1
|
Holley SM, Reidling JC, Cepeda C, Wu J, Lim RG, Lau A, Moore C, Miramontes R, Fury B, Orellana I, Neel M, Coleal-Bergum D, Monuki ES, Bauer G, Meshul CK, Levine MS, Thompson LM. Transplanted human neural stem cells rescue phenotypes in zQ175 Huntington's disease mice and innervate the striatum. Mol Ther 2023; 31:3545-3563. [PMID: 37807512 PMCID: PMC10727970 DOI: 10.1016/j.ymthe.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Huntington's disease (HD), a genetic neurodegenerative disorder, primarily affects the striatum and cortex with progressive loss of medium-sized spiny neurons (MSNs) and pyramidal neurons, disrupting cortico-striatal circuitry. A promising regenerative therapeutic strategy of transplanting human neural stem cells (hNSCs) is challenged by the need for long-term functional integration. We previously described that, with short-term hNSC transplantation into the striatum of HD R6/2 mice, human cells differentiated into electrophysiologically active immature neurons, improving behavior and biochemical deficits. Here, we show that long-term (8 months) implantation of hNSCs into the striatum of HD zQ175 mice ameliorates behavioral deficits, increases brain-derived neurotrophic factor (BDNF) levels, and reduces mutant huntingtin (mHTT) accumulation. Patch clamp recordings, immunohistochemistry, single-nucleus RNA sequencing (RNA-seq), and electron microscopy demonstrate that hNSCs differentiate into diverse neuronal populations, including MSN- and interneuron-like cells, and form connections. Single-nucleus RNA-seq analysis also shows restoration of several mHTT-mediated transcriptional changes of endogenous striatal HD mouse cells. Remarkably, engrafted cells receive synaptic inputs, innervate host neurons, and improve membrane and synaptic properties. Overall, the findings support hNSC transplantation for further evaluation and clinical development for HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Alice Lau
- Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Cindy Moore
- Portland VA Medical Center, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Iliana Orellana
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Michael Neel
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Charles K Meshul
- Portland VA Medical Center, Portland, OR 97239, USA; Oregon Health & Science University, Department of Behavioral Neuroscience and Pathology, Portland, OR 97239, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
3
|
Keck MK, Sill M, Wittmann A, Joshi P, Stichel D, Beck P, Okonechnikow K, Sievers P, Wefers AK, Roncaroli F, Avula S, McCabe MG, Hayden JT, Wesseling P, Øra I, Nistér M, Kranendonk MEG, Tops BBJ, Zapotocky M, Zamecnik J, Vasiljevic A, Fenouil T, Meyronet D, von Hoff K, Schüller U, Loiseau H, Figarella-Branger D, Kramm CM, Sturm D, Scheie D, Rauramaa T, Pesola J, Gojo J, Haberler C, Brandner S, Jacques T, Sexton Oates A, Saffery R, Koscielniak E, Baker SJ, Yip S, Snuderl M, Ud Din N, Samuel D, Schramm K, Blattner-Johnson M, Selt F, Ecker J, Milde T, von Deimling A, Korshunov A, Perry A, Pfister SM, Sahm F, Solomon DA, Jones DTW. Amplification of the PLAG-family genes-PLAGL1 and PLAGL2-is a key feature of the novel tumor type CNS embryonal tumor with PLAGL amplification. Acta Neuropathol 2023; 145:49-69. [PMID: 36437415 PMCID: PMC9807491 DOI: 10.1007/s00401-022-02516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/β-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.
Collapse
Affiliation(s)
- Michaela-Kristina Keck
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Wittmann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Piyush Joshi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pengbo Beck
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Konstantin Okonechnikow
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Martin G McCabe
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - James T Hayden
- Department of Pediatric Hematology and Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, Location VUmc and Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Ingrid Øra
- Department of Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michal Zapotocky
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Alexandre Vasiljevic
- Institut de Pathologie Multisite-Site Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Tanguy Fenouil
- Institut de Pathologie Multisite-Site Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - David Meyronet
- Institut de Pathologie Multisite-Site Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Katja von Hoff
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Hugues Loiseau
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-INSERM U1312 Université de Bordeaux, 146 rue Leo Saignat, Case 76, 33076, Bordeaux, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Tuomas Rauramaa
- Department of Clinical Pathology, Kuopio University Hospital and Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jouni Pesola
- Department of Pediatrics, Pediatric Hematology and Oncology Ward, Kuopio University Hospital and Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Tom Jacques
- Department of Developmental Biology and Cancer, UCL GOS Institute of Child Health, University College London, London, UK
| | - Alexandra Sexton Oates
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Ewa Koscielniak
- Department of Pediatric Oncology/Hematology/Immunology, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, The University of British Colombia, Vancouver, Canada
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - David Samuel
- Department of Pediatric Hematology-Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Kathrin Schramm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arie Perry
- Division of Neuropathology, Department of Pathology, University of California San Francisco (UCSF), 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David A Solomon
- Division of Neuropathology, Department of Pathology, University of California San Francisco (UCSF), 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA.
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Castiglioni V, Faedo A, Onorati M, Bocchi VD, Li Z, Iennaco R, Vuono R, Bulfamante GP, Muzio L, Martino G, Sestan N, Barker RA, Cattaneo E. Dynamic and Cell-Specific DACH1 Expression in Human Neocortical and Striatal Development. Cereb Cortex 2020; 29:2115-2124. [PMID: 29688344 DOI: 10.1093/cercor/bhy092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.
Collapse
Affiliation(s)
- Valentina Castiglioni
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Andrea Faedo
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy.,Cell Biology Unit, Axxam, Bresso-Milan, Italy
| | - Marco Onorati
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy.,Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy.,Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Zhen Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Raffaele Iennaco
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Romina Vuono
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Gaetano P Bulfamante
- Unit of Human Pathology and Developmental Pathology, Department of Health Sciences, Università degli Studi di Milano, San Paolo Hospital, Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, of Psychiatry and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Roger A Barker
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Elena Cattaneo
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| |
Collapse
|
12
|
Cheng C, Fass DM, Folz-Donahue K, MacDonald ME, Haggarty SJ. Highly Expandable Human iPS Cell-Derived Neural Progenitor Cells (NPC) and Neurons for Central Nervous System Disease Modeling and High-Throughput Screening. ACTA ACUST UNITED AC 2017; 92:21.8.1-21.8.21. [PMID: 28075486 DOI: 10.1002/cphg.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reprogramming of human somatic cells into induced pluripotent stem (iPS) cells has greatly expanded the set of research tools available to investigate the molecular and cellular mechanisms underlying central nervous system (CNS) disorders. Realizing the promise of iPS cell technology for the identification of novel therapeutic targets and for high-throughput drug screening requires implementation of methods for the large-scale production of defined CNS cell types. Here we describe a protocol for generating stable, highly expandable, iPS cell-derived CNS neural progenitor cells (NPC) using multi-dimensional fluorescence activated cell sorting (FACS) to purify NPC defined by cell surface markers. In addition, we describe a rapid, efficient, and reproducible method for generating excitatory cortical-like neurons from these NPC through inducible expression of the pro-neural transcription factor Neurogenin 2 (iNgn2-NPC). Finally, we describe methodology for the use of iNgn2-NPC for probing human neuroplasticity and mechanisms underlying CNS disorders using high-content, single-cell-level automated microscopy assays. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Chialin Cheng
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kat Folz-Donahue
- Harvard Stem Cell Institute and Center for Regenerative Medicine Flow Cytometry Core Facility, Massachusetts General Hospital, Boston, Massachusetts.,Currently at FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Marcy E MacDonald
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|