1
|
Padmaswari MH, Bulliard G, Agrawal S, Jia MS, Khadgi S, Murach KA, Nelson CE. Precision and efficacy of RNA-guided DNA integration in high-expressing muscle loci. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102320. [PMID: 39398225 PMCID: PMC11466678 DOI: 10.1016/j.omtn.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Gene replacement therapies primarily rely on adeno-associated virus (AAV) vectors for transgene expression. However, episomal expression can decline over time due to vector loss or epigenetic silencing. CRISPR-based integration methods offer promise for long-term transgene insertion. While the development of transgene integration methods has made substantial progress, identifying optimal insertion loci remains challenging. Skeletal muscle is a promising tissue for gene replacement owing to low invasiveness of intramuscular injections, relative proportion of body mass, the multinucleated nature of muscle, and the potential for reduced adverse effects. Leveraging endogenous promoters in skeletal muscle, we evaluated two highly expressing loci using homology-independent targeted integration (HITI) to integrate reporter or therapeutic genes in mouse myoblasts and skeletal muscle tissue. We hijacked the muscle creatine kinase (Ckm) and myoglobin (Mb) promoters by co-delivering CRISPR-Cas9 and a donor plasmid with promoterless constructs encoding green fluorescent protein (GFP) or human Factor IX (hFIX). Additionally, we deeply profiled our genome and transcriptome outcomes from targeted integration and evaluated the safety of the proposed sites. This study introduces a proof-of-concept technology for achieving high-level therapeutic gene expression in skeletal muscle, with potential applications in targeted integration-based medicine and synthetic biology.
Collapse
Affiliation(s)
- Made Harumi Padmaswari
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | | | - Shilpi Agrawal
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Mary S. Jia
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A. Murach
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E. Nelson
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
2
|
Ittiprasert W, Brindley PJ. CRISPR-based functional genomics for schistosomes and related flatworms. Trends Parasitol 2024:S1471-4922(24)00287-3. [PMID: 39426911 DOI: 10.1016/j.pt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
CRISPR genome editing is actively used for schistosomes and other flukes. The ability to genetically manipulate these flatworms enables deeper investigation of their (patho)biological nature. CRISPR gene knockout (KO) demonstrated that a liver fluke growth mediator contributes to disease progression. Genome safe harbor sites have been predicted in Schistosoma mansoni and targeted for transgene insertion. CRISPR-based diagnosis has been demonstrated for infection with schistosomes and Opisthorchis viverrini. This review charts the progress, and the state of play, and posits salient questions for the field to address. Derivation of heritably transgenic loss-of-function or gain-of-function lines is the next milestone.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
3
|
Wirshing AC, Petrucco CA, Lew DJ. Chemical transformation of the multibudding yeast, Aureobasidium pullulans. J Cell Biol 2024; 223:e202402114. [PMID: 38935076 PMCID: PMC11211067 DOI: 10.1083/jcb.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/μg of DNA in just 3 days. This protocol is simple, inexpensive, and requires no specialized equipment. We also describe vectors with codon-optimized green and red fluorescent proteins for A. pullulans and use these tools to explore novel cell biology. Quantitative imaging of a strain expressing cytosolic and nuclear markers showed that although the nuclear number varies considerably among cells of similar volume, total nuclear volume scales with cell volume over an impressive 70-fold size range. The protocols and tools described here expand the toolkit for A. pullulans biologists and will help researchers address the many other puzzles posed by this polyextremotolerant and morphologically plastic organism.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Claudia A. Petrucco
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Daniel J. Lew
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
4
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
5
|
Jadlowsky J, Chang JF, Spencer DH, Warrington JM, Levine BL, June CH, Fraietta JA, Singh N. Regulatory Considerations for Genome-Edited T-cell Therapies. Cancer Immunol Res 2024; 12:1132-1135. [PMID: 39018097 PMCID: PMC11371504 DOI: 10.1158/2326-6066.cir-24-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Methods to engineer the genomes of human cells for therapeutic intervention continue to advance at a remarkable pace. Chimeric antigen receptor-engineered T lymphocytes have pioneered the way for these therapies, initially beginning with insertions of chimeric antigen receptor transgenes into T-cell genomes using classical gene therapy vectors. The broad use of clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies to edit endogenous genes has now opened the door to a new era of precision medicine. To add complexity, many engineered cellular therapies under development integrate gene therapy with genome editing to introduce novel biological functions and enhance therapeutic efficacy. Here, we review the current state of scientific, translational, and regulatory oversight of gene-edited cell products.
Collapse
Affiliation(s)
- Julie Jadlowsky
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Ju-fang Chang
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine, St. Louis, MO
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - David H. Spencer
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - John M. Warrington
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine, St. Louis, MO
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Bruce L. Levine
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Deparment of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Deparment of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joseph A. Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Deparment of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathan Singh
- Center for Gene and Cellular Immunotherapy, Washington University School of Medicine, St. Louis, MO
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT, Büning H. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. Hum Gene Ther 2024; 35:586-603. [PMID: 39193633 DOI: 10.1089/hum.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Collapse
Affiliation(s)
- Angela E Araujo
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Asma Kaleem
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claire Fabian
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ulrich T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Blanch-Asensio A, Grandela C, Mummery CL, Davis RP. STRAIGHT-IN: a platform for rapidly generating panels of genetically modified human pluripotent stem cell lines. Nat Protoc 2024:10.1038/s41596-024-01039-2. [PMID: 39179886 DOI: 10.1038/s41596-024-01039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/11/2024] [Indexed: 08/26/2024]
Abstract
Targeted integration of large DNA cargoes (>10 kb) or genomic replacements in mammalian cells, such as human pluripotent stem cells (hPS cells), remains challenging. Here we describe a platform termed serine and tyrosine recombinase-assisted integration of genes for high-throughput investigation (STRAIGHT-IN) to circumvent this. First, a landing pad cassette is precisely inserted or used to replace specific genomic regions. The site-specific integrase Bxb1 then enables DNA constructs, including those >50 kb, to be integrated into the genome, while Cre recombinase excises auxiliary DNA sequences to prevent postintegrative silencing. Using a strategy whereby the positive selection marker is only expressed if the donor plasmid carrying the payload is correctly targeted, we can obtain 100% enrichment for cells containing the DNA payload. Procedures for expressing Cre efficiently also mean that a clonal isolation step is no longer essential to derive the required genetically modified hPS cells containing the integrated DNA, potentially reducing clonal variability. Furthermore, STRAIGHT-IN facilitates rapid and multiplexed generation of genetically matched hPS cells when multiple donor plasmids are delivered simultaneously. STRAIGHT-IN has various applications, which include integrating complex genetic circuits for synthetic biology, as well as creating panels of hPS cells lines containing, as necessary, hundreds of disease-linked variants for disease modeling and drug discovery. After establishing the hPS cell line containing the landing pad, the entire procedure, including donor plasmid synthesis, takes 1.5-3 months, depending on whether single or multiple DNA payloads are integrated. This protocol only requires the researcher to be skilled in molecular biology and standard cell culture techniques.
Collapse
Affiliation(s)
- Albert Blanch-Asensio
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
8
|
Luna SE, Camarena J, Hampton JP, Majeti KR, Charlesworth CT, Soupene E, Selvaraj S, Jia K, Sheehan VA, Cromer MK, Porteus MH. Enhancement of erythropoietic output by Cas9-mediated insertion of a natural variant in haematopoietic stem and progenitor cells. Nat Biomed Eng 2024:10.1038/s41551-024-01222-6. [PMID: 38886504 DOI: 10.1038/s41551-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024]
Abstract
Some gene polymorphisms can lead to monogenic diseases, whereas other polymorphisms may confer beneficial traits. A well-characterized example is congenital erythrocytosis-the non-pathogenic hyper-production of red blood cells-that is caused by a truncated erythropoietin receptor. Here we show that Cas9-mediated genome editing in CD34+ human haematopoietic stem and progenitor cells (HSPCs) can recreate the truncated form of the erythropoietin receptor, leading to substantial increases in erythropoietic output. We also show that combining the expression of the cDNA of a truncated erythropoietin receptor with a previously reported genome-editing strategy to fully replace the HBA1 gene with an HBB transgene in HSPCs (to restore normal haemoglobin production in cells with a β-thalassaemia phenotype) gives the edited HSPCs and the healthy red blood cell phenotype a proliferative advantage. Combining knowledge of human genetics with precise genome editing to insert natural human variants into therapeutic cells may facilitate safer and more effective genome-editing therapies for patients with genetic diseases.
Collapse
Affiliation(s)
- Sofia E Luna
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Jessica P Hampton
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kiran R Majeti
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Carsten T Charlesworth
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Eric Soupene
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kun Jia
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vivien A Sheehan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Kyle Cromer
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Young DJ, Edwards AJ, Quiroz Caceda KG, Liberzon E, Barrientos J, Hong S, Turner J, Choyke PL, Arlauckas S, Lazorchak AS, Morgan RA, Sato N, Dunbar CE. In vivo tracking of ex vivo generated 89 Zr-oxine labeled plasma cells by PET in a non-human primate model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595782. [PMID: 38903108 PMCID: PMC11188104 DOI: 10.1101/2024.05.24.595782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody secreting cells. Zirconium-89-oxine labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 hours of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
Collapse
|
10
|
Hong CKY, Ramu A, Zhao S, Cohen BA. Effect of genomic and cellular environments on gene expression noise. Genome Biol 2024; 25:137. [PMID: 38790076 PMCID: PMC11127367 DOI: 10.1186/s13059-024-03277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Individual cells from isogenic populations often display large cell-to-cell differences in gene expression. This "noise" in expression derives from several sources, including the genomic and cellular environment in which a gene resides. Large-scale maps of genomic environments have revealed the effects of epigenetic modifications and transcription factor occupancy on mean expression levels, but leveraging such maps to explain expression noise will require new methods to assay how expression noise changes at locations across the genome. RESULTS To address this gap, we present Single-cell Analysis of Reporter Gene Expression Noise and Transcriptome (SARGENT), a method that simultaneously measures the noisiness of reporter genes integrated throughout the genome and the global mRNA profiles of individual reporter-gene-containing cells. Using SARGENT, we perform the first comprehensive genome-wide survey of how genomic locations impact gene expression noise. We find that the mean and noise of expression correlate with different histone modifications. We quantify the intrinsic and extrinsic components of reporter gene noise and, using the associated mRNA profiles, assign the extrinsic component to differences between the CD24+ "stem-like" substate and the more "differentiated" substate. SARGENT also reveals the effects of transgene integrations on endogenous gene expression, which will help guide the search for "safe-harbor" loci. CONCLUSIONS Taken together, we show that SARGENT is a powerful tool to measure both the mean and noise of gene expression at locations across the genome and that the data generatd by SARGENT reveals important insights into the regulation of gene expression noise genome-wide.
Collapse
Affiliation(s)
- Clarice K Y Hong
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Avinash Ramu
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Siqi Zhao
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Barak A Cohen
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA.
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Csatári J, Wiendl H, Pawlowski M. Forward programming human pluripotent stem cells into microglia. Trends Cell Biol 2024:S0962-8924(24)00069-2. [PMID: 38702219 DOI: 10.1016/j.tcb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Microglia play vital roles in embryonic and post-natal development, homeostasis, and pathogen defence in the central nervous system. Human induced pluripotent stem cell (hiPSC)-based methods have emerged as an important source for the study of human microglia in vitro. Classical approaches to differentiate hiPSCs into microglia suffer from limitations including extended culture periods, consistency, and efficiency. More recently, forward programming has arisen as a promising alternative for the manufacture of bulk quantities of human microglia. This review provides a comprehensive assessment of published forward programming protocols that are based on forced expression of key lineage transcription factors (TFs). We focus on the choice of reprogramming factors, transgene delivery methods, and medium composition, which impact induction kinetics and the resulting microglia phenotype.
Collapse
Affiliation(s)
- Júlia Csatári
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Matthias Pawlowski
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany.
| |
Collapse
|
12
|
Selvaraj S, Feist WN, Viel S, Vaidyanathan S, Dudek AM, Gastou M, Rockwood SJ, Ekman FK, Oseghale AR, Xu L, Pavel-Dinu M, Luna SE, Cromer MK, Sayana R, Gomez-Ospina N, Porteus MH. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat Biotechnol 2024; 42:731-744. [PMID: 37537500 DOI: 10.1038/s41587-023-01888-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.
Collapse
Affiliation(s)
- Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - William N Feist
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sebastien Viel
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Immunology Department, Lyon Sud University Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Sriram Vaidyanathan
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Amanda M Dudek
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Marc Gastou
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sarah J Rockwood
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Freja K Ekman
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Aluya R Oseghale
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Liwen Xu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Wang Z, Chen C, Ge X. Large T antigen mediated target gene replication improves site-specific recombination efficiency. Front Bioeng Biotechnol 2024; 12:1377167. [PMID: 38737535 PMCID: PMC11082406 DOI: 10.3389/fbioe.2024.1377167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
With advantages of high-fidelity, monoclonality and large cargo capacity, site-specific recombination (SSR) holds great promises for precise genomic modifications. However, broad applications of SSR have been hurdled by low integration efficiency, and the amount of donor DNA available in nucleus for SSR presents as a limiting factor. Inspired by the DNA replication mechanisms observed in double-stranded DNA virus SV40, we hypothesized that expression of SV40 large T antigen (TAg) can increase the copy number of the donor plasmid bearing an SV40 origin, and in consequence promote recombination events. This hypothesis was tested with dual recombinase-mediated cassette exchange (RMCE) in suspension 293F cells. Results showed that TAg co-transfection significantly enhanced SSR in polyclonal cells. In the monoclonal cell line carrying a single landing pad at an identified genomic locus, 12% RMCE efficiency was achieved, and such improvement was indeed correlated with donor plasmid amplification. The developed TAg facilitated RMCE (T-RMCE) was exploited for the construction of large libraries of >107 diversity, from which GFP variants with enhanced fluorescence were isolated. We expect the underlying principle of target gene amplification can be applicable to other SSR processes and gene editing approaches in general for directed evolution and large-scale genomic screening in mammalian cells.
Collapse
Affiliation(s)
- Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Boob AG, Zhu Z, Intasian P, Jain M, Petrov V, Lane ST, Tan SI, Xun G, Zhao H. CRISPR-COPIES: an in silico platform for discovery of neutral integration sites for CRISPR/Cas-facilitated gene integration. Nucleic Acids Res 2024; 52:e30. [PMID: 38346683 PMCID: PMC11014336 DOI: 10.1093/nar/gkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 04/14/2024] Open
Abstract
The CRISPR/Cas system has emerged as a powerful tool for genome editing in metabolic engineering and human gene therapy. However, locating the optimal site on the chromosome to integrate heterologous genes using the CRISPR/Cas system remains an open question. Selecting a suitable site for gene integration involves considering multiple complex criteria, including factors related to CRISPR/Cas-mediated integration, genetic stability, and gene expression. Consequently, identifying such sites on specific or different chromosomal locations typically requires extensive characterization efforts. To address these challenges, we have developed CRISPR-COPIES, a COmputational Pipeline for the Identification of CRISPR/Cas-facilitated intEgration Sites. This tool leverages ScaNN, a state-of-the-art model on the embedding-based nearest neighbor search for fast and accurate off-target search, and can identify genome-wide intergenic sites for most bacterial and fungal genomes within minutes. As a proof of concept, we utilized CRISPR-COPIES to characterize neutral integration sites in three diverse species: Saccharomyces cerevisiae, Cupriavidus necator, and HEK293T cells. In addition, we developed a user-friendly web interface for CRISPR-COPIES (https://biofoundry.web.illinois.edu/copies/). We anticipate that CRISPR-COPIES will serve as a valuable tool for targeted DNA integration and aid in the characterization of synthetic biology toolkits, enable rapid strain construction to produce valuable biochemicals, and support human gene and cell therapy applications.
Collapse
Affiliation(s)
- Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhixin Zhu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pattarawan Intasian
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand
| | - Manan Jain
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vassily Andrew Petrov
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephan Thomas Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guanhua Xun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Chrzanowski S, Batra R. CRISPR-Based Gene Editing Techniques in Pediatric Neurological Disorders. Pediatr Neurol 2024; 153:166-174. [PMID: 38394831 DOI: 10.1016/j.pediatrneurol.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
The emergence of gene editing technologies offers a unique opportunity to develop mutation-specific treatments for pediatric neurological disorders. Gene editing systems can potentially alter disease trajectory by correcting dysfunctional mutations or therapeutically altering gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-based approaches are attractive gene therapy platforms to personalize treatments because of their specificity, ease of design, versatility, and cost. However, many such approaches remain in the early stages of development, with ongoing efforts to optimize editing efficiency, minimize unintended off-target effects, and mitigate pathologic immune responses. Given the rapid evolution of CRISPR-based therapies, it is prudent for the clinically based child neurologist to have a conceptual understanding of what such therapies may entail, including both benefits and risks and how such therapies may be clinically applied. In this review, we describe the fundamentals of CRISPR-based therapies, discuss the opportunities and challenges that have arisen, and highlight preclinical work in several pediatric neurological diseases.
Collapse
Affiliation(s)
- Stephen Chrzanowski
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.
| | | |
Collapse
|
16
|
Blanchet M, Angelo L, Tétreault Y, Khabir M, Sureau C, Vaillant A, Labonté P. HepG2BD: A Novel and Versatile Cell Line with Inducible HDV Replication and Constitutive HBV Expression. Viruses 2024; 16:532. [PMID: 38675875 PMCID: PMC11053718 DOI: 10.3390/v16040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Individuals chronically infected with hepatitis B virus (HBV) and hepatitis Delta virus (HDV) present an increased risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV mono-infected individuals. Although HDV only replicates in individuals coinfected or superinfected with HBV, there is currently no in vitro model that can stably express both viruses simultaneously, mimicking the chronic infections seen in HBV/HDV patients. Here, we present the HepG2BD cell line as a novel in vitro culture system for long-term replication of HBV and HDV. HepG2BD cells derive from HepG2.2.15 cells in which a 2 kb HDV cDNA sequence was inserted into the adeno-associated virus safe harbor integration site 1 (AAVS1) using CRISPR-Cas9. A Tet-Off promoter was placed 5' of the genomic HDV sequence for reliable initiation/repression of viral replication and secretion. HBV and HDV replication were then thoroughly characterized. Of note, non-dividing cells adopt a hepatocyte-like morphology associated with an increased production of both HDV and HBV virions. Finally, HDV seems to negatively interfere with HBV in this model system. Altogether, HepG2BD cells will be instrumental to evaluate, in vitro, the fundamental HBV-HDV interplay during simultaneous chronic replication as well as for antivirals screening targeting both viruses.
Collapse
Affiliation(s)
- Matthieu Blanchet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
- Replicor Inc., Montréal, QC H4P 2R2, Canada;
| | - Léna Angelo
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | - Yasmine Tétreault
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | - Marwa Khabir
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | | | | | - Patrick Labonté
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| |
Collapse
|
17
|
Zhang X, Van Treeck B, Horton CA, McIntyre JJR, Palm SM, Shumate JL, Collins K. Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci. Nat Biotechnol 2024:10.1038/s41587-024-02137-y. [PMID: 38379101 PMCID: PMC11371274 DOI: 10.1038/s41587-024-02137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Current approaches for inserting autonomous transgenes into the genome, such as CRISPR-Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for site-specifically primed reverse transcription that directs transgene synthesis directly into the genome at a multicopy safe-harbor locus. PRINT uses delivery of two in vitro transcribed RNAs: messenger RNA encoding avian R2 retroelement-protein and template RNA encoding a transgene of length validated up to 4 kb. The R2 protein coordinately recognizes the target site, nicks one strand at a precise location and primes complementary DNA synthesis for stable transgene insertion. With a cultured human primary cell line, over 50% of cells can gain several 2 kb transgenes, of which more than 50% are full-length. PRINT advantages include no extragenomic DNA, limiting risk of deleterious mutagenesis and innate immune responses, and the relatively low cost, rapid production and scalability of RNA-only delivery.
Collapse
Affiliation(s)
- Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Connor A Horton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy J R McIntyre
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Justin L Shumate
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
18
|
Gu J, Rollo B, Berecki G, Petrou S, Kwan P, Sumer H, Cromer B. Generation of a stably transfected mouse embryonic stem cell line for inducible differentiation to excitatory neurons. Exp Cell Res 2024; 435:113902. [PMID: 38145818 DOI: 10.1016/j.yexcr.2023.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
In vitro differentiation of stem cells into various cell lineages is valuable in developmental studies and an important source of cells for modelling physiology and pathology, particularly for complex tissues such as the brain. Conventional protocols for in vitro neuronal differentiation often suffer from complicated procedures, high variability and low reproducibility. Over the last decade, the identification of cell fate-determining transcription factors has provided new tools for cellular studies in neuroscience and enabled rapid differentiation driven by ectopic transcription factor expression. As a proneural transcription factor, Neurogenin 2 (Ngn2) expression alone is sufficient to trigger rapid and robust neurogenesis from pluripotent cells. Here, we established a stable cell line, by piggyBac (PB) transposition, that conditionally expresses Ngn2 for generation of excitatory neurons from mouse embryonic stem cells (ESCs) using an all-in-one PB construct. Our results indicate that Ngn2-induced excitatory neurons have mature and functional characteristics consistent with previous studies using conventional differentiation methods. This approach provides an all-in-one PB construct for rapid and high copy number gene delivery of dox-inducible transcription factors to induce differentiation. This approach is a valuable in vitro cell model for disease modeling, drug screening and cell therapy.
Collapse
Affiliation(s)
- Jinchao Gu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Geza Berecki
- Ion Channels and Human Diseases Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Steven Petrou
- Ion Channels and Human Diseases Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| | - Brett Cromer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| |
Collapse
|
19
|
Autio MI, Motakis E, Perrin A, Bin Amin T, Tiang Z, Do DV, Wang J, Tan J, Ding SSL, Tan WX, Lee CJM, Teo AKK, Foo RSY. Computationally defined and in vitro validated putative genomic safe harbour loci for transgene expression in human cells. eLife 2024; 13:e79592. [PMID: 38164941 PMCID: PMC10836832 DOI: 10.7554/elife.79592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
Selection of the target site is an inherent question for any project aiming for directed transgene integration. Genomic safe harbour (GSH) loci have been proposed as safe sites in the human genome for transgene integration. Although several sites have been characterised for transgene integration in the literature, most of these do not meet criteria set out for a GSH and the limited set that do have not been characterised extensively. Here, we conducted a computational analysis using publicly available data to identify 25 unique putative GSH loci that reside in active chromosomal compartments. We validated stable transgene expression and minimal disruption of the native transcriptome in three GSH sites in vitro using human embryonic stem cells (hESCs) and their differentiated progeny. Furthermore, for easy targeted transgene expression, we have engineered constitutive landing pad expression constructs into the three validated GSH in hESCs.
Collapse
Affiliation(s)
- Matias I Autio
- Laboratory of Molecular Epigenomics and Chromatin Organization, Genome Institute of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Singapore, Singapore
| | - Efthymios Motakis
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Arnaud Perrin
- Laboratory of Molecular Epigenomics and Chromatin Organization, Genome Institute of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Talal Bin Amin
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Laboratory of Molecular Epigenomics and Chromatin Organization, Genome Institute of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Dang Vinh Do
- Laboratory of Molecular Epigenomics and Chromatin Organization, Genome Institute of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Jiaxu Wang
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, Singapore, Singapore
| | - Joanna Tan
- Center for Genome Diagnostics, Genome Institute of Singapore, Singapore, Singapore
| | - Shirley Suet Lee Ding
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Wei Xuan Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chang Jie Mick Lee
- Laboratory of Molecular Epigenomics and Chromatin Organization, Genome Institute of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger S Y Foo
- Laboratory of Molecular Epigenomics and Chromatin Organization, Genome Institute of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| |
Collapse
|
20
|
Cortina C, Cañellas-Socias A. CRISPR Knock-Ins in Organoids to Track Tumor Cell Subpopulations. Methods Mol Biol 2024; 2811:137-154. [PMID: 39037655 DOI: 10.1007/978-1-0716-3882-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The integration of CRISPR/Cas9 genome editing techniques with organoid technology has revolutionized the field of tumor modeling, enabling the creation of diverse tumor models with distinct mutational profiles. This protocol details the application of CRISPR knock-ins to engineer tumor organoids with reporter cassettes, which are regulated by endogenous promoters of specific genes of interest. This approach facilitates the precise fluorescent labeling, isolation, and subsequent manipulation of targeted tumor cell subpopulations. The utilization of these knock-in reporter cassettes not only allows the visualization and purification of specific tumor cell subsets but also enables conditional cell ablation and lineage tracing studies. In this chapter, we provide a comprehensive guide for the design, construction, delivery, and validation of CRISPR/Cas9 tools tailored for knock-in reporter cassette integration into specific marker genes of interest. By following this protocol, researchers can harness the potential of engineered tumor organoids to decipher intricate tumor heterogeneity, track metastatic trajectories, and unveil novel therapeutic vulnerabilities linked to specific tumor cell subpopulations.
Collapse
Affiliation(s)
- Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Vlassis A, Jensen TL, Mohr M, Jedrzejczyk DJ, Meng X, Kovacs G, Morera-Gómez M, Barghetti A, Muyo Abad S, Baumgartner RF, Natarajan KN, Nielsen LK, Warnecke T, Gill RT. CRISPR-Cas12a-integrated transgenes in genomic safe harbors retain high expression in human hematopoietic iPSC-derived lineages and primary cells. iScience 2023; 26:108287. [PMID: 38034357 PMCID: PMC10682145 DOI: 10.1016/j.isci.2023.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Discovery of genomic safe harbor sites (SHSs) is fundamental for multiple transgene integrations, such as reporter genes, chimeric antigen receptors (CARs), and safety switches, which are required for safe cell products for regenerative cell therapies and immunotherapies. Here we identified and characterized potential SHS in human cells. Using the CRISPR-MAD7 system, we integrated transgenes at these sites in induced pluripotent stem cells (iPSCs), primary T and natural killer (NK) cells, and Jurkat cell line, and demonstrated efficient and stable expression at these loci. Subsequently, we validated the differentiation potential of engineered iPSC toward CD34+ hematopoietic stem and progenitor cells (HSPCs), lymphoid progenitor cells (LPCs), and NK cells and showed that transgene expression was perpetuated in these lineages. Finally, we demonstrated that engineered iPSC-derived NK cells retained expression of a non-virally integrated anti-CD19 CAR, suggesting that several of the investigated SHSs can be used to engineer cells for adoptive immunotherapies.
Collapse
Affiliation(s)
- Arsenios Vlassis
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Tanja L. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Marina Mohr
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Dominika J. Jedrzejczyk
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Xiangyou Meng
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Gergo Kovacs
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Martí Morera-Gómez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Andrea Barghetti
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO 80027, USA
| | - Sergi Muyo Abad
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Roland F. Baumgartner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO 80027, USA
| | - Kedar N. Natarajan
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Lars K. Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tanya Warnecke
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO 80027, USA
| | - Ryan T. Gill
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO 80027, USA
| |
Collapse
|
22
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
23
|
Davis-Anderson K, Micheva-Viteva S, Solomon E, Hovde B, Cirigliano E, Harris J, Twary S, Iyer R. CRISPR/Cas9 Directed Reprogramming of iPSC for Accelerated Motor Neuron Differentiation Leads to Dysregulation of Neuronal Fate Patterning and Function. Int J Mol Sci 2023; 24:16161. [PMID: 38003351 PMCID: PMC10671572 DOI: 10.3390/ijms242216161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Neurodegeneration causes a significant disease burden and there are few therapeutic interventions available for reversing or slowing the disease progression. Induced pluripotent stem cells (iPSCs) hold significant potential since they are sourced from adult tissue and have the capacity to be differentiated into numerous cell lineages, including motor neurons. This differentiation process traditionally relies on cell lineage patterning factors to be supplied in the differentiation media. Genetic engineering of iPSC with the introduction of recombinant master regulators of motor neuron (MN) differentiation has the potential to shorten and streamline cell developmental programs. We have established stable iPSC cell lines with transient induction of exogenous LHX3 and ISL1 from the Tet-activator regulatory region and have demonstrated that induction of the transgenes is not sufficient for the development of mature MNs in the absence of neuron patterning factors. Comparative global transcriptome analysis of MN development from native and Lhx-ISL1 modified iPSC cultures demonstrated that the genetic manipulation helped to streamline the neuronal patterning process. However, leaky gene expression of the exogenous MN master regulators in iPSC resulted in the premature activation of genetic pathways characteristic of the mature MN function. Dysregulation of metabolic and regulatory pathways within the developmental process affected the MN electrophysiological responses.
Collapse
Affiliation(s)
- Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Sofiya Micheva-Viteva
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Emilia Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Blake Hovde
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Elisa Cirigliano
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer Harris
- Information Systems and Modeling Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Rashi Iyer
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| |
Collapse
|
24
|
Liu Q, Meng G, Wang M, Li X, Liu M, Wang F, Yang Y, Dong C. Safe-Harbor-Targeted CRISPR/Cas9 System and Cmhyd1 Overexpression Enhances Disease Resistance in Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15249-15260. [PMID: 37807760 DOI: 10.1021/acs.jafc.3c05131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Fungal disease of mushroomCordyceps militaris (CM) caused byCalcarisporium cordycipiticola (CC) is destructive to fruiting body cultivation, resulting in significant economic loss and potential food safety risks. CRISPR/Cas9 genome editing has proven to be a powerful tool for crop improvement but seldom succeeded in mushrooms. Here, the first genomic safe-harbor site, CmSH1 locus, was identified in the CM genome. A safe-harbor-targeted CRISPR/Cas9 system based on an autonomously replicating plasmid was designed to facilitate alien gene integration at the CmSH1 locus. Cmhyd1, one of the hydrophobin genes, was confirmed as a defensive factor against CC infection, and Cmhyd1 overexpression by this system showed enhancement of disease resistance with negligible effect on the agronomic traits of CM. No off-target events and residues of plasmid sequence were tested by PCR and genome resequencing. This study provided the first safe harbor site for genetic manipulations, a safe harbor-targeted CRISPR/Cas9 system, and the first disease-resistant gene-editing breeding system in mushrooms.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei Province, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Kovač A, Miskey C, Ivics Z. Sleeping Beauty Transposon Insertions into Nucleolar DNA by an Engineered Transposase Localized in the Nucleolus. Int J Mol Sci 2023; 24:14978. [PMID: 37834425 PMCID: PMC10573994 DOI: 10.3390/ijms241914978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Transposons are nature's gene delivery vehicles that can be harnessed for experimental and therapeutic purposes. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in human cells, and is currently under clinical development for gene therapy. SB transposition occurs into the human genome in a random manner, which carries a risk of potential genotoxic effects associated with transposon integration. Here, we evaluated an experimental strategy to manipulate SB's target site distribution by preferentially compartmentalizing the SB transposase to the nucleolus, which contains repetitive ribosomal RNA (rRNA) genes. We generated a fusion protein composed of the nucleolar protein nucleophosmin (B23) and the SB100X transposase, which was found to retain almost full transposition activity as compared to unfused transposase and to be predominantly localized to nucleoli in transfected human cells. Analysis of transposon integration sites generated by B23-SB100X revealed a significant enrichment into the p-arms of chromosomes containing nucleolus organizing regions (NORs), with preferential integration into the p13 and p11.2 cytobands directly neighboring the NORs. This bias in the integration pattern was accompanied by an enrichment of insertions into nucleolus-associated chromatin domains (NADs) at the periphery of nucleolar DNA and into lamina-associated domains (LADs). Finally, sub-nuclear targeting of the transposase resulted in preferential integration into chromosomal domains associated with the Upstream Binding Transcription Factor (UBTF) that plays a critical role in the transcription of 47S rDNA gene repeats of the NORs by RNA Pol I. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.
Collapse
Affiliation(s)
| | | | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, Paul Ehrlich Str. 51–59, D-63225 Langen, Germany; (A.K.); (C.M.)
| |
Collapse
|
26
|
Palianina D, Di Roberto RB, Castellanos-Rueda R, Schlatter F, Reddy ST, Khanna N. A method for polyclonal antigen-specific T cell-targeted genome editing (TarGET) for adoptive cell transfer applications. Mol Ther Methods Clin Dev 2023; 30:147-160. [PMID: 37448595 PMCID: PMC10336339 DOI: 10.1016/j.omtm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Adoptive cell therapy of donor-derived, antigen-specific T cells expressing native T cell receptors (TCRs) is a powerful strategy to fight viral infections in immunocompromised patients. Determining the fate of T cells following patient infusion hinges on the ability to track them in vivo. While this is possible by genetic labeling of parent cells, the applicability of this approach has been limited by the non-specificity of the edited T cells. Here, we devised a method for CRISPR-targeted genome integration of a barcoded gene into Epstein-Barr virus-antigen-stimulated T cells and demonstrated its use for exclusively identifying expanded virus-specific cell lineages. Our method facilitated the enrichment of antigen-specific T cells, which then mediated improved cytotoxicity against Epstein-Barr virus-transformed target cells. Single-cell and deep sequencing for lineage tracing revealed the expansion profile of specific T cell clones and their corresponding gene expression signature. This approach has the potential to enhance the traceability and the monitoring capabilities during immunotherapeutic T cell regimens.
Collapse
Affiliation(s)
- Darya Palianina
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
| | - Raphaël B. Di Roberto
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Fabrice Schlatter
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
- Divsion of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, 4031 Basel, Switzerland
| |
Collapse
|
27
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
28
|
De Wolf D, Singh K, Chuah MK, VandenDriessche T. Hemophilia Gene Therapy: The End of the Beginning? Hum Gene Ther 2023; 34:782-792. [PMID: 37672530 DOI: 10.1089/hum.2023.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Extensive preclinical research over the past 30 years has culminated in the recent regulatory approval of several gene therapy products for hemophilia. Based on the efficacy and safety data in a recently conducted phase III clinical trial, Roctavian® (valoctocogene roxaparvovec), an adeno-associated viral (AAV5) vector expressing a B domain deleted factor VIII (FVIII) complementary DNA, was approved by the European Commission and Food and Drug Administration (FDA) for the treatment of patients with severe hemophilia A. In addition, Hemgenix® (etranacogene dezaparvovec) was also recently approved by the European Medicines Agency and the FDA for the treatment of patients with severe hemophilia B. This product is based on an AAV5 vector expressing a hyper-active factor IX (FIX) transgene (FIX-Padua) transgene. All AAV-based phase III clinical trials to date show a significant increase in FVIII or FIX levels in the majority of treated patients, consistent with a substantial decrease in bleeding episodes and a concomitant reduction in factor usage obviating the need for factor prophylaxis in most patients. However, significant interpatient variability remains that is not fully understood. Moreover, most patients encountered short-term asymptomatic liver inflammation that was treated by immune suppression with corticosteroids or other immune suppressants. In all phase III trials to date, FIX expression has appeared relatively more stable than FVIII, though individual patients also had prolonged FVIII expression. Whether lifelong expression of clotting factors can be realized after gene therapy requires longer follow-up studies. Further preclinical development of next-generation gene editing technologies offers new prospects for the development of a sustained cure for hemophilia, not only in adults, but ultimately in children with hemophilia too.
Collapse
Affiliation(s)
- Dries De Wolf
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
29
|
Ittiprasert W, Moescheid MF, Chaparro C, Mann VH, Quack T, Rodpai R, Miller A, Wisitpongpun P, Buakaew W, Mentink-Kane M, Schmid S, Popratiloff A, Grevelding CG, Grunau C, Brindley PJ. Targeted insertion and reporter transgene activity at a gene safe harbor of the human blood fluke, Schistosoma mansoni. CELL REPORTS METHODS 2023; 3:100535. [PMID: 37533651 PMCID: PMC10391569 DOI: 10.1016/j.crmeth.2023.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 08/04/2023]
Abstract
The identification and characterization of genomic safe harbor sites (GSHs) can facilitate consistent transgene activity with minimal disruption to the host cell genome. We combined computational genome annotation and chromatin structure analysis to predict the location of four GSHs in the human blood fluke, Schistosoma mansoni, a major infectious pathogen of the tropics. A transgene was introduced via CRISPR-Cas-assisted homology-directed repair into one of the GSHs in the egg of the parasite. Gene editing efficiencies of 24% and transgene-encoded fluorescence of 75% of gene-edited schistosome eggs were observed. The approach advances functional genomics for schistosomes by providing a tractable path for generating transgenics using homology-directed, repair-catalyzed transgene insertion. We also suggest that this work will serve as a roadmap for the development of similar approaches in helminths more broadly.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Max F. Moescheid
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Cristian Chaparro
- IHPE, University of Perpignan Via Domitia, CNRS, IFREMER, University Montpellier, Perpignan, France
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Thomas Quack
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Rutchanee Rodpai
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Department of Parasitology and Excellence in Medical Innovation, and Technology Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - André Miller
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Prapakorn Wisitpongpun
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Faculty of Medical Technology, Rangsit University, Pathum Thani 12000, Thailand
| | - Watunyoo Buakaew
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Margaret Mentink-Kane
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Sarah Schmid
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Anastas Popratiloff
- Nanofabrication and Imaging Center, Science & Engineering Hall, George Washington University, Washington, DC 20052, USA
| | - Christoph G. Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Grunau
- IHPE, University of Perpignan Via Domitia, CNRS, IFREMER, University Montpellier, Perpignan, France
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
30
|
Dabiri H, Safarzadeh Kozani P, Habibi Anbouhi M, Mirzaee Godarzee M, Haddadi MH, Basiri M, Ziaei V, Sadeghizadeh M, Hajizadeh Saffar E. Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomark Res 2023; 11:67. [PMID: 37403182 DOI: 10.1186/s40364-023-00509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells and natural killer (NK) cells are genetically engineered immune cells that can detect target antigens on the surface of target cells and eliminate them following adoptive transfer. Recent progress in CAR-based therapies has led to outstanding clinical success in certain patients with leukemias and lymphomas and offered therapeutic benefits to those resistant to conventional therapies. The universal approach to stable CAR transgene delivery into the T/NK cells is the use of viral particles. Such approaches mediate semi-random transgene insertions spanning the entire genome with a high preference for integration into sites surrounding highly-expressed genes and active loci. Regardless of the variable CAR expression level based on the integration site of the CAR transgene, foreign integrated DNA fragments may affect the neighboring endogenous genes and chromatin structure and potentially change a transduced T/NK cell behavior and function or even favor cellular transformation. In contrast, site-specific integration of CAR constructs using recent genome-editing technologies could overcome the limitations and disadvantages of universal random gene integration. Herein, we explain random and site-specific integration of CAR transgenes in CAR-T/NK cell therapies. Also, we tend to summarize the methods for site-specific integration as well as the clinical outcomes of certain gene disruptions or enhancements due to CAR transgene integration. Also, the advantages and limitations of using site-specific integration methods are discussed in this review. Ultimately, we will introduce the genomic safe harbor (GSH) standards and suggest some appropriate safety prospects for CAR integration in CAR-T/NK cell therapies.
Collapse
Affiliation(s)
- Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohadeseh Mirzaee Godarzee
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahab Ziaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Hajizadeh Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
31
|
Dabiri H, Safarzadeh Kozani P, Habibi Anbouhi M, Mirzaee Godarzee M, Haddadi MH, Basiri M, Ziaei V, Sadeghizadeh M, Hajizadeh Saffar E. Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomark Res 2023; 11:67. [DOI: https:/doi.org/10.1186/s40364-023-00509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/09/2023] [Indexed: 09/15/2023] Open
Abstract
AbstractChimeric antigen receptor (CAR) T cells and natural killer (NK) cells are genetically engineered immune cells that can detect target antigens on the surface of target cells and eliminate them following adoptive transfer. Recent progress in CAR-based therapies has led to outstanding clinical success in certain patients with leukemias and lymphomas and offered therapeutic benefits to those resistant to conventional therapies. The universal approach to stable CAR transgene delivery into the T/NK cells is the use of viral particles. Such approaches mediate semi-random transgene insertions spanning the entire genome with a high preference for integration into sites surrounding highly-expressed genes and active loci. Regardless of the variable CAR expression level based on the integration site of the CAR transgene, foreign integrated DNA fragments may affect the neighboring endogenous genes and chromatin structure and potentially change a transduced T/NK cell behavior and function or even favor cellular transformation. In contrast, site-specific integration of CAR constructs using recent genome-editing technologies could overcome the limitations and disadvantages of universal random gene integration. Herein, we explain random and site-specific integration of CAR transgenes in CAR-T/NK cell therapies. Also, we tend to summarize the methods for site-specific integration as well as the clinical outcomes of certain gene disruptions or enhancements due to CAR transgene integration. Also, the advantages and limitations of using site-specific integration methods are discussed in this review. Ultimately, we will introduce the genomic safe harbor (GSH) standards and suggest some appropriate safety prospects for CAR integration in CAR-T/NK cell therapies.
Collapse
|
32
|
Araki D, Chen V, Redekar N, Salisbury-Ruf C, Luo Y, Liu P, Li Y, Smith RH, Dagur P, Combs C, Larochelle A. Post-Transplant Administration of G-CSF Impedes Engraftment of Gene Edited Human Hematopoietic Stem Cells by Exacerbating the p53-Mediated DNA Damage Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547089. [PMID: 37425704 PMCID: PMC10327043 DOI: 10.1101/2023.06.29.547089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Granulocyte colony stimulating factor (G-CSF) is commonly used as adjunct treatment to hasten recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, the utility of G-CSF administration after ex vivo gene therapy procedures targeting human HSPCs has not been thoroughly evaluated. Here, we provide evidence that post-transplant administration of G-CSF impedes engraftment of CRISPR-Cas9 gene edited human HSPCs in xenograft models. G-CSF acts by exacerbating the p53-mediated DNA damage response triggered by Cas9- mediated DNA double-stranded breaks. Transient p53 inhibition in culture attenuates the negative impact of G-CSF on gene edited HSPC function. In contrast, post-transplant administration of G-CSF does not impair the repopulating properties of unmanipulated human HSPCs or HSPCs genetically engineered by transduction with lentiviral vectors. The potential for post-transplant G-CSF administration to aggravate HSPC toxicity associated with CRISPR-Cas9 gene editing should be considered in the design of ex vivo autologous HSPC gene editing clinical trials.
Collapse
|
33
|
Mikkelsen NS, Hernandez SS, Jensen TI, Schneller JL, Bak RO. Enrichment of transgene integrations by transient CRISPR activation of a silent reporter gene. Mol Ther Methods Clin Dev 2023; 29:1-16. [PMID: 36922985 PMCID: PMC10009645 DOI: 10.1016/j.omtm.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
CRISPR-Cas-mediated site-specific integration of transgenes by homology-directed repair (HDR) is challenging, especially in primary cells, where inferior editing efficiency may impede the development of gene- and cellular therapies. Various strategies for enrichment of cells with transgene integrations have been developed, but most strategies either generate unwanted genomic scars or rely on permanent integration and expression of a reporter gene used for selection. However, stable expression of a reporter gene may perturb cell homeostasis and function. Here we develop a broadly applicable and versatile enrichment strategy by harnessing the capability of CRISPR activation (CRISPRa) to transiently induce expression of a therapeutically relevant reporter gene used for immunomagnetic enrichment. This strategy is readily adaptable to primary human T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs), where enrichment of 1.8- to 3.3-fold and 3.2- to 3.6-fold was achieved, respectively. Furthermore, chimeric antigen receptor (CAR) T cells were enriched 2.5-fold and demonstrated improved cytotoxicity over non-enriched CAR T cells. Analysis of HDR integrations showed a proportion of cells harboring deletions of the transgene cassette arising either from impartial HDR or truncated adeno-associated virus (AAV) vector genomes. Nonetheless, this novel enrichment strategy expands the possibility to enrich for transgene integrations in research settings and in gene and cellular therapies.
Collapse
Affiliation(s)
| | | | - Trine I Jensen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jessica L Schneller
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,RNA and Gene Therapies, Novo Nordisk A/S, Maaloev, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
34
|
Odak A, Yuan H, Feucht J, Cantu VA, Mansilla-Soto J, Kogel F, Eyquem J, Everett J, Bushman FD, Leslie CS, Sadelain M. Novel extragenic genomic safe harbors for precise therapeutic T-cell engineering. Blood 2023; 141:2698-2712. [PMID: 36745870 PMCID: PMC10273162 DOI: 10.1182/blood.2022018924] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 02/08/2023] Open
Abstract
Cell therapies that rely on engineered immune cells can be enhanced by achieving uniform and controlled transgene expression in order to maximize T-cell function and achieve predictable patient responses. Although they are effective, current genetic engineering strategies that use γ-retroviral, lentiviral, and transposon-based vectors to integrate transgenes, unavoidably produce variegated transgene expression in addition to posing a risk of insertional mutagenesis. In the setting of chimeric antigen receptor (CAR) therapy, inconsistent and random CAR expression may result in tonic signaling, T-cell exhaustion, and variable T-cell persistence. Here, we report and validate an algorithm for the identification of extragenic genomic safe harbors (GSH) that can be efficiently targeted for DNA integration and can support sustained and predictable CAR expression in human peripheral blood T cells. The algorithm is based on 7 criteria established to minimize genotoxicity by directing transgene integration away from functionally important genomic elements, maximize efficient CRISPR/Cas9-mediated targeting, and avert transgene silencing over time. T cells engineered to express a CD19 CAR at GSH6, which meets all 7 criteria, are curative at low cell dose in a mouse model of acute lymphoblastic leukemia, matching the potency of CAR T cells engineered at the TRAC locus and effectively resisting tumor rechallenge 100 days after their infusion. The identification of functional extragenic GSHs thus expands the human genome available for therapeutic precision engineering.
Collapse
Affiliation(s)
- Ashlesha Odak
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
| | - Han Yuan
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Judith Feucht
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vito Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Friederike Kogel
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justin Eyquem
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christina S. Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
35
|
Sun Y, Yuan Y, Zhang B, Zhang X. CARs: a new approach for the treatment of autoimmune diseases. SCIENCE CHINA. LIFE SCIENCES 2023; 66:711-728. [PMID: 36346550 PMCID: PMC9641699 DOI: 10.1007/s11427-022-2212-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
The development of chimeric antigen receptor (CAR)-based therapeutic interventions represented a breakthrough in cancer treatment. Following the success of the CAR-T-cell strategy, this novel therapeutic approach has been applied to other diseases, including autoimmune diseases. Using CAR-T cells to deplete pathological immune cells (i.e., B cells, autoreactive B or T cells, and accessory antigen-presenting cells (APCs)) has resulted in favorable outcomes in diseases characterized by excessive autoantibody levels or hyperactive lymphocyte cell numbers. The importance of immunosuppressive regulatory T cells (Tregs) in restoring immune tolerance has been well established, and CAR-Tregs have shown promising therapeutic potential in treating autoimmune diseases. Moreover, prior experience from the cancer field has provided sufficient paradigms for understanding how to optimize the structure and function of CARs to improve their function, persistence, stability and safety. In this review, we describe the potential application of CAR-T cells and CAR-Tregs in the treatment of autoimmune diseases, and we summarize the currently available strategies of gene editing and synthetic biological tools that have improved the practical application of CAR-based therapies.
Collapse
Affiliation(s)
- Yeting Sun
- Graduate School of Peking Union Medical College; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yeshuang Yuan
- Graduate School of Peking Union Medical College; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
36
|
Tasca F, Brescia M, Liu J, Janssen JM, Mamchaoui K, Gonçalves MA. High-capacity adenovector delivery of forced CRISPR-Cas9 heterodimers fosters precise chromosomal deletions in human cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:746-762. [PMID: 36937620 PMCID: PMC10020486 DOI: 10.1016/j.omtn.2023.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Genome editing based on dual CRISPR-Cas9 complexes (multiplexes) permits removing specific genomic sequences in living cells leveraging research on functional genomics and genetic therapies. Delivering the required large and multicomponent reagents in a synchronous and stoichiometric manner remains, however, challenging. Moreover, uncoordinated activity of independently acting CRISPR-Cas9 multiplexes increases the complexity of genome editing outcomes. Here, we investigate the potential of fostering precise multiplexing genome editing using high-capacity adenovector particles (AdVPs) for the delivery of Cas9 ortholog fusion constructs alone (forced Cas9 heterodimers) or together with their cognate guide RNAs (forced CRISPR-Cas9 heterodimers). We demonstrate that the efficiency and accuracy of targeted chromosomal DNA deletions achieved by single AdVPs encoding forced CRISPR-Cas9 heterodimers is superior to that obtained when the various components are delivered separately. Finally, all-in-one AdVP delivery of forced CRISPR-Cas9 heterodimers triggers robust DMD exon 51 splice site excision resulting in reading frame restoration and selection-free detection of dystrophin in muscle cells derived from Duchenne muscular dystrophy patients. In conclusion, AdVPs promote precise multiplexing genome editing through the integrated delivery of forced CRISPR-Cas9 heterodimer components, which, in comparison with split conventional CRISPR-Cas9 multiplexes, engage target sequences in a more coordinated fashion.
Collapse
Affiliation(s)
- Francesca Tasca
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Marcella Brescia
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Josephine M. Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
- Corresponding author: Manuel A.F.V. Gonçalves, Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
37
|
Kim SM, Lee J, Lee JS. Implementation of ubiquitous chromatin opening elements as artificial integration sites for CRISPR/Cas9‐mediated knock‐in in mammalian cells. Eng Life Sci 2023; 23:e2200047. [PMID: 37025191 PMCID: PMC10071570 DOI: 10.1002/elsc.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
CRISPR/Cas9-mediated targeted gene integration (TI) has been used to generate recombinant mammalian cell lines with predictable transgene expression. Identifying genomic hot spots that render high and stable transgene expression and knock-in (KI) efficiency is critical for fully implementing TI-mediated cell line development (CLD); however, such identification is cumbersome. In this study, we developed an artificial KI construct that can be used as a hot spot at different genomic loci. The ubiquitous chromatin opening element (UCOE) was employed because of its ability to open chromatin and enable stable and site-independent transgene expression. UCOE KI cassettes were randomly integrated into CHO-K1 and HEK293T cells, followed by TI of enhanced green fluorescent protein (EGFP) onto the artificial UCOE KI site. The CHO-K1 random pool harboring 5'2.2A2UCOE-CMV displayed a significant increase in EGFP expression level and KI efficiency compared with that of the control without UCOE. In addition, 5'2.2A2UCOE-CMV showed improved Cas9 accessibility in the HEK293T genome, leading to an increase in indel frequency and homology-independent KI. Overall, this assessment revealed the potential of UCOE KI constructs as artificial integration sites in streamlining the screening of high-production targeted integrants by mitigating the selection of genomic hot spots.
Collapse
Affiliation(s)
- Seul Mi Kim
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| | - Jaejin Lee
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| |
Collapse
|
38
|
Аpplication of massive parallel reporter analysis in biotechnology and medicine. КЛИНИЧЕСКАЯ ПРАКТИКА 2023. [DOI: 10.17816/clinpract115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development and functioning of an organism relies on tissue-specific gene programs. Genome regulatory elements play a key role in the regulation of such programs, and disruptions in their function can lead to the development of various pathologies, including cancers, malformations and autoimmune diseases. The emergence of high-throughput genomic studies has led to massively parallel reporter analysis (MPRA) methods, which allow the functional verification and identification of regulatory elements on a genome-wide scale. Initially MPRA was used as a tool to investigate fundamental aspects of epigenetics, but the approach also has great potential for clinical and practical biotechnology. Currently, MPRA is used for validation of clinically significant mutations, identification of tissue-specific regulatory elements, search for the most promising loci for transgene integration, and is an indispensable tool for creating highly efficient expression systems, the range of application of which extends from approaches for protein development and design of next-generation therapeutic antibody superproducers to gene therapy. In this review, the main principles and areas of practical application of high-throughput reporter assays will be discussed.
Collapse
|
39
|
Dias J, Cadiñanos-Garai A, Roddie C. Release Assays and Potency Assays for CAR T-Cell Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:117-137. [PMID: 37258787 DOI: 10.1007/978-3-031-30040-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chimeric antigen receptor (CAR) T-cells are considered "living drugs" and offer a compelling alternative to conventional anticancer therapies. Briefly, T-cells are redirected, using gene engineering technology, toward a specific cancer cell surface target antigen via a synthetic chimeric antigen receptor (CAR) protein. CARs have a modular design comprising four main structures: an antigen-binding domain, a hinge region, a transmembrane domain, and one or more intracellular signaling domains for T-cell activation. A major challenge in the CAR T-cell manufacturing field is balancing product quality with scalability and cost-effectiveness, especially when transitioning from an academic clinical trial into a marketed product, to be implemented across many collection, manufacturing, and treatment sites. Achieving product consistency while circumnavigating the intrinsic variability associated with autologous products is an additional barrier. To overcome these limitations, a robust understanding of the product and its biological actions is crucial to establish a target product profile with a defined list of critical quality attributes to be assessed for each batch prior to product certification. Additional challenges arise as the field progresses, such as new safety considerations associated with the use of allogenic T-cells and genome editing tools. In this chapter, we will discuss the release and potency assays required for CAR T-cell manufacturing, covering their relevance, current challenges, and future perspectives.
Collapse
Affiliation(s)
- Juliana Dias
- UCL Cancer Institute, University College London, London, UK.
- Royal Free Hospital London, NHS Foundation Trust, London, UK.
| | - Amaia Cadiñanos-Garai
- USC/CHLA Cell Therapy Program, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
| | - Claire Roddie
- UCL Cancer Institute, University College London, London, UK
- Department of Haematology, UCL Hospital, London, UK
| |
Collapse
|
40
|
Daboussi F, Lindley ND. Challenges to Ensure a Better Translation of Metabolic Engineering for Industrial Applications. Methods Mol Biol 2023; 2553:1-20. [PMID: 36227536 DOI: 10.1007/978-1-0716-2617-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic engineering has evolved towards creating cell factories with increasingly complex pathways as economic criteria push biotechnology to higher value products to provide a sustainable source of speciality chemicals. Optimization of such pathways often requires high combinatory exploration of best pathway balance, and this has led to increasing use of high-throughput automated strain construction platforms or novel optimization techniques. In addition, the low catalytic efficiency of such pathways has shifted emphasis from gene expression strategies towards novel protein engineering to increase specific activity of the enzymes involved so as to limit the metabolic burden associated with excessively high pressure on ribosomal machinery when using massive overexpression systems. Metabolic burden is now generally recognized as a major hurdle to be overcome with consequences on genetic stability but also on the intensified performance needed industrially to attain the economic targets for successful product launch. Increasing awareness of the need to integrate novel genetic information into specific sites within the genome which not only enhance genetic stability (safe harbors) but also enable maximum expression profiles has led to genome-wide assessment of best integration sites, and bioinformatics will facilitate the identification of most probable landing pads within the genome.To facilitate the transfer of novel biotechnological potential to industrial-scale production, more attention, however, has to be paid to engineering metabolic fitness adapted to the specific stress conditions inherent to large-scale fermentation and the inevitable heterogeneity that will occur due to mass transfer limitations and the resulting deviation away from ideal conditions as seen in laboratory-scale validation of the engineered cells. To ensure smooth and rapid transfer of novel cell lines to industry with an accelerated passage through scale-up, better coordination is required form the onset between the biochemical engineers involved in process technology and the genetic engineers building the new strain so as to have an overall strategy able to maximize innovation at all levels. This should be one of our key objectives when building fermentation-friendly chassis organisms.
Collapse
Affiliation(s)
- Fayza Daboussi
- Toulouse White Biotechnology, Toulouse cedex 4, France
- Toulouse Biotechnology Institute, Toulouse cedex 4, France
| | - Nic D Lindley
- Toulouse White Biotechnology, Toulouse cedex 4, France.
- Toulouse Biotechnology Institute, Toulouse cedex 4, France.
- ASTAR Singapore Institute of Food and Biotechnology Innovation (SIFBI), Singapore, Singapore.
| |
Collapse
|
41
|
Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, Tycko J, Zhang M, Lensch S, Shields CE, Livingston M, Weiss R, Zhao H, Haynes KA, Morsut L, Chen YY, Khalil AS, Wong WW, Collins JJ, Rosser SJ, Polizzi K, Elowitz MB, Fussenegger M, Hilton IB, Leonard JN, Bintu L, Galloway KE, Deans TL. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst 2022; 13:950-973. [PMID: 36549273 PMCID: PMC9880859 DOI: 10.1016/j.cels.2022.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.
Collapse
Affiliation(s)
- Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey I Edelstein
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fokion Glykofrydis
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Kasey S Love
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Sarah Lensch
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Yvonne Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| | - Ahmad S Khalil
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wilson W Wong
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, Basel 4058, Switzerland
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Joshua N Leonard
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
42
|
Harmatz P, Prada CE, Burton BK, Lau H, Kessler CM, Cao L, Falaleeva M, Villegas AG, Zeitler J, Meyer K, Miller W, Wong Po Foo C, Vaidya S, Swenson W, Shiue LH, Rouy D, Muenzer J. First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Mol Ther 2022; 30:3587-3600. [PMID: 36299240 PMCID: PMC9734078 DOI: 10.1016/j.ymthe.2022.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Zinc-finger nuclease (ZFN)-based in vivo genome editing is a novel treatment that can potentially provide lifelong protein replacement with single intravenous administration. Three first-in-human open-label ascending single-dose phase 1/2 studies were performed in parallel (starting November 2017) primarily to assess safety and tolerability of ZFN in vivo editing therapy in mucopolysaccharidosis I (MPS I) (n = 3), MPS II (n = 9), and hemophilia B (n = 1). Treatment was well tolerated with no serious treatment-related adverse events. At the 1e13 vg/kg dose, evidence of genome editing was detected through albumin-transgene fusion transcripts in liver for MPS II (n = 2) and MPS I (n = 1) subjects. The MPS I subject also had a transient increase in leukocyte iduronidase activity to the lower normal range. At the 5e13 vg/kg dose, one MPS II subject had a transient increase in plasma iduronate-2-sulfatase approaching normal levels and one MPS I subject approached mid-normal levels of leukocyte iduronidase activity with no evidence of genome editing. The hemophilia B subject was not able to decrease use of factor IX concentrate; genome editing could not be assessed. Overall, ZFN in vivo editing therapy had a favorable safety profile with evidence of targeted genome editing in liver, but no long-term enzyme expression in blood.
Collapse
Affiliation(s)
- Paul Harmatz
- UCSF Benioff Children’s Hospital Oakland, Oakland, CA 94609, USA,Corresponding author
| | - Carlos E. Prada
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA,Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA,Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Barbara K. Burton
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA,Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Heather Lau
- Department of Neurology, NYU School of Medicine, New York, NY, USA
| | | | - Liching Cao
- Sangamo Therapeutics, Inc., Brisbane, CA, USA
| | | | | | | | | | | | | | | | | | | | - Didier Rouy
- Sangamo Therapeutics, Inc., Brisbane, CA, USA
| | - Joseph Muenzer
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
44
|
Validation of Promoters and Codon Optimization on CRISPR/Cas9-Engineered Jurkat Cells Stably Expressing αRep4E3 for Interfering with HIV-1 Replication. Int J Mol Sci 2022; 23:ijms232315049. [PMID: 36499376 PMCID: PMC9738563 DOI: 10.3390/ijms232315049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Persistent and efficient therapeutic protein expression in the specific target cell is a significant concern in gene therapy. The controllable integration site, suitable promoter, and proper codon usage influence the effectiveness of the therapeutic outcome. Previously, we developed a non-immunoglobulin scaffold, alpha repeat protein (αRep4E3), as an HIV-1 RNA packaging interference system in SupT1 cells using the lentiviral gene transfer. Although the success of anti-HIV-1 activity was evidenced, the integration site is uncontrollable and may not be practical for clinical translation. In this study, we use the CRISPR/Cas9 gene editing technology to precisely knock-in αRep4E3 genes into the adeno-associated virus integration site 1 (AAVS1) safe harbor locus of the target cells. We compare the αRep4E3 expression under the regulation of three different promoters, including cytomegalovirus (CMV), human elongation factor-1 alpha (EF1α), and ubiquitin C (UbC) promoters with and without codon optimization in HEK293T cells. The results demonstrated that the EF1α promoter with codon-optimized αRep4E3mCherry showed higher protein expression than other promoters with non-optimized codons. We then performed a proof-of-concept study by knocking in the αRep4E3mCherry gene at the AAVS1 locus of the Jurkat cells. The results showed that the αRep4E3mCherry-expressing Jurkat cells exhibited anti-HIV-1 activities against HIV-1NL4-3 strain as evidenced by decreased capsid (p24) protein levels and viral genome copies as compared to the untransfected Jurkat control cells. Altogether, our study demonstrates that the αRep4E3 could interfere with the viral RNA packaging and suggests that the αRep4E3 scaffold protein could be a promising anti-viral molecule that offers a functional cure for people living with HIV-1.
Collapse
|
45
|
Chen C, Liao Y, Peng G. Connecting past and present: single-cell lineage tracing. Protein Cell 2022; 13:790-807. [PMID: 35441356 PMCID: PMC9237189 DOI: 10.1007/s13238-022-00913-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/06/2022] [Indexed: 01/16/2023] Open
Abstract
Central to the core principle of cell theory, depicting cells' history, state and fate is a fundamental goal in modern biology. By leveraging clonal analysis and single-cell RNA-seq technologies, single-cell lineage tracing provides new opportunities to interrogate both cell states and lineage histories. During the past few years, many strategies to achieve lineage tracing at single-cell resolution have been developed, and three of them (integration barcodes, polylox barcodes, and CRISPR barcodes) are noteworthy as they are amenable in experimentally tractable systems. Although the above strategies have been demonstrated in animal development and stem cell research, much care and effort are still required to implement these methods. Here we review the development of single-cell lineage tracing, major characteristics of the cell barcoding strategies, applications, as well as technical considerations and limitations, providing a guide to choose or improve the single-cell barcoding lineage tracing.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanxin Liao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangdun Peng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
46
|
An Alternate Approach to Generate Induced Pluripotent Stem Cells with Precise CRISPR/Cas9 Tool. Stem Cells Int 2022; 2022:4537335. [PMID: 36187228 PMCID: PMC9522500 DOI: 10.1155/2022/4537335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The induced pluripotent stem cells (iPSCs) are considered powerful tools in pharmacology, biomedicine, toxicology, and cell therapy. Multiple approaches have been used to generate iPSCs with the expression of reprogramming factors. Here, we generated iPSCs by integrating the reprogramming cassette into a genomic safe harbor, CASH-1, with the use of a precise genome editing tool, CRISPR/Cas9. The integration of cassette at CASH-1 into target cells did not alter the pattern of proliferation and interleukin-6 secretion as a response to ligands of multiple signaling pathways involving tumor necrosis factor-α receptor, interleukin-1 receptor, and toll-like receptors. Moreover, doxycycline-inducible expression of OCT4, SOX2, and KLF4 reprogrammed engineered human dermal fibroblasts and human embryonic kidney cell line into iPSCs. The generated iPSCs showed their potential to make embryoid bodies and differentiate into the derivatives of all three germ layers. Collectively, our data emphasize the exploitation of CASH-1 by CRISPR/Cas9 tool for therapeutic and biotechnological applications including but not limited to reprogramming of engineered cells into iPSCs.
Collapse
|
47
|
Shrestha D, Bag A, Wu R, Zhang Y, Tang X, Qi Q, Xing J, Cheng Y. Genomics and epigenetics guided identification of tissue-specific genomic safe harbors. Genome Biol 2022; 23:199. [PMID: 36131352 PMCID: PMC9490961 DOI: 10.1186/s13059-022-02770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Genomic safe harbors are regions of the genome that can maintain transgene expression without disrupting the function of host cells. Genomic safe harbors play an increasingly important role in improving the efficiency and safety of genome engineering. However, limited safe harbors have been identified. RESULTS Here, we develop a framework to facilitate searches for genomic safe harbors by integrating information from polymorphic mobile element insertions that naturally occur in human populations, epigenomic signatures, and 3D chromatin organization. By applying our framework to polymorphic mobile element insertions identified in the 1000 Genomes project and the Genotype-Tissue Expression (GTEx) project, we identify 19 candidate safe harbors in blood cells and 5 in brain cells. For three candidate sites in blood, we demonstrate the stable expression of transgene without disrupting nearby genes in host erythroid cells. We also develop a computer program, Genomics and Epigenetic Guided Safe Harbor mapper (GEG-SH mapper), for knowledge-based tissue-specific genomic safe harbor selection. CONCLUSIONS Our study provides a new knowledge-based framework to identify tissue-specific genomic safe harbors. In combination with the fast-growing genome engineering technologies, our approach has the potential to improve the overall safety and efficiency of gene and cell-based therapy in the near future.
Collapse
Affiliation(s)
- Dewan Shrestha
- Department of Genetics, Genomics, and Informatics, College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN USA
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Aishee Bag
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Yeting Zhang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Xing Tang
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Qian Qi
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| |
Collapse
|
48
|
Inderbitzin A, Loosli T, Kouyos RD, Metzner KJ. Quantification of transgene expression in GSH AAVS1 with a novel CRISPR/Cas9-based approach reveals high transcriptional variation. Mol Ther Methods Clin Dev 2022; 26:107-118. [PMID: 35795775 PMCID: PMC9234542 DOI: 10.1016/j.omtm.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022]
Abstract
Genomic safe harbors (GSH) are defined as sites in the host genome that allow stable expression of inserted transgenes while having no adverse effects on the host cell, making them ideal for use in basic research and therapeutic applications. Silencing and fluctuations in transgene expression would be highly undesirable effects. We have previously shown that transgene expression in Jurkat T cells is not silenced for up to 160 days after CRISPR-Cas9-mediated insertion of reporter genes into the adeno-associated virus site 1 (AAVS1), a commonly used GSH. Here, we studied fluctuations in transgene expression upon targeted insertion into the GSH AAVS1. We have developed an efficient method to generate and validate highly complex barcoded plasmid libraries to study transgene expression on the single-cell level. Its applicability is demonstrated by inserting the barcoded transgene Cerulean into the AAVS1 locus in Jurkat T cells via the CRISPR-Cas9 technology followed by next-generation sequencing of the transcribed barcodes. We observed large transcriptional variations over two logs for transgene expression in the GSH AAVS1. This barcoded transgene insertion model is a powerful tool to investigate fluctuations in transgene expression at any GSH site.
Collapse
Affiliation(s)
- Anne Inderbitzin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Tom Loosli
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
49
|
Zhu Y, Zhou Z, Huang T, Zhang Z, Li W, Ling Z, Jiang T, Yang J, Yang S, Xiao Y, Charlier C, Georges M, Yang B, Huang L. Mapping and analysis of a spatiotemporal H3K27ac and gene expression spectrum in pigs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1517-1534. [PMID: 35122624 DOI: 10.1007/s11427-021-2034-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
The limited knowledge of genomic noncoding and regulatory regions has restricted our ability to decipher the genetic mechanisms underlying complex traits in pigs. In this study, we characterized the spatiotemporal landscape of putative enhancers and promoters and their target genes by combining H3K27ac-targeted ChIP-Seq and RNA-Seq in fetal (prenatal days 74-75) and adult (postnatal days 132-150) tissues (brain, liver, heart, muscle and small intestine) sampled from Asian aboriginal Bama Xiang and European highly selected Large White pigs of both sexes. We identified 101,290 H3K27ac peaks, marking 18,521 promoters and 82,769 enhancers, including peaks that were active across all tissues and developmental stages (which could indicate safe harbor locus for exogenous gene insertion) and tissue- and developmental stage-specific peaks (which regulate gene pathways matching tissue- and developmental stage-specific physiological functions). We found that H3K27ac and DNA methylation in the promoter region of the XIST gene may be involved in X chromosome inactivation and demonstrated the utility of the present resource for revealing the regulatory patterns of known causal genes and prioritizing candidate causal variants for complex traits in pigs. In addition, we identified an average of 1,124 super-enhancers per sample and found that they were more likely to show tissue-specific activity than ordinary peaks. We have developed a web browser to improve the accessibility of the results ( http://segtp.jxau.edu.cn/pencode/?genome=susScr11 ).
Collapse
Affiliation(s)
- Yaling Zhu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhimin Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tao Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wanbo Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziqi Ling
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tao Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawen Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Siyu Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanyuan Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Carole Charlier
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Unit of Animal Genomics, GIGA-Institute and Faculty of Veterinary Medicine, University of Liege, 4000, Liege, Belgium
| | - Michel Georges
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Unit of Animal Genomics, GIGA-Institute and Faculty of Veterinary Medicine, University of Liege, 4000, Liege, Belgium
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
50
|
Duran AG, Schwestka M, Nazari-Shafti TZ, Neuber S, Stamm C, Gossen M. Limiting Transactivator Amounts Contribute to Transgene Mosaicism in Tet-On All-in-One Systems. ACS Synth Biol 2022; 11:2623-2635. [PMID: 35815862 DOI: 10.1021/acssynbio.2c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs play an essential role in cell homeostasis and have been proposed as therapeutic agents. One strategy to deliver microRNAs is to genetically engineer target cells to express microRNAs of interest. However, to control dosage and timing, as well as to limit potential side-effects, microRNAs' expression should ideally be under exogenous, inducible control. Conditional expression of miRNA-based short hairpin RNAs (shRNAmirs) via gene regulatory circuits such as the Tet-system is therefore a promising strategy to control shRNAmirs' expression in research and therapy. Single vector approaches like Tet-On all-in-one designs are more compatible with potential clinical applications by providing the Tet-On system components in a single round of genetic engineering. However, all-in-one systems often come at the expense of heterogeneous and unstable expression. In this study, we aimed to understand the causes that lead to such erratic transgene expression. By using a reporter cell, we found that the degree of heterogeneity mostly correlated with reverse tetracycline transactivator (rtTA) expression levels. Moreover, the targeted integration of a potent rtTA expression cassette into a genomic safe harbor locus functionally rescued previously silenced rtTA-responsive transcription units. Overall, our results suggest that ensuring homogenous and stable rtTA expression is essential for the robust and reliable performance of future Tet-On all-in-one designs.
Collapse
Affiliation(s)
- Ana G Duran
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Marko Schwestka
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Christof Stamm
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| |
Collapse
|