1
|
Hong J, Sohn KC, Park HW, Jeon H, Ju E, Lee JG, Lee JS, Rho J, Hur GM, Ro H. All-in-one IQ toggle switches with high versatilities for fine-tuning of transgene expression in mammalian cells and tissues. Mol Ther Methods Clin Dev 2024; 32:101202. [PMID: 38374964 PMCID: PMC10875299 DOI: 10.1016/j.omtm.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
The transgene toggling device is recognized as a powerful tool for gene- and cell-based biological research and precision medicine. However, many of these devices often operate in binary mode, exhibit unacceptable leakiness, suffer from transgene silencing, show cytotoxicity, and have low potency. Here, we present a novel transgene switch, SIQ, wherein all the elements for gene toggling are packed into a single vector. SIQ has superior potency in inducing transgene expression in response to tebufenozide compared with the Gal4/UAS system, while completely avoiding transgene leakiness. Additionally, the ease and versatility of SIQ make it possible with a single construct to perform transient transfection, establish stable cell lines by targeting a predetermined genomic locus, and simultaneously produce adenovirus for transduction into cells and mammalian tissues. Furthermore, we integrated a cumate switch into SIQ, called SIQmate, to operate a Boolean AND logic gate, enabling swift toggling-off of the transgene after the removal of chemical inducers, tebufenozide and cumate. Both SIQ and SIQmate offer precise transgene toggling, making them adjustable for various researches, including synthetic biology, genome engineering, and therapeutics.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Kyung-Cheol Sohn
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Hye-Won Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Eunjin Ju
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Jae-Geun Lee
- Microbiome Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| |
Collapse
|
2
|
Tran MY, Kamen AA. Production of Lentiviral Vectors Using a HEK-293 Producer Cell Line and Advanced Perfusion Processing. Front Bioeng Biotechnol 2022; 10:887716. [PMID: 35774066 PMCID: PMC9237754 DOI: 10.3389/fbioe.2022.887716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
The field of lentiviral vector (LV) production continues to face challenges in large-scale manufacturing, specifically regarding producing enough vectors to meet the demand for treating patients as well as producing high and consistent quality of vectors for efficient dosing. Two areas of interest are the use of stable producer cell lines, which facilitates the scalability of LV production processes as well as making the process more reproducible and robust for clinical applications, and the search of a cell retention device scalable to industrial-size bioreactors. This manuscript investigates a stable producer cell line for producing LVs with GFP as the transgene at shake flask scale and demonstrates LV production at 3L bioreactor scale using the Tangential Flow Depth Filtration (TFDF) as a cell retention device in perfusion mode. Cumulative functional yields of 3.3 x 1011 and 3.9 x 1011 transducing units were achieved; the former over 6 days of LV production with 16.3 L of perfused media and the latter over 4 days with 16 L. In comparing to a previously published value that was achieved using the same stable producer cell line and the acoustic filter as the perfusion device at the same bioreactor scale, the TFDF perfusion run produced 1.5-fold higher cumulative functional yield. Given its scale-up potential, the TFDF is an excellent candidate to be further evaluated to determine optimized conditions that can ultimately support continuous manufacturing of LVs at large scale.
Collapse
|
3
|
Chen X, Lungova V, Zhang H, Mohanty C, Kendziorski C, Thibeault SL. Novel immortalized human vocal fold epithelial cell line: In vitro tool for mucosal biology. FASEB J 2021; 35:e21243. [PMID: 33428261 PMCID: PMC7839467 DOI: 10.1096/fj.202001423r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Study of vocal fold (VF) mucosal biology requires essential human vocal fold epithelial cell (hVFE) lines for use in appropriate model systems. We steadily transfected a retroviral construct containing human telomerase reverse transcriptase (hTERT) into primary normal hVFE to establish a continuously replicating hVFE cell line. Immortalized hVFE across passages have cobblestone morphology, express epithelial markers cytokeratin 4, 13 and 14, induced hTERT gene and protein expression, have similar RNAseq profiling, and can continuously grow for more than 8 months. DNA fingerprinting and karyotype analysis demonstrated that immortalized hVFE were consistent with the presence of a single cell line. Validation of the hVFE, in a three‐dimensional in vitro VF mucosal construct revealed a multilayered epithelial structure with VF epithelial cell markers. Wound scratch assay revealed higher migration capability of the immortalized hVFE on the surface of collagen‐fibronectin and collagen gel containing human vocal fold fibroblasts (hVFF). Collectively, our report demonstrates the first immortalized hVFE from true VFs providing a novel and invaluable tool for the study of epithelial cell‐fibroblast interactions that dictate disease and health of this specialized tissue.
Collapse
Affiliation(s)
- Xia Chen
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin Madison, Madison, WI, USA
| | - Vlasta Lungova
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin Madison, Madison, WI, USA
| | - Haiyan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Chitrasen Mohanty
- Department of Biostatistics & Medical Informatics, University of Wisconsin Madison, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics & Medical Informatics, University of Wisconsin Madison, Madison, WI, USA
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
4
|
Sagoo P, Gaspar HB. The transformative potential of HSC gene therapy as a genetic medicine. Gene Ther 2021; 30:197-215. [PMID: 34040164 DOI: 10.1038/s41434-021-00261-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) are precursor cells that give rise to blood, immune and tissue-resident progeny in humans. Their position at the starting point of hematopoiesis offers a unique therapeutic opportunity to treat certain hematologic diseases by implementing corrective changes that are subsequently directed through to multiple cell lineages. Attempts to exploit HSCs clinically have evolved over recent decades, from initial approaches that focused on transplantation of healthy donor allogeneic HSCs to treat rare inherited monogenic hematologic disorders, to more contemporary genetic modification of autologous HSCs offering the promise of benefits to a wider range of diseases. We are on the cusp of an exciting new era as the transformative potential of HSC gene therapy to offer durable delivery of gene-corrected cells to a range of tissues and organs, including the central nervous system, is beginning to be realized. This article reviews the rationale for targeting HSCs, the approaches that have been used to date for delivering therapeutic genes to these cells, and the latest technological breakthroughs in manufacturing and vector design. The challenges faced by the biotechnology cell and gene therapy sector in the commercialization of HSC gene therapy are also discussed.
Collapse
|
5
|
Luis A. The Old and the New: Prospects for Non-Integrating Lentiviral Vector Technology. Viruses 2020; 12:v12101103. [PMID: 33003492 PMCID: PMC7600637 DOI: 10.3390/v12101103] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors have been developed and used in multiple gene and cell therapy applications. One of their main advantages over other vectors is the ability to integrate the genetic material into the genome of the host. However, this can also be a disadvantage as it may lead to insertional mutagenesis. To address this, non-integrating lentiviral vectors (NILVs) were developed. To generate NILVs, it is possible to introduce mutations in the viral enzyme integrase and/or mutations on the viral DNA recognised by integrase (the attachment sites). NILVs are able to stably express transgenes from episomal DNA in non-dividing cells or transiently if the target cells divide. It has been shown that these vectors are able to transduce multiple cell types and tissues. These characteristics make NILVs ideal vectors to use in vaccination and immunotherapies, among other applications. They also open future prospects for NILVs as tools for the delivery of CRISPR/Cas9 components, a recent revolutionary technology now widely used for gene editing and repair.
Collapse
Affiliation(s)
- Apolonia Luis
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
6
|
Ferreira MV, Cabral ET, Coroadinha AS. Progress and Perspectives in the Development of Lentiviral Vector Producer Cells. Biotechnol J 2020; 16:e2000017. [PMID: 32686901 DOI: 10.1002/biot.202000017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Indexed: 12/12/2022]
Abstract
After two decades of clinical trials, gene therapy demonstrated effectiveness in the treatment of a series of diseases. Currently, several gene therapy products are approved and used in the clinic. Lentiviral vectors (LVs) are one of the most used transfer vehicles to deliver genetic material and the vector of choice to modify hematopoietic cells to correct primary immunodeficiencies, hemoglobinopathies, and leukodystrophies. LVs are also widely used to modify T cells to treat cancers in immunotherapies (e.g., chimeric antigen receptors T cell therapies, CAR-T). In genome editing, LVs are used to deliver sequence-specific designer nucleases and DNA templates. The approval LV gene therapy products (e.g., Kymriah, for B-cell Acute lymphoblastic leukemia treatment; LentiGlobin, for β-thalassemia treatment) reinforced the need to improve their bioprocess manufacturing. The production has been mostly dependent on transient transfection. Production from stable cell lines facilitate GMP compliant processes, providing an easier scale-up, reproducibility and cost-effectiveness. The establishment of stable LV producer cell lines presents, however, several difficulties, with the cytotoxicity of some of the vector proteins being a major challenge. Genome editing technologies pose additional challenges to LV producer cells. Herein the major bottlenecks, recent achievements, and perspectives in the development of LV stable cell lines are revised.
Collapse
Affiliation(s)
- Mariana V Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Elisa T Cabral
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,The Discoveries centre for Regenerative and Precision Medicine, Nova University Lisbon, Oeiras Campus, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
7
|
Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization. Gene Ther 2018; 25:454-472. [PMID: 30190607 PMCID: PMC6478381 DOI: 10.1038/s41434-018-0039-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Lentiviral vector mobilization following HIV-1 infection of vector-transduced cells poses biosafety risks to vector-treated patients and their communities. The self-inactivating (SIN) vector design has reduced, however, not abolished mobilization of integrated vector genomes. Furthermore, an earlier study demonstrated the ability of the major product of reverse transcription, a circular SIN HIV-1 vector comprising a single- long terminal repeat (LTR) to support production of high vector titers. Here, we demonstrate that configuring the internal vector expression cassette in opposite orientation to the LTRs abolishes mobilization of SIN vectors. This additional SIN mechanism is in part premised on induction of host PKR response to double-stranded RNAs comprised of mRNAs transcribed from cryptic transcription initiation sites around 3'SIN-LTR's and the vector internal promoter. As anticipated, PKR response following transfection of opposite orientation vectors, negatively affects their titers. Importantly, shRNA-mediated knockdown of PKR rendered titers of SIN HIV-1 vectors comprising opposite orientation expression cassettes comparable to titers of conventional SIN vectors. High-titer vectors carrying an expression cassette in opposite orientation to the LTRs efficiently delivered and maintained high levels of transgene expression in mouse livers. This study establishes opposite orientation expression cassettes as an additional PKR-dependent SIN mechanism that abolishes vector mobilization from integrated and episomal SIN lentiviral vectors.
Collapse
|
8
|
Stephens CJ, Kashentseva E, Everett W, Kaliberova L, Curiel DT. Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther 2018; 25:139-156. [PMID: 29588497 PMCID: PMC5919923 DOI: 10.1038/s41434-018-0003-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
Serum deficiency diseases such as alpha-1-antitrypsin deficiency are characterized by reduced function of serum proteins, caused by deleterious genetic mutations. These diseases are promising targets for genetic interventions. Gene therapies using viral vectors have been used to introduce correct copies of the disease-causing gene in preclinical and clinical studies. However, these studies highlighted that disease-alleviating gene expression is lost over time. Integration into a specific chromosomal site could provide lasting therapeutic expression to overcome this major limitation. Additionally, targeted integration could avoid detrimental mutagenesis associated with integrative vectors, such as tumorigenesis or functional gene perturbation. To test if adenoviral vectors can facilitate long-term gene expression through targeted integration, we somatically incorporated the human alpha-1-antitrypsin gene into the ROSA26 "safe harbor" locus in murine livers, using CRISPR/Cas9. We found adenoviral-mediated delivery of CRISPR/Cas9 achieved gene editing outcomes persisting over 200 days. Furthermore, gene knock-in maintained greater levels of the serum protein than provided by episomal expression. Importantly, our "knock-in" approach is generalizable to other serum proteins and supports in vivo cDNA replacement therapy to achieve stable gene expression.
Collapse
Affiliation(s)
- Calvin J Stephens
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
- Molecular Genetics and Genomics Program, Division of Biology and Biomedical Sciences, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8226, St. Louis, MO, 63110, USA
| | - Elena Kashentseva
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - William Everett
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Lyudmila Kaliberova
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - David T Curiel
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
- Department of Radiation Oncology, Biologic Therapeutics Center, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, Li F, Xiao W, Zhao H, Dai S, Qin X, Mo X, Young WB, Khalili K, Hu W. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Mol Ther 2017; 25:1168-1186. [PMID: 28366764 PMCID: PMC5417847 DOI: 10.1016/j.ymthe.2017.03.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/05/2023] Open
Abstract
CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Endonucleases/genetics
- Endonucleases/metabolism
- Gene Editing/methods
- Genetic Therapy/methods
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Genome, Viral
- HIV Infections/pathology
- HIV Infections/therapy
- HIV Infections/virology
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- Mice
- Mice, Transgenic
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Proviruses/genetics
- Proviruses/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/enzymology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Chaoran Yin
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Ting Zhang
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xiying Qu
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yonggang Zhang
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Raj Putatunda
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Xiao
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Fang Li
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Weidong Xiao
- Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Science, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Shen Dai
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xuebin Qin
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Won-Bin Young
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
10
|
Yin C, Zhang T, Li F, Yang F, Putatunda R, Young WB, Khalili K, Hu W, Zhang Y. Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of AIDS. AIDS 2016; 30:1163-74. [PMID: 26990633 PMCID: PMC4851589 DOI: 10.1097/qad.0000000000001079] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE There is an urgent need for the development of HIV-1 genome eradication strategies that lead to a permanent cure for HIV-1/AIDS. We previously reported that four guide RNAs (gRNAs) targeting HIV-1 long terminal repeats (LTR) effectively eradicated the entire HIV-1 genome. In this study, we sought to identify the best gRNAs targeting HIV-1 LTR and viral structural region and optimize gRNA pairing that can efficiently eradicate the HIV-1 genome. DESIGN Highly specific gRNAs were designed using bioinformatics tools, and their capacity of guiding CRISPR-associated system 9 to cleave HIV-1 proviral DNA was evaluated using high-throughput HIV-1 luciferase reporter assay and rapid Direct-PCR genotyping. METHODS The target seed sequences for each gRNA were cloned into lentiviral vectors. HEK293T cells were cotransfected with a pEcoHIV-NL4-3-firefly-luciferase reporter vector (1 : 20) over lentiviral vectors carrying CRISPR-associated system 9 and single gRNA or various combinations of gRNAs. The EcoHIV DNA cleaving efficiency was evaluated by Direct-PCR genotyping, and the EcoHIV transcription/replication activity was examined by a luciferase reporter assay. RESULTS Most of the designed gRNAs are effective to eliminate the predicted HIV-1 genome sequence between the selected two target sites. This is evidenced by the presence of PCR genotypic deletion/insertion and the decrease of luciferase reporter activity. In particular, a combination of viral structural gRNAs with LTR gRNAs provided a higher efficiency of genome eradication and an easier approach for PCR genotyping. CONCLUSION Our screening strategy can specifically and effectively identify gRNAs targeting HIV-1 LTR and structural region to excise proviral HIV-1 from the host genome.
Collapse
Affiliation(s)
- Chaoran Yin
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| | - Ting Zhang
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| | - Fang Li
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| | - Fan Yang
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| | - Raj Putatunda
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| | - Won-Bin Young
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| | - Yonggang Zhang
- Department of Neuroscience, Center for Neurovirology and The Comprehensive NeuroAIDS Center, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| |
Collapse
|
11
|
van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet 2016; 25:R42-52. [PMID: 26519140 PMCID: PMC4802372 DOI: 10.1093/hmg/ddv451] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022] Open
Abstract
Promising results in several clinical studies have emphasized the potential of gene therapy to address important medical needs and initiated a surge of investments in drug development and commercialization. This enthusiasm is driven by positive data in clinical trials including gene replacement for Hemophilia B, X-linked Severe Combined Immunodeficiency, Leber's Congenital Amaurosis Type 2 and in cancer immunotherapy trials for hematological malignancies using chimeric antigen receptor T cells. These results build on the recent licensure of the European gene therapy product Glybera for the treatment of lipoprotein lipase deficiency. The progress from clinical development towards product licensure of several programs presents challenges to gene therapy product manufacturing. These include challenges in viral vector-manufacturing capacity, where an estimated 1-2 orders of magnitude increase will likely be needed to support eventual commercial supply requirements for many of the promising disease indications. In addition, the expanding potential commercial product pipeline and the continuously advancing development of recombinant viral vectors for gene therapy require that products are well characterized and consistently manufactured to rigorous tolerances of purity, potency and safety. Finally, there is an increase in regulatory scrutiny that affects manufacturers of investigational drugs for early-phase clinical trials engaged in industry partnerships. Along with the recent increase in biopharmaceutical funding in gene therapy, industry partners are requiring their academic counterparts to meet higher levels of GMP compliance at earlier stages of clinical development. This chapter provides a brief overview of current progress in the field and discusses challenges in vector manufacturing.
Collapse
Affiliation(s)
- Johannes C M van der Loo
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA and
| | | |
Collapse
|
12
|
Merten OW, Hebben M, Bovolenta C. Production of lentiviral vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16017. [PMID: 27110581 PMCID: PMC4830361 DOI: 10.1038/mtm.2016.17] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented.
Collapse
Affiliation(s)
| | | | - Chiara Bovolenta
- New Technologies Unit, Research Division, MolMed S.p.A. , Milan, Italy
| |
Collapse
|
13
|
Gassei K, Orwig KE. Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 2015; 105:256-66. [PMID: 26746133 DOI: 10.1016/j.fertnstert.2015.12.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Infertility is a prevalent condition that has insidious impacts on the infertile individuals, their families, and society, which extend far beyond the inability to have a biological child. Lifestyle changes, fertility treatments, and assisted reproductive technology (ART) are available to help many infertile couples achieve their reproductive goals. All of these technologies require that the infertile individual is able to produce at least a small number of functional gametes (eggs or sperm). It is not possible for a person who does not produce gametes to have a biological child. This review focuses on the infertile man and describes several stem cell-based methods and gene therapy approaches that are in the research pipeline and may lead to new fertility treatment options for men with azoospermia.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|