonucleotides, to PCs may be a potential treatment for ataxic disorders, especially spinocerebellar ataxias (SCAs), which are mostly caused by a gain of toxic function of the mutant RNA or protein. However, oligonucleotides do not cross the blood-brain barrier (BBB), necessitating direct delivery into the central nervous system (CNS) through intra-thecal, intra-cisternal, intra-cerebral ventricular, or stereotactic parenchymal administration. We have developed a novel liposome (100 to 200 nm in diameter) formulation, DCL64, composed of dipalmitoyl-phosphatidylcholine, cholesterol, and poloxamer L64, which incorporates oligonucleotides efficiently (≥ 70%). Confocal microscopy showed that DCL64 was selectively taken up by brain microvascular endothelial cells by interacting with low-density lipoprotein receptor (LDLr) family members on cell surface, but not with other types of lipid receptors such as caveolin or scavenger receptor class B type 1. LDLr family members are implicated in brain microvascular endothelial cell endocytosis/transcytosis, and are abundantly localized on cerebellar PCs. Intravenous administration of DCL64 in normal mice showed distribution of oligonucleotides to the brain, preferentially in PCs. Mice that received DCL64 showed no adverse effect on hematological, hepatic, and renal functions in blood tests, and no histopathological abnormalities in major organs. These studies suggest that DCL64 delivers oligonucleotides to PCs across the BBB via intravenous injection with no detectable adverse effects. This property potentially makes DCL64 particularly attractive as a delivery vehicle in treatments of SCAs.
Collapse
Affiliation(s)
- Ana Tari Ashizawa
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Bio-Path Holdings, Inc., Bellaire, TX, USA
| | - Jenny Holt
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Kelsey Faust
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Weier Liu
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Anjana Tiwari
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA
| | - Nan Zhang
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA
| | - Tetsuo Ashizawa
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA. .,Department of Neurology, University of Florida, Gainesville, FL, USA. .,Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
33
|
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative ataxic disorders with autosomal dominant inheritance. We aim to provide an update on the recent clinical and scientific progresses in SCA where numerous novel genes have been identified with next-generation sequencing techniques. The main disease mechanisms of these SCAs include toxic RNA gain-of-function, mitochondrial dysfunction, channelopathies, autophagy and transcription dysregulation. Recent studies have also demonstrated the importance of DNA repair pathways in modifying SCA with CAG expansions. In addition, we summarise the latest technological advances in detecting known and novel repeat expansion in SCA. Finally, we discuss the roles of antisense oligonucleotides and RNA-based therapy as potential treatments.
Collapse
|
34
|
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17:641-659. [DOI: 10.1038/nrd.2018.110] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
36
|
Zeitlberger A, Ging H, Nethisinghe S, Giunti P. Advances in the understanding of hereditary ataxia – implications for future patients. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1444477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Anna Zeitlberger
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Heather Ging
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Suran Nethisinghe
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, UCL, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
37
|
Abstract
Spinocerebellar ataxias (SCAs) are a genetically diverse group of dominantly inherited disorders that share clinical features that result from dysfunction and degeneration of the cerebellum and its associated pathways. Although nearly 40 genes are currently recognized to result in SCA, shared mechanisms for disease pathogenesis exist among subsets of the SCAs. The most common SCAs result from a glutamine-encoding CAG repeat in the respective disease genes. This chapter discusses the varied genetic etiology of SCA and attempts to categorize these disorders based on shared mechanisms of disease. We also summarize evaluation and management for the SCAs.
Collapse
Affiliation(s)
- Andrew Mundwiler
- Department of Neurosciences, Spectrum Health, Grand Rapids, MI, United States; College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
38
|
Karam A, Trottier Y. Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:197-218. [DOI: 10.1007/978-3-319-71779-1_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:143-170. [PMID: 29325609 DOI: 10.1016/b978-0-444-63233-3.00011-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout the genome, unstable tandem nucleotide repeats can expand to cause a variety of neurologic disorders. Expansion of a CAG triplet repeat within a coding exon gives rise to an elongated polyglutamine (polyQ) tract in the resultant protein product, and accounts for a unique category of neurodegenerative disorders, known as the CAG-polyglutamine repeat diseases. The nine members of the CAG-polyglutamine disease family include spinal and bulbar muscular atrophy (SBMA), Huntington disease, dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). All CAG-polyglutamine diseases are dominantly inherited, with the exception of SBMA, which is X-linked, and many CAG-polyglutamine diseases display anticipation, which is defined as increasing disease severity in successive generations of an affected kindred. Despite widespread expression of the different polyQ-expanded disease proteins throughout the body, each CAG-polyglutamine disease strikes a particular subset of neurons, although the mechanism for this cell-type selectivity remains poorly understood. While the different genes implicated in these disorders display amino acid homology only in the repeat tract domain, certain pathologic molecular processes have been implicated in almost all of the CAG-polyglutamine repeat diseases, including protein aggregation, proteolytic cleavage, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Here we highlight the clinical and molecular genetic features of each distinct disorder, and then discuss common themes in CAG-polyglutamine disease pathogenesis, closing with emerging advances in therapy development.
Collapse
|
40
|
Curtis HJ, Seow Y, Wood MJA, Varela MA. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res 2017; 45:7870-7885. [PMID: 28575281 PMCID: PMC5569705 DOI: 10.1093/nar/gkx483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
We evaluate a knockdown-replacement strategy mediated by mirtrons as an alternative to allele-specific silencing using spinocerebellar ataxia 7 (SCA7) as a model. Mirtrons are introns that form pre-microRNA hairpins after splicing, producing RNAi effectors not processed by Drosha. Mirtron mimics may therefore avoid saturation of the canonical processing pathway. This method combines gene silencing mediated by an artificial mirtron with delivery of a functional copy of the gene such that both elements of the therapy are always expressed concurrently, minimizing the potential for undesirable effects and preserving wild-type function. This mutation- and single nucleotide polymorphism-independent method could be crucial in dominant diseases that feature both gain- and loss-of-function pathologies or have a heterogeneous genetic background. Here we develop mirtrons against ataxin 7 with silencing efficacy comparable to shRNAs, and introduce silent mutations into an ataxin 7 transgene such that it is resistant to their effect. We successfully express the transgene and one mirtron together from a single construct. Hence, we show that this method can be used to silence the endogenous allele of ataxin 7 and replace it with an exogenous copy of the gene, highlighting the efficacy and transferability across patient genotypes of this approach.
Collapse
Affiliation(s)
- Helen J Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Singapore
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
41
|
Fiszer A, Wroblewska JP, Nowak BM, Krzyzosiak WJ. Mutant CAG Repeats Effectively Targeted by RNA Interference in SCA7 Cells. Genes (Basel) 2016; 7:genes7120132. [PMID: 27999335 PMCID: PMC5192508 DOI: 10.3390/genes7120132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 02/08/2023] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a human neurodegenerative polyglutamine (polyQ) disease caused by a CAG repeat expansion in the open reading frame of the ATXN7 gene. The allele-selective silencing of mutant transcripts using a repeat-targeting strategy has previously been used for several polyQ diseases. Herein, we demonstrate that the selective targeting of a repeat tract in a mutant ATXN7 transcript by RNA interference is a feasible approach and results in an efficient decrease of mutant ataxin-7 protein in patient-derived cells. Oligonucleotides (ONs) containing specific base substitutions cause the downregulation of the ATXN7 mutant allele together with the upregulation of its normal allele. The A2 ON shows high allele selectivity at a broad range of concentrations and also restores UCHL1 expression, which is downregulated in SCA7.
Collapse
Affiliation(s)
- Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Joanna P Wroblewska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Bartosz M Nowak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
42
|
Yang S, Li XJ, Li S. Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis. Rare Dis 2016; 4:e1223580. [PMID: 28032013 PMCID: PMC5154381 DOI: 10.1080/21675511.2016.1223580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 11/01/2022] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset neurodegenerative diseases, which are caused by polyglutamine (polyQ) expansion in different proteins. In SCA17, the polyQ expansion occurs in the TATA box binding protein (TBP), which functions as a general transcription factor. Patients with SCA17 suffer from a broad array of motor and non-motor defects, and their life expectancy is normally within 20 y after the initial appearance of symptoms. Currently there is no effective treatment, but remarkable efforts have been devoted to tackle this devastating disorder. In this review, we will summarize our current knowledge about the molecular mechanisms underlying the pathogenesis of SCA17, with a primary focus on transcriptional dysregulations. We believe that impaired transcriptional activities caused by mutant TBP with polyQ expansion is a major form of toxicity contributing to SCA17 pathogenesis, and rectifying the altered level of downstream transcripts represents a promising therapeutic approach for the treatment of SCA17.
Collapse
Affiliation(s)
- Su Yang
- Department of Human Genetics, Emory University School of Medicine , Atlanta, GA, USA
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
43
|
Keiser MS, Kordasiewicz HB, McBride JL. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia. Hum Mol Genet 2016; 25:R53-64. [PMID: 26503961 PMCID: PMC4802374 DOI: 10.1093/hmg/ddv442] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/17/2015] [Indexed: 12/17/2022] Open
Abstract
RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies. Here, we discuss the current state of gene suppression approaches for Huntington's disease and the spinocerebellar ataxias, including the use of antisense oligonucleotides, short-interfering RNAs, as well as viral vector-mediated delivery of short hairpin RNAs and artificial microRNAs. We focus on lessons learned from preclinical studies investigating gene suppression therapies for these disorders, particularly in rodent models of disease and in non-human primates. In animal models, recent advances in gene suppression technologies have not only prevented disease progression in a number of cases, but have also reversed existing disease, providing evidence that reducing the expression of disease-causing genes may be of benefit in symptomatic patients. Both allele- and non-allele-specific approaches to gene suppression have made great strides over the past decade, showing efficacy and safety in both small and large animal models. Advances in delivery techniques allow for broad and durable suppression of target genes, have been validated in non-human primates and in some cases, are currently being evaluated in human patients. Finally, we discuss the challenges of developing and delivering gene suppression constructs into the CNS and recent advances of potential therapeutics into the clinic.
Collapse
Affiliation(s)
- Megan S Keiser
- Raymond G. Perlman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jodi L McBride
- Department of Neurology, Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA and Deparment of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
44
|
Bushart DD, Murphy GG, Shakkottai VG. Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:25. [PMID: 26889478 DOI: 10.3978/j.issn.2305-5839.2016.01.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogeneous group of dominantly inherited neurodegenerative disorders affecting the cerebellum and its associated pathways. There are no available symptomatic or disease-modifying therapies available for any of the over 30 known causes of SCA. In order to develop precise treatments for SCAs, two strategies can be employed: (I) the use of gene-targeting strategies to silence disease-causing mutant protein expression; and (II) the identification and targeting of convergent mechanisms of disease across SCAs as a basis for treatment. Gene targeting strategies include RNA interference and antisense oligonucleotides designed to silence mutant genes in order to prevent mutant protein expression. These therapies can be precise, but delivery is difficult and many disease-causing mutations remain unknown. Emerging evidence suggests that several common disease mechanisms may exist across SCAs. Disrupted protein homeostasis, RNA toxicity, abnormal synaptic signaling, altered intracellular calcium handling, and altered Purkinje neuron membrane excitability are all disease mechanisms which are seen in multiple etiologies of SCA and could potentially be targeted for treatment. Clinical trials with drugs such as riluzole, a potassium channel activator, show promise for multiple SCAs and suggest that convergent disease mechanisms do exist and can be targeted. Precise treatment of SCAs may be best achieved through pharmacologic agents targeting specific disrupted pathways.
Collapse
Affiliation(s)
- David D Bushart
- 1 Department of Molecular & Integrative Physiology, 2 Molecular & Behavioral Neuroscience Institute, 3 Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey G Murphy
- 1 Department of Molecular & Integrative Physiology, 2 Molecular & Behavioral Neuroscience Institute, 3 Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vikram G Shakkottai
- 1 Department of Molecular & Integrative Physiology, 2 Molecular & Behavioral Neuroscience Institute, 3 Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Alterman JF, Hall LM, Coles AH, Hassler MR, Didiot MC, Chase K, Abraham J, Sottosanti E, Johnson E, Sapp E, Osborn MF, Difiglia M, Aronin N, Khvorova A. Hydrophobically Modified siRNAs Silence Huntingtin mRNA in Primary Neurons and Mouse Brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e266. [PMID: 26623938 PMCID: PMC5014532 DOI: 10.1038/mtna.2015.38] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
Applications of RNA interference for neuroscience research have been limited by a lack of simple and efficient methods to deliver oligonucleotides to primary neurons in culture and to the brain. Here, we show that primary neurons rapidly internalize hydrophobically modified siRNAs (hsiRNAs) added directly to the culture medium without lipid formulation. We identify functional hsiRNAs targeting the mRNA of huntingtin, the mutation of which is responsible for Huntington's disease, and show that direct uptake in neurons induces potent and specific silencing in vitro. Moreover, a single injection of unformulated hsiRNA into mouse brain silences Htt mRNA with minimal neuronal toxicity. Thus, hsiRNAs embody a class of therapeutic oligonucleotides that enable simple and straightforward functional studies of genes involved in neuronal biology and neurodegenerative disorders in a native biological context.
Collapse
Affiliation(s)
- Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lauren M Hall
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Marie-Cecile Didiot
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kathryn Chase
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jasmin Abraham
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Emily Sottosanti
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Emily Johnson
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ellen Sapp
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
| | - Maire F Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Marian Difiglia
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
46
|
Monteys AM, Spengler RM, Dufour BD, Wilson MS, Oakley CK, Sowada MJ, McBride JL, Davidson BL. Single nucleotide seed modification restores in vivo tolerability of a toxic artificial miRNA sequence in the mouse brain. Nucleic Acids Res 2014; 42:13315-27. [PMID: 25332397 PMCID: PMC4245975 DOI: 10.1093/nar/gku979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease is a fatal neurodegenerative disease caused by polyglutamine-expansion in huntingtin (HTT). Recent work showed that gene silencing approaches, including RNA interference (RNAi), improve disease readouts in mice. To advance RNAi to the clinic, we designed miHDS1, with robust knockdown of human HTT and minimized silencing of unintended transcripts. In Rhesus macaque, AAV delivery of miHDS1 to the putamen reduced HTT expression with no adverse effects on neurological status including fine and gross motor skills, no immune activation and no induction of neuropathology out to 6 weeks post injection. Others showed safety of a different HTT-targeting RNAi in monkeys for 6 months. Application of miHDS1 to Huntington's patients requires further safety testing in normal rodents, despite the fact that it was optimized for humans. To satisfy this regulatory requirement, we evaluated normal mice after AAV.miHDS1 injection. In contrast to monkeys, neurological deficits occurred acutely in mice brain and was attributed to off-target silencing through interactions of miHDS1 with the 3′UTR of other transcripts. While we resolved miHDS1 toxicity in mouse brain and maintained miHDS1-silencing efficacy, these studies highlight that optimizing nucleic acid-based medicines for safety in humans presents challenges for safety testing in rodents or other distantly related species.
Collapse
Affiliation(s)
- Alex Mas Monteys
- The Center for Cell and Molecular Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ryan M Spengler
- Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Brett D Dufour
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA Department of Behavioral Neuroscience, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Matt S Wilson
- Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Matt J Sowada
- The Center for Cell and Molecular Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA Department of Behavioral Neuroscience, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Beverly L Davidson
- The Center for Cell and Molecular Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|