1
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
2
|
Marie C, Scherman D. Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials. Genes (Basel) 2024; 15:261. [PMID: 38540320 PMCID: PMC10970329 DOI: 10.3390/genes15030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 06/15/2024] Open
Abstract
Until very recently, the major use, for gene therapy, specifically of linear or circular DNA, such as plasmids, was as ancillary products for viral vectors' production or as a genetic template for mRNA production. Thanks to targeted and more efficient physical or chemical delivery techniques and to the refinement of their structure, non-viral plasmid DNA are now under intensive consideration as pharmaceutical drugs. Plasmids traditionally carry an antibiotic resistance gene for providing the selection pressure necessary for maintenance in a bacterial host. Nearly a dozen different antibiotic-free gene vectors have now been developed and are currently assessed in preclinical assays and phase I/II clinical trials. Their reduced size leads to increased transfection efficiency and prolonged transgene expression. In addition, associating non-viral gene vectors and DNA transposons, which mediate transgene integration into the host genome, circumvents plasmid dilution in dividing eukaryotic cells which generate a loss of the therapeutic gene. Combining these novel molecular tools allowed a significantly higher yield of genetically engineered T and Natural Killer cells for adoptive immunotherapies due to a reduced cytotoxicity and increased transposition rate. This review describes the main progresses accomplished for safer, more efficient and cost-effective gene and cell therapies using non-viral approaches and antibiotic-free gene vectors.
Collapse
Affiliation(s)
- Corinne Marie
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Chimie ParisTech, Université PSL, 75005 Paris, France
| | - Daniel Scherman
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Fondation Maladies Rares, 75014 Paris, France
| |
Collapse
|
3
|
Guan X, Pei Y, Song J. DNA-Based Nonviral Gene Therapy─Challenging but Promising. Mol Pharm 2024; 21:427-453. [PMID: 38198640 DOI: 10.1021/acs.molpharmaceut.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decades, significant progress has been made in utilizing nucleic acids, including DNA and RNA molecules, for therapeutic purposes. For DNA molecules, although various DNA delivery systems have been established, viral vector systems are the go-to choice for large-scale commercial applications. However, viral systems have certain disadvantages such as immune response, limited payload capacity, insertional mutagenesis and pre-existing immunity. In contrast, nonviral systems are less immunogenic, not size limited, safer, and easier for manufacturing compared with viral systems. What's more, nonviral DNA vectors have demonstrated their capacity to mediate specific protein expression in vivo for diverse therapeutic objectives containing a wide range of diseases such as cancer, rare diseases, neurodegenerative diseases, and infectious diseases, yielding promising therapeutic outcomes. However, exogenous plasmid DNA is prone to degrade and has poor immunogenicity in vivo. Thus, various strategies have been developed: (i) designing novel plasmids with special structures, (ii) optimizing plasmid sequences for higher expression, and (iii) developing more efficient nonviral DNA delivery systems. Based on these strategies, many interesting clinical results have been reported. This Review discusses the development of DNA-based nonviral gene therapy, including novel plasmids, nonviral delivery systems, clinical advances, and prospects. These developments hold great potential for enhancing the efficacy and safety of nonviral gene therapy and expanding its applications in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaocai Guan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Pei
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Roy S, Peter S, Dröge P. Versatile seamless DNA vector production in E. coli using enhanced phage lambda integrase. PLoS One 2022; 17:e0270173. [PMID: 36149906 PMCID: PMC9506625 DOI: 10.1371/journal.pone.0270173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Seamless DNA vectors derived from bacterial plasmids are devoid of bacterial genetic elements and represent attractive alternatives for biomedical applications including DNA vaccines. Larger scale production of seamless vectors employs engineered Escherichia coli strains in order to enable tightly regulated expression of site-specific DNA recombinases which precisely delete unwanted sequences from bacterial plasmids. As a novel component of a developing lambda integrase genome editing platform, we describe here strain MG1655-ISC as a means to easily produce different scales of seamless vectors, ranging in size from a few hundred base pairs to more than ten kilo base pairs. Since we employed an engineered lambda integrase that is able to efficiently recombine pairs of DNA crossover sites that differ in sequence, the resulting seamless vectors will be useful for subsequent genome editing in higher eukaryotes to accommodate variations in target site sequences. Future inclusion of single cognate sites for other genome targeting systems could enable modularity. These features, together with the demonstrated simplicity of in vivo seamless vector production, add to their utility in the biomedical space.
Collapse
Affiliation(s)
- Suki Roy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
5
|
Ventura C, Eusébio D, Gonçalves AM, Barroca-Ferreira J, Costa D, Cui Z, Passarinha LA, Sousa Â. Maximization of the Minicircle DNA Vaccine Production Expressing SARS-CoV-2 RBD. Biomedicines 2022; 10:biomedicines10050990. [PMID: 35625727 PMCID: PMC9139101 DOI: 10.3390/biomedicines10050990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleic acid vaccines have been proven to be a revolutionary technology to induce an efficient, safe and rapid response against pandemics, like the coronavirus disease (COVID-19). Minicircle DNA (mcDNA) is an innovative vector more stable than messenger RNA and more efficient in cell transfection and transgene expression than conventional plasmid DNA. This work describes the construction of a parental plasmid (PP) vector encoding the receptor-binding domain (RBD) of the S protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the use of the Design of Experiments (DoE) to optimize PP recombination into mcDNA vector in an orbital shaker. First, the results revealed that host cells should be grown at 42 °C and the Terrific Broth (TB) medium should be replaced by Luria Broth (LB) medium containing 0.01% L-arabinose for the induction step. The antibiotic concentration, the induction time, and the induction temperature were used as DoE inputs to maximize the % of recombined mcDNA. The quadratic model was statistically significant (p-value < 0.05) and presented a non-significant lack of fit (p-value > 0.05) with a suitable coefficient of determination. The optimal point was validated using 1 h of induction, at 30 °C, without the presence of antibiotics, obtaining 93.87% of recombined mcDNA. Based on these conditions, the production of mcDNA was then maximized in a mini-bioreactor platform. The most favorable condition obtained in the bioreactor was obtained by applying 60% pO2 in the fermentation step during 5 h and 30% pO2 in the induction step, with 0.01% L-arabinose throughout 5 h. The yield of mcDNA-RBD was increased to a concentration of 1.15 g/L, when compared to the orbital shaker studies (16.48 mg/L). These data revealed that the bioreactor application strongly incremented the host biomass yield and simultaneously improved the recombination levels of PP into mcDNA. Altogether, these results contributed to improving mcDNA-RBD biosynthesis to make the scale-up of mcDNA manufacture simpler, cost-effective, and attractive for the biotechnology industry.
Collapse
Affiliation(s)
- Cathy Ventura
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (C.V.); (D.E.); (A.M.G.); (J.B.-F.); (D.C.)
| | - Dalinda Eusébio
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (C.V.); (D.E.); (A.M.G.); (J.B.-F.); (D.C.)
| | - Ana M. Gonçalves
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (C.V.); (D.E.); (A.M.G.); (J.B.-F.); (D.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Barroca-Ferreira
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (C.V.); (D.E.); (A.M.G.); (J.B.-F.); (D.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Diana Costa
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (C.V.); (D.E.); (A.M.G.); (J.B.-F.); (D.C.)
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Luís A. Passarinha
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (C.V.); (D.E.); (A.M.G.); (J.B.-F.); (D.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
- Correspondence: (L.A.P.); (Â.S.); Tel.: +35-12-7532-9069 (L.A.P.); +35-12-7532-9052 (Â.S.)
| | - Ângela Sousa
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (C.V.); (D.E.); (A.M.G.); (J.B.-F.); (D.C.)
- Correspondence: (L.A.P.); (Â.S.); Tel.: +35-12-7532-9069 (L.A.P.); +35-12-7532-9052 (Â.S.)
| |
Collapse
|
6
|
Shafaati M, Saidijam M, Soleimani M, Hazrati F, Mirzaei R, Amirheidari B, Tanzadehpanah H, Karampoor S, Kazemi S, Yavari B, Mahaki H, Safaei M, Rahbarizadeh F, Samadi P, Ahmadyousefi Y. A brief review on DNA vaccines in the era of COVID-19. Future Virol 2021; 17:10.2217/fvl-2021-0170. [PMID: 34858516 PMCID: PMC8629371 DOI: 10.2217/fvl-2021-0170] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023]
Abstract
This article provides a brief overview of DNA vaccines. First, the basic DNA vaccine design strategies are described, then specific issues related to the industrial production of DNA vaccines are discussed, including the production and purification of DNA products such as plasmid DNA, minicircle DNA, minimalistic, immunologically defined gene expression (MIDGE) and Doggybone™. The use of adjuvants to enhance the immunogenicity of DNA vaccines is then discussed. In addition, different delivery routes and several physical and chemical methods to increase the efficacy of DNA delivery into cells are explained. Recent preclinical and clinical trials of DNA vaccines for COVID-19 are then summarized. Lastly, the advantages and obstacles of DNA vaccines are discussed.
Collapse
Affiliation(s)
- Maryam Shafaati
- Department of Microbiology, Faculty of Sciences, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Massoud Saidijam
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshte Hazrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Tanzadehpanah
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bahram Yavari
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Samadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Alves CPA, Prazeres DMF, Monteiro GA. Minicircle Biopharmaceuticals–An Overview of Purification Strategies. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.612594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Minicircles are non-viral delivery vectors with promising features for biopharmaceutical applications. These vectors are plasmid-derived circular DNA molecules that are obtained in vivo in Escherichia coli by the intramolecular recombination of a parental plasmid, which generates a minicircle containing the eukaryotic therapeutic cassette of interest and a miniplasmid containing the prokaryotic backbone. The production process results thus in a complex mixture, which hinders the isolation of minicircle molecules from other DNA molecules. Several strategies have been proposed over the years to meet the challenge of purifying and obtaining high quality minicircles in compliance with the regulatory guidelines for therapeutic use. In minicircle purification, the characteristics of the strain and parental plasmid used have a high impact and strongly affect the purification strategy that can be applied. This review summarizes the different methods developed so far, focusing not only on the purification method itself but also on its dependence on the upstream production strategy used.
Collapse
|
8
|
Almeida AM, Eusébio D, Queiroz JA, Sousa F, Sousa Â. Minicircle DNA Vaccine Purification and E7 Antigen Expression Assessment. Methods Mol Biol 2020; 2197:207-222. [PMID: 32827139 DOI: 10.1007/978-1-0716-0872-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Human papillomavirus (HPV ) has been extensively associated with the development of cervical cancer due to the expression of oncoproteins like E7. This protein can interfere with pRB tumor suppressor activity, enabling the uncontrolled proliferation of abnormal cells. DNA vaccines are known as the third-generation vaccines, providing the ability of targeting viral infections such as HPV in a preventive and therapeutic way. Although current strategies make use of plasmid DNA (pDNA) as the vector of choice to be used as a DNA vaccine, minicircle DNA (mcDNA) has been proving its added value as a non-viral DNA vector by demonstrating higher expression efficiency and increased biosafety than the pDNA. However, due to its innovative profile, few methodologies have been explored and implemented for the manufacture of this molecule. This chapter describes the detailed procedures for the production, extraction, and purification of supercoiled E7-mcDNA vaccine, by using size-exclusion chromatography to obtain mcDNA with a purity degree which meets the regulatory agency criteria. Then, the assessment of E7 antigen expression through immunocytochemistry is also described.
Collapse
Affiliation(s)
- Ana M Almeida
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Dalinda Eusébio
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Almeida AM, Queiroz JA, Sousa F, Sousa Â. Minicircle DNA: The Future for DNA-Based Vectors? Trends Biotechnol 2020; 38:1047-1051. [PMID: 32409109 DOI: 10.1016/j.tibtech.2020.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/16/2023]
Abstract
Minicircle DNA (mcDNA) is a smaller and safer version of non-viral DNA vectors that results from a cutting-edge in vivo recombination process to excise prokaryotic sequences from plasmid DNA (pDNA). Considering the molecule's potential and increasing interest as a non-viral DNA-based therapeutic, biomanufacturing methodologies need to be improved, especially in downstream processing.
Collapse
Affiliation(s)
- Ana Margarida Almeida
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João António Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
10
|
Quality assessment of supercoiled minicircle DNA by cadaverine-modified analytical chromatographic monolith. J Pharm Biomed Anal 2020; 180:113037. [DOI: 10.1016/j.jpba.2019.113037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/19/2023]
|
11
|
Almeida AM, Eusébio D, Queiroz JA, Sousa F, Sousa A. The use of size-exclusion chromatography in the isolation of supercoiled minicircle DNA from Escherichia coli lysate. J Chromatogr A 2019; 1609:460444. [PMID: 31455515 DOI: 10.1016/j.chroma.2019.460444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022]
Abstract
Minicircle DNA (mcDNA) is the new cutting-edge technology which researchers have been exploring for gene therapy and DNA vaccination. Although it presents enormous advantages in comparison to conventional plasmid DNA regarding bioactivity and safety, its challenging isolation from parental plasmid and miniplasmid has been setting back its launching in biomedical sciences. In this work, it is demonstrated the use of a simple size exclusion chromatographic method for the isolation of supercoiled mcDNA. Sephacryl S-1000 SF matrix was explored under different conditions (flow, peak fractionation volume and sample loading) to achieve the best performance and retrieve a mcDNA sample devoid of other bacterial contaminants or plasmid species resultant from the recombination process. This isolation methodology resulted in 66.7% of mcDNA recovery with 98.1% of purity. In addition, to show the robustness of the method, the potential of using this matrix for the isolation of a larger mcDNA was also evaluated. Upon adjusting the flow or the column volume, the larger mcDNA molecule was also successfully isolated. Overall, a simple and effective strategy has been established for the isolation of supercoiled mcDNA, underlining the potential of size exclusion chromatography in mcDNA separation.
Collapse
Affiliation(s)
- A M Almeida
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - D Eusébio
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - F Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - A Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
12
|
Şişli HB, Hayal TB, Seçkin S, Şenkal S, Kıratlı B, Şahin F, Doğan A. Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1237:17-28. [PMID: 31728915 DOI: 10.1007/5584_2019_439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The identification of human embryonic stem cells and reprogramming technology to obtain induced pluripotent stem cells from adult somatic cells have provided unique opportunity to create human disease models, gene editing strategies and cell therapy options.Development of pluripotent stem cells from somatic cells and genomic manipulation tools enabled to use site specific nucleases in the cell therapy research. Identification of efficient gene manipulation, safe differentiation and use will provide a novel strategy to treat many diseases in the near future. Current available registered clinical trials clearly indicate the need for pluripotent stem cell and gene therapy treatment options. Although gene editing based pluripotent stem cell research is a popular field for research worldwide, improvement of clinical approaches for treatment still remains to be investigated. In this review, we summarized the current situation of gene editing based pluripotent cell therapy developments and applications in clinics.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selin Seçkin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Binnur Kıratlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
13
|
Gaspar VM, Cruz C, Queiroz JA, Pichon C, Correia IJ, Sousa F. Highly selective capture of minicircle DNA biopharmaceuticals by a novel zinc-histidine peptide conjugate. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.10.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Ata-Abadi NS, Rezaei N, Dormiani K, Nasr-Esfahani MH. Production of Minicircle DNA Vectors Using Site-Specific Recombinases. Methods Mol Biol 2017; 1642:325-339. [PMID: 28815509 DOI: 10.1007/978-1-4939-7169-5_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Minicircle DNA vectors are plasmid derivatives free of bacterial elements. These vectors are mostly provided from common plasmids via recombination by site-specific recombinases in E. coli. Absence of bacterial backbone in minicircle vectors results in high-level and persistent expression of transgene in comparison with conventional plasmids and provides promising vehicles for gene therapy and vaccination. Here we describe the production of replicative minicircle DNA vectors using the PBAD/araC system expressing ΦC31 integrase in E. coli.
Collapse
Affiliation(s)
- Nafiseh Sanei Ata-Abadi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran.
| | - Naeimeh Rezaei
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
16
|
Huang P, Zhao J, Wei C, Hou X, Chen P, Tan Y, He CY, Wang Z, Chen ZY. Erythrocyte membrane based cationic polymer-mcDNA complexes as an efficient gene delivery system. Biomater Sci 2017; 5:120-127. [DOI: 10.1039/c6bm00638h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An erythrocyte membrane based gene delivery system presents high transfection efficiency and negligible cytotoxicity.
Collapse
Affiliation(s)
- Ping Huang
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Jing Zhao
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Chiju Wei
- Multidisciplinary Research Center
- Shantou 515063
- P. R. China
| | - Xiaohu Hou
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Pingzhang Chen
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging
- Shenzhen Key Laboratory for MRI
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Cheng-Yi He
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Zhiyong Wang
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Zhi-Ying Chen
- Center for Gene and Cell Engineering
- Institute of Biomedicine and Biotechnology
- Shenzhen Institute of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| |
Collapse
|
17
|
Zhao J, Huang P, Wang Z, Tan Y, Hou X, Zhang L, He CY, Chen ZY. Synthesis of Amphiphilic Poly(β-amino ester) for Efficiently Minicircle DNA Delivery in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19284-19290. [PMID: 27267084 DOI: 10.1021/acsami.6b04412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Minicircle DNA (mcDNA) is a kind of enhanced nonviral DNA vector with excellent profiles in biosafety and transgene expression. Herein, we reported a novel amphiphilic polymer comprising polyethylenimine(PEI) modified Poly(β-amino ester) PEI-PBAE(C16) for efficient mcDNA delivery in vivo. The synthesized polymer could condense mcDNA into nanoscaled structure and exhibited efficient gene transfection ability without detectable cytotoxicity. Importantly, when injected into mouse intraperitoneally, these PEI-PBAE(C16) nanocomplexes were able to result in high level of trangene expression which lasted at least 72 h. Overall, these results demonstrated the PEI-PBAE(C16) can mediate effective and safe gene delivery in vivo with clinical application potential.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Ping Huang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Zhiyong Wang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Xiaohu Hou
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Liping Zhang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Cheng-Yi He
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Zhi-Ying Chen
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| |
Collapse
|
18
|
The recombined cccDNA produced using minicircle technology mimicked HBV genome in structure and function closely. Sci Rep 2016; 6:25552. [PMID: 27174254 PMCID: PMC4865889 DOI: 10.1038/srep25552] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
HBV covalently closed circular DNA (cccDNA) is drug-resistant and responsible for viral persistence. To facilitate the development of anti-cccDNA drugs, we developed a minicircle DNA vector (MC)-based technology to produce large quantity of recombined cccDNA (rcccDNA) resembling closely to its wild-type counterpart both in structure and function. The rcccDNA differed to the wild-type cccDNA (wtcccDNA) only in that it carried an extra 36-bp DNA recombinant product attR upstream of the preC/C gene. Using a procedure similar to standard plasmid production, milligrams of rcccDNA can be generated in common laboratories conveniently. The rcccDNA demonstrated many essential biological features of wtcccDNA, including: (1) undergoing nucleation upon nucleus entry; (2) serving as template for production of all HBV RNAs and proteins; (3) deriving virions capable of infecting tree shrew, and subsequently producing viral mRNAs, proteins, rcccDNA and infectious virions. As an example to develop anti-cccDNA drugs, we used the Crispr/Cas9 system to provide clear-cut evidence that rcccDNA was cleaved by this DNA editing tool in vitro. In summary, we have developed a convenient technology to produce large quantity of rcccDNA as a surrogate of wtcccDNA for investigating HBV biology and developing treatment to eradicate this most wide-spreading virus.
Collapse
|
19
|
Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016; 11:e0152102. [PMID: 27010368 PMCID: PMC4807104 DOI: 10.1371/journal.pone.0152102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.
Collapse
Affiliation(s)
- Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
- Manipal University, Manipal, India
| | | | - Narayanarao Yathindra
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
| |
Collapse
|