1
|
Andrusiów S, Pawlak Z, Stańczykiewicz B, Bogunia-Kubik K, Koszewicz M. Chronic inflammatory demyelinating polyradiculoneuropathy in patients with diabetes mellitus - treatment with intravenous immunoglobulins: A systematic review. Biomed Pharmacother 2023; 164:114974. [PMID: 37290187 DOI: 10.1016/j.biopha.2023.114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a rare disease, but it is one of the most common inflammatory neuropathies in the population. It is particularly common among patients with diabetes mellitus. This raises many problems, both with the differential diagnosis of diabetic and inflammatory neuropathy, as well as the choice of treatment. Intravenous immunoglobulin (IVIG) is one of the therapeutic options. There is evidence for the effectiveness of IVIG in treating about two-thirds of patients. However, no review has been published to date systematising studies evaluating the response to IVIG treatment in patients with CIDP and coexisting diabetes. METHODS The present study is based on the PRISMA statement and is registered at PROSPERO (CRD42022356180). The study included searches of the databases of MEDLINE, ERIC, CINAHL Complete, Academic Search Ultimate and Health Source: Nursing/Academic Edition, finally including seven original papers evaluating a total of 534 patients in the review. The main inclusion criteria were the presence of a group of patients with CIDP and comorbid diabetes in the study. RESULTS The systematic review showed a lower efficacy of IVIG treatment among patients with coexisting diabetes compared with idiopathic CIDP (61 % vs 71 %). In addition, the presence of conduction blocks on neurography and shorter disease duration proved to be significant factors improving response to treatment. CONCLUSIONS Current scientific data do not allow for strong recommendations on the choice of treatment for CIDP. A randomised, multicentre study evaluating the efficacy of different therapeutic approaches to this disease entity needs to be planned.
Collapse
Affiliation(s)
- Szymon Andrusiów
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland.
| | - Zuzanna Pawlak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, L. Pasteura 10, 50-367 Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | |
Collapse
|
2
|
Ozes B, Tong L, Myers M, Moss K, Ridgley A, Sahenk Z. AAV1.NT-3 gene therapy prevents age-related sarcopenia. Aging (Albany NY) 2023; 15:1306-1329. [PMID: 36897179 PMCID: PMC10042697 DOI: 10.18632/aging.204577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Sarcopenia is progressive loss of muscle mass and strength, occurring during normal aging with significant consequences on the quality of life for elderly. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. NT-3 is involved in the maintenance of neuromuscular junction (NMJ) integrity, restoration of impaired radial growth of muscle fibers through activation of the Akt/mTOR pathway. We tested the efficacy of NT-3 gene transfer therapy in wild type (WT)-aged C57BL/6 mice, a model for natural aging and sarcopenia, via intramuscular injection 1 × 1011 vg AAV1.tMCK.NT-3, at 18 months of age. The treatment efficacy was assessed at 6 months post-injection using run to exhaustion and rotarod tests, in vivo muscle contractility assay, and histopathological studies of the peripheral nervous system, including NMJ connectivity and muscle. AAV1.NT-3 gene therapy in WT-aged C57BL/6 mice resulted in functional and in vivo muscle physiology improvements, supported by quantitative histology from muscle, peripheral nerves and NMJ. Hindlimb and forelimb muscles in the untreated cohort showed the presence of a muscle- and sex-dependent remodeling and fiber size decrease with aging, which was normalized toward values obtained from 10 months old WT mice with treatment. The molecular studies assessing the NT-3 effect on the oxidative state of distal hindlimb muscles, accompanied by western blot analyses for mTORC1 activation were in accordance with the histological findings. Considering the cost and quality of life to the individual, we believe our study has important implications for management of age-related sarcopenia.
Collapse
Affiliation(s)
- Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lingying Tong
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH 43205, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
3
|
Ozes B, Moss K, Myers M, Ridgley A, Chen L, Murrey D, Sahenk Z. AAV1.NT-3 gene therapy in a CMT2D model: phenotypic improvements in GarsP278KY/+ mice. Brain Commun 2021; 3:fcab252. [PMID: 34755111 PMCID: PMC8568849 DOI: 10.1093/braincomms/fcab252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The GarsP278KY/+ model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined. We tested the efficacy of neurotrophin 3 gene transfer therapy in two Gars mutants with severe (GarsP278KY/+ ) and milder (GarsΔETAQ/+ ) phenotypes via intramuscular injection of adeno-associated virus setoype-1, triple tandem muscle creatine kinase promoter, neurotrophin 3 (AAV1.tMCK.NT-3) at 1 × 1011 vg dose. In the GarsP278KY/+ mice, the treatment efficacy was assessed at 12 weeks post-injection using rotarod test, electrophysiology and detailed quantitative histopathological studies of the peripheral nervous system including neuromuscular junction and muscle. Neurotrophin 3 gene transfer therapy in GarsP278KY/+ mice resulted in significant functional and electrophysiological improvements, supported with increases in myelin thickness and improvements in the denervated status of neuromuscular junctions as well as increases in muscle fibre size along with attenuation of myopathic changes. Improvements in the milder phenotype GarsΔETAQ/+ was less pronounced. Furthermore, oxidative enzyme histochemistry in muscles from Gars mutants revealed alterations in the content and distribution of oxidative enzymes with increased expression levels of Pgc1a. Cox1, Cox3 and Atp5d transcripts were significantly decreased suggesting that the muscle phenotype might be related to mitochondrial dysfunction. Neurotrophin 3 gene therapy attenuated these abnormalities in the muscle. This study shows that neurotrophin 3 gene transfer therapy has disease modifying effect in a mouse model for Charcot-Marie-Tooth disease type-2D, leading to meaningful improvements in peripheral nerve myelination and neuromuscular junction integrity as well as in a unique myopathic process, associated with mitochondria dysfunction, all in combination contributing to functional outcome. Based on the multiple biological effects of this versatile molecule, we predict neurotrophin 3 has the potential to be beneficial in other aminoacyl-tRNA synthetase-linked Charcot-Marie-Tooth disease subtypes.
Collapse
Affiliation(s)
- Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lei Chen
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Murrey
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
5
|
Wu H, Shen J, Liu L, Lu X, Xue J. Vasoactive intestinal peptide-induced tolerogenic dendritic cells attenuated arthritis in experimental collagen-induced arthritic mice. Int J Rheum Dis 2019; 22:1255-1262. [PMID: 31062502 DOI: 10.1111/1756-185x.13578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/14/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
AIM Cumulative evidence has revealed that tolerogenic dendritic cells (tolDC) could relieve inflammation reactions in various autoimmune diseases. This study investigated the potential therapeutic application of vasoactive intestinal peptide (VIP)-induced tolDC (VIP-DC) on arthritis using collagen-induced arthritis (CIA) mice. METHODS Bone marrow cells were differentiated into dendritic cells (DC) using granulocyte macrophage colony-stimulating factor and interleukin (IL)-4. tolDC were induced by either VIP or Bay 11-7082 in vitro. Immunophenotypes and cytokine production of VIP-DC and Bay-DC were detected by fluorescence-activated cell sorting and enzyme-linked immunosorbent assay, respectively. Bay-DC, VIP-DC and untreated DC were ip administrated to CIA mice on day 40 when arthritis was onset. The treatment effects on arthritic and pathological changes, including synovial hyperplasia, pannus formation, inflammation and bone erosion, were assessed. RESULTS VIP-DC (40 ng/mL) and Bay-DC (0.5 µg/mL) had a lower level of major histocompatibility complex II, CD40 and CD86 expression, reduced γ-interferon and increased IL-4 production (P < 0.05 or 0.01), compared with untreated DC. The administration of VIP-DC and Bay-DC decreased the arthritis score clinically at the end of the therapy. Pathological assessments showed that bone erosion and inflammation were alleviated in the VIP-DC group compared with those in the untreated DC group (P < 0.05 and P < 0.01, respectively). CONCLUSION VIP-DC showed reduced immunogenicity and enhanced anti-inflammatory cytokine production. Both VIP-DC and Bay-DC could ameliorate arthritis in CIA mice clinically. VIP-DC were not inferior to Bay 11-7082-induced tolDC but may exert a better preventive effect on bone destruction.
Collapse
Affiliation(s)
- Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lei Liu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Lu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Sahenk Z, Yalvac ME, Amornvit J, Arnold WD, Chen L, Shontz KM, Lewis S. Efficacy of exogenous pyruvate in Trembler J mouse model of Charcot-Marie-Tooth neuropathy. Brain Behav 2018; 8:e01118. [PMID: 30239155 PMCID: PMC6192403 DOI: 10.1002/brb3.1118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Classic Charcot-Marie-Tooth (CMT) neuropathies including those with Schwann cell genetic defects exhibit a length-dependent process affecting the distal axon. Energy deprivation in the distal axon has been the proposed mechanism accounting for length-dependent distal axonal degeneration. We hypothesized that pyruvate, an intermediate glycolytic product, could restore nerve function, supplying lost energy to the distal axon. METHODS To test this possibility, we supplied pyruvate to the drinking water of the Trembler-J (TrJ ) mouse and assessed efficacy based on histology, electrophysiology, and functional outcomes. Pyruvate outcomes were compared with untreated TrJ controls alone or adeno-associated virus mediated NT-3 gene therapy (AAV1.NT-3)/pyruvate combinatorial approach. RESULTS Pyruvate supplementation resulted increased myelinated fiber (MF) densities and myelin thickness in sciatic nerves. Combining pyruvate with proven efficacy from AAV1.tMCK.NT-3 gene therapy provided additional benefits showing improved compound muscle action potential amplitudes and nerve conduction velocities compared to pyruvate alone cohort. The end point motor performance of both the pyruvate and the combinatorial therapy cohorts was better than untreated TrJ controls. In a unilateral sciatic nerve crush paradigm, pyruvate supplementation improved myelin-based outcomes in both regenerating and the contralateral uncrushed nerves. CONCLUSIONS This proof of principle study demonstrates that exogenous pyruvate alone or as adjunct therapy in TrJ may have clinical implications and is a candidate therapy for CMT neuropathies without known treatment.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
- Department of Pediatrics and NeurologyNationwide Children’s Hospital and The Ohio State UniversityColumbusOhio
- Department of Pathology and Laboratory MedicineNationwide Children’s HospitalColumbusOhio
- Department of NeurologyThe Ohio State UniversityColumbusOhio
| | - Mehmet E. Yalvac
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Jakkrit Amornvit
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
- King Chulalongkorn Memorial HospitalChulalongkorn UniversityBangkokThailand
- Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - William David Arnold
- Department of NeurologyThe Ohio State UniversityColumbusOhio
- Department of Physical Medicine and RehabilitationThe Ohio State University ColumbusOhio
| | - Lei Chen
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Kimberly M. Shontz
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Sarah Lewis
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| |
Collapse
|
7
|
Systemic IGF-1 gene delivery by rAAV9 improves spontaneous autoimmune peripheral polyneuropathy (SAPP). Sci Rep 2018; 8:5408. [PMID: 29615658 PMCID: PMC5883061 DOI: 10.1038/s41598-018-23607-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 02/01/2023] Open
Abstract
Spontaneous autoimmune peripheral polyneuropathy (SAPP) is a mouse model of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) in non-obese diabetic (NOD) mice null for costimulatory molecule, B7-2 gene (B7-2−/−). SAPP is a chronic progressive and multifocal inflammatory and demyelinating polyneuropathy of spontaneous onset with secondary axonal degeneration. Insulin-like growth factor 1(IGF-1) is a pleiotropic factor with neuroprotective, regenerative, and anti-inflammatory effects with extensive experience in its preclinical and clinical use. Systemic delivery of recombinant adeno-associated virus serotype 9 (rAAV9) provides robust and widespread gene transfer to central and peripheral nervous systems making it suitable for gene delivery in neurological diseases. A significant proportion of patients with inflammatory neuropathies like CIDP do not respond to current clinical therapies and there is a need for new treatments. In this study, we examined the efficacy IGF-1 gene therapy by systemic delivery with rAAV9 in SAPP model. The rAAV9 construct also contained a reporter gene to monitor the surrogate expression of IGF-1. We found significant improvement in neuropathic disease after systemic delivery of rAAV9/IGF-1 gene at presymptomatic and symptomatic stages of SAPP model. These findings support that IGF-1 treatment (including gene therapy) is a viable therapeutic option in immune neuropathies such as CIDP.
Collapse
|
8
|
Yalvac ME, Arnold WD, Braganza C, Chen L, Mendell JR, Sahenk Z. AAV1.NT-3 gene therapy attenuates spontaneous autoimmune peripheral polyneuropathy. Gene Ther 2016; 23:95-102. [PMID: 26125608 PMCID: PMC4696906 DOI: 10.1038/gt.2015.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023]
Abstract
The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout non-obese diabetic mice shares clinical and histological features with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Secondary axonal loss is prominent in the progressive phase of this neuropathy. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulates neurite outgrowth and myelination. The anti-inflammatory and immunomodulatory effects of NT-3 raised considerations of potential efficacy in the SAPP model that could be applicable to CIDP. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 25-week-old SAPP mice. Measurable NT-3 levels were found in the serum at 7-week postgene delivery. The outcome measures included functional, electrophysiological and histological assessments. At week 32, NT-3-treated mice showed increased hind limb grip strength that correlated with improved compound muscle action potential amplitude. Myelinated fiber density was 1.9 times higher in the NT-3-treated group compared with controls and the number of demyelinated axons was significantly lower. The remyelinated nerve fiber population was significantly increased. These improved histopathological parameters from scAAV1.tMCK.NT-3 treatment occurred in the setting of reduced sciatic nerve inflammation. Collectively, these findings suggest a translational application to CIDP.
Collapse
Affiliation(s)
- M E Yalvac
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - W D Arnold
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - C Braganza
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - L Chen
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - J R Mendell
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Z Sahenk
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Inflammatory neuropathies: pathology, molecular markers and targets for specific therapeutic intervention. Acta Neuropathol 2015; 130:445-68. [PMID: 26264608 DOI: 10.1007/s00401-015-1466-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/01/2015] [Accepted: 08/02/2015] [Indexed: 12/21/2022]
Abstract
Inflammatory neuropathies encompass groups of heterogeneous disorders characterized by pathogenic immune-mediated hematogenous leukocyte infiltration of peripheral nerves, nerve roots or both, with resultant demyelination or axonal degeneration or both. Inflammatory neuropathies may be divided into three major disease categories: Guillain-Barré syndrome (particularly the acute inflammatory demyelinating polyradiculoneuropathy variant), chronic inflammatory demyelinating polyradiculoneuropathy and nonsystemic vasculitic neuropathy (or peripheral nerve vasculitis). Despite major advances in molecular biology, pathology and genetics, the pathogenesis of these disorders remains elusive. There is insufficient knowledge on the mechanisms of hematogenous leukocyte trafficking into the peripheral nervous system to guide the development of specific molecular therapies for immune-mediated inflammatory neuropathies compared to disorders such as psoriasis, inflammatory bowel disease, rheumatoid arthritis or multiple sclerosis. The recent isolation and characterization of human endoneurial endothelial cells that form the blood-nerve barrier provides an opportunity to elucidate leukocyte-endothelial cell interactions critical to the pathogenesis of inflammatory neuropathies at the interface between the systemic circulation and peripheral nerve endoneurium. This review discusses our current knowledge of the classic pathological features of inflammatory neuropathies, attempts at molecular classification and genetic determinants, the utilization of in vitro and in vivo animal models to determine pathogenic mechanisms at the interface between the systemic circulation and the peripheral nervous system relevant to these disorders and prospects for future potential molecular pathology biomarkers and targets for specific therapeutic intervention.
Collapse
|
10
|
Arnold WD, Sheth KA, Wier CG, Kissel JT, Burghes AH, Kolb SJ. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles. J Vis Exp 2015. [PMID: 26436455 PMCID: PMC4676269 DOI: 10.3791/52899] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.
Collapse
Affiliation(s)
- W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center; Department of Physical Medicine and Rehabilitation, The Ohio State University; Department of Neuroscience, The Ohio State University Wexner Medical Center;
| | - Kajri A Sheth
- Department of Neurology, The Ohio State University Wexner Medical Center
| | - Christopher G Wier
- Department of Biochemistry and Pharmacology, The Ohio State University Wexner Medical Center
| | - John T Kissel
- Department of Neurology, The Ohio State University Wexner Medical Center; Department of Neuroscience, The Ohio State University Wexner Medical Center
| | - Arthur H Burghes
- Department of Neurology, The Ohio State University Wexner Medical Center; Department of Neuroscience, The Ohio State University Wexner Medical Center; Department of Biochemistry and Pharmacology, The Ohio State University Wexner Medical Center
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center; Department of Neuroscience, The Ohio State University Wexner Medical Center; Department of Biochemistry and Pharmacology, The Ohio State University Wexner Medical Center
| |
Collapse
|
11
|
Quan S, Kim HJ, Dukala D, Sheng JR, Soliven B. Impaired dendritic cell function in a spontaneous autoimmune polyneuropathy. THE JOURNAL OF IMMUNOLOGY 2015; 194:4175-84. [PMID: 25825437 DOI: 10.4049/jimmunol.1401766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
Abstract
Spontaneous autoimmune polyneuropathy (SAP) in B7-2 knockout NOD mice mimics the progressive form of chronic inflammatory demyelinating polyradiculoneuropathy, and is mediated by myelin protein zero (P0)-reactive Th1 cells. In this study, we focused on the effect of B7-2 deletion on the function of dendritic cells (DCs) within the context of SAP. We found that development of SAP was associated with a preponderance or increase of CD11b(+) DCs in peripheral lymph nodes and sciatic nerves. B7-2 deletion led to altered immunophenotypic properties that differ between CD11b(+) DCs and CD8α(+) DCs. Both DC subsets from B7-2 knockout NOD mice exhibited impaired capacity to capture fluorophore-labeled myelin P0, but diminished Ag-presenting function was observed only in CD11b(+) DCs. Clinical assessment, electrophysiologic studies, and splenocyte proliferation studies revealed that absence of B7-2 on DCs was sufficient to cause impaired ability to induce tolerance to P0, which could be overcome by preconditioning with IL-10. Tolerance induction by Ag-pulsed wild-type NOD DCs was dependent on IL-10 and was associated with increased CD4(+) regulatory T cells, whereas tolerance induction by IL-10-conditioned B7-2-deficient DCs was associated with increased percentages of both regulatory T cells and B10 cells in the spleen. We conclude that B7-2 deletion has an impact on the distribution of DC subsets in lymphoid organs and alters the expression of costimulatory molecules, but functional consequences are not uniform across DC subsets. Defective tolerance induction in the absence of B7-2 can be restored by preconditioning of DCs with IL-10.
Collapse
Affiliation(s)
- Songhua Quan
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Hye-Jung Kim
- Department of Neurology, University of Chicago, Chicago, IL 60637; and Department of Pathology, Inje University School of Medicine, Busan 614-735, Korea
| | - Danuta Dukala
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Jian Rong Sheng
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Betty Soliven
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| |
Collapse
|
12
|
Li J, Geisbush TR, Arnold WD, Rosen GD, Zaworski PG, Rutkove SB. A comparison of three electrophysiological methods for the assessment of disease status in a mild spinal muscular atrophy mouse model. PLoS One 2014; 9:e111428. [PMID: 25347197 PMCID: PMC4210182 DOI: 10.1371/journal.pone.0111428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/26/2014] [Indexed: 12/27/2022] Open
Abstract
Objectives There is a need for better, noninvasive quantitative biomarkers for assessing the rate of progression and possible response to therapy in spinal muscular atrophy (SMA). In this study, we compared three electrophysiological measures: compound muscle action potential (CMAP) amplitude, motor unit number estimate (MUNE), and electrical impedance myography (EIM) 50 kHz phase values in a mild mouse model of spinal muscular atrophy, the Smn1c/c mouse. Methods Smn1c/c mice (N = 11) and wild type (WT) animals (−/−, N = 13) were measured on average triweekly until approximately 1 year of age. Measurements included CMAP, EIM, and MUNE of the gastrocnemius muscle as well as weight and front paw grip strength. At the time of sacrifice at one year, additional analyses were performed on the animals including serum survival motor neuron (SMN) protein levels and muscle fiber size. Results Both EIM 50 kHz phase and CMAP showed strong differences between WT and SMA animals (repeated measures 2-way ANOVA, P<0.0001 for both) whereas MUNE did not. Both body weight and EIM showed differences in the trajectory over time (p<0.001 and p = 0.005, respectively). At the time of sacrifice at one year, EIM values correlated to motor neuron counts in the spinal cord and SMN levels across both groups of animals (r = 0.41, p = 0.047 and r = 0.57, p = 0.003, respectively), while CMAP did not. Motor neuron number in Smn1c/c mice was not significantly reduced compared to WT animals. Conclusions EIM appears sensitive to muscle status in this mild animal model of SMA. The lack of a reduction in MUNE or motor neuron number but reduced EIM and CMAP values support that much of the pathology in these animals is distal to the cell body, likely at the neuromuscular junction or the muscle itself.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tom R. Geisbush
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William D. Arnold
- Department of Neurology, Ohio State University, Columbus, Ohio, United States of America
| | - Glenn D. Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|