1
|
El-Sayed MM, Bianco JR, Li Y, Fabian Z. Tumor-Agnostic Therapy-The Final Step Forward in the Cure for Human Neoplasms? Cells 2024; 13:1071. [PMID: 38920700 PMCID: PMC11201516 DOI: 10.3390/cells13121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer accounted for 10 million deaths in 2020, nearly one in every six deaths annually. Despite advancements, the contemporary clinical management of human neoplasms faces a number of challenges. Surgical removal of tumor tissues is often not possible technically, while radiation and chemotherapy pose the risk of damaging healthy cells, tissues, and organs, presenting complex clinical challenges. These require a paradigm shift in developing new therapeutic modalities moving towards a more personalized and targeted approach. The tumor-agnostic philosophy, one of these new modalities, focuses on characteristic molecular signatures of transformed cells independently of their traditional histopathological classification. These include commonly occurring DNA aberrations in cancer cells, shared metabolic features of their homeostasis or immune evasion measures of the tumor tissues. The first dedicated, FDA-approved tumor-agnostic agent's profound progression-free survival of 78% in mismatch repair-deficient colorectal cancer paved the way for the accelerated FDA approvals of novel tumor-agnostic therapeutic compounds. Here, we review the historical background, current status, and future perspectives of this new era of clinical oncology.
Collapse
Affiliation(s)
| | | | | | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (M.M.E.-S.); (J.R.B.); (Y.L.)
| |
Collapse
|
2
|
Yan L, Zhou R, Feng Y, Li R, Zhang L, Pan Y, Qiao X, Li P, Wei X, Xu C, Li Y, Niu X, Sun X, Lv Z, Tian Z. MiR-134-5p inhibits the malignant phenotypes of osteosarcoma via ITGB1/MMP2/PI3K/Akt pathway. Cell Death Discov 2024; 10:193. [PMID: 38664375 PMCID: PMC11045734 DOI: 10.1038/s41420-024-01946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Micro RNAs (miRs) have been implicated in various tumorigenic processes. Osteosarcoma (OS) is a primary bone malignancy seen in adolescents. However, the mechanism of miRs in OS has not been fully demonstrated yet. Here, miR-134-5p was found to inhibit OS progression and was also expressed at significantly lower levels in OS tissues and cells relative to normal controls. miR-134-5p was found to reduce vasculogenic mimicry, proliferation, invasion, and migration of OS cells, with miR-134-5p knockdown having the opposite effects. Mechanistically, miR-134-5p inhibited expression of the ITGB1/MMP2/PI3K/Akt axis, thus reducing the malignant features of OS cells. In summary, miR-134-5p reduced OS tumorigenesis by modulation of the ITGB1/MMP2/PI3K/Akt axis, suggesting the potential for using miR-134-5p as a target for treating OS.
Collapse
Affiliation(s)
- Lei Yan
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Ruoqi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Long Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yongchun Pan
- Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaochen Qiao
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, 689 Huitong South Road, Jinzhong, Shanxi, 030600, China
| | - Pengcui Li
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Shanxi Bethune Hospital, Shanxi, China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Yuan Li
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, China
| | - Xiaojuan Sun
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
3
|
LIU LEI, GUO NA, LI XIANGLING, XU QIAN, HE RUILONG, CHENG LIMIN, DANG CHUNYAN, BAI XINYU, BAI YIYING, WANG XIN, CHEN QIANHUI, ZHANG LI. miR-125b reverses cisplatin resistance by regulating autophagy via targeting RORA/BNIP3L axis in lung adenocarcinoma. Oncol Res 2024; 32:643-658. [PMID: 38560570 PMCID: PMC10972728 DOI: 10.32604/or.2023.044491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 04/04/2024] Open
Abstract
The platinum-based chemotherapy is one of the most frequently used treatment protocols for lung adenocarcinoma (LUAD), and chemoresistance, however, usually results in treatment failure and limits its application in the clinic. It has been shown that microRNAs (miRNAs) play a significant role in tumor chemoresistance. In this study, miR-125b was identified as a specific cisplatin (DDP)-resistant gene in LUAD, as indicated by the bioinformatics analysis and the real-time quantitative PCR assay. The decreased serum level of miR-125b in LUAD patients was correlated with the poor treatment response rate and short survival time. MiR-125b decreased the A549/DDP proliferation, and the multiple drug resistance- and autophagy-related protein expression levels, which were all reversed by the inhibition of miR-125b. In addition, xenografts of human tumors in nude mice were suppressed by miR-125b, demonstrating that through autophagy regulation, miR-125b could reverse the DDP resistance in LUAD cells, both in vitro and in vivo. Further mechanistic studies indicated that miR-125b directly repressed the expression levels of RORA and its downstream BNIP3L, which in turn inhibited autophagy and reversed chemoresistance. Based on these findings, miR-125b in combination with DDP might be an effective treatment option to overcome DDP resistance in LUAD.
Collapse
MESH Headings
- Animals
- Mice
- Humans
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mice, Nude
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- Apoptosis/genetics
- Adenocarcinoma of Lung/drug therapy
- Adenocarcinoma of Lung/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Autophagy/genetics
- Gene Expression Regulation, Neoplastic
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/pharmacology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- LEI LIU
- Department of Immunology, Chengde Medical University, Chengde, 067000, China
| | - NA GUO
- Department of Immunology, Chengde Medical University, Chengde, 067000, China
| | - XIANGLING LI
- Department of Pathology, Chengde Medical University, Chengde, 067000, China
| | - QIAN XU
- Department of Pathology, Chengde Medical University, Chengde, 067000, China
| | - RUILONG HE
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - LIMIN CHENG
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - CHUNYAN DANG
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - XINYU BAI
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - YIYING BAI
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - XIN WANG
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - QIANHUI CHEN
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - LI ZHANG
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| |
Collapse
|
4
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Ahmad S, Zhang XL, Ahmad A. Epigenetic regulation of pulmonary inflammation. Semin Cell Dev Biol 2024; 154:346-354. [PMID: 37230854 PMCID: PMC10592630 DOI: 10.1016/j.semcdb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary disease such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and pulmonary hypertension are the leading cause of deaths. More importantly, lung diseases are on the rise and environmental factors induced epigenetic modifications are major players on this increased prevalence. It has been reported that dysregulation of genes involved in epigenetic regulation such as the histone deacetylase (HDACs) and histone acetyltransferase (HATs) play important role in lung health and pulmonary disease pathogenesis. Inflammation is an essential component of respiratory diseases. Injury and inflammation trigger release of extracellular vesicles that can act as epigenetic modifiers through transfer of epigenetic regulators such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins and lipids, from one cell to another. The immune dysregulations caused by the cargo contents are important contributors of respiratory disease pathogenesis. N6 methylation of RNA is also emerging to be a critical mechanism of epigenetic alteration and upregulation of immune responses to environmental stressors. Epigenetic changes such as DNA methylation are stable and often long term and cause onset of chronic lung conditions. These epigenetic pathways are also being utilized for therapeutic intervention in several lung conditions.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Lu Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Zou W, Luo X, Gao M, Yu C, Wan X, Yu S, Wu Y, Wang A, Fenical W, Wei Z, Zhao Y, Lu Y. Optimization of cancer immunotherapy on the basis of programmed death ligand-1 distribution and function. Br J Pharmacol 2024; 181:257-272. [PMID: 36775813 PMCID: PMC11080663 DOI: 10.1111/bph.16054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint blockade as a breakthrough in cancer immunotherapy has shown unprecedented positive outcomes in the clinic. However, the overall effectiveness of PD-L1 antibody is less than expected. An increasing number of studies have demonstrated that PD-L1 is widely distributed and expressed not only on the cell membrane but also on the inside of the cells as well as on the extracellular vesicles secreted by tumour cells. Both endogenous and exogenous PD-L1 play significant roles in influencing the therapeutic effect of anti-tumour immunity. Herein, we mainly focused on the distribution and function of PD-L1 and further summarized the potential targeted therapeutic strategies. More importantly, in addition to taking the overall expression abundance of PD-L1 as a predictive indicator for selecting corresponding PD-1/PD-L1 monoclonal antibodies (mAbs), we also proposed that personalized combination therapies based on the different distribution of PD-L1 are worth attention to achieve more efficient and effective therapeutic outcomes in cancer patients. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyuan Gao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Wan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Xu W, Cui J, Busayli AM, Zhang T, Chen G. Arsenic up-regulates PD-L1 and enhances lung tumorigenesis through activation of STAT3 in alveolar epithelial type 2 cells. Toxicol Appl Pharmacol 2024; 482:116787. [PMID: 38101582 PMCID: PMC10843590 DOI: 10.1016/j.taap.2023.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Arsenic is a carcinogen and chronic exposure to arsenic increases the risk of many cancers, including lung cancer. However, the underlying mechanism is not clear. Using A/J mice as a model, our previous animal study has shown that chronic arsenic exposure up-regulates PD-L1 on lung tumor cells which interacts with PD-1 on T cells and inhibits T cell anti-tumor function resulting in increased lung tumorigenesis. In a subsequent in vitro study, we further found that arsenic up-regulated PD-L1 by activating STAT3 at tyrosine 705 in lung epithelial cells, and inhibition of STAT3 mitigated arsenic-induced PD-L1 up-regulation. The present study aims to determine whether STAT3 regulates PD-L1 in the lung of A/J mice and the type of cells from which lung tumor develops upon arsenic exposure. For that purpose, a mouse line with STAT3 conditional knockout in alveolar type 2 (AT2) cells was developed. Our results indicate that arsenic exposure up-regulates PD-L1 in AT2 cells through activating STAT3 in A/J mice. Conditional knockout of STAT3 in AT2 cells inhibited arsenic-induced PD-L1 up-regulation and lung tumor formation. Thus, our findings reveal that STAT3 is the upstream regulator of arsenic-induced PD-L1 up-regulation in AT2 cells and the inhibition of T cell anti-tumor function in the lung, and that AT2 cells are sensitive to arsenic exposure and from which arsenic-enhanced lung tumor formation in A/J mice.
Collapse
Affiliation(s)
- Wenhua Xu
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neurology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Abdulrahman M Busayli
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Tong Zhang
- Department of General Medicine, The First People's Hospital of Yunnan Province Kunming, Yunnan 650032, China
| | - Gang Chen
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Mardones C, Navarrete-Munoz C, Armijo ME, Salgado K, Rivas-Valdes F, Gonzalez-Pecchi V, Farkas C, Villagra A, Hepp MI. Role of HDAC6-STAT3 in immunomodulatory pathways in Colorectal cancer cells. Mol Immunol 2023; 164:98-111. [PMID: 37992541 DOI: 10.1016/j.molimm.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant neoplasms and the second leading cause of death from tumors worldwide. Therefore, there is a great need to study new therapeutical strategies, such as effective immunotherapies against these malignancies. Unfortunately, many CRC patients do not respond to current standard immunotherapies, making it necessary to search for adjuvant treatments. Histone deacetylase 6 (HDAC6) is involved in several processes, including immune response and tumor progression. Specifically, it has been observed that HDAC6 is required to activate the Signal Transducer and Activator of Transcription 3 (STAT3), a transcription factor involved in immunogenicity, by activating different genes in these pathways, such as PD-L1. Over-expression of immunosuppressive pathways in cancer cells deregulates T-cell activation. Therefore, we focused on the pharmacological inhibition of HDAC6 in CRC cells because of its potential as an adjuvant to avoid immunotolerance in immunotherapy. We investigated whether HDAC6 inhibitors (HDAC6is), such as Nexturastat A (NextA), affected STAT3 activation in CRC cells. First, we found that NextA is less cytotoxic than the non-selective HDACis panobinostat. Then, NextA modified STAT3 and decreased the mRNA and protein expression levels of PD-L1. Importantly, transcriptomic analysis showed that NextA treatment affected the expression of critical genes involved in immunomodulatory pathways in CRC malignancies. These results suggest that treatments with NextA reduce the functionality of STAT3 in CRC cells, impacting the expression of immunomodulatory genes involved in the inflammatory and immune responses. Therefore, targeting HDAC6 may represent an interesting adjuvant strategy in combination with immunotherapy.
Collapse
Affiliation(s)
- C Mardones
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - C Navarrete-Munoz
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - M E Armijo
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - K Salgado
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - F Rivas-Valdes
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - V Gonzalez-Pecchi
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - C Farkas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - A Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States
| | - M I Hepp
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile.
| |
Collapse
|
10
|
Liang Y, Wang L, Ma P, Ju D, Zhao M, Shi Y. Enhancing anti-tumor immune responses through combination therapies: epigenetic drugs and immune checkpoint inhibitors. Front Immunol 2023; 14:1308264. [PMID: 38077327 PMCID: PMC10704038 DOI: 10.3389/fimmu.2023.1308264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic mechanisms are processes that affect gene expression and cellular functions without involving changes in the DNA sequence. This abnormal or unstable expression of genes regulated by epigenetics can trigger cancer and other various diseases. The immune cells involved in anti-tumor responses and the immunogenicity of tumors may also be affected by epigenomic changes. This holds significant implications for the development and application of cancer immunotherapy, epigenetic therapy, and their combined treatments in the fight against cancer. We provide an overview of recent research literature focusing on how epigenomic changes in immune cells influence immune cell behavior and function, as well as the immunogenicity of cancer cells. And the combined utilization of epigenetic medications with immune checkpoint inhibitors that focus on immune checkpoint molecules [e.g., Programmed Death 1 (PD-1), Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA-4), T cell Immunoglobulin and Mucin Domain (TIM-3), Lymphocyte Activation Gene-3 (LAG-3)] present in immune cells and stromal cells associated with tumors. We highlight the potential of small-molecule inhibitors targeting epigenetic regulators to amplify anti-tumor immune responses. Moreover, we discuss how to leverage the intricate relationship between cancer epigenetics and cancer immunology to create treatment regimens that integrate epigenetic therapies with immunotherapies.
Collapse
Affiliation(s)
- Ying Liang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lingling Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuhan, China
| | - Peijun Ma
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yun Shi
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| |
Collapse
|
11
|
Jaiswal A, Kaushik N, Choi EH, Kaushik NK. Functional impact of non-coding RNAs in high-grade breast carcinoma: Moving from resistance to clinical applications: A comprehensive review. Biochim Biophys Acta Rev Cancer 2023; 1878:188915. [PMID: 37196783 DOI: 10.1016/j.bbcan.2023.188915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Suwon 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
12
|
Heenatigala Palliyage G, Samart P, Bobbala S, Rojanasakul LW, Coyle J, Martin K, Callery PS, Rojanasakul Y. Chemotherapy-induced PDL-1 expression in cancer-associated fibroblasts promotes chemoresistance in NSCLC. Lung Cancer 2023; 181:107258. [PMID: 37245409 PMCID: PMC10330668 DOI: 10.1016/j.lungcan.2023.107258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVES A cure for cancer is out of reach for most patients due to chemoresistance. Cancer-associated fibroblasts (CAFs) play a vital role in cancer chemoresistance, but detailed understanding of the process particularly in chemoresistant lung cancer is lacking. In this study, we investigated programmed death-ligand 1 (PDL-1) as a potential biomarker for CAF-induced chemoresistance and evaluated its role and the underlying mechanisms of chemoresistance in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS A systemic search of gene expression profiles of multiple tissues in NSCLC was carried out to determine the expression intensities of traditional fibroblast biomarkers and CAF-secreted protumorigenic cytokines. PDL-1 expression in CAFs was analyzed by ELISA, Western blotting, and flow cytometry. Human cytokine array was used to identify specific cytokines secreted from CAFs. Role of PDL-1 in NSCLC chemoresistance was assessed using CRISPR/Cas9 knockdown and various functional assays including MTT, cell invasion, sphere formation, and cell apoptosis. In vivo experiments were conducted using a co-implantation xenograft mouse model with live cell imaging and immunohistochemistry. RESULTS We demonstrated that chemotherapy-stimulated CAFs promoted tumorigenic and stem cell-like properties of NSCLC cells, which contribute to their chemoresistance. Subsequently, we revealed that PDL-1 expression is upregulated in chemotherapy-treated CAFs and is associated with poor prognosis. Silencing PDL-1 expression suppressed CAFs' ability to promote stem cell-like properties and invasiveness of lung cancer cells, favoring chemoresistance. Mechanistically, an upregulation of PDL-1 in chemotherapy-treated CAFs led to an increase in hepatocyte growth factor (HGF) secretion, which stimulates cancer progression, cell invasion, and stemness of lung cancer cells, while inhibiting apoptosis. CONCLUSION Our results show that PDL-1-positive CAFs modulate stem cell-like properties of NSCLC cells by secreting elevated HGF, thereby promoting chemoresistance. Our finding supports PDL-1 in CAFs as a chemotherapy response biomarker and as a drug delivery and therapeutic target for chemoresistant NSCLC.
Collapse
Affiliation(s)
| | - Parinya Samart
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA; Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Liying W Rojanasakul
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Karen Martin
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA; West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA; Department of Research & Graduate Education, West Virginia University, Morgantown, WV, USA
| | - Patrick S Callery
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA; West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
13
|
Yang X, Xu L, Yang L, Xu S. Research progress of STAT3-based dual inhibitors for cancer therapy. Bioorg Med Chem 2023; 91:117382. [PMID: 37369169 DOI: 10.1016/j.bmc.2023.117382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3), a transcription factor, regulates gene levels that are associated with cell survival, cell cycle, and immune reaction. It is correlated with the grade of malignancy and the development of various cancers and targeting STAT3 protein is a potentially promising therapeutic strategy for tumors. Over the past 20 years, various compounds have been found to directly inhibit STAT3 activity via different strategies. However, numerous difficulties exist in the development of STAT3 inhibitors, such as serious toxic effects, poor therapeutic effects, and intrinsic and acquired drug resistance. STAT3 inhibitors synergistically suppress cancer development with additional anti-tumor drugs, such as indoleamine 2,3-dioxygenase 1 inhibitors (IDO1i), histone deacetylase inhibitors (HDACi), DNA inhibitors, pro-tumorigenic cytokine inhibitors (PTCi), NF-κB inhibitors, and tubulin inhibitors. Therefore, individual molecule- based dual-target inhibitors can be the candidate alternative or complementary treatment to overcome the disadvantages of just STAT3 or other targets as a monotherapy. In this review, we discuss the theoretical basis for formulating STAT3-based dual-target inhibitors and also summarize their structure-activity relationships (SARs).
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
14
|
Zhao J, Sun Y, Gao P, Zhao Z, Wei G. S-allylmercaptocysteine promotes anti-tumor immunity by suppressing PD-L1 expression. Biomed Pharmacother 2023; 161:114446. [PMID: 37002570 DOI: 10.1016/j.biopha.2023.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
SAMC (S-allylmercaptocysteine) possesses significant anti-tumor effects and is proven to inhibit inflammation in chronic obstructive pulmonary disease. The potential to regulate the immune system of SAMC inspired us to detect whether SAMC can promote anti-tumor immunity. Here we found that SAMC inhibits tumor development and progression by boosting CD8+ T cell and NK cell infiltration and decreasing the frequency of immune suppressing Treg cells in tumor tissue and enhancing the systemic immune function. Mechanistically, we found that SAMC suppresses PD-L1 expression at transcriptional level to increase the activation of anti-tumor cytotoxic T cells. Finally, we proved that SAMC inhibits PD-L1 transcription by suppressing the phosphorylation activation of STAT3. In conclusion, our findings reveal that SAMC is a potent immunity regulator and a potential agent for immune checkpoint inhibition in tumor therapy.
Collapse
|
15
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
16
|
Li Z, Zhou B, Zhu X, Yang F, Jin K, Dai J, Zhu Y, Song X, Jiang G. Differentiation-related genes in tumor-associated macrophages as potential prognostic biomarkers in non-small cell lung cancer. Front Immunol 2023; 14:1123840. [PMID: 36969247 PMCID: PMC10033599 DOI: 10.3389/fimmu.2023.1123840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThe purpose of this study was to evaluate the role of differentiation-related genes (DRGs) in tumor-associated macrophages (TAMs) in non-small cell lung cancer (NSCLC).MethodsSingle cell RNA-seq (scRNA-seq) data from GEO and bulk RNA-seq data from TCGA were analyzed to identify DRGs using trajectory method. Functional gene analysis was carried out by GO/KEGG enrichment analysis. The mRNA and protein expression in human tissue were analyzed by HPA and GEPIA databases. To investigate the prognostic value of these genes, three risk score (RS) models in different pathological types of NSCLC were generated and predicted NSCLC prognosis in datasets from TCGA, UCSC and GEO databases.Results1,738 DRGs were identified through trajectory analysis. GO/KEGG analysis showed that these genes were predominantly related to myeloid leukocyte activation and leukocyte migration. 13 DRGs (C1QB, CCL4, CD14, CD84, FGL2, MS4A6A, NLRP3, PLEK, RNASE6, SAMSN1, SPN, TMEM176B, ZEB2) related to prognosis were obtained through univariate Cox analysis and Lasso regression. C1QB, CD84, FGL2, MS4A6A, NLRP3, PLEK, SAMSN1, SPN, and ZEB2 were downregulated in NSCLC compared to non-cancer tissue. The mRNA of 13 genes were significantly expressed in pulmonary macrophages with strong cell specificity. Meanwhile, immunohistochemical staining showed that C1QB, CCL4, SPN, CD14, NLRP3, SAMSN1, MS4A6A, TMEM176B were expressed in different degrees in lung cancer tissues. ZEB2 (HR=1.4, P<0.05) and CD14 (HR=1.6, P<0.05) expression were associated with a worse prognosis in lung squamous cell carcinoma; ZEB2 (HR=0.64, P<0.05), CD84 (HR=0.65, P<0.05), PLEK (HR=0.71, P<0.05) and FGL2 (HR=0.61, P<0.05) expression were associated with a better prognosis in lung adenocarcinoma. Three RS models based on 13 DRGs both showed that the high RS was significantly associated with poor prognosis in different pathological types of NSCLC.ConclusionsThis study highlights the prognostic value of DRGs in TAMs in NSCLC patients, providing novel insights for the development of therapeutic and prognostic targets based on TAM functional differences.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao Song
- *Correspondence: Xiao Song, ; Gening Jiang,
| | | |
Collapse
|
17
|
The Interaction of Programmed Cell Death Protein and Its Ligands with Non-Coding RNAs in Neoplasms: Emerging Anticancer Immunotherapeutics. Processes (Basel) 2023. [DOI: 10.3390/pr11020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Recent studies have demonstrated that cancer cells can elude immune cells by creating a sanctuary within the tumor’s microenvironment. Large amounts of immune-suppressing signaling proteins can be expressed by cancer cells. One of the most important mechanisms in this system is immune suppression caused by tumors and the modulation of the immune checkpoint. The immune checkpoint is modulated by both the programmed cell death protein 1 (PD-1) and its ligands, programmed death ligand 1 (PD-L1) and PD-L2. Non-coding RNAs (ncRNA), including the more well-known microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), all play roles in the regulation of biological processes and extensive diseases such as cancer. Thus, the focus of this study is on the interactions between the programmed death protein and its ligands with miRNAs, lncRNAs, and circRNAs during tumorigenesis and tumor progression. Furthermore, some FDA-approved drugs for the treatment of various cancers were based on their interactions with PD-1, PD-Ls, and ncRNAs. This promising strategy is still in the production stages, with additional results and clinical trials being processed.
Collapse
|
18
|
Jang YS, Kim TW, Ryu JS, Kong HJ, Jang SH, Nam GH, Kim JH, Jeon S. Upregulation of programmed death ligand-1 in tumor-associated macrophages affects chemotherapeutic response in ovarian cancer cells. PLoS One 2023; 18:e0277285. [PMID: 36757936 PMCID: PMC9910707 DOI: 10.1371/journal.pone.0277285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 02/10/2023] Open
Abstract
To better understand the mechanism of chemoresistance in ovarian cancer cells, we aimed to investigate the influence of macrophages on the tumor cell response to carboplatin and identify the genes associated with chemoresistance. We mimicked the tumor microenvironment (TME) using a co-culture technique and compared the proliferation of ovarian cells with and without macrophages. We also examined M1 and M2 marker expression and the expression of key TME genes. Post the co-culture, we treated ovarian cancer cells with carboplatin and elucidated the function of programmed death-ligand 1 (PD-L1) in carboplatin chemoresistance. We investigated CD68 and PD-L1 expression in normal and cancerous ovarian tissues using immunohistochemistry (IHC). Finally, we analyzed the association between CD68 or PD-L1 expression and survival outcomes. Inducible nitric oxide synthase (iNOS) was downregulated, while the gene expression of M2 macrophage markers was increased in ovarian cancer cells. PD-L1, vascular endothelial growth factor (VEGF), Interleukin (IL)-6, IL-10, IL-12, signal transducer and activator of transcription 3 (STAT3), B-cell lymphoma 2 (BCL2), multidrug resistance 1 (MDR1), and colony stimulating factor 1 (CSF-1) were upregulated. Notably, PD-L1 was upregulated in both the ovarian cancer cells and macrophages. Ovarian cancer cells co-cultured with macrophages exhibited statistically significant carboplatin resistance compared to single-cultured ovarian cancer cells. PD-L1 silencing induced chemosensitivity in both types of co-cultured ovarian cancer cells. However, IHC results revealed no correlation between PD-L1 expression and patient survival or cancer stage. CD68 expression was significantly increased in cancer cells compared to normal or benign ovarian tumor cells, but it was not associated with the survival outcomes of ovarian cancer patients. Our study demonstrated that ovarian cancer cells interact with macrophages to induce the M2 phenotype. We also established that PD-L1 upregulation in both ovarian cancer cells and macrophages is a key factor for carboplatin chemoresistance.
Collapse
Affiliation(s)
- Yong Soo Jang
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Tae Wan Kim
- Soonchunhyang Innovative Convergence Research Center, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- Department of Medical Life Science, Soonchunhyang University, Asan, Korea
| | - Jae Sung Ryu
- Soonchunhyang Innovative Convergence Research Center, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- Department of Medical Life Science, Soonchunhyang University, Asan, Korea
| | - Hye Jeong Kong
- Soonchunhyang Innovative Convergence Research Center, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- Department of Medical Life Science, Soonchunhyang University, Asan, Korea
| | - Si Hyeong Jang
- Department of Pathology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Gye Hyun Nam
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jae Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- * E-mail:
| |
Collapse
|
19
|
Mondal P, Meeran SM. Emerging role of non-coding RNAs in resistance to platinum-based anti-cancer agents in lung cancer. Front Pharmacol 2023; 14:1105484. [PMID: 36778005 PMCID: PMC9909610 DOI: 10.3389/fphar.2023.1105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Platinum-based drugs are the first line of therapeutics against many cancers, including lung cancer. Lung cancer is one of the leading causes of cancer-related death worldwide. Platinum-based agents target DNA and prevent replication, and transcription, leading to the inhibition of cell proliferation followed by cellular apoptosis. About twenty-three platinum-based drugs are under different stages of clinical trials, among cisplatin, carboplatin, and oxaliplatin are widely used for the treatment of various cancers. Among them, cisplatin is the most commonly used drug for cancer therapy, which binds with RNA, and hinders the cellular RNA process. However, long-term use of platinum-based drugs can cause different side effects and has been shown to develop chemoresistance, leading to poor clinical outcomes. Chemoresistance became an important challenge for cancer treatment. Platinum-based chemoresistance occurs due to the influence of intrinsic factors such as overexpression of multidrug resistance proteins, advancement of DNA repair mechanism, degradation, and deactivation of intracellular thiols. Recently, epigenetic modifications, especially non-coding RNAs (ncRNAs) mediated gene regulation, grasp the attention for reversing the sensitivity of platinum-based drugs due to their reversible nature without altering genome sequence. ncRNAs can also modulate the intrinsic and non-intrinsic mechanisms of resistance in lung cancer cells. Therefore, targeting ncRNAs could be an effective approach for developing novel therapeutics to overcome lung cancer chemoresistance. The current review article has discussed the role of ncRNA in chemoresistance and its underlying molecular mechanisms in human lung cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Syed Musthapa Meeran, ,
| |
Collapse
|
20
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
21
|
Alotaibi F. Exosomal microRNAs in cancer: Potential biomarkers and immunotherapeutic targets for immune checkpoint molecules. Front Genet 2023; 14:1052731. [PMID: 36873941 PMCID: PMC9982116 DOI: 10.3389/fgene.2023.1052731] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Exosomes are small extracellular vesicles with a lipid bilayer structure secreted from different cell types which can be found in various body fluids including blood, pleural fluid, saliva and urine. They carry different biomolecules including proteins, metabolites, and amino acids such as microRNAs which are small non-coding RNAs that regulate gene expression and promote cell-to-cell communication. One main function of the exosomal miRNAs (exomiRs) is their role in cancer pathogenesis. Alternation in exomiRs expression could indicate disease progression and can regulate cancer growth and facilitate drug response/resistance. It can also influence the tumour microenvironment by controlling important signaling that regulating immune checkpoint molecules leading to activation of T cell anti-tumour immunity. Therefore, they can be used as potential novel cancer biomarkers and innovative immunotherapeutic agents. This review highlights the use of exomiRs as potential reliable biomarkers for cancer diagnosis, treatment response and metastasis. Finally, discuses their potential as immunotherapeutic agents to regulate immune checkpoint molecules and promote T cell anti-tumour immunity.
Collapse
Affiliation(s)
- Faizah Alotaibi
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Programmed Cell Death-Ligand 1 in Head and Neck Squamous Cell Carcinoma: Molecular Insights, Preclinical and Clinical Data, and Therapies. Int J Mol Sci 2022; 23:ijms232315384. [PMID: 36499710 PMCID: PMC9738355 DOI: 10.3390/ijms232315384] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the programmed cell death protein ligand 1 (PD-L1) constitutes one of the main immune evasion mechanisms of cancer cells. The approval of drugs against the PD-1-PD-L1 axis has given new impetus to the chemo-therapy of many malignancies. We performed a literature review from 1992 to August 2022, summarizing evidence regarding molecular structures, physiological and pathological roles, mechanisms of PD-L1 overexpression, and immunotherapy evasion. Furthermore, we summarized the studies concerning head and neck squamous cell carcinomas (HNSCC) immunotherapy and the prospects for improving the associated outcomes, such as identifying treatment response biomarkers, new pharmacological combinations, and new molecules. PD-L1 overexpression can occur via four mechanisms: genetic modifications; inflammatory signaling; oncogenic pathways; microRNA or protein-level regulation. Four molecular mechanisms of resistance to immunotherapy have been identified: tumor cell adaptation; changes in T-cell function or proliferation; alterations of the tumor microenvironment; alternative immunological checkpoints. Immunotherapy was indeed shown to be superior to traditional chemotherapy in locally advanced/recurrent/metastatic HNSCC treatments.
Collapse
|
23
|
Cuttano R, Afanga MK, Bianchi F. MicroRNAs and Drug Resistance in Non-Small Cell Lung Cancer: Where Are We Now and Where Are We Going. Cancers (Basel) 2022; 14:5731. [PMID: 36497213 PMCID: PMC9740066 DOI: 10.3390/cancers14235731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in the world. The development of drug resistance represents a major challenge for the clinical management of patients. In the last years, microRNAs have emerged as critical modulators of anticancer therapy response. Here, we make a critical appraisal of the literature available on the role of miRNAs in the regulation of drug resistance in non-small cell lung cancer (NSCLC). We performed a comprehensive annotation of miRNAs expression profiles in chemoresistant versus sensitive NSCLC, of the drug resistance mechanisms tuned up by miRNAs, and of the relative experimental evidence in support of these. Furthermore, we described the pros and cons of experimental approaches used to investigate miRNAs in the context of therapeutic resistance, to highlight potential limitations which should be overcome to translate experimental evidence into practice ultimately improving NSCLC therapy.
Collapse
Affiliation(s)
| | | | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
24
|
Li L, Wang J, Zhang Z, Yang Q, Deng Z, Zou W, Ge X, Pan K, Li C, Liu R. Identification of CKS1B as a prognostic indicator and a predictive marker for immunotherapy in pancreatic cancer. Front Immunol 2022; 13:1052768. [PMID: 36405738 PMCID: PMC9668883 DOI: 10.3389/fimmu.2022.1052768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/19/2022] [Indexed: 01/10/2024] Open
Abstract
As a regulatory subunit of cyclin kinase, CKS1B promotes cancer development and is associated with poor prognosis in multiple cancer patients. However, the intrinsic role of CKS1B in pancreatic cancer remains elusive. In our research, CKS1B expression in pancreatic tumor tissue was higher than that in normal tissue by TCGA, Oncomine and CPTAC databases analysis. Similar result was verified in our center tissues by qRT-PCR. CKS1B expression was closely relevant to histologic grading, prognosis, and TMB. GSEA showed that CKS1B mainly participated in the regulation of autophagy and T cell receptor signaling pathway. Furthermore, CIBERSORT analysis showed that there was a strong correlation between CKS1B expression and tumor immune cells infiltration. Drug sensitivity analysis showed that patients with high CKS1B expression appeared to be more sensitive to gemcitabine, 5-fluorouracil, and paclitaxel. We then investigated cell viability and migratory ability by CCK8 and transwell assay, respectively. Results indicated that CKS1B knockdown by short hairpin RNA significantly reduced pancreatic cancer cell viability and invasion via regulating PD-L1 expression. In conclusion, our research further demonstrates the role of CKS1B in pancreatic cancer and the signaling pathways involved. The association of CKS1B with immune infiltration and immune checkpoint may provide a new direction for immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Lincheng Li
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Zhuochao Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiyue Yang
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Zhaoda Deng
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenbo Zou
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Xinlan Ge
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Ke Pan
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Chonghui Li
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Lee DY, Im E, Yoon D, Lee YS, Kim GS, Kim D, Kim SH. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+Tregs related molecules, clinical implications and combinational potential with phytochemicals. Semin Cancer Biol 2022; 86:1033-1057. [PMID: 33301862 DOI: 10.1016/j.semcancer.2020.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
Immune checkpoint proteins including programmed cell death protein 1 (PD-1), its ligand PD-L1 and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are involved in proliferation, angiogenesis, metastasis, chemoresistance via immune escape and immune tolerance by disturbing cytotoxic T cell activation. Though many clinical trials have been completed in several cancers by using immune checkpoint inhibitors alone or in combination with other agents to date, recently multi-target therapy is considered more attractive than monotherapy, since immune checkpoint proteins work with other components such as surrounding blood vessels, dendritic cells, fibroblasts, macrophages, platelets and extracellular matrix within tumor microenvironment. Thus, in the current review, we look back on research history of immune checkpoint proteins and discuss their associations with platelets or tumor cell induced platelet aggregation (TCIPA) and FOXP3+ regulatory T cells (Tregs) related molecules involved in immune evasion and tumor progression, clinical implications of completed trial results and signaling networks by phytochemicals for combination therapy with immune checkpoint inhibitors and suggest future research perspectives.
Collapse
Affiliation(s)
- Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Donghwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
26
|
Shadbad MA, Ghorbaninezhad F, Hassanian H, Ahangar NK, Hosseinkhani N, Derakhshani A, Shekari N, Brunetti O, Silvestris N, Baradaran B. A scoping review on the significance of programmed death-ligand 1-inhibiting microRNAs in non-small cell lung treatment: A single-cell RNA sequencing-based study. Front Med (Lausanne) 2022; 9:1027758. [PMID: 36388933 PMCID: PMC9659572 DOI: 10.3389/fmed.2022.1027758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The programmed death-ligand 1 (PD-L1)/PD-1 axis is one of the well-established inhibitory axes in regulating immune responses. Besides the significance of tumor-intrinsic PD-L1 expression in immune evasion, its oncogenic role has been implicated in various malignancies, like non-small cell lung cancer (NSCLC). As small non-coding RNAs, microRNAs (miRs) have pivotal roles in cancer biology. The current study aimed to systematically review the current knowledge about the significance of PD-L1-inhibiting miRs in NSCLC inhibition and their underlying mechanisms. MATERIALS AND METHODS We conducted the current scoping review based on the PRISMA-ScR statement. We systematically searched Embase, Scopus, Web of Science, PubMed, Ovid, EBSCO, ProQuest, Cochrane Library, African Index Medicus, and Pascal-Francis up to 4 April 2021. We also performed in silico tumor bulk RNA sequencing and single-cell RNA sequencing to further the current knowledge of the non-coding RNA-mediated tumor-intrinsic PD-L1 regulation and the PD-L1/PD-1 axis in NSCLC. RESULTS The ectopic expression of hsa-miR-194-5p, hsa-miR-326, hsa-miR-526b-3p, hsa-miR-34a-5p, hsa-miR-34c-5p, hsa-miR-138-5p, hsa-miR-377-3p, hsa-let-7c-5p, hsa-miR-200a-3p, hsa-miR-200b-3p, hsa-miR-200c-3p, and hsa-miR-197-3p, as PD-L1-inhibiting miR, inhibits NSCLC development. These PD-L1-inhibiting miRs can substantially regulate the cell cycle, migration, clonogenicity, invasion, apoptosis, tumor chemosensitivity, and host anti-tumoral immune responses. Based on single-cell RNA sequencing results, PD-L1 inhibition might liberate the tumor-infiltrated CD8+ T-cells and dendritic cells (DCs)-mediated anti-tumoral immune responses via disrupting the PD-L1/PD-1 axis. CONCLUSION Given the promising preclinical results of these PD-L1-inhibiting miRs in inhibiting NSCLC development, their ectopic expression might improve NSCLC patients' prognosis; however, further studies are needed to translate this approach into clinical practice.
Collapse
Affiliation(s)
| | | | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Najibeh Shekari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi, University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Methylome Profiling of PD-L1-Expressing Glioblastomas Shows Enrichment of Post-Transcriptional and RNA-Associated Gene Regulation. Cancers (Basel) 2022; 14:cancers14215375. [PMID: 36358793 PMCID: PMC9656473 DOI: 10.3390/cancers14215375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastomas are the most frequent primary brain tumors in adults. They show highly malignant behavior and devastating outcomes. Since there are still no targeted therapies available, median survival remains in the range of 12 to 15 months for glioblastoma patients. Programmed Cell Death Ligand 1 (PD-L1) is a promising novel candidate in precision medicine. Here, we performed integrated epigenome-wide methylation profiling of 866,895 methylation-specific sites in 20 glioblastoma samples comparing PD-L1 high- (i.e., TPS (tumor proportion score) > 30%) and PD-L1 low-expressing glioblastomas (i.e., TPS < 10%). We found 12,597 significantly differentially methylated CpGs (DMCG) (Δβ ≥ 0.1 and p-value < 0.05) in PD-L1 high- compared with PD-L1 low-expressing glioblastomas. These DMCGs were annotated to 2546 tiling regions, 139 promoters, 107 genes, and 107 CpG islands. PD-L1 high-expressing glioblastomas showed hypomethylation in 68% of all DMCGs. Interestingly, the list of the top 100 significantly differentially methylated genes showed the enrichment of regulatory RNAs with 19 DMCGs in miRNA, snoRNAs, lincRNAs, and asRNAs. Gene Ontology analysis showed the enrichment of post-transcriptional and RNA-associated pathways in the hypermethylated gene regions. In summary, dissecting the methylomes depending on PD-L1 status revealed significant alterations in RNA regulation and novel molecular targets in glioblastomas.
Collapse
|
28
|
Yan H, Tang S, Tang S, Zhang J, Guo H, Qin C, Hu H, Zhong C, Yang L, Zhu Y, Zhou H. miRNAs in anti-cancer drug resistance of non-small cell lung cancer: Recent advances and future potential. Front Pharmacol 2022; 13:949566. [PMID: 36386184 PMCID: PMC9640411 DOI: 10.3389/fphar.2022.949566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors worldwide. Clinical success is suboptimal owing to late diagnosis, limited treatment options, high recurrence rates, and the development of drug resistance. MicroRNAs (miRNAs), a range of small endogenous non-coding RNAs that are 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence has revealed the pivotal roles of miRNAs in regulating cell proliferation, migration, invasion, and metastasis in NSCLC. Recently, several studies have demonstrated that miRNAs are strongly associated with resistance to anti-cancer drugs, ranging from traditional chemotherapeutic and immunotherapy drugs to anti-vascular drugs, and even during radiotherapy. In this review, we briefly introduce the mechanism of miRNA dysregulation and resistance to anti-tumor therapy in NSCLC, and summarize the role of miRNAs in the malignant process of NSCLC. We then discuss studies of resistance-related miRNAs in chemotherapy, radiotherapy, targeted therapy, immunotherapy, and anti-vascular therapy in NSCLC. Finally, we will explore the application prospects of miRNA, an emerging small molecule, for future anti-tumor therapy. This review is the first to summarize the latest research progress on miRNAs in anti-cancer drug resistance based on drug classification, and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Chuan Zhong
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Yunhe Zhu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| |
Collapse
|
29
|
Dioguardi M, Cantore S, Sovereto D, La Femina L, Spirito F, Caloro GA, Caroprese M, Maci M, Scacco S, Lo Muzio L, Di Cosola M, Troiano G, Ballini A. Does miR-197 Represent a Valid Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma (HNSCC)? A Systematic Review and Trial Sequential Analysis. J Pers Med 2022; 12:jpm12091436. [PMID: 36143221 PMCID: PMC9501311 DOI: 10.3390/jpm12091436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Between tumors of the head and neck region, the squamous cell variant (HNSCC) is the most common and represents one of the main neoplasms affecting humans. At the base of carcinogenesis processes, there are genetic alterations whose regulation can be influenced by changes in the expression of microRNA (miR). Consequently, despite recent studies indicating miR-197 as a potential prognostic biomarker of survival for many varieties of cancer, there are currently no systematic reviews and trial sequential/bioinformatics/meta-analysis regarding the role of miR-197 in HNSCC. Our hypothesis was that with the existing literature, it is possible to clarify whether the different expressions of miR-197 in neoplastic tissues can represent a prognostic biomarker of survival in head and neck tumors. (2) Methods: The systematic review was reported following the indications of PRISMA and by consulting six electronic databases (including one register). Moreover, this review was carried out using the Kaplan–Meier plotter database portal, and hazard ratio (HR) data were extracted. Finally, a trial sequential analysis (TSA) was conducted to test the robustness of the proposed meta-analysis. (3) Results: This search identified 1119 articles and outcomes of the meta-analysis, reporting an aggregate HR for overall survival (OS) between the highest and lowest miR-197 expression of 1.01, 95% CI: [1.00, 1.02]. (4) Conclusions: We can state that, from the literature data included in the present meta-analysis, and from the TSA and bioinformatics analysis data, miR-197 does not currently represent a valid prognostic biomarker for HNSCC, although the data provided by the Kaplan–Meier plotter suggest that miR-197 can serve as a putative biomarker in short-term (5 years) survival.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Stefania Cantore
- Independent Researcher, 70129 Bari, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Lucia La Femina
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Giorgia Apollonia Caloro
- Unità Operativa Nefrologia e Dialisi, Presidio Ospedaliero Scorrano, ASL (Azienda Sanitaria Locale) Lecce, Via Giuseppina Delli Ponti, 73020 Scorrano, Italy
| | - Marino Caroprese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Marta Maci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
30
|
Beenen AC, Sauerer T, Schaft N, Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int J Mol Sci 2022; 23:ijms23158599. [PMID: 35955729 PMCID: PMC9369208 DOI: 10.3390/ijms23158599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.
Collapse
Affiliation(s)
- Amke C. Beenen
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-31127
| |
Collapse
|
31
|
Prete F, Rotelli M, Stella A, Calculli G, Sgaramella LI, Amati A, Resta N, Testini M, Gurrado A. Intraabdominal sporadic desmoid tumors and inflammation: an updated literature review and presentation and insights on pathogenesis of synchronous sporadic mesenteric desmoid tumors occurring after surgery for necrotizing pancreatitis. Clin Exp Med 2022:10.1007/s10238-022-00849-6. [PMID: 35913675 DOI: 10.1007/s10238-022-00849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
Sporadic intra-abdominal desmoid tumors are rare and known to potentially occur after trauma including previous surgery, although knowledge of the underlying pathogenetic mechanism is still limited. We reviewed the recent literature on sporadic intraabdominal desmoids and inflammation as we investigated the mutational and epigenetic makeup of a case of multiple synchronous mesenterial desmoids occurring after necrotizing pancreatitis. A 62-year-old man had four mesenteric masses up to 4.8 cm diameter detected on CT eighteen months after laparotomy for peripancreatic collections from necrotizing pancreatitis. All tumors were excised and diagnosed as mesenteric desmoids. DNA from peripheral blood was tested for a multigene panel. The tumour DNA was screened for three most frequent β-catenin gene mutations T41A, S45F and S45P. Expression levels of miR-21-3p and miR-197-3-p were compared between the desmoid tumors and other wild-type sporadic desmoids. The T41A CTNNB1 mutation was present in all four desmoid tumors. miR-21-3p and miR-197-3p were respectively upregulated and down-regulated in the mutated sporadic mesenteric desmoids, with respect to wild-type lesions. The patient is free from recurrence 34 months post-surgery. The literature review did not show similar studies. To our knowledge, this is the first study to interrogate genetic and epigenetic signature of multiple intraabdominal desmoids to investigate potential association with abdominal inflammation following surgery for necrotizing pancreatitis. We found mutational and epigenetic features that hint at potential activation of inflammation pathways within the desmoid tumor.
Collapse
Affiliation(s)
- Francesco Prete
- Academic General Surgery Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, 11, Piazza Giulio Cesare, 70124, Bari, Italy.
| | - MariaTeresa Rotelli
- General Surgery and Liver Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Alessandro Stella
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Giovanna Calculli
- Academic General Surgery Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, 11, Piazza Giulio Cesare, 70124, Bari, Italy
| | - Lucia Ilaria Sgaramella
- Academic General Surgery Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, 11, Piazza Giulio Cesare, 70124, Bari, Italy
| | - Antonio Amati
- Division of Pathology, Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Nicoletta Resta
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Mario Testini
- Academic General Surgery Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, 11, Piazza Giulio Cesare, 70124, Bari, Italy
| | - Angela Gurrado
- Academic General Surgery Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, 11, Piazza Giulio Cesare, 70124, Bari, Italy
| |
Collapse
|
32
|
Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. Exp Hematol Oncol 2022; 11:44. [PMID: 35907881 PMCID: PMC9338491 DOI: 10.1186/s40164-022-00297-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/09/2023] Open
Abstract
The molecular mechanisms underlying cancer immune escape are a core topic in cancer immunology research. Cancer cells can escape T cell-mediated cellular cytotoxicity by exploiting the inhibitory programmed cell-death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1, CD274) immune checkpoint. Studying the PD-L1 regulatory pattern of tumor cells will help elucidate the molecular mechanisms of tumor immune evasion and improve cancer treatment. Recent studies have found that tumor cells regulate PD-L1 at the transcriptional, post-transcriptional, and post-translational levels and influence the anti-tumor immune response by regulating PD-L1. In this review, we focus on the regulation of PD-L1 in cancer cells and summarize the underlying mechanisms.
Collapse
Affiliation(s)
- Zhuandi Liu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Xibao Yu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Ling Xu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Yangqiu Li
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China.
| | - Chengwu Zeng
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China.
| |
Collapse
|
33
|
Effects of hsa-miR-28-5p on Adriamycin Sensitivity in Diffuse Large B-Cell Lymphoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4290994. [PMID: 35873635 PMCID: PMC9300279 DOI: 10.1155/2022/4290994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Background Adriamycin (doxorubicin) is an important traditional drug that exhibits cytotoxicity in Diffuse Large B-cell Lymphoma (DLBCL). Doxorubicin affects the DLBCL cells at all stages of their cell cycle. Combined with our previous results, this study discovered that the overexpression of hsa-miR-28-5p inhibited the proliferation, promoted apoptosis, and triggered cell cycle arrest at the S-phase in DLBCL cells. However, the effect of (Homo sapiens, hsa)-microRNA (miR)-28-5p on doxorubicin sensitivity in DLBCL has not been investigated. This study aims to reveal the effects of hsa-miR-28-5p on doxorubicin sensitivity at the level of DLBCL cells. Methods To determine the optimal concentration of doxorubicin, different concentrations of doxorubicin were used to treat DLBCL cells. CCK-8 assay was used to detect the proliferation of DLBCL cells. The hsa-miR-28-5p-mimic NC and hsa-miR-28-5p mimic were transfected to doxorubicin-mediated DLBCL cells. Simultaneously, blank control groups were set up. The cells were cultured and transfected for 24 h. Next, each group was administered with different concentrations of doxorubicin and cultured again for 24 h to observe the effects of hsa-miR-28-5p on doxorubicin sensitivity at different times. The proliferation, early apoptosis, and late apoptosis in DLBCL cells were determined using soft agar colony-forming assay, mitochondrial membrane potential assay, and caspase-3 activity assay, respectively. The apoptosis and cell cycle were explored using Annexin V-PE/7-AAD and PI/RNase staining buffer, respectively. We speculated that PD-L1 might be involved in the effect of hsa-miR-28-5p on the sensitivity of adriamycin (doxorubicin) in the DLBCL cells. Hence, we performed immunohistochemistry (IHC) to determine PD-L1 expression within formalin-fixed paraffin-embedded (FFPE) samples from 52 DLBCL cases. Results The optimal concentration of doxorubicin targeting DLBCL cells was found to be 3.028 μmol/l. The effect of doxorubicin on DLBCL cells was time- and concentration-dependent. hsa-miR-28-5p mimic + doxorubicin remarkably decreased proliferation of DLBCL. DLBCL cell apoptosis rate was the highest in hsa-miR-28-5p mimic + doxorubicin group. Apart from that, hsa-miR-28-5p mimic plus doxorubicin had the best effect in promoting DLBCL cell apoptosis. After the intervention of hsa-miR-28-5p mimic + doxorubicin on DLBCL cells, the cell cycle was arrested in the S-phase and DNA synthesis was blocked. hsa-miR-28-5p mimic + doxorubicin could regulate the cycle of DLBCL cells. As a result, overexpression of hsa-miR-28-5p combined with doxorubicin is possibly involved in the development of DLBCL by affecting the proliferation, apoptosis, and cycle of DLBCL cells. PD-L1 showed an association with the prognosis of DLBCL patients. Combining with the literature, this suggested hsa-miR-28-5p may influence DLBCL occurrence and therapeutic effect by regulating the PD-L1 level. Conclusion The combination of hsa-miR-28-5p mimic and doxorubicin may be considered more effective in inhibiting growth, arresting the cell cycle, and promoting cell apoptosis of DLBCL cells compared to using doxorubicin alone. The effects of doxorubicin on DLBCL cells were found to be time- and concentration-dependent. The overexpression of hsa-miR-28-5p enhanced the effect of doxorubicin on DLBCL cells, which may be attributed to the regulation of PD-L1 levels.
Collapse
|
34
|
C Andrade A, Freitas TR, Dornelas GG, Gomes LC, Barbosa BL, Araújo SS, Gomes KB, Sabino AP. miR-197, miR-26a and miR-27a analysis in chronic lymphocytic leukemia. Biomark Med 2022; 16:903-914. [PMID: 35833845 DOI: 10.2217/bmm-2021-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Chronic lymphocytic leukemia (CLL) involves the proliferation and increase of B-lymphocytes in the peripheral blood, bone marrow and lymphoid organs. This study evaluated the microRNAs miR-197, miR-26a and miR-27a as potential biomarkers for CLL. Patients & Methods: Eighty-two patients with CLL and 62 control subjects (CT) were investigated for these targets, using quantitative PCR (qPCR). Results: A significant reduction of all microRNAs was observed in CLL compared to the controls (p < 0.001). Significant negative correlations were observed for the clinical staging groups. After adjusting for multiple logistic regression analysis, miR-197 and miR-26a remained as possible independent risk factors related to the CLL. Conclusions: Our data indicated good performance of this microRNAs as potential biomarkers in CLL.
Collapse
Affiliation(s)
- Ana C Andrade
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | - Tulio R Freitas
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | - Geovana G Dornelas
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | | | | | - Sérgio Ss Araújo
- Clinical Hospital, Federal University of Minas Gerais, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | - Karina B Gomes
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | - Adriano P Sabino
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| |
Collapse
|
35
|
The worsening impact of programmed cell death ligand 1 in ovarian clear cell carcinomas. Arch Gynecol Obstet 2022; 306:2133-2142. [PMID: 35507079 DOI: 10.1007/s00404-022-06582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To investigate the clinical significance of programmed cell death ligand 1 (PD-L1) expression in ovarian clear cell carcinoma (CCC). MATERIALS AND METHODS Patients with CCC who underwent primary surgery at our hospital between 1984 and 2014 were enrolled in this study. PD-L1 and mismatch repair (MMR) protein expression in tumor cells, tumor-infiltrating lymphocytes (TILs), including cluster of differentiation (CD) 8, CD4, forkhead box P3 (FOXP3), programmed cell death 1 (PD-1), and BAF250a, were evaluated using immunohistochemistry. The association between PD-L1 expression, clinicopathological features, prognosis, and expression of several proteins was investigated. RESULTS Of the 125 patients with CCC, 17 had negative PD-L1 and 108 had positive PD-L1. Patients with positive PD-L1 expression showed a lower response to chemotherapy (p = 0.01). In addition, patients with positive PD-L1 showed worse progression-free survival (PFS, p = 0.01) and overall survival (OS, p = 0.01) than that in patients with negative PD-L1 expression. Multivariate analyses for PFS and OS showed that PD-L1 expression was an independent prognostic factor for PFS (hazard ratio [HR] 7.81, p < 0.01) and OS (HR 12.90, p < 0.01). PD-L1 expression was not associated with the expression of several TILs or proteins. CONCLUSION The expression of PD-L1 was related to a lower response to chemotherapy and worse prognosis in CCC. These results may be useful for the development of new treatments.
Collapse
|
36
|
Kumar S, Saikia J, Sharawat SK, Malik PS, Kumar S, Mohan A. Analysis of miR-375-3p, miR-197-3p, and miR-15a-5p Expression and Their Clinical Relevance as Biomarkers in Lung Cancer. Technol Cancer Res Treat 2022; 21:15330338221080981. [PMID: 35230198 PMCID: PMC8891837 DOI: 10.1177/15330338221080981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: MicroRNAs (miRNAs) play an important regulatory role and serve as biomarkers in various human cancers. However, their role in the prognosis and predicting response to therapy in Indian lung cancer patients is not fully explored. Methods: We collected surgically resected tumors and paired adjacent normal lung tissues from 29 early-stage and tissue biopsies from 103 locally advanced and metastatic lung cancer patients in this prospective study. We quantified the expression levels of miR-375-3p, miR-197-3p, and miR-15a-5p using TaqMan Advanced miRNA Assays. We correlated miRNAs expression with response to therapy and survival outcomes. Results: The median age of lung cancer patients was 60 years. We found significant overexpression of miR-375-3p and miR-197-3p in the tumors compared to paired normal lung tissues. Higher expression of miR-375-3p was observed more frequently in responders compared to nonresponders. The expression of miR-375-3p and miR-197-3p was able to differentiate patients of lung adenocarcinoma from lung squamous cell carcinoma. We did not find any correlation between miRNAs expression and survival outcomes. Conclusion: Overexpression of miR-375-3p and miR-197-3p might contribute to lung carcinogenesis. The expression of miR-375-3p may assist in predicting therapeutic response. More prospective studies are warranted to evaluate the potential of miR-375-3p as a predictive biomarker of response to therapy.
Collapse
Affiliation(s)
- Sachin Kumar
- Dr B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India,Sachin Kumar, Department of Medical Oncology, Dr B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Science, New Delhi-110029, India.
Emails: ;
| | - Jyoutishman Saikia
- Dr B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Surender K. Sharawat
- Dr B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat S. Malik
- Dr B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Dr B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
37
|
Circulating microRNA-197-3p as a potential biomarker for asbestos exposure. Sci Rep 2021; 11:23955. [PMID: 34907223 PMCID: PMC8671556 DOI: 10.1038/s41598-021-03189-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Asbestos is considered the main cause of diseases in workers exposed to this mineral in the workplace as well as an environmental pollutant. The association between asbestos and the onset of different diseases has been reported, but asbestos exposure specific biomarkers are not known. MicroRNAs (miRNAs) are small, single-strand, non-coding RNAs, with potential value as diagnostic, prognostic, and predictive markers in liquid biopsies. Sera collected from workers ex-exposed to asbestos (WEA) fibers were compared with sera from healthy subjects (HS) of similar age, as liquid biopsies. The expression of the circulating miRNA 197-3p was investigated employing two different highly analytical PCR methods, i.e. RT-qPCR and ddPCR. MiR-197-3p levels were tested in sera from WEA compared to HS. MiR-197-3p tested dysregulated in sera from WEA (n = 75) compared to HS (n = 62). Indeed, miR-197-3p was found to be 2.6 times down-regulated in WEA vs. HS (p = 0.0001***). In addition, an inverse correlation was detected between miR-197-3p expression level and cumulative asbestos exposure, being this miRNA down-regulated 2.1 times in WEA, with high cumulative asbestos exposure, compared to WEA with low exposure (p = 0.0303*). Circulating miR-197-3p, found to be down regulated in sera from WEA, is proposed as a new potential biomarker of asbestos exposure.
Collapse
|
38
|
Alemohammad H, Najafzadeh B, Asadzadeh Z, Baghbanzadeh A, Ghorbaninezhad F, Najafzadeh A, Safarpour H, Bernardini R, Brunetti O, Sonnessa M, Fasano R, Silvestris N, Baradaran B. The importance of immune checkpoints in immune monitoring: A future paradigm shift in the treatment of cancer. Biomed Pharmacother 2021; 146:112516. [PMID: 34906767 DOI: 10.1016/j.biopha.2021.112516] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
The growth and development of cancer are directly correlated to the suppression of the immune system. A major breakthrough in cancer immunotherapy depends on various mechanisms to detect immunosuppressive factors that inhibit anti-tumor immune responses. Immune checkpoints are expressed on many immune cells such as T-cells, regulatory B cells (Bregs), dendritic cells (DCs), natural killer cells (NKs), regulatory T (Tregs), M2-type macrophages, and myeloid-derived suppressor cells (MDSCs). Immune inhibitory molecules, including CTLA-4, TIM-3, TIGIT, PD-1, and LAG-3, normally inhibit immune responses via negatively regulating immune cell signaling pathways to prevent immune injury. However, the up-regulation of inhibitory immune checkpoints during tumor progression on immune cells suppresses anti-tumor immune responses and promotes immune escape in cancer. It has recently been indicated that cancer cells can up-regulate various pathways of the immune checkpoints. Therefore, targeting immune inhibitory molecules through antibodies or miRNAs is a promising therapeutic strategy and shows favorable results. Immune checkpoint inhibitors (ICIs) are introduced as a new immunotherapy strategy that enhance immune cell-induced antitumor responses in many patients. In this review, we highlighted the function of each immune checkpoint on different immune cells and therapeutic strategies aimed at using monoclonal antibodies and miRNAs against inhibitory receptors. We also discussed current challenges and future strategies for maximizing these FDA-approved immunosuppressants' effectiveness and clinical success in cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arezoo Najafzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Oronzo Brunetti
- Medical Oncological Unite, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Margherita Sonnessa
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Rossella Fasano
- Medical Oncological Unite, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncological Unite, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Mo C, Xie L, Chen C, Ma J, Huang Y, Wu Y, Xu Y, Peng H, Chen Z, Mao R. The Clinical Significance and Potential Molecular Mechanism of Upregulated CDC28 Protein Kinase Regulatory Subunit 1B in Osteosarcoma. JOURNAL OF ONCOLOGY 2021; 2021:7228584. [PMID: 34925510 PMCID: PMC8683182 DOI: 10.1155/2021/7228584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND CDC28 Protein Kinase Regulatory Subunit 1B (CKS1B) is a member of cyclin-dependent kinase subfamily and the relationship between CKS1B and osteosarcoma (OS) remains to be explored. METHODS 80 OS and 41 nontumor tissue samples were arranged to conduct immunohistochemistry (IHC) to evaluate CKS1B expression between OS and nontumor samples. The standard mean deviation (SMD) was calculated based on in-house IHC and tissue microarrays and exterior high-throughput datasets for further verification of CKS1B expression in OS. The effect of CKS1B expression on clinicopathological and overall survival of OS patients was measured through public high-throughput datasets, and analysis of immune infiltration and single-cell RNA-seq was applied to ascertain molecular mechanism of CKS1B in OS. RESULTS A total of 197 OS samples and 83 nontumor samples (including tissue and cell line) were obtained from in-house IHC, microarrays, and exterior high-throughput datasets. The analysis of integrated expression status demonstrated upregulation of CKS1B in OS (SMD = 1.38, 95% CI [0.52-2.25]) and the significant power of CKS1B expression in distinguishing OS samples from nontumor samples (Area under the Curve (AUC) = 0.89, 95% CI [0.86-0.91]). Clinicopathological and prognosis analysis indicated no remarkable significance but inference of immune infiltration and single-cell RNA-seq prompted that OS patients with overexpressed CKS1B were more likely to suffer OS metastasis while MYC Protooncogene may be the upstream regulon of CKS1B in proliferating osteoblastic OS cells. CONCLUSIONS In this study, sufficient evidence was provided for upregulation of CKS1B in OS. The advanced effect of CKS1B on OS progression indicates a foreground of CKS1B as a biomarker for OS.
Collapse
Affiliation(s)
- Chaohua Mo
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Le Xie
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Chang Chen
- Department of Pathology, Wuzhou Res Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region 543100, China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yingxin Huang
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yanxing Wu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yuanyuan Xu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Huizhi Peng
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Zengwei Chen
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Rongjun Mao
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| |
Collapse
|
40
|
Sabaawy A, Zeeshan S. Targeting the immune microenvironment during immunotherapy for solid tumors. Mol Cell Oncol 2021; 8:1994327. [PMID: 34859150 DOI: 10.1080/23723556.2021.1994327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
JAK/STAT signaling is a central hub in cancer development, progression, immunosurveillance and response to immunotherapy. We discuss recent advances in the role of the JAK/STAT pathway in immunotherapies. We stress the importance of fully understanding how JAK/STAT modifies the immune response before implementing clinical trials combining JAK/STAT inhibitors with immunotherapy.
Collapse
Affiliation(s)
- Aiman Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
41
|
Mi Y, Han J, Zhu J, Jin T. Role of the PD-1/PD-L1 Signaling in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Recent Insights and Future Directions. Mol Neurobiol 2021; 58:6249-6271. [PMID: 34480337 PMCID: PMC8639577 DOI: 10.1007/s12035-021-02495-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmunity-related chronic demyelination disease of the central nervous system (CNS), causing young disability. Currently, highly specific immunotherapies for MS are still lacking. Programmed cell death 1 (PD-1) is an immunosuppressive co-stimulatory molecule, which is expressed on activated T lymphocytes, B lymphocytes, natural killer cells, and other immune cells. PD-L1, the ligand of PD-1, is expressed on T lymphocytes, B lymphocytes, dendritic cells, and macrophages. PD-1/PD-L1 delivers negative regulatory signals to immune cells, maintaining immune tolerance and inhibiting autoimmunity. This review comprehensively summarizes current insights into the role of PD-1/PD-L1 signaling in MS and its animal model experimental autoimmune encephalomyelitis (EAE). The potentiality of PD-1/PD-L1 as biomarkers or therapeutic targets for MS will also be discussed.
Collapse
Affiliation(s)
- Yan Mi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Present Address: Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| |
Collapse
|
42
|
Jia Y, Tian Q, Yang K, Liu Y, Liu Y. A Pan-Cancer Analysis of Clinical Prognosis and Immune Infiltration of CKS1B in Human Tumors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5862941. [PMID: 34845438 PMCID: PMC8627364 DOI: 10.1155/2021/5862941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
Although more and more evidence supports CDC28 protein kinase subunit 1B (CKS1B) is involved significantly in the development of human cancers, most of the researches have focused on a single disease, and pan-cancer studies conducted from a holistic perspective of different tumor sources have not been reported yet. Here, for the first time, we investigated the potential oncogenic and prognostic role of CKS1B across 33 tumors based on public databases and further verified it in a small scale by RNA sequencing or quantitative real-time PCR. CKS1B was generally highly expressed in a majority of tumors and had a notable correlation with the prognosis of patients, but its prognostic significance in different tumors was not exactly the same. In addition, CKS1B expression was also closely related to the infiltration of cancer-associated fibroblasts in tumors such as breast invasive carcinoma, kidney chromophobe, lung adenocarcinoma, and tumor-infiltrating lymphocytes in tumors such as glioblastoma multiforme, bladder urothelial carcinoma, and brain lower grade glioma. Moreover, reduced CKS1B methylation was observed in certain tumors, for example, adrenocortical carcinoma. Cell cycle and kinase activity regulation and PI3K-Akt signaling pathway were found to be involved in the functional mechanism of CKS1B. In conclusion, our first pan-cancer analysis of CKS1B contributes to a better overall understanding of CKS1B and may provide a new target for future cancer therapy.
Collapse
Affiliation(s)
- Yan Jia
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Tian
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaitai Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanfeng Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Sanceau J, Gougelet A. Epigenetic mechanisms of liver tumor resistance to immunotherapy. World J Hepatol 2021; 13:979-1002. [PMID: 34630870 PMCID: PMC8473495 DOI: 10.4254/wjh.v13.i9.979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor, which stands fourth in rank of cancer-related deaths worldwide. The incidence of HCC is constantly increasing in correlation with the epidemic in diabetes and obesity, arguing for an urgent need for new treatments for this lethal cancer refractory to conventional treatments. HCC is the paradigm of inflammation-associated cancer, since more than 80% of HCC emerge consecutively to cirrhosis associated with a vast remodeling of liver microenvironment. In the recent decade, immunomodulatory drugs have been developed and have given impressive results in melanoma and later in several other cancers. In the present review, we will discuss the recent advancements concerning the use of immunotherapies in HCC, in particular those targeting immune checkpoints, used alone or in combination with other anti-cancers agents. We will address why these drugs demonstrate unsatisfactory results in a high proportion of liver cancers and the mechanisms of resistance developed by HCC to evade immune response with a focus on the epigenetic-related mechanisms.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France
| |
Collapse
|
44
|
Mechanistic Insights of Anti-Immune Evasion by Nobiletin through Regulating miR-197/STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer (NSCLC) Cells. Int J Mol Sci 2021; 22:ijms22189843. [PMID: 34576006 PMCID: PMC8468939 DOI: 10.3390/ijms22189843] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor immune escape is a common process in the tumorigenesis of non-small cell lung cancer (NSCLC) cells where programmed death ligand-1 (PD-L1) expression, playing a vital role in immunosuppression activity. Additionally, epidermal growth factor receptor (EGFR) phosphorylation activates Janus kinase-2 (JAK2) and signal transduction, thus activating transcription 3 (STAT3) to results in the regulation of PD-L1 expression. Chemotherapy with commercially available drugs against NSCLC has struggled in the prospect of adverse effects. Nobiletin is a natural flavonoid isolated from the citrus peel that exhibits anti-cancer activity. Here, we demonstrated the role of nobiletin in evasion of immunosuppression in NSCLC cells by Western blotting and real-time polymerase chain reaction methods for molecular signaling analysis supported by gene silencing and specific inhibitors. From the results, we found that nobiletin inhibited PD-L1 expression through EGFR/JAK2/STAT3 signaling. We also demonstrated that nobiletin exhibited p53-independent PD-L1 suppression, and that miR-197 regulates the expression of STAT3 and PD-L1, thereby enhancing anti-tumor immunity. Further, we evaluated the combination ability of nobiletin with an anti-PD-1 monoclonal antibody in NSCLC co-culture with peripheral blood mononuclear cells. Similarly, we found that nobiletin assisted the induction of PD-1/PD-L1 blockade, which is a key factor for the immune escape mechanism. Altogether, we propose nobiletin as a modulator of tumor microenvironment for cancer immunotherapy.
Collapse
|
45
|
Li P, Wang H, Tang Y, Sun S, Ma Y, Xu Y, Chen G. Knockdown of LINC00657 inhibits the viability, migration and invasion of pancreatic cancer cells by regulating the miR-520h/CKS1B axis. Exp Ther Med 2021; 22:1142. [PMID: 34504588 DOI: 10.3892/etm.2021.10576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA LINC00657 has a critical role in multiple cancers. The aim of the present study was to investigate the regulatory effect of LINC00657 in pancreatic cancer (PC) and reveal its molecular mechanism of function. The expression levels of LINC00657 and microRNA (miR)-520h were detected by reverse transcription-quantitative PCR in PC tissues and cell lines. MTT, wound healing and Transwell assays were used to detect cell viability, migration and invasion, respectively. Dual-luciferase reporter assay was utilized to examine the relationship between LINC00657 and miR-520h and that between miR-520h and cyclin-dependent kinases regulatory subunit 1 (CKS1B). Western blotting was performed to detect CKS1B expression. The expression levels of LINC00657 and CKS1B were enhanced and miR-520h expression level was reduced in PC tissues and cell lines compared with adjacent normal tissues or HPDE6 cells. LINC00657 knockdown decreased the viability, migration and invasion of PC cells. Additionally, LINC00657 targeted miR-520h and negatively modulated miR-520h expression. Furthermore, miR-520h overexpression inhibited the viability, migration and invasion of PC cells. In addition, miR-520h targeted CKS1B and reversely regulated CKS1B expression. miR-520h inhibition and CKS1B overexpression alleviated the inhibition effect of LINC00657 knockdown on the viability, migration and invasion of PACA-2 PC cells. In conclusion, the results of the present study demonstrated that LINC00657 knockdown repressed the viability, migration and invasion of PC cells via targeting the miR-520h/CKS1B axis, which may offer a future target for PC therapy.
Collapse
Affiliation(s)
- Peng Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Hongsheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Ying Tang
- Department of Nursing, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Shuo Sun
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Yue Ma
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Yansong Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Guangyu Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
46
|
Tian W, Sun Y, Cheng Y, Ma X, Du W, Shi W, Guo Q. Arsenic sulfide reverses cisplatin resistance in non-small cell lung cancer in vitro and in vivo through targeting PD-L1. Thorac Cancer 2021; 12:2551-2563. [PMID: 34469060 PMCID: PMC8487818 DOI: 10.1111/1759-7714.14136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recent studies have found that programmed death ligand 1 (PD-L1) might be involved in chemotherapy resistance in non-small cell lung cancer (NSCLC). Arsenic sulfide (As4 S4 ) has been recognized to have antitumor activities and enhance the cytotoxic effect of chemotherapy drugs. In this study, we aimed to verify the relationship between PD-L1 and cisplatin (DDP) resistance and identify whether As4 S4 could reverse DDP resistance through targeting PD-L1 in NSCLC. METHODS The effect of As4 S4 and DDP on cell proliferation and apoptosis was investigated in NSCLC cell lines. The expression of p53 and PD-L1 proteins was measured by western blotting analysis. The levels of miR-34a-5p, miR-34a-3p and PD-L1 in cells were measured by real-time qPCR analysis. Mouse xenograft models were established by inoculation with A549/DDP (DDP-resistant) cells. RESULTS Depletion of PD-L1 inhibited DDP resistance in A549/DDP and H1299/DDP cells. As4 S4 was capable of sensitizing A549/DDP cells to DDP by enhancing apoptosis. As4 S4 upregulated p53 expression and downregulated PD-L1 expression in A549/DDP cells. As4 S4 increased miR-34a-5p level in A549/DDP cells. Inhibition of p53 by PFT-α partially restored the levels of PD-L1 and miR-34a-5p. Pretreatment with PFT-α suppressed the apoptosis rate induced by cotreatment of As4 S4 and DDP in A549/DDP cells. Cotreatment of DDP and As4 S4 notably reduced the tumor size when compared with DDP treatment alone in vivo. CONCLUSIONS Upregulation of PD-L1 was correlated with DDP resistance in NSCLC cells. Mechanistic analyses indicated that As4 S4 might sensitize NSCLC cells to DDP through targeting p53/miR-34a-5p/PD-L1 axis.
Collapse
Affiliation(s)
- Wei Tian
- Department of Respiratory Medicine Oncology Ward I, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Oncology III, Zibo Central Hospital, Zibo, China
| | - Yinping Sun
- Department of Oncology III, Zibo Central Hospital, Zibo, China
| | - Yuping Cheng
- Department of Oncology III, Zibo Central Hospital, Zibo, China
| | - Xiao Ma
- Department of Internal Medicine, Zhangqiu People's Hospital, Zhangqiu, China
| | - Weina Du
- Department of Critical Medicine, Huantai People's Hospital, Zibo, China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qisen Guo
- Department of Respiratory Medicine Oncology Ward I, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
47
|
Yan XL, Luo QY, Zhou SN, Pan WT, Zhang L, Yang DJ, Qiu MZ. MicroRNA-375 reverses the expression of PD-L1 by inactivating the JAK2/STAT3 signaling pathways in gastric cancer. Clin Res Hepatol Gastroenterol 2021; 45:101574. [PMID: 33272890 DOI: 10.1016/j.clinre.2020.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The mechanism of PD-L1 expression in gastric cancer patients remains unclear. microRNAs (miRs) have been reported to be crucial components of the crosstalk between tumor-immune cells and emerging evidence suggests that microRNA-375 (miR-375) is significantly downregulated in digestive system tumors, but its association with PD-L1 expression in gastric cancer remains to be determined. METHODS The expression level of miR-375 was first investigated in human gastric cancer tissues and cell lines. Its effect on gastric cancer cell proliferation, migration, invasion, and apoptosis were evaluated in vitro via CCK8, colony formation assays, wound healing assays, transwell assays, and flow cytometry. In vivo experiments using immunodeficient BALB/c nude female mice were also performed. Luciferase reporter assays were employed to identify interactions between miR-375 and its target genes. RESULTS Quantitative real-time PCR showed that the expression of miR-375 was negatively correlated with PD-L1 in gastric cancer tissues. The overexpression of miR-375 inhibited gastric cancer cell proliferation, migration, invasion, and the knockdown of miR-375 demonstrated opposite effects, both in vitro and in vivo. Luciferase reporter assays showed that miR-375 could bind to the 3'-UTR regions of JAK2 and an inverse association between miR-375 and JAK2/STAT3/PD-L1 expression in gastric cancer cell lines was also observed. In vivo experiments showed that miR-375-overexpression decreased the growth of xenograft tumors in immunodeficient BALB/c mice. CONCLUSIONS miR-375 negatively regulates PD-L1 expression in gastric cancer via the JAK2/STAT3 signaling pathway and could be a promising novel therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Xiang-Lei Yan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Qiu-Yun Luo
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Su-Na Zhou
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Wen-Tao Pan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Lin Zhang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China; Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Da-Jun Yang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China.
| | - Miao-Zhen Qiu
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China.
| |
Collapse
|
48
|
Kumar S, Sarthi P, Mani I, Ashraf MU, Kang MH, Kumar V, Bae YS. Epitranscriptomic Approach: To Improve the Efficacy of ICB Therapy by Co-Targeting Intracellular Checkpoint CISH. Cells 2021; 10:2250. [PMID: 34571899 PMCID: PMC8466810 DOI: 10.3390/cells10092250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular immunotherapy has recently emerged as a fourth pillar in cancer treatment co-joining surgery, chemotherapy and radiotherapy. Where, the discovery of immune checkpoint blockage or inhibition (ICB/ICI), anti-PD-1/PD-L1 and anti-CTLA4-based, therapy has revolutionized the class of cancer treatment at a different level. However, some cancer patients escape this immune surveillance mechanism and become resistant to ICB-therapy. Therefore, a more advanced or an alternative treatment is required urgently. Despite the functional importance of epitranscriptomics in diverse clinico-biological practices, its role in improving the efficacy of ICB therapeutics has been limited. Consequently, our study encapsulates the evidence, as a possible strategy, to improve the efficacy of ICB-therapy by co-targeting molecular checkpoints especially N6A-modification machineries which can be reformed into RNA modifying drugs (RMD). Here, we have explained the mechanism of individual RNA-modifiers (editor/writer, eraser/remover, and effector/reader) in overcoming the issues associated with high-dose antibody toxicities and drug-resistance. Moreover, we have shed light on the importance of suppressor of cytokine signaling (SOCS/CISH) and microRNAs in improving the efficacy of ICB-therapy, with brief insight on the current monoclonal antibodies undergoing clinical trials or already approved against several solid tumor and metastatic cancers. We anticipate our investigation will encourage researchers and clinicians to further strengthen the efficacy of ICB-therapeutics by considering the importance of epitranscriptomics as a personalized medicine.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Parth Sarthi
- University Department of Botany, M.Sc. Biotechnology, Ranchi University, Ranchi 834008, India;
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India;
| | - Muhammad Umer Ashraf
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Vishal Kumar
- Department of Pharmaceutical Science, Dayananda Sagar University, Bengaluru 560078, India;
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| |
Collapse
|
49
|
Honrubia-Peris B, Garde-Noguera J, García-Sánchez J, Piera-Molons N, Llombart-Cussac A, Fernández-Murga ML. Soluble Biomarkers with Prognostic and Predictive Value in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. Cancers (Basel) 2021; 13:4280. [PMID: 34503087 PMCID: PMC8428366 DOI: 10.3390/cancers13174280] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
Numerous targeted therapies have been evaluated for the treatment of non-small cell lung cancer (NSCLC). To date, however, only a few agents have shown promising results. Recent advances in cancer immunotherapy, most notably immune checkpoint inhibitors (ICI), have transformed the treatment scenario for these patients. Although some patients respond well to ICIs, many patients do not benefit from ICIs, leading to disease progression and/or immune-related adverse events. New biomarkers capable of reliably predicting response to ICIs are urgently needed to improve patient selection. Currently available biomarkers-including programmed death protein 1 (PD-1) and its ligand (PD-L1), and tumor mutational burden (TMB)-have major limitations. At present, no well-validated, reliable biomarkers are available. Ideally, these biomarkers would be obtained through less invasive methods such as plasma determination or liquid biopsy. In the present review, we describe recent advances in the development of novel soluble biomarkers (e.g., circulating immune cells, TMB, circulating tumor cells, circulating tumor DNA, soluble factor PD-L1, tumor necrosis factor, etc.) for patients with NSCLC treated with ICIs. We also describe the potential use of these biomarkers as prognostic indicators of treatment response and toxicity.
Collapse
Affiliation(s)
| | - Javier Garde-Noguera
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria i Biomédica de la Comunidad Valenciana (FISABIO), 46020 Valencia, Spain; (B.H.-P.); (J.G.-S.); (N.P.-M.); (A.L.-C.)
| | | | | | | | | |
Collapse
|
50
|
Sabaawy HE, Ryan BM, Khiabanian H, Pine SR. JAK/STAT of all trades: Linking inflammation with cancer development, tumor progression, and therapy resistance. Carcinogenesis 2021; 42:1411-1419. [PMID: 34415330 DOI: 10.1093/carcin/bgab075] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is at the forefront of carcinogenesis, tumor progression, and resistance to therapy. The JAK/STAT signaling axis is a central pathway that mediates the cellular response to inflammation and contributes to carcinogenesis. The JAK/STAT pathway coordinates intercellular communication between tumor cells and their immune microenvironment, and JAK/STAT activation leads to the expression of a variety of proteins involved in cell proliferation, cell survival, stemness, self-renewal, evasion of immunosurveillance mechanisms, and overall tumor progression. Activation of JAK/STAT signaling also mediates resistance to radiation therapy or cytotoxic agents, and modulates tumor cell responses to molecularly targeted and immune modulating drugs. Despite extensive research focused on understanding its signaling mechanisms and downstream phenotypic and functional consequences in hematological disorders, the importance of JAK/STAT signaling in solid tumor initiation and progression has been underappreciated. We highlight the role of chronic inflammation in cancer, the epidemiological evidence for contribution of JAK/STAT to carcinogenesis, the current cancer prevention measures involving JAK/STAT inhibition, and the impact of JAK/STAT signaling activity on cancer development, progression, and treatment resistance. We also discuss recent therapeutic advances in targeting key factors within the JAK/STAT pathway with single agents, and the use of these agents in combination with other targeted therapies and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|