1
|
Lehrich BM, Delgado ER. Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Organogenesis 2024; 20:2313696. [PMID: 38357804 PMCID: PMC10878025 DOI: 10.1080/15476278.2024.2313696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
3
|
Chakraborty S, Anand S, Bhandari RK. Medaka liver developed Human NAFLD-NASH transcriptional signatures in response to ancestral bisphenol A exposure. RESEARCH SQUARE 2024:rs.3.rs-4585175. [PMID: 39070641 PMCID: PMC11275980 DOI: 10.21203/rs.3.rs-4585175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish that were not directly exposed, but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% were downregulated, and 20% were upregulated. Of all DEGs, 52.31% of DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared the majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.
Collapse
|
4
|
Chakraborty S, Anand S, Bhandari RK. Sex-specific expression of the human NAFLD-NASH transcriptional signatures in the liver of medaka with a history of ancestral bisphenol A exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594843. [PMID: 38826193 PMCID: PMC11142124 DOI: 10.1101/2024.05.19.594843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish who were not directly exposed but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% DEGs were downregulated and 20% DEGs were upregulated. Off all DEGs, 52.31% DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
5
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
6
|
Pan X, Ni S, Hu K. Nanomedicines for reversing immunosuppressive microenvironment of hepatocellular carcinoma. Biomaterials 2024; 306:122481. [PMID: 38286109 DOI: 10.1016/j.biomaterials.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although immunotherapeutic strategies such as immune checkpoint inhibitors (ICIs) have gained promising advances, their limited efficacy and significant toxicity remain great challenges for hepatocellular carcinoma (HCC) immunotherapy. The tumor immunosuppressive microenvironment (TIME) with insufficient T-cell infiltration and low immunogenicity accounts for most HCC patients' poor response to ICIs. Worse still, the current immunotherapeutics without precise delivery may elicit enormous autoimmune side effects and systemic toxicity in the clinic. With a better understanding of the TIME in HCC, nanomedicines have emerged as an efficient strategy to achieve remodeling of the TIME and superadditive antitumor effects via targeted delivery of immunotherapeutics or multimodal synergistic therapy. Based on the typical characteristics of the TIME in HCC, this review summarizes the recent advancements in nanomedicine-based strategies for TIME-reversing HCC treatment. Additionally, perspectives on the awaiting challenges and opportunities of nanomedicines in modulating the TIME of HCC are presented. Acquisition of knowledge of nanomedicine-mediated TIME reversal will provide researchers with a better opportunity for clinical translation of HCC immunotherapy.
Collapse
Affiliation(s)
- Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Zhou XQ, Li YP, Dang SS. Precision targeting in hepatocellular carcinoma: Exploring ligand-receptor mediated nanotherapy. World J Hepatol 2024; 16:164-176. [PMID: 38495282 PMCID: PMC10941735 DOI: 10.4254/wjh.v16.i2.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality. Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages, but it is often ineffective and suffers from problems such as multidrug resistance, rapid drug clearance, nonspecific targeting, high side effects, and low drug accumulation in tumor cells. In response to these limitations, recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC. This review focuses on recent advances in nanoparticle-based targeted drug delivery systems, with special attention to various receptors overexpressed on HCC cells. These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC. We comprehensively summarize the current understanding of these receptors, their role in nanoparticle targeting, and the impact of such targeted therapies on HCC. By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies, more effective and precise treatment of HCC can be achieved.
Collapse
Affiliation(s)
- Xia-Qing Zhou
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
8
|
Ansari S, Mudassir M, Vijayalekshmi B, Chattopadhyay P. Targeting CXCR4-expressing Cancer Cells with Avidin-poly (lactic-co-glycolic acid) Nanoparticle Surface Modified with Biotinylated DV1 Peptide. Int J Appl Basic Med Res 2023; 13:106-112. [PMID: 37614837 PMCID: PMC10443452 DOI: 10.4103/ijabmr.ijabmr_58_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 08/25/2023] Open
Abstract
Background Chemokine receptor CXCR4 is frequently present in cells of various cancers. Hence, targeted therapy using CXCR4 ligands, such as DV1 peptide, on drug-loaded nanoparticles, has the potential to enhance the efficiency of cancer treatment. Aim The present study created a CXCR4-targeting drug delivery system using avidin-poly (lactic-co-glycolic acid) (PLGA) nanoparticle surface tagged with biotinylated DV1 peptide ligand. Materials and Methods A double-emulsion solvent evaporation technique was employed to prepare avidin-PLGA nanoparticles and characterized by transmission electron microscopy (TEM) and dynamic light scattering. Uptake was studied by confocal microscopy after incorporating fluorescein isothiocyanate (FITC)-labeled albumin inside the nanoparticles during their synthesis. Peptide-biotin-avidin-PLGA nanoparticles were tested in vitro on CXCR4-expressing U87MG cells. Photomicroscopy was done by a Nikon A1 Confocal Microscope, and pictures were analyzed by Nikon NIS-Elements BR software. Results Experimental results confirmed the specificity of DV1 peptide-tagged avidin-PLGA nanoparticles for cells expressing CXCR4 receptors. The avidin-PLGA nanoparticles were successfully synthesized and the same was confirmed by tagging them with FITC-labeled biotin. Conclusion Avidin-PLGA nanoparticle surface tagged with biotinylated DV1 peptide ligand has potential clinical application in the treatment of various cancers as targeted therapy for CXCR4-expressing cancer cells.
Collapse
Affiliation(s)
- Shiba Ansari
- Department of Biochemistry, University College of Medical Sciences, Delhi, India
| | - Madeeha Mudassir
- Department of Obstetrics and Gynecology, University College of Medical Sciences and Guru Tegh Bahadur Hospital, Delhi, India
| | - B. Vijayalekshmi
- Division of GI Sciences, Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
9
|
Han M, Liu F, Li X, Zhang H, Pan Y, Liu Y, Zhu H, Liang H, Chen X, Liao Z, Zhang Z, Zhang B. LINC01608 activated by YY1 facilitate hepatocellular carcinoma progression by modulating the EGFR/ERK axis. Liver Int 2023; 43:471-489. [PMID: 36385489 DOI: 10.1111/liv.15479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been demonstrated to associate with a variety of cancers. However, the mechanisms of LncRNAs in hepatocellular carcinoma (HCC) progression are still not fully clarified. METHODS LINC01608 expression level in HCC and adjacent normal tissues was detected by real-time-quantitively PCR (RT-qPCR) in clinical samples and in situ hybridization (ISH) in tissue microarray. Several functional assays were performed to determine the biological effects of LINC01608 in HCC cells in vitro, while subcutaneous xenograft models and lung metastasis models in nude mice and immunohistochemistry (IHC) results showed the role of LINC01608 in HCC progression in vivo. The combination of LINC01608 with miR-875-5p and target genes was elucidated by dual-luciferase report assays, RNA immunoprecipitation (RIP) assays and fluorescence in situ hybridization (FISH) assays. Finally, bioinformatics analysis and chromatin immunoprecipitation (CHIP) were performed to investigate the mechanism of Yin Yang-1 (YY1) regulating LINC01608 transcription. RESULTS LINC01608 was overexpressed in HCC tissues, and high LINC01608 expression predicted poor overall survival (OS) and disease-free survival (DFS) in HCC patients. LINC01608 could promote HCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Furthermore, we demonstrated that LINC01608 could sponge to miR-875-5p and activate the EGFR/ERK pathway. Moreover, we identified transcriptional factor YY1 could bind to the promoter of LINC01608 and induce its transcription. CONCLUSION LINC01608 could serve as a promising prognostic biomarker of HCC. YY1-activated LINC01608 could promote HCC progression by associating with miR-875-5p to induce the EGFR/ERK signalling pathway. This discovery might provide therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| |
Collapse
|
10
|
González-Arriagada WA, García IE, Martínez-Flores R, Morales-Pison S, Coletta RD. Therapeutic Perspectives of HIV-Associated Chemokine Receptor (CCR5 and CXCR4) Antagonists in Carcinomas. Int J Mol Sci 2022; 24:ijms24010478. [PMID: 36613922 PMCID: PMC9820365 DOI: 10.3390/ijms24010478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The interaction between malignant cells and the tumor microenvironment is critical for tumor progression, and the chemokine ligand/receptor axes play a crucial role in this process. The CXCR4/CXCL12 and CCR5/CCL5 axes, both related to HIV, have been associated with the early (epithelial-mesenchymal transition and invasion) and late events (migration and metastasis) of cancer progression. In addition, these axes can also modulate the immune response against tumors. Thus, antagonists against the receptors of these axes have been proposed in cancer therapy. Although preclinical studies have shown promising results, clinical trials are needed to include these drugs in the oncological treatment protocols. New alternatives for these antagonists, such as dual CXCR4/CCR5 antagonists or combined therapy in association with immunotherapy, need to be studied in cancer therapy.
Collapse
Affiliation(s)
- Wilfredo Alejandro González-Arriagada
- Facultad de Odontología, Universidad de Los Andes, Santiago 7620086, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago 7620086, Chile
- Patología Oral y Maxilofacial, Hospital El Carmen Luis Valentín Ferrada, Maipú 9251521, Chile
- Correspondence: ; Tel.: +562-2618-1000
| | - Isaac E. García
- Laboratorio de Fisiología y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - René Martínez-Flores
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar 2531015, Chile
| | - Sebastián Morales-Pison
- Centro de Oncología de Precisión (COP), Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago 7560908, Chile
| | - Ricardo D. Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| |
Collapse
|
11
|
Pisani A, Donno R, Valenti G, Pompa PP, Tirelli N, Bardi G. Chemokine-Decorated Nanoparticles Target Specific Subpopulations of Primary Blood Mononuclear Leukocytes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3560. [PMID: 36296750 PMCID: PMC9609899 DOI: 10.3390/nano12203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Specific cell targeting to deliver nanoparticles can be achieved by tailored modifications of the material surface with chemical moieties. The selection of the cell targets can be optimized by covering the nanoparticle with molecules, the receptor expression of which is restricted to particular cell subsets. Chemokines perform their biological action through 7-TM Gi-protein-coupled receptors differently expressed in all tissues. We decorated the surface of biocompatible polymer nanoparticles with full-length CCL5, an inflammatory chemokine that attracts leukocytes by binding CCR5, which is highly expressed in blood-circulating monocytes. Our observations showed that CCL5 functionalization does not affect the nanoparticle biocompatibility. Notably, CCL5 NPs delivered to PBMCs are selectively internalized by CCR5+ monocytes but not by CCR5- lymphocytes. The efficacy of PBMC subpopulation targeting by chemokine-decorated nanoparticles establishes an easy-to-use functionalization for specific leukocyte delivery.
Collapse
Affiliation(s)
- Anissa Pisani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Giulio Valenti
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
12
|
Nasiri-Ansari N, Androutsakos T, Flessa CM, Kyrou I, Siasos G, Randeva HS, Kassi E, Papavassiliou AG. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells 2022; 11:2511. [PMID: 36010588 PMCID: PMC9407007 DOI: 10.3390/cells11162511] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, ‘Sotiria’ Thoracic Diseases General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
Chen HY, Chan SJ, Liu X, Wei AC, Jian RI, Huang KW, Lang YD, Shih JH, Liao CC, Luan CL, Kao YT, Chiang SY, Hsiao PW, Jou YS, Chen Y, Chen RH. Long noncoding RNA Smyca coactivates TGF-β/Smad and Myc pathways to drive tumor progression. J Hematol Oncol 2022; 15:85. [PMID: 35794621 PMCID: PMC9258208 DOI: 10.1186/s13045-022-01306-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background Metastasis and chemoresistance are major culprits of cancer mortality, but factors contributing to these processes are incompletely understood. Methods Bioinformatics methods were used to identify the relations of Smyca expression to clinicopathological features of human cancers. RNA-sequencing analysis was used to reveal Smyca-regulated transcriptome. RNA pull-down and RNA immunoprecipitation were used to examine the binding of Smyca to Smad3/4 and c-Myc/Max. Chromatin immunoprecipitation and chromatin isolation by RNA purification were used to determine the binding of transcription factors and Smyca to various gene loci, respectively. Real-time RT-PCR and luciferase assay were used to examine gene expression levels and promoter activities, respectively. Xenograft mouse models were performed to evaluate the effects of Smyca on metastasis and chemoresistance. Nanoparticle-assisted gapmer antisense oligonucleotides delivery was used to target Smyca in vivo. Results We identify lncRNA Smyca for its association with poor prognosis of many cancer types. Smyca potentiates metabolic reprogramming, migration, invasion, cancer stemness, metastasis and chemoresistance. Mechanistically, Smyca enhances TGF-β/Smad signaling by acting as a scaffold for promoting Smad3/Smad4 association and further serves as a Smad target to amplify/prolong TGF-β signaling. Additionally, Smyca potentiates c-Myc-mediated transcription by enhancing the recruitment of c-Myc/Max complex to a set of target promoters and c-Myc binding to TRRAP. Through potentiating TGF-β and c-Myc pathways, Smyca synergizes the Warburg effect elicited by both pathways but evades the anti-proliferative effect of TGF-β. Targeting Smyca prevents metastasis and overcomes chemoresistance.
Conclusions This study uncovers a lncRNA that coordinates tumor-relevant pathways to orchestra a pro-tumor program and establishes the clinical values of Smyca in cancer prognosis and therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01306-3.
Collapse
|
14
|
Huang Y, Wang T, Yang J, Wu X, Fan W, Chen J. Current Strategies for the Treatment of Hepatocellular Carcinoma by Modulating the Tumor Microenvironment via Nano-Delivery Systems: A Review. Int J Nanomedicine 2022; 17:2335-2352. [PMID: 35619893 PMCID: PMC9128750 DOI: 10.2147/ijn.s363456] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer remains a global health challenge with a projected incidence of over one million cases by 2025. Hepatocellular carcinoma (HCC) is a common primary liver cancer, accounting for about 90% of all liver cancer cases. The tumor microenvironment (TME) is the internal and external environment for tumor development, which plays an important role in tumorigenesis, immune escape and treatment resistance. Knowing that TME is a unique setting for HCC tumorigenesis, exploration of strategies to modulate TME has attracted increasing attention. Among them, the use of nano-delivery systems to deliver therapeutic agents to regulate TME components has shown great potential. TME-modulating nanoparticles have the advantages of protecting therapeutic agents from degradation, enhancing the ability of targeting HCC and reducing systemic toxicity. In this article, we summarize the TME components associated with HCC, including cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), endothelial cells and immune cells, discuss their impact on the HCC progression, and highlight recent studies on nano-delivery systems that modulate these components. Finally, we also discuss opportunities and challenges in this field.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Tiansi Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China.,Shanghai Wei Er Lab, Shanghai, People's Republic of China
| | - Wei Fan
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| |
Collapse
|
15
|
Sartorius K, Antwi SO, Chuturgoon A, Roberts LR, Kramvis A. RNA Therapeutic Options to Manage Aberrant Signaling Pathways in Hepatocellular Carcinoma: Dream or Reality? Front Oncol 2022; 12:891812. [PMID: 35600358 PMCID: PMC9115561 DOI: 10.3389/fonc.2022.891812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the early promise of RNA therapeutics as a magic bullet to modulate aberrant signaling in cancer, this field remains a work-in-progress. Nevertheless, RNA therapeutics is now a reality for the treatment of viral diseases (COVID-19) and offers great promise for cancer. This review paper specifically investigates RNAi as a therapeutic option for HCC and discusses a range of RNAi technology including anti-sense oligonucleotides (ASOs), Aptamers, small interfering RNA (siRNA), ribozymes, riboswitches and CRISPR/Cas9 technology. The use of these RNAi based interventions is specifically outlined in three primary strategies, namely, repressing angiogenesis, the suppression of cell proliferation and the promotion of apoptosis. We also discuss some of the inherent chemical and delivery problems, as well as targeting issues and immunogenic reaction to RNAi interventions.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa.,The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Department of Surgery, KZN Kwazulu-Natal (UKZN) Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Samuel O Antwi
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Lewis R Roberts
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Zhang C, Hang Y, Tang W, Sil D, Jensen-Smith HC, Bennett RG, McVicker BL, Oupický D. Dually Active Polycation/miRNA Nanoparticles for the Treatment of Fibrosis in Alcohol-Associated Liver Disease. Pharmaceutics 2022; 14:pharmaceutics14030669. [PMID: 35336043 PMCID: PMC8949580 DOI: 10.3390/pharmaceutics14030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Alcohol-associated liver disease (AALD) is a major cause of liver disorders worldwide. Current treatment options are limited, especially for AALD-associated fibrosis. Promising approaches include RNA interference for miR-155 overexpression in Kupffer cells (KCs), as well as the use of CXCR4 antagonists that inhibit the activation of hepatic stellate cells (HSCs) through the CXCL12/CXCR4 axis. The development of dual-functioning nanoparticles for the effective delivery of antifibrotic RNA together with a CXCR4 inhibitor thus promises to improve the treatment of AALD fibrosis. In this study, cholesterol-modified polymeric CXCR4 inhibitor (Chol-PCX) was synthesized and used to encapsulate anti-miR-155 or non-coding (NC) miRNA in the form of Chol-PCX/miRNA nanoparticles. The results indicate that the nanoparticles induce a significant miR-155 silencing effect both in vitro and in vivo. Treatment with the Chol-PCX/anti-miR-155 particles in a model of moderate alcohol consumption with secondary liver insult resulted in a significant reduction in aminotransferase enzymes as well as collagen content in the liver parenchyma. Overall, our data support the use of Chol-PCX as a carrier for anti-miR-155 for the combined therapeutic inhibition of CXCR4 and miR-155 expression as a way to improve fibrotic damage in the liver.
Collapse
Affiliation(s)
- Chuhan Zhang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Heather C. Jensen-Smith
- Eppley Institute for Cancer Research & Fred and Pamela Buffer Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Robert G. Bennett
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.G.B.); (B.L.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.G.B.); (B.L.M.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
- Correspondence:
| |
Collapse
|
17
|
Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021; 14:41. [PMID: 35056937 PMCID: PMC8779722 DOI: 10.3390/pharmaceutics14010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and is associated with a dismal median survival of 2-9 months. The fundamental limitations and ineffectiveness of current HCC treatments have led to the development of a vast range of nanotechnologies with the goal of improving the safety and efficacy of treatment for HCC. Although remarkable success has been achieved in nanomedicine research, there are unique considerations such as molecular heterogeneity and concomitant liver dysfunction that complicate the translation of nanotheranostics in HCC. This review highlights the progress, challenges, and targeting opportunities in HCC nanomedicine based on the growing literature in recent years.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
18
|
Macrophages M1-Related Prognostic Signature in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:6347592. [PMID: 34745260 PMCID: PMC8486543 DOI: 10.1155/2021/6347592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023]
Abstract
A large number of studies have found that macrophages M1 play an important role in the occurrence and development of tumors. The aim of our study is to explore the causes of differential infiltration of macrophages M1 in hepatocellular carcinoma from the perspective of transcriptome and establish a prognostic model of hepatocellular carcinoma. We downloaded gene expression and clinical data from the public database, estimated the content of macrophages M1 in different samples with R software, and found the different genes between high- and low-infiltration groups. Using differentially expressed genes, we constructed a model composed of 7 genes. The risk score of the model has a good ability to predict the prognosis, has a positive correlation with immune checkpoints, and is closely related to other immune cells and immune function. Our model shows good prognostic function and has wide application value.
Collapse
|
19
|
Cao S, Liu M, Sehrawat TS, Shah VH. Regulation and functional roles of chemokines in liver diseases. Nat Rev Gastroenterol Hepatol 2021; 18:630-647. [PMID: 33976393 PMCID: PMC9036964 DOI: 10.1038/s41575-021-00444-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/03/2023]
Abstract
Inflammation is a major contributor to the pathogenesis of almost all liver diseases. Low-molecular-weight proteins called chemokines are the main drivers of liver infiltration by immune cells such as macrophages, neutrophils and others during an inflammatory response. During the past 25 years, tremendous progress has been made in understanding the regulation and functions of chemokines in the liver. This Review summarizes three main aspects of the latest advances in the study of chemokine function in liver diseases. First, we provide an overview of chemokine biology, with a particular focus on the genetic and epigenetic regulation of chemokine transcription as well as on the cell type-specific production of chemokines by liver cells and liver-associated immune cells. Second, we highlight the functional roles of chemokines in liver homeostasis and their involvement in progression to disease in both human and animal models. Third, we discuss the therapeutic opportunities targeting chemokine production and signalling in the treatment of liver diseases, such as alcohol-associated liver disease and nonalcoholic steatohepatitis, including the relevant preclinical studies and ongoing clinical trials.
Collapse
|
20
|
Wang S, Gao S, Li Y, Qian X, Luan J, Lv X. Emerging Importance of Chemokine Receptor CXCR4 and Its Ligand in Liver Disease. Front Cell Dev Biol 2021; 9:716842. [PMID: 34386499 PMCID: PMC8353181 DOI: 10.3389/fcell.2021.716842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily, which together with chemokine ligands form chemokine networks to regulate various cellular functions, immune and physiological processes. These receptors are closely related to cell movement and thus play a vital role in several physiological and pathological processes that require regulation of cell migration. CXCR4, one of the most intensively studied chemokine receptors, is involved in many functions in addition to immune cells recruitment and plays a pivotal role in the pathogenesis of liver disease. Aberrant CXCR4 expression pattern is related to the migration and movement of liver specific cells in liver disease through its cross-talk with a variety of significant cell signaling pathways. An in-depth understanding of CXCR4-mediated signaling pathway and its role in liver disease is critical to identifying potential therapeutic strategies. Current therapeutic strategies for liver disease mainly focus on regulating the key functions of specific cells in the liver, in which the CXCR4 pathway plays a crucial role. Multiple challenges remain to be overcome in order to more effectively target CXCR4 pathway and identify novel combination therapies with existing strategies. This review emphasizes the role of CXCR4 and its important cell signaling pathways in the pathogenesis of liver disease and summarizes the targeted therapeutic studies conducted to date.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Granito A, Marinelli S, Forgione A, Renzulli M, Benevento F, Piscaglia F, Tovoli F. Regorafenib Combined with Other Systemic Therapies: Exploring Promising Therapeutic Combinations in HCC. J Hepatocell Carcinoma 2021; 8:477-492. [PMID: 34079777 PMCID: PMC8165211 DOI: 10.2147/jhc.s251729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Regorafenib was the first drug to demonstrate a survival benefit as a second-line agent after sorafenib failure in patients with unresectable hepatocellular carcinoma (HCC). Recent studies have shown that its mechanism of action is not only limited to its very broad spectrum of inhibition of angiogenesis, tumor proliferation, spread, and metastasis, but also to its immunomodulatory properties that have favorable effects on the very intricate role that the tumor microenvironment plays in carcinogenesis and tumor growth. In this review, we discuss rationale and evidence supporting regorafenib efficacy in HCC and that led to its approval as a second-line treatment, after sorafenib failure. We also discuss the evidence from clinical practice studies that confirm the results previously achieved in clinical trials. Finally, we analyze the potential role of regorafenib in emerging combined treatment approach with immunotherapy strategies using immune checkpoint blockade and its potential extension to patient categories not included in the registrative study.
Collapse
Affiliation(s)
- Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sara Marinelli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonella Forgione
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Renzulli
- Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Benevento
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Li YL, Zhu XM, Liang H, Orvig C, Chen ZF. Recent Advances in Asialoglycoprotein Receptor and Glycyrrhetinic Acid Receptor-Mediated and/or pH-Responsive Hepatocellular Carcinoma- Targeted Drug Delivery. Curr Med Chem 2021; 28:1508-1534. [PMID: 32368967 DOI: 10.2174/0929867327666200505085756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/01/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) seriously affects human health, especially, it easily develops multi-drug resistance (MDR) which results in treatment failure. There is an urgent need to develop highly effective and low-toxicity therapeutic agents to treat HCC and to overcome its MDR. Targeted drug delivery systems (DDS) for cancer therapy, including nanoparticles, lipids, micelles and liposomes, have been studied for decades. Recently, more attention has been paid to multifunctional DDS containing various ligands such as polymer moieties, targeting moieties, and acid-labile linkages. The polymer moieties such as poly(ethylene glycol) (PEG), chitosan (CTS), hyaluronic acid, pullulan, poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO) protect DDS from degradation. Asialoglycoprotein receptor (ASGPR) and glycyrrhetinic acid receptor (GAR) are most often used as the targeting moieties, which are overexpressed on hepatocytes. Acid-labile linkage, catering for the pH difference between tumor cells and normal tissue, has been utilized to release drugs at tumor tissue. OBJECTIVES This review provides a summary of the recent progress in ASGPR and GAR-mediated and/or pH-responsive HCC-targeted drug delivery. CONCLUSION The multifunctional DDS may prolong systemic circulation, continuously release drugs, increase the accumulation of drugs at the targeted site, enhance the anticancer effect, and reduce side effects both in vitro and in vivo. But it is rarely used to investigate MDR of HCC; therefore, it needs to be further studied before going into clinical trials.
Collapse
Affiliation(s)
- Yu-Lan Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Xiao-Min Zhu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Chris Orvig
- Department of Chemistry, Faculty of Science, The University of British Columbia, 2036 Main Mall Vancouver, British Columbia V6T 1Z1, Canada
| | - Zhen-Feng Chen
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| |
Collapse
|
23
|
Peng W, Cheng S, Bao Z, Wang Y, Zhou W, Wang J, Yang Q, Chen C, Wang W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomed Pharmacother 2021; 137:111342. [DOI: 10.1016/j.biopha.2021.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
|
24
|
Kudo M. Sequential Therapy for Hepatocellular Carcinoma after Failure of Atezolizumab plus Bevacizumab Combination Therapy. Liver Cancer 2021; 10:85-93. [PMID: 33977086 PMCID: PMC8077462 DOI: 10.1159/000514312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/08/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Masatoshi Kudo
- *Masatoshi Kudo, Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka 589-8511 (Japan),
| |
Collapse
|
25
|
Granito A, Forgione A, Marinelli S, Renzulli M, Ielasi L, Sansone V, Benevento F, Piscaglia F, Tovoli F. Experience with regorafenib in the treatment of hepatocellular carcinoma. Therap Adv Gastroenterol 2021; 14:17562848211016959. [PMID: 34104211 PMCID: PMC8165525 DOI: 10.1177/17562848211016959] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Regorafenib is a diphenylurea oral multikinase inhibitor, structurally comparable to sorafenib, which targets a variety of kinases implicated in angiogenic and tumor growth-promoting pathways. Regorafenib was the first agent to positively show significant survival advantage as a second-line therapy in patients with unresectable hepatocellular carcinoma (HCC) who had previously failed first-line treatment with sorafenib. Recent evidence has shown that its antitumor efficacy is due to a comprehensive spectrum of tumor neo-angiogenesis and proliferation inhibition and immunomodulatory effects on the tumor microenvironment, which plays a crucial role in tumor development. This review addresses the rationale and supporting evidence for regorafenib's efficacy in HCC that led to regorafenib's approval as a second-line therapy. In addition, we review proof from clinical practice studies that validate the RESORCE trial results. We discuss regorafenib's potential role in the newly emerging therapeutic strategy based on combination with immune checkpoint blockade and its possible extensibility to patient categories not enrolled in the registrative study.
Collapse
Affiliation(s)
| | - Antonella Forgione
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Sara Marinelli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Renzulli
- Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Ielasi
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Vito Sansone
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Francesca Benevento
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| |
Collapse
|
26
|
Mroweh M, Decaens T, Marche PN, Macek Jilkova Z, Clément F. Modulating the Crosstalk between the Tumor and Its Microenvironment Using RNA Interference: A Treatment Strategy for Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:E5250. [PMID: 32722054 PMCID: PMC7432232 DOI: 10.3390/ijms21155250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with one of the highest mortality rates among solid cancers. It develops almost exclusively in the background of chronic liver inflammation, which can be caused by viral hepatitis, chronic alcohol consumption or an unhealthy diet. Chronic inflammation deregulates the innate and adaptive immune responses that contribute to the proliferation, survival and migration of tumor cells. The continuous communication between the tumor and its microenvironment components serves as the overriding force of the tumor against the body's defenses. The importance of this crosstalk between the tumor microenvironment and immune cells in the process of hepatocarcinogenesis has been shown, and therapeutic strategies modulating this communication have improved the outcomes of patients with liver cancer. To target this communication, an RNA interference (RNAi)-based approach can be used, an innovative and promising strategy that can disrupt the crosstalk at the transcriptomic level. Moreover, RNAi offers the advantage of specificity in comparison to the treatments currently used for HCC in clinics. In this review, we will provide the recent data pertaining to the modulation of a tumor and its microenvironment by using RNAi and its potential for therapeutic intervention in HCC.
Collapse
Affiliation(s)
- Mariam Mroweh
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath Beirut 6573-14, Lebanon
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Service d’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Patrice N Marche
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
| | - Zuzana Macek Jilkova
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Service d’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Flora Clément
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
27
|
Cheng AL, Hsu C, Chan SL, Choo SP, Kudo M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol 2020; 72:307-319. [PMID: 31954494 DOI: 10.1016/j.jhep.2019.09.025] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/09/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy targeting anti-programmed cell death-1 (anti-PD-1) or its ligand (anti-PD-L1) is the backbone of numerous combination regimens aimed at improving the objective response and survival of patients with hepatocellular carcinoma (HCC). Clinical trials of immuno-oncology regimens in other cancer types have shed light on issues of study design, including how to choose candidate regimens based on early-phase trial results, statistical considerations in trials with multiple primary endpoints, and the importance of predictive biomarkers. In this review, the updated data from early-phase trials of combination immunotherapy for HCC are summarised. Since the most extensively tested combination regimens for advanced HCC comprise anti-PD-1/anti-PD-L1 agents plus antiangiogenic agents, the relative benefit and antitumor mechanism of antiangiogenic multikinase inhibitors versus specific VEGF/VEGFR inhibitors are discussed. Other critical issues in the development of combination immunotherapy, including optimal management of immune-related adverse events and the value of ICI therapy in combination with locoregional treatment for HCC, are also explored.
Collapse
Affiliation(s)
- Ann-Lii Cheng
- National Taiwan University Cancer Center, Taipei, Taiwan; Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chiun Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan; Center of Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Institute of Digestive Disease, The Chinese University of Hong Kong, China
| | | | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
28
|
Abstract
The tumor microenvironment (TME) is a complex ecosystem, including blood vessels,
immune cells, fibroblasts, extracellular matrix, cytokines, hormones, and so on.
The TME differs from the normal tissue environment (NTE) in many aspects, such
as tissue architecture, chronic inflammation, level of oxygen and pH,
nutritional state of the cells, as well as tissue firmness. The NTE can inhibit
the growth of cancer at the early tumorigenesis phase, whereas the TME promotes
the growth of cancer in general, although it may have some anticancer effects.
In particular, the TME plays a crucial role in the generation and maintenance of
cancer stem cells, which lie at the root of cancer growth. Therefore,
normalization of the TME to the NTE may inhibit cancer growth or improve cancer
therapeutic efficiency. This review focuses on the recent emerging approaches
for this normalization and the action mechanisms.
Collapse
Affiliation(s)
- Jie Zheng
- 1 Southeast University, Nanjing, China
| | - Peng Gao
- 2 Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
29
|
Abstract
As basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures. In this chapter, we define the approaches that have been adopted in developing better therapeutics directed against the specific parts of the receptor proteins, such as the extracellular and the intracellular domains, including the ligands and auxiliary proteins that bind them. Finally, we also briefly outline how GPCR-derived signaling transduction pathways hold great potential as additional targets.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
30
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
31
|
van Tienderen GS, Groot Koerkamp B, IJzermans JNM, van der Laan LJW, Verstegen MMA. Recreating Tumour Complexity in a Dish: Organoid Models to Study Liver Cancer Cells and their Extracellular Environment. Cancers (Basel) 2019; 11:E1706. [PMID: 31683901 PMCID: PMC6896153 DOI: 10.3390/cancers11111706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer, consisting predominantly of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), remains one of the most lethal malignancies worldwide. This high malignancy is related to the complex and dynamic interactions between tumour cells, stromal cells and the extracellular environment. Novel in vitro models that can recapitulate the tumour are essential in increasing our understanding of liver cancer. Herein, primary liver cancer-derived organoids have opened up new avenues due to their patient-specificity, self-organizing ability and potential recapitulation of many of the tumour properties. Organoids are solely of epithelial origin, but incorporation into co-culture models can enable the investigation of the cellular component of the tumour microenvironment. However, the extracellular component also plays a vital role in cancer progression and representation is lacking within current in vitro models. In this review, organoid technology is discussed in the context of liver cancer models through comparisons to other cell culture systems. In addition, the role of the tumour extracellular environment in primary liver cancer will be highlighted with an emphasis on its importance in in vitro modelling. Converging novel organoid-based models with models incorporating the native tumour microenvironment could lead to experimental models that can better recapitulate liver tumours in vivo.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Bartneck M, Wang J. Therapeutic Targeting of Neutrophil Granulocytes in Inflammatory Liver Disease. Front Immunol 2019; 10:2257. [PMID: 31616430 PMCID: PMC6764082 DOI: 10.3389/fimmu.2019.02257] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophil granulocytes are the most numerous type of leukocyte in humans bearing an enormous, yet largely unexplored therapeutic potential. Scientists have very recently increased their efforts to study and understand these cells which contribute to various types of inflammatory diseases and cancer. The mechanisms that regulate neutrophil recruitment to inflamed tissues and neutrophil cytotoxic activities against host tissues and pathogens require more attention. The reactive oxygen species (ROS) are a popular source of cellular stress and organ injury, and are critically expressed by neutrophils. By combating pathogens using molecular combat factors such as neutrophil extracellular traps (NETs), these are immobilized and killed i.e., by ROS. NETs and ROS are essential for the immune defense, but upon excessive activation, may also harm healthy tissue. Thus, exploring new routes for modulating their migration and activation is highly desired for creating novel anti-inflammatory treatment options. Leukocyte transmigration represents a key process for inflammatory cell infiltration to injury sites. In this review, we briefly summarize the differentiation and roles of neutrophils, with a spotlight on intravital imaging. We further discuss the potential of nanomedicines, i.e., selectin mimetics to target cell migration and influence liver disease outcome in animal models. Novel perspectives further arise from formulations of the wide array of options of small non-coding RNA such as small interfering RNA (siRNA) and micro-RNA (miR) which exhibit enzymatic functions: while siRNA binds and degrades a single mRNA based on full complementarity of binding, miR can up and down-regulate multiple targets in gene transcription and translation, mediated by partial complementarity of binding. Notably, miR is known to regulate at least 60% of the protein-coding genes and thus includes a potent strategy for a large number of targets in neutrophils. Nanomedicines can combine properties of different drugs in a single formulation, i.e., combining surface functionalization with ligands and drug delivery. Inevitably, nanomedicines accumulate in other phagocytes, a fact that should be controlled for every novel formulation to restrain activation of macrophages or modifications of the immunological synapse. Controlled drug release enabled by nanotechnological delivery systems may advance the options of modulating neutrophil activation and migration.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, Tang W. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer 2019; 18:130. [PMID: 31464625 PMCID: PMC6714090 DOI: 10.1186/s12943-019-1047-6] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Incidence of hepatocellular carcinoma (HCC) is on the rise due to the prevalence of chronic hepatitis and cirrhosis. Although there are surgical and chemotherapy treatment avenues the mortality rate of HCC remains high. Immunotherapy is currently the new frontier of cancer treatment and the immunobiology of HCC is emerging as an area for further exploration. The tumor microenvironment coexists and interacts with various immune cells to sustain the growth of HCC. Thus, immunosuppressive cells play an important role in the anti-tumor immune response. This review will discuss the current concepts of immunosuppressive cells, including tumor-associated macrophages, marrow-derived suppressor cells, tumor-associated neutrophils, cancer-associated fibroblasts, and regulatory T cell interactions to actively promote tumorigenesis. It further elaborates on current treatment modalities and future areas of exploration.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Betty Zhang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. .,Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
| | - Ziyi Chen
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Samie HAA, Saeed M, Faisal SM, Kausar MA, Kamal MA. Recent Findings on Nanotechnology-based Therapeutic Strategies Against Hepatocellular Carcinoma. Curr Drug Metab 2019; 20:283-291. [DOI: 10.2174/1389200220666190308134351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/14/2018] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Background:
Nanotechnology-based therapies are emerging as a promising new anticancer approach.
Early clinical studies suggest that nanoparticle-based therapeutics can show enhanced efficacy while reducing side
effects minimal, owing to targeted delivery and active intracellular uptake.
Methods:
To overcome the problems of gene and drug delivery, nanotechnology based delivery system gained interest
in the last two decades. Encouraging results from Nano formulation based drug delivery systems revealed that
these emerging restoratives can efficiently lead to more effective, targeted, selective and efficacious delivery of chemotherapeutic
agents to the affected target cells.
Results:
Nanotechnology not only inhibits targeted gene products in patients with cancer, but also taught us valuable
lessons regarding appropriate dosages and route of administrations. Besides, nanotechnology based therapeutics
holds remarkable potential as an effective drug delivery system. We critically highlight the recent findings on
nanotechnology mediated therapeutics strategies to combat hepatocellular carcinoma and discuss how nanotechnology
platform can have enhanced anticancer effects compared with the parent therapeutic agents they contain.
Conclusion:
In this review, we discussed the key challenges, recent findings and future perspective in the development
of effective nanotechnology-based cancer therapeutics. The emphasis here is focused on nanotechnology-based
therapies that are likely to affect clinical investigations and their implications for advancing the treatment of patients
with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hany A. Abdel Samie
- Department of Zoology, Faculty of Science, Menoufia University, Al Minufya, Egypt
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Saudi Arabia
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
35
|
Zheng N, Liu W, Li B, Nie H, Liu J, Cheng Y, Wang J, Dong H, Jia L. Co-delivery of sorafenib and metapristone encapsulated by CXCR4-targeted PLGA-PEG nanoparticles overcomes hepatocellular carcinoma resistance to sorafenib. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:232. [PMID: 31151472 PMCID: PMC6544999 DOI: 10.1186/s13046-019-1216-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
Background Sorafenib is approved as a standard therapy for advanced hepatocellular carcinoma (HCC), but its clinical application is limited due to moderate therapeutic efficacy and high incidence of acquired resistance resulted from elevated levels of SDF-1/CXCR4 axis induced by prolonged sorafenib treatment. We previously demonstrated metapristone (RU486 metabolite) as a cancer metastatic chemopreventive agent targeting SDF-1/CXCR4 axis. Therefore, we hypothesized that combining sorafenib with metapristone could synergistically suppress cell proliferation, enhance anti-cancer activity and repress potential drug resistance. Methods Changes in cellular CXCR4 expression by metapristone were analyzed by RT-PCR and western blotting. Effect of combining sorafenib with metapristone on cell viability was examined by MTT assay; combination index value was calculated to evaluate the synergistic effect of combined therapy. To overcome poor pharmacokinetics and reduce off-target toxicity, CXCR4-targeted nanoparticles (NPs) were developed to co-deliver sorafenib and metapristone into CXCR4-expressing HCC in vitro and in vivo; cell proliferation, colony formation and apoptosis assays were conducted; nude mice bearing HCC xenograft were used to examine effects of this therapeutic approach on HCC progression. Results Here we showed metapristone significantly reduced CXCR4 expression in HCC. Combinatory chemotherapy of sorafenib with metapristone synergistically suppressed HCC proliferation and resistance. CXCR4-targeted PEGylated poly (lactic-co-glycolic acid) NPs conjugated with LFC131 (a peptide inhibitor of CXCR4), could deliver more sorafenib and metapristone into HCC via specific recognition and binding with transmembrane CXCR4, and resulted in the enhanced cytotoxicity, colony inhibition and apoptosis by regulating more Akt/ERK/p38 MAPK/caspase signaling pathways. Co-delivery of sorafenib with metapristone by the LFC131-conjugated NPs showed prolonged circulation and target accumulation at tumor sites, and thus suppressed tumor growth in a tumor xenograft model. Conclusions In conclusion, co-delivery of sorafenib and metapristone via the CXCR4-targeted NPs displays a synergistic therapy against HCC. Our results suggest combinational treatment of chemotherapeutics offer an effective strategy for enhancing the therapeutic efficacy on carcinoma, and highlight the potential application of ligand-modified tumor-targeting nanocarriers in delivering drugs as a promising cancer therapeutic approach. Electronic supplementary material The online version of this article (10.1186/s13046-019-1216-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ning Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China.,Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Weiqun Liu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China.,Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Bifei Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China.,Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Huifang Nie
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China
| | - Yunlong Cheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China
| | - Jichuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China. .,Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
36
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
37
|
Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. NANO LETTERS 2018; 18:3814-3822. [PMID: 29694050 DOI: 10.1021/acs.nanolett.8b01101] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although mRNA and siRNA have significant therapeutic potential, their simultaneous delivery has not been previously explored. To facilitate the treatment of diseases associated with aberrant gene upregulation and downregulation, we sought to co-formulate siRNA and mRNA in a single lipidoid nanoparticle (LNP) formulation. We accommodated the distinct molecular characteristics of mRNA and siRNA in a formulation consisting of an ionizable and biodegradable amine-containing lipidoid, cholesterol, DSPC, DOPE, and PEG-lipid. Surprisingly, the co-formulation of siRNA and mRNA in the same LNP enhanced the efficacy of both drugs in vitro and in vivo. Compared to LNPs encapsulating siRNA only, co-formulated LNPs improved Factor VII gene silencing in mice from 44 to 87% at an siRNA dose of 0.03 mg/kg. Co-formulation also improved mRNA delivery, as a 0.5 mg/kg dose of mRNA co-formulated with siRNA induced three times the luciferase protein expression compared to when siRNA was not included. As not all gene therapy applications require both RNA drugs, we sought to extend the benefit of co-formulated LNPs to formulations encapsulating only a single type of RNA. We accomplished this by substituting the "helper" RNA with a negatively charged polymer, polystyrenesulfonate (PSS). LNPs containing PSS mediated the same level of protein silencing or expression as standard LNPs using 2-3-fold less RNA. For example, LNPs formulated with and without PSS induced 50% Factor VII silencing at siRNA doses of 0.01 and 0.03 mg/kg, respectively. Together, these studies demonstrate potent co-delivery of siRNA and mRNA and show that inclusion of a negatively charged "helper polymer" enhances the efficacy of LNP delivery systems.
Collapse
|
38
|
Peng WT, Sun WY, Li XR, Sun JC, Du JJ, Wei W. Emerging Roles of G Protein-Coupled Receptors in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19051366. [PMID: 29734668 PMCID: PMC5983678 DOI: 10.3390/ijms19051366] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Among a great variety of cell surface receptors, the largest superfamily is G protein-coupled receptors (GPCRs), also known as seven-transmembrane domain receptors. GPCRs can modulate diverse signal-transduction pathways through G protein-dependent or independent pathways which involve β-arrestins, G protein receptor kinases (GRKs), ion channels, or Src kinases under physiological and pathological conditions. Recent studies have revealed the crucial role of GPCRs in the tumorigenesis and the development of cancer metastasis. We will sum up the functions of GPCRs—particularly those coupled to chemokines, prostaglandin, lysophosphatidic acid, endothelin, catecholamine, and angiotensin—in the proliferation, invasion, metastasis, and angiogenesis of hepatoma cells and the development of hepatocellular carcinoma (HCC) in this review. We also highlight the potential avenues of GPCR-based therapeutics for HCC.
Collapse
Affiliation(s)
- Wen-Ting Peng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Xin-Ran Li
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Jia-Chang Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Jia-Jia Du
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
39
|
Xie Y, Wang Y, Li J, Hang Y, Oupický D. Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1528. [PMID: 29700990 DOI: 10.1002/wnan.1528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/10/2023]
Abstract
Chemokines and chemokine receptors play key roles in cancer progression and metastasis. Although multiple chemokines and chemokine receptors have been investigated, inhibition of CXCR4 emerged as one of the most promising approaches in combination cancer therapy, especially when focused on the metastatic disease. Small RNA molecules, such as small interfering RNA (siRNA) and microRNA (miRNA), represent new class of therapeutics for cancer treatment through RNA interference-mediated gene silencing. However, the clinical applicability of siRNA and miRNA is severely limited by the lack of effective delivery systems. There is a significant therapeutic potential for CXCR4-targeted nanomedicines in combination with the delivery of siRNA and miRNA in cancer. Recently developed CXCR4-targeted polymeric drugs and nanomedicines, including cyclam- and chloroquine-based polymeric CXCR4 antagonists are introduced here and their ability to deliver functional siRNA and miRNA is discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yazhe Wang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jing Li
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yu Hang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - David Oupický
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
40
|
Hameed S, Bhattarai P, Dai Z. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. SCIENCE CHINA-LIFE SCIENCES 2018; 61:380-391. [PMID: 29607461 DOI: 10.1007/s11427-017-9256-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022]
Abstract
Tumor microenvironment (TME) comprising cellular and non-cellular components is a major source of cancer hallmarks. Notably, angiogenesis responsible for normal physiological remodeling process can otherwise harness vessel abnormalities during tumorigenesis eliciting severe therapeutic inefficiency. Currently, FDA approved antiangiogenic drugs have only shown modest clinical success owing to tumor hypoxia, antiangiogenic therapeutic resistance, and limited knowledge in understanding TME. In order to overcome these limitations, targeting angiogenesis combined with immunosuppressive TME could offer potential therapeutic opportunities. Indeed, these therapeutic approaches can be further revisited with the advent of nanotechnology that can target the key cellular components of TME and tumor cells more precisely. Synergetic targeting without eliciting systemic toxicity achieved by integration of antiangiogenic and immunotherapy in a single nanoplatform is vital for therapeutic success. In this review, we will discuss the most promising nanotechnological advancements oriented to modulate the immunosuppressive TME in association with antiangiogenic therapy that has gained immense popularity in cancer treatment.
Collapse
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
41
|
Yang Z, Duan J, Wang J, Liu Q, Shang R, Yang X, Lu P, Xia C, Wang L, Dou K. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int J Nanomedicine 2018; 13:1851-1865. [PMID: 29618926 PMCID: PMC5875409 DOI: 10.2147/ijn.s155537] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction A safe and effective in vivo siRNA delivery system is a prerequisite for liver tumor treatment based on siRNA cancer therapeutics. Nanoparticles based on superparamagnetic iron oxide (SPIO) provide a promising delivery system. In this study, we aimed to explore a novel nanoparticle, which is composed of SPIO. Materials and methods The particles have a core of iron oxide that is modified by galactose (Gal) and polyethylenimine (PEI), which act as shells, providing targeted delivery of therapeutic siRNA to the liver cancer. Gal-PEI-SPIO nanoparticles were synthesized, and the characteristics of the Gal-PEI-SPIO encapsulated with siRNA were analyzed. Results The particles remained nanoparticles and displayed negligible cytotoxicity when loaded with siRNA. In a serum stability assay, the Gal-PEI-SPIO nanoparticles could shield the siRNA from serum degradation and prolong the half-life of the siRNA in the system. Simultaneously, we found that the mixture could be efficiently taken up by Hepa1–6 cells in a flow cytometry assay. To study the anticancer effect, quantitative polymerase chain reaction and Western blotting were used to validate the silencing efficacy of the complexes in vitro. Subsequently, the nanoparticle mixtures were administered intravenously to tumor-bearing mice to explore the tissue distribution and the effect of the siRNA against cancer. We found that the nanoparticles could provide targeted siRNA delivery, accumulate easily in orthotopic tumors, enhance siRNA accumulation in the tumor tissues for 24 h and protect the siRNA from serum nuclease degradation in comparison with the control group. After these study procedures, the mice were sacrificed, and the tumors were removed to compare the tumor size and analyze the therapeutic effect on tumor growth. The tumor volume and the liver/body weight ratio were significantly reduced in the si-c-Met therapy groups. Additionally, the mRNA levels were also lower than those observed in the controls. Conclusion Based on these results, we concluded that Gal-PEI-SPIO represents a promising and efficient platform for siRNA delivery in tumor therapy.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Qi Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Runze Shang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Peng Lu
- Department of Hepatobiliary Surgery, Hainan Branch of Chinese PLA General Hospital, Sanya, People's Republic of China
| | - Congcong Xia
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
42
|
Zhou Y, Yu F, Zhang F, Chen G, Wang K, Sun M, Li J, Oupický D. Cyclam-Modified PEI for Combined VEGF siRNA Silencing and CXCR4 Inhibition To Treat Metastatic Breast Cancer. Biomacromolecules 2018; 19:392-401. [PMID: 29350899 DOI: 10.1021/acs.biomac.7b01487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemokine receptor CXCR4 plays an important role in cancer cell invasion and metastasis. Recent findings suggest that anti-VEGF therapies upregulate CXCR4 expression, which contributes to resistance to antiangiogenic therapies. Here, we report the development of novel derivatives of polyethylenimine (PEI) that effectively inhibit CXCR4 while delivering anti-VEGF siRNA. PEI was alkylated with different amounts of a CXCR4-binding cyclam derivative to prepare PEI-C. Modification with the cyclam derivatives resulted in a considerable decrease in cytotoxicity when compared with unmodified PEI. All the PEI-C showed significant CXCR4 antagonism and the ability to inhibit cancer cell invasion. Polyplexes of PEI-C prepared with siVEGF showed effective silencing of the VEGF expression in vitro. In vivo testing in a syngeneic breast cancer model showed promising antitumor and antimetastatic activity of the PEI-C/siVEGF polyplexes. Our data demonstrate the feasibility of using PEI-C as a carrier for simultaneous VEGF silencing and CXCR4 inhibition for enhanced antiangiogenic cancer therapies.
Collapse
Affiliation(s)
- Yiwen Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, 210009, China
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha Nebraska 68198, United States
| | - Feiran Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, 210009, China
| | - Gang Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, 210009, China
| | - Kaikai Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, 210009, China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, 210009, China
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha Nebraska 68198, United States
| | - David Oupický
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, 210009, China.,Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha Nebraska 68198, United States
| |
Collapse
|
43
|
Majumder P, Bhunia S, Chaudhuri A. A lipid-based cell penetrating nano-assembly for RNAi-mediated anti-angiogenic cancer therapy. Chem Commun (Camb) 2018; 54:1489-1492. [DOI: 10.1039/c7cc08517f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A tissue infiltrating peptide amphiphile-decorated nano-assembly induces significant mouse tumor growth inhibition via substantial tumor infiltration of encapsulated anti-angiogenic siRNA.
Collapse
Affiliation(s)
- Poulami Majumder
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Sukanya Bhunia
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific & Innovative Research (AcSIR)
- India
| | - Arabinda Chaudhuri
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific & Innovative Research (AcSIR)
- India
| |
Collapse
|
44
|
De Francesco EM, Sotgia F, Clarke RB, Lisanti MP, Maggiolini M. G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts. Int J Mol Sci 2017; 18:ijms18122713. [PMID: 29240722 PMCID: PMC5751314 DOI: 10.3390/ijms18122713] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical biological responses. As GPCRs can be activated by an extensive range of factors including hormones, neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases. In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of aberrant GPCR signaling could represent a promising target in anticancer therapy. Here, we highlight the GPCR-mediated angiogenic function focusing on the molecular mechanisms and transduction effectors driving the patho-physiological vasculogenesis. Specifically, we describe evidence for the role of heptahelic receptors and associated G proteins in promoting angiogenic responses in pathologic conditions, especially tumor angiogenesis and progression. Likewise, we discuss opportunities to manipulate aberrant GPCR-mediated angiogenic signaling for therapeutic benefit using innovative GPCR-targeted and patient-tailored pharmacological strategies.
Collapse
Affiliation(s)
- Ernestina M De Francesco
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy.
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK.
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK.
| | - Robert B Clarke
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK.
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy.
| |
Collapse
|
45
|
Poilil Surendran S, George Thomas R, Moon MJ, Jeong YY. Nanoparticles for the treatment of liver fibrosis. Int J Nanomedicine 2017; 12:6997-7006. [PMID: 29033567 PMCID: PMC5614791 DOI: 10.2147/ijn.s145951] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic liver diseases represent a global health problem due to their high prevalence worldwide and the limited available curative treatment options. They can result from various causes, both infectious and noninfectious diseases. The application of nanoparticle (NP) systems has emerged as a rapidly evolving area of interest for the safe delivery of various drugs and nucleic acids for chronic liver diseases. This review presents the pathogenesis, diagnosis and the emerging nanoparticulate systems used in the treatment of chronic liver diseases caused by liver fibrosis. Activated hepatic stellate cell (HSC) is considered to be the main mechanism for liver fibrosis. Ultrasonography and magnetic resonance imaging techniques are widely used noninvasive diagnostic methods for hepatic fibrosis. A variety of nanoparticulate systems are mainly focused on targeting HSC in the treatment of hepatic fibrosis. As early liver fibrosis is reversible by current NP therapy, it is being studied in preclinical as well as clinical trials. Among various nanoparticulate systems, inorganic NPs, liposomes and nanomicelles have been widely studied due to their distinct properties to deliver drugs as well as other therapeutic moieties. Liposomal NPs in clinical trials is considered to be a milestone in the treatment of hepatic fibrosis. Currently, NP therapy for liver fibrosis is updating fast, and hopefully, it can be the future remedy for liver fibrosis.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Radiology, BioMolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Chonnam National University Hwasun Hospital (CNUHH), South Korea
| | - Reju George Thomas
- Department of Radiology, BioMolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Chonnam National University Hwasun Hospital (CNUHH), South Korea
| | - Myeong Ju Moon
- Department of Radiology, BioMolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Chonnam National University Hwasun Hospital (CNUHH), South Korea
| | - Yong Yeon Jeong
- Department of Radiology, BioMolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Chonnam National University Hwasun Hospital (CNUHH), South Korea
| |
Collapse
|
46
|
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67:603-618. [PMID: 28438689 DOI: 10.1016/j.jhep.2017.04.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The majority of the human genome is not translated into proteins but can be transcribed into RNA. Even though the resulting non-coding RNAs (ncRNAs) do not encode for proteins, they contribute to diseases such as cancer. Here, we review examples of the functions of ncRNAs in liver cancer and their potential use for the detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Akiko Matsuda
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
47
|
Zhang F, Gong S, Wu J, Li H, Oupicky D, Sun M. CXCR4-Targeted and Redox Responsive Dextrin Nanogel for Metastatic Breast Cancer Therapy. Biomacromolecules 2017; 18:1793-1802. [DOI: 10.1021/acs.biomac.7b00208] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Feiran Zhang
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Siman Gong
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Wu
- Department
of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Huipeng Li
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - David Oupicky
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- Center
for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Minjie Sun
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
48
|
Bartneck M. Immunomodulatory Nanomedicine. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/21/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III; Medical Faculty; RWTH Aachen; Pauwelsstr. 30 52074 Aachen Germany
| |
Collapse
|
49
|
Parvani JG, Jackson MW. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles. Endocr Relat Cancer 2017; 24:R81-R97. [PMID: 28148541 PMCID: PMC5471497 DOI: 10.1530/erc-16-0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
Abstract
Over the past decade, RNA interference (RNAi) has been ubiquitously utilized to study biological function in vitro; however, limitations were associated with its utility in vivo More recently, small interfering RNA (siRNA) nanoparticles with improved biocompatibility have gained prevalence as a potential therapeutic option for the treatment of various diseases. The adaptability of siRNA nanoparticles enables the delivery of virtually any siRNA, which is especially advantageous for therapeutic applications in heterogeneous diseases that lack unifying molecular features, such as triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast cancer that is stratified by the lack of estrogen receptor/progesterone receptor expression and HER2 amplification. There are currently no FDA-approved targeted therapies for the treatment of TNBCs, making cytotoxic chemotherapy the only treatment option available to these patients. In this review, we outline the current status of siRNA nanoparticles in clinical trials for cancer treatment and discuss the promising preclinical approaches that have utilized siRNA nanoparticles for TNBC treatment. Next, we address TNBC subtype-specific therapeutic interventions and highlight where and how siRNA nanoparticles fit into these strategies. Lastly, we point out ongoing challenges in the field of siRNA nanoparticle research that, if addressed, would significantly improve the efficacy of siRNA nanoparticles as a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Jenny G Parvani
- Department of Biomedical EngineeringCase Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer CenterCase Western Reserve University, Cleveland, Ohio, USA
| | - Mark W Jackson
- Case Comprehensive Cancer CenterCase Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Scarabel L, Perrone F, Garziera M, Farra R, Grassi M, Musiani F, Russo Spena C, Salis B, De Stefano L, Toffoli G, Rizzolio F, Tonon F, Abrami M, Chiarappa G, Pozzato G, Forte G, Grassi G, Dapas B. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2017; 14:797-810. [DOI: 10.1080/17425247.2017.1292247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lucia Scarabel
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Marica Garziera
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Concetta Russo Spena
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Barbara Salis
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Lucia De Stefano
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Flavio Rizzolio
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Federica Tonon
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Michela Abrami
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Gianluca Chiarappa
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Gabriele Pozzato
- Department of ‘Scienze Mediche, Chirurgiche e della Salute’, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
- Department of ‘Scienze Mediche, Chirurgiche e della Salute’, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| |
Collapse
|