1
|
Hurt SC, Le SQ, Kan SH, Bui QD, Brodt MD, Dickson PI. Antibodies to recombinant human alpha-L-iduronidase prevent disease correction in cortical bone in MPS I mice. Mol Ther Methods Clin Dev 2025; 33:101405. [PMID: 40123743 PMCID: PMC11928967 DOI: 10.1016/j.omtm.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/30/2024] [Indexed: 03/25/2025]
Abstract
Mucopolysaccharidosis I (MPS I) is a lysosomal storage disorder caused by deficiency of the enzyme α-l-iduronidase (IDUA). Failure of enzyme replacement therapy (ERT) to treat skeletal disease may be due to development of anti-IDUA antibodies, found previously to alter tissue distribution of ERT in animal models. To test this hypothesis, immunocompromised (non-obese diabetic [NOD]-severe combined immunodeficiency [SCID]) MPS I mice were treated with weekly ERT from birth (ERT alone). Some mice also received weekly injections of rabbit immunoglobulin G (IgG) against IDUA (immunized rabbit immune globulin [IRIG]) concomitant with ERT, imitating antibodies developed in patients (ERT+IRIG). Mice treated with ERT+IRIG showed lower IDUA activity and higher disease burden than mice treated with ERT alone in most tissues. Femora were harvested at 20 weeks for ex vivo microcomputed tomography (μCT). Femoral cortical bone thickness and cortical bone area in MPS I mice were greater than in unaffected mice. Mice treated with ERT alone had values that were statistically indistinguishable from carrier mice, while mice that received ERT+IRIG had no significant differences compared to vehicle-treated MPS I mice. The data suggests that immune-modulatory or immune-suppressive therapy to prevent or reduce the humoral immune response against ERT may improve treatment of skeletal disease due to MPS I.
Collapse
Affiliation(s)
- Sarah C. Hurt
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Q. Le
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shih-hsin Kan
- Children’s Hospital of Orange County, Orange, CA 92868, USA
| | - Quang D. Bui
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Michael D. Brodt
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
2
|
Risi B, Caria F, Bertella E, Giovanelli G, Gatti S, Poli L, Gazzina S, Leggio U, Bozzoni V, Volonghi I, Allali NA, Ottelli E, Ferrari E, Marrello A, Ricci G, Siciliano G, Padovani A, Filosto M. Management of Pompe disease alongside and beyond ERT: a narrative review. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2025; 44:11-22. [PMID: 40183436 PMCID: PMC11978428 DOI: 10.36185/2532-1900-1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Background Pompe disease is a lysosomal storage disorder that primarily affects muscles, and its natural history has been transformed over the past 20 years by therapies designed to restore the deficient enzyme function, from the first enzyme replacement therapies (ERTs) to the gene therapy currently in development. However, despite these ground-breaking innovations, the importance of a multi-system and rehabilitative approach remains critical, as it addresses the complex systems involved in the disease and optimizes the success of pharmacological treatments. Methods We conducted a narrative review of the current pharmacological treatments approved for Pompe disease, as well as those undergoing clinical trials. We also reviewed international recommendations for managing respiratory, musculoskeletal, and cardiac function specially focusing on the late-onset form. Results There are no universally agreed guidelines for the multidisciplinary management and many recommendations are based on expert consensus and small interventional studies. Nevertheless, combined approaches involving ERT therapy along with specific rehabilitation and nutritional programs appear to yield beneficial effects. Conclusions Pompe disease, one of the first neuromuscular diseases to benefit from the approval of disease-modifying therapies, is a paradigm for the importance of an integrated therapeutic-rehabilitative approach.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | | | - Simonetta Gatti
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
| | | | - Ugo Leggio
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
| | | | | | | | - Elisa Ottelli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | | | - Anna Marrello
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Padovani
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Lu S, Chen K, Song K, Pilewski JM, Gunn BM, Poch KR, Rysavy NM, Vestal BE, Saavedra MT, Kolls JK. Systems serology in cystic fibrosis: Anti-Pseudomonas IgG1 responses and reduced lung function. Cell Rep Med 2023; 4:101210. [PMID: 37852181 PMCID: PMC10591031 DOI: 10.1016/j.xcrm.2023.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
Nearly one-half of patients with cystic fibrosis (CF) carry the homozygous F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene but exhibit variable lung function phenotypes. How adaptive immunity influences their lung function remains unclear, particularly the serological antibody responses to antigens from mucoid Pseudomonas in sera from patients with CF with varying lung function. Sera from patients with CF with reduced lung function show higher anti-outer membrane protein I (OprI) immunoglobulin G1 (IgG1) titers and greater antibody-mediated complement deposition. Induction of anti-OprI antibody isotypes with complement activity enhances lung inflammation in preclinical mouse models. This enhanced inflammation is absent in immunized Rag2-/- mice and is transferrable to unimmunized mice through sera. In a CF cohort undergoing treatment with elexacaftor-tezacaftor-ivacaftor, the declination in anti-OprI IgG1 titers is associated with lung function improvement and reduced hospitalizations. These findings suggest that antibody responses to specific Pseudomonas aeruginosa (PA) antigens worsen lung function in patients with CF.
Collapse
Affiliation(s)
- Shiping Lu
- Department of Immunology and Microbiology, Tulane University, New Orleans, LA, USA; Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kong Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bronwyn M Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA, USA
| | | | | | - Brian E Vestal
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | | | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Ellison S, Parker H, Bigger B. Advances in therapies for neurological lysosomal storage disorders. J Inherit Metab Dis 2023; 46:874-905. [PMID: 37078180 DOI: 10.1002/jimd.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Lysosomal Storage Disorders (LSDs) are a diverse group of inherited, monogenic diseases caused by functional defects in specific lysosomal proteins. The lysosome is a cellular organelle that plays a critical role in catabolism of waste products and recycling of macromolecules in the body. Disruption to the normal function of the lysosome can result in the toxic accumulation of storage products, often leading to irreparable cellular damage and organ dysfunction followed by premature death. The majority of LSDs have no curative treatment, with many clinical subtypes presenting in early infancy and childhood. Over two-thirds of LSDs present with progressive neurodegeneration, often in combination with other debilitating peripheral symptoms. Consequently, there is a pressing unmet clinical need to develop new therapeutic interventions to treat these conditions. The blood-brain barrier is a crucial hurdle that needs to be overcome in order to effectively treat the central nervous system (CNS), adding considerable complexity to therapeutic design and delivery. Enzyme replacement therapy (ERT) treatments aimed at either direct injection into the brain, or using blood-brain barrier constructs are discussed, alongside more conventional substrate reduction and other drug-related therapies. Other promising strategies developed in recent years, include gene therapy technologies specifically tailored for more effectively targeting treatment to the CNS. Here, we discuss the most recent advances in CNS-targeted treatments for neurological LSDs with a particular emphasis on gene therapy-based modalities, such as Adeno-Associated Virus and haematopoietic stem cell gene therapy approaches that encouragingly, at the time of writing are being evaluated in LSD clinical trials in increasing numbers. If safety, efficacy and improved quality of life can be demonstrated, these therapies have the potential to be the new standard of care treatments for LSD patients.
Collapse
Affiliation(s)
- S Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| | - H Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
6
|
Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot" functional cure for HIV infection. J Virus Erad 2023; 9:100316. [PMID: 36915910 PMCID: PMC10005911 DOI: 10.1016/j.jve.2023.100316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of immunoglobulin-based HIV biologics (Ig-HIV), including broadly neutralizing antibodies, to suppress viral replication in pre-clinical and clinical studies illustrates how these molecules can serve as alternatives or adjuncts to antiretroviral therapy for treating HIV infection. However, the current paradigm for delivering Ig-HIVs requires repeated passive infusions, which faces both logistical and economic challenges to broad-scale implementation. One promising way to overcome these obstacles and achieve sustained expression of Ig-HIVs in vivo involves the transfer of Ig-HIV genes to host cells utilizing adeno-associated virus (AAV) vectors. Because AAV vectors are non-pathogenic and their genomes persist in the cell nucleus as episomes, transgene expression can last for as long as the AAV-transduced cell lives. Given the long lifespan of myocytes, skeletal muscle is a preferred tissue for AAV-based immunotherapies aimed at achieving persistent delivery of Ig-HIVs. Consistent with this idea, recent studies suggest that lifelong immunity against HIV can be achieved from a one-time intramuscular dose of AAV/Ig-HIV vectors. However, realizing the promise of this approach faces significant hurdles, including the potential of AAV-delivered Ig-HIVs to induce anti-drug antibodies and the high AAV seroprevalence in the human population. Here we describe how these host immune responses can hinder AAV/Ig-HIV therapies and review current strategies for overcoming these barriers. Given the potential of AAV/Ig-HIV therapy to maintain ART-free virologic suppression and prevent HIV reinfection in people living with HIV, optimizing this strategy should become a greater priority in HIV/AIDS research.
Collapse
Affiliation(s)
- Patricia A. Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
7
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
8
|
Harmatz P, Muenzer J, Ezgü F, Dalén P, Huledal G, Lindqvist D, Gelius SS, Wikén M, Önnestam K, Bröijersén A. Chemically modified recombinant human sulfamidase (SOBI003) in mucopolysaccharidosis IIIA patients: Results from an open, non-controlled, multicenter study. Mol Genet Metab 2022; 136:249-259. [PMID: 35835061 DOI: 10.1016/j.ymgme.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Mucopolysaccharidosis IIIA (MPS IIIA) is an inherited lysosomal storage disorder caused by mutations in the N-sulfoglucosamine sulfohydrolase gene that result in deficient enzymatic degradation of heparan sulfate (HS), resulting in progressive neurodegeneration in early childhood and premature death. A chemically modified variant of recombinant human sulfamidase, SOBI003, has shown to cross the blood-brain barrier (BBB) in mice and achieve pharmacologically relevant levels in cerebrospinal fluid (CSF). We report on a phase 1/2, open-label, first-in-human (FIH) study (NCT03423186) and its extension study (NCT03811028) to evaluate the long-term safety, tolerability, pharmacokinetics/pharmacodynamics (PK/PD) and clinical efficacy of SOBI003 in patients with MPS IIIA for up to 104 weeks. METHODS Six patients aged 1-6 years with confirmed MPS IIIA with developmental age ≥ 12 months received weekly intravenous injections of SOBI003 at 3 mg/kg (Cohort 1, n = 3) or 10 mg/kg (Cohort 2, n = 3). During the extension study, the individual dose of SOBI003 could be adjusted up to 20 mg/kg at the discretion of the investigator. RESULTS SOBI003 was generally well tolerated. Serum concentrations of SOBI003 increased in proportion to dose, and presence in CSF confirmed that SOBI003 crosses the BBB. Anti-drug antibodies (ADA) were detected in serum and CSF in all patients, with subsequent reductions in serum SOBI003 exposure at high ADA titers. SOBI003 exerted a clear PD effect: a mean reduction in HS levels in CSF of 79% was recorded at the last assessment, together with reductions in HS levels in serum and urine. Neurocognitive development age-equivalent scores showed a stabilization of cognition for all patients, whereas no clear overall clinical effect was observed on adaptive behavior, sleep pattern or quality of life. CONCLUSION SOBI003 was well tolerated when administered as weekly intravenous infusions at doses of up to 20 mg/kg for up to 104 weeks. ADA development was common and likely affected both PK and PD parameters. SOBI003 crossed the BBB and showed pharmacological activity on HS in CSF.
Collapse
Affiliation(s)
- Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.
| | - Joseph Muenzer
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fatih Ezgü
- Gazi University Hospital, Ankara, Turkey
| | - Per Dalén
- Swedish Orphan Biovitrum AB, SE-112 76 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Kilavuz S, Kor D, Bulut F, Serbes M, Karagoz D, Altıntaş D, Bişgin A, Şeydaoğlu G, Mungan H. Real-world patient data on immunity and COVID-19 status of patients with MPS, Gaucher, and Pompe diseases from Turkey. Arch Pediatr 2022; 29:415-423. [PMID: 35705384 PMCID: PMC9125140 DOI: 10.1016/j.arcped.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/24/2021] [Accepted: 05/12/2022] [Indexed: 12/19/2022]
|
10
|
Chen M, Tian X, Xu L, Wu R, He H, Zhu H, Xu W, Wei CJ. Membrane tethering of CreER decreases uninduced cell labeling and cytotoxicity while maintaining recombination efficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1078-1091. [PMID: 35228901 PMCID: PMC8851158 DOI: 10.1016/j.omtn.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023]
Abstract
Genetic lineage tracing is indispensable to unraveling the origin, fate, and plasticity of cells. However, the intrinsic leakiness in the CreER-loxP system raises concerns on data interpretation. Here, we reported the generation of a novel dual inducible CreER-loxP system with superior labeling characteristics. This two-component system consists of membrane localized CreER (mCreER: CD8α-FRB-CS-CreER) and TEV protease (mTEVp: CD8α-FKBP-TEVp), which are fusion proteins incorporated with the chemically induced dimerization machinery. Rapamycin and tamoxifen induce sequential dimerization of FKBP and FRB, cleavage of CreER from the membrane, and translocation into the nucleus. The labeling leakiness in Ad293 cells reduced dramatically from more than 70% to less than 5%. This tight labeling feature depends largely on the association of mCreER with HSP90, which conceals the TEV protease cutting site between FRB and CreER and thus preventing uninduced cleavage of the membrane-tethering CreER. Membrane-bound CreER also diminished significantly cytotoxicity. Our studies showed mCreER under the control of the rat insulin promoter increased labeling specificity in MIN6 islet beta-cells. Viability and insulin secretion of MIN6 cells remained intact. Our results demonstrate that this novel system can provide more stringent temporal and spatial control of gene expression and will be useful in cell fate probing.
Collapse
Affiliation(s)
- Mianqiao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Xiong Tian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Liqun Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Ruolan Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Haoming He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Haibao Zhu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Wencan Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chi-ju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
- Corresponding author Chi-ju Wei, PhD, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
11
|
Gragnaniello V, Deodato F, Gasperini S, Donati MA, Canessa C, Fecarotta S, Pascarella A, Spadaro G, Concolino D, Burlina A, Parenti G, Strisciuglio P, Fiumara A, Casa RD. Immune responses to alglucosidase in infantile Pompe disease: recommendations from an Italian pediatric expert panel. Ital J Pediatr 2022; 48:41. [PMID: 35248118 PMCID: PMC8898438 DOI: 10.1186/s13052-022-01219-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Classic infantile onset of Pompe disease (c-IOPD) leads to hypotonia and hypertrophic cardiomyopathy within the first days to weeks of life and, without treatment, patients die of cardiorespiratory failure in their first 1–2 years of life. Enzymatic replacement therapy (ERT) with alglucosidase alfa is the only available treatment, but adverse immune reactions can reduce ERT’s effectiveness and safety. It is therefore very important to identify strategies to prevent and manage these complications. Several articles have been written on this disease over the last 10 years, but no univocal indications have been established. Methods Our study presents a review of the current literature on management of immune responses to ERT in c-IOPD as considered by an Italian study group of pediatric metabolists and immunologists in light of our shared patient experience. Results We summarize the protocols for the management of adverse reactions to ERT, analyzing their advantages and disadvantages, and provide expert recommendations for their optimal management, to the best of current knowledge. However, further studies are needed to improve actual management protocols, which still have several limitations.
Collapse
|
12
|
Muhuri M, Levy DI, Schulz M, McCarty D, Gao G. Durability of transgene expression after rAAV gene therapy. Mol Ther 2022; 30:1364-1380. [PMID: 35283274 PMCID: PMC9077371 DOI: 10.1016/j.ymthe.2022.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/09/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) gene therapy has the potential to transform the lives of patients with certain genetic disorders by increasing or restoring function to affected tissues. Following the initial establishment of transgene expression, it is unknown how long the therapeutic effect will last, although animal and emerging human data show that expression can be maintained for more than 10 years. The durability of therapeutic response is key to long-term treatment success, especially since immune responses to rAAV vectors may prevent re-dosing with the same therapy. This review explores the non-immunological and immunological processes that may limit or improve durability and the strategies that can be used to increase the duration of the therapeutic effect.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Lenders M, Brand E. Mechanisms of Neutralizing Anti-drug Antibody Formation and Clinical Relevance on Therapeutic Efficacy of Enzyme Replacement Therapies in Fabry Disease. Drugs 2021; 81:1969-1981. [PMID: 34748189 PMCID: PMC8602155 DOI: 10.1007/s40265-021-01621-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A (AGAL/GLA) gene. The lysosomal accumulation of the substrates globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) results in progressive renal failure, cardiomyopathy associated with cardiac arrhythmia, and recurrent strokes, significantly limiting life expectancy in affected patients. Current treatment options for FD include recombinant enzyme-replacement therapies (ERTs) with intravenous agalsidase-α (0.2 mg/kg body weight) or agalsidase-β (1 mg/kg body weight) every 2 weeks, facilitating cellular Gb3 clearance and an overall improvement of disease burden. However, ERT can lead to infusion-associated reactions, as well as the formation of neutralizing anti-drug antibodies (ADAs) in ERT-treated males, leading to an attenuation of therapy efficacy and thus disease progression. In this narrative review, we provide a brief overview of the clinical picture of FD and diagnostic confirmation. The focus is on the biochemical and clinical significance of neutralizing ADAs as a humoral response to ERT. In addition, we provide an overview of different methods for ADA measurement and characterization, as well as potential therapeutic approaches to prevent or eliminate ADAs in affected patients, which is representative for other ERT-treated lysosomal storage diseases.
Collapse
Affiliation(s)
- Malte Lenders
- Department of Internal Medicine D, Nephrology, Hypertension and Rheumatology, Interdisciplinary Fabry Center Münster (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
| | - Eva Brand
- Department of Internal Medicine D, Nephrology, Hypertension and Rheumatology, Interdisciplinary Fabry Center Münster (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| |
Collapse
|
14
|
Sevin C, Deiva K. Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Front Mol Biosci 2021; 8:624988. [PMID: 34604300 PMCID: PMC8481654 DOI: 10.3389/fmolb.2021.624988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
There are over 70 known lysosomal storage disorders (LSDs), most caused by mutations in genes encoding lysosomal hydrolases. Central nervous system involvement is a hallmark of the majority of LSDs and, if present, generally determines the prognosis of the disease. Nonetheless, brain disease is currently poorly targeted by available therapies, including systemic enzyme replacement therapy, mostly (but not only) due to the presence of the blood–brain barrier that restricts the access of orally or parenterally administered large molecules into the brain. Thus, one of the greatest and most exciting challenges over coming years will be to succeed in developing effective therapies for the treatment of central nervous system manifestations in LSDs. Over recent years, gene therapy (GT) has emerged as a promising therapeutic strategy for a variety of inherited neurodegenerative diseases. In LSDs, the ability of genetically corrected cells to cross-correct adjacent lysosomal enzyme-deficient cells in the brain after gene transfer might enhance the diffusion of the recombinant enzyme, making this group of diseases a strong candidate for such an approach. Both in vivo (using the administration of recombinant adeno-associated viral vectors) and ex vivo (auto-transplantation of lentiviral vector-modified hematopoietic stem cells-HSCs) strategies are feasible. Promising results have been obtained in an ever-increasing number of preclinical studies in rodents and large animal models of LSDs, and these give great hope of GT successfully correcting neurological defects, once translated to clinical practice. We are now at the stage of treating patients, and various clinical trials are underway, to assess the safety and efficacy of in vivo and ex vivo GT in several neuropathic LSDs. In this review, we summarize different approaches being developed and review the current clinical trials related to neuropathic LSDs, their results (if any), and their limitations. We will also discuss the pitfalls and the remaining challenges.
Collapse
Affiliation(s)
- Caroline Sevin
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
15
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M, Byrne BJ, Tremblay JP. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther 2020; 29:464-488. [PMID: 33309881 PMCID: PMC7854298 DOI: 10.1016/j.ymthe.2020.12.007] [Citation(s) in RCA: 437] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center of Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapeutics, University of Florida, Gainesville, FL, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Salabarria
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
16
|
Sosa AC, Kariuki B, Gan Q, Knutsen AP, Bellone CJ, Guzmán MA, Barrera LA, Tomatsu S, Chauhan AK, Armbrecht E, Montaño AM. Oral immunotherapy tolerizes mice to enzyme replacement therapy for Morquio A syndrome. J Clin Invest 2020; 130:1288-1300. [PMID: 31743109 DOI: 10.1172/jci125607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Immune response to therapeutic enzymes poses a detriment to patient safety and treatment outcome. Enzyme replacement therapy (ERT) is a standard therapeutic option for some types of mucopolysaccharidoses, including Morquio A syndrome caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Current protocols tolerize patients using cytotoxic immunosuppressives, which can cause adverse effects. Here we show development of tolerance in Morquio A mice via oral delivery of peptide or GALNS for 10 days prior to ERT. Our results show that using an immunodominant peptide (I10) or the complete GALNS enzyme to orally induce tolerance to GALNS prior to ERT resulted in several improvements to ERT in mice: (a) decreased splenocyte proliferation after in vitro GALNS stimulation, (b) modulation of the cytokine secretion profile, (c) decrease in GALNS-specific IgG or IgE in plasma, (d) decreased GAG storage in liver, and (e) fewer circulating immune complexes in plasma. This model could be extrapolated to other lysosomal storage disorders in which immune response hinders ERT.
Collapse
Affiliation(s)
- Angela C Sosa
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA.,Instituto de Errores Innatos del Metabolismo, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Barbara Kariuki
- Department of Pediatrics, Division of Allergy and Immunology
| | - Qi Gan
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Alan P Knutsen
- Department of Pediatrics, Division of Allergy and Immunology
| | | | - Miguel A Guzmán
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Luis A Barrera
- Instituto de Errores Innatos del Metabolismo, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Rheumatology, School of Medicine
| | | | - Adriana M Montaño
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Meena NK, Raben N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020; 10:E1339. [PMID: 32962155 PMCID: PMC7564159 DOI: 10.3390/biom10091339] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pompe disease, also known as glycogen storage disease type II, is caused by the lack or deficiency of a single enzyme, lysosomal acid alpha-glucosidase, leading to severe cardiac and skeletal muscle myopathy due to progressive accumulation of glycogen. The discovery that acid alpha-glucosidase resides in the lysosome gave rise to the concept of lysosomal storage diseases, and Pompe disease became the first among many monogenic diseases caused by loss of lysosomal enzyme activities. The only disease-specific treatment available for Pompe disease patients is enzyme replacement therapy (ERT) which aims to halt the natural course of the illness. Both the success and limitations of ERT provided novel insights in the pathophysiology of the disease and motivated the scientific community to develop the next generation of therapies that have already progressed to the clinic.
Collapse
Affiliation(s)
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
18
|
Treatment of mucopolysaccharidosis type II (Hunter syndrome): a Delphi derived practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020; 22:1735-1742. [PMID: 32741966 DOI: 10.1038/s41436-020-0909-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/08/2022] Open
Abstract
Mucopolysaccharidosis, type II (MPS II, MIM 309900) is a severe lysosomal storage disease with multisystem involvement. There is one product approved by the FDA, an enzyme replacement therapy, based on a phase III trial in older, attenuated MPS II individuals. Guidance on treatment of MPS II is lacking, not only in general, but for specific clinical situations. A previous systematic evidence-based review of treatment for MPS II demonstrated insufficient strength in all data analyzed to create a definitive practice guideline based solely on published evidence. The American College of Medical Genetics and Genomics (ACMG) Therapeutics Committee conducted a Delphi study to generate an MPS II clinical practice resource of the treatment for these individuals for the genetics community, based on the evidence-based review and subsequent literature. This report describes the process, including consensus development and areas where consensus could not be obtained due to lack of quality evidence. Recommendations from the Delphi process were generated, and areas were highlighted that need further study to help guide clinical care of these individuals.
Collapse
|
19
|
Glassman FY, Dingman R, Yau HC, Balu-Iyer SV. Biological Function and Immunotherapy Utilizing Phosphatidylserine-based Nanoparticles. Immunol Invest 2020; 49:858-874. [PMID: 32204629 DOI: 10.1080/08820139.2020.1738456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatidylserine (PS) is a naturally occurring anionic phospholipid that is primarily located in the inner leaflet of eukaryotic cell membranes. The role of PS during apoptosis is one of the most studied biological functions of PS. Externalization of PS during apoptosis mediates an "eat me" signal for phagocytic uptake, leading to clearance of apoptotic cells and thus maintain self-tolerance by immunological ignorance. However, an emerging view is that PS exposure-mediated cellular uptake is not an immunologically silent event, but rather promoting an active tolerance towards self and foreign proteins. This biological property of PS has been exploited by parasites and viruses in order to evade immune surveillance of the host immune system. Further, this novel immune regulatory property of PS that results in tolerance induction can be harnessed for clinical applications, such as to treat autoimmune conditions and to reduce immunogenicity of therapeutic proteins. This review attempts to provide an overview of the biological functions of PS in the immune response and its potential therapeutic applications.
Collapse
Affiliation(s)
- Fiona Y Glassman
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA.,Clinical Pharmacology and Pharmacometrics, Currently at CSL Behring , King of Prussia, Pennsylvania, USA
| | - Robert Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA
| | - Helena C Yau
- Department of Film and Media Studies, Washington University in St. Louis , St. Louis, Missouri, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA
| |
Collapse
|
20
|
Management of Neuroinflammatory Responses to AAV-Mediated Gene Therapies for Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10020119. [PMID: 32098339 PMCID: PMC7071492 DOI: 10.3390/brainsci10020119] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, adeno-associated virus (AAV)-mediated gene therapies have attracted clinical interest for treating neurodegenerative diseases including spinal muscular atrophy (SMA), Canavan disease (CD), Parkinson’s disease (PD), and Friedreich’s ataxia (FA). The influx of clinical findings led to the first approved gene therapy for neurodegenerative disorders in 2019 and highlighted new safety concerns for patients. Large doses of systemically administered AAV stimulate host immune responses, resulting in anti-capsid and anti-transgene immunity with implications for transgene expression, treatment longevity, and patient safety. Delivering lower doses directly to the central nervous system (CNS) is a promising alternative, resulting in higher transgene expression with decreased immune responses. However, neuroinflammatory responses after CNS-targeted delivery of AAV are a critical concern. Reported signs of AAV-associated neuroinflammation in preclinical studies include dorsal root ganglion (DRG) and spinal cord pathology with mononuclear cell infiltration. In this review, we discuss ways to manage neuroinflammation, including choice of AAV capsid serotypes, CNS-targeting routes of delivery, genetic modifications to the vector and/or transgene, and adding immunosuppressive strategies to clinical protocols. As additional gene therapies for neurodegenerative diseases enter clinics, tracking biomarkers of neuroinflammation will be important for understanding the impact immune reactions can have on treatment safety and efficacy.
Collapse
|
21
|
Fuchs SP, Martinez-Navio JM, Rakasz EG, Gao G, Desrosiers RC. Liver-Directed but Not Muscle-Directed AAV-Antibody Gene Transfer Limits Humoral Immune Responses in Rhesus Monkeys. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:94-102. [PMID: 31890736 PMCID: PMC6923507 DOI: 10.1016/j.omtm.2019.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
A number of publications have described the use of adeno-associated virus (AAV) for the delivery of anti-HIV and anti-simian immunodeficiency virus (SIV) monoclonal antibodies (mAbs) to rhesus monkeys. Anti-drug antibodies (ADAs) have been frequently observed, and long-term AAV-mediated delivery has been inconsistent. Here, we investigated different AAV vector strategies and delivery schemes to rhesus monkeys using the rhesus monkey mAb 4L6. We compared 4L6 immunoglobulin G1 (IgG1) delivery using the AAV1 versus the AAV8 serotype with a cytomegalovirus (CMV) promoter and the use of a muscle-specific versus a liver-specific promoter. Long-term expression levels of 4L6 IgG1 following AAV8-mediated gene transfer were comparable to those following AAV1-mediated gene transfer. AAV1-mediated gene transfer, using a muscle-specific promoter, showed robust ADAs and transiently low 4L6 IgG1 levels that ultimately declined to below detectable levels. Intravenous AAV8-mediated gene transfer, using a liver-specific promoter, also resulted in low levels of delivered 4L6 IgG1, but those low levels were maintained in the absence of any detectable ADAs. Booster injections using AAV1-CMV allowed for increased 4L6 IgG1 serum levels in animals that were primed with AAV8 but not with AAV1. Our results suggest that liver-directed expression may help to limit ADAs and that re-administration of AAV of a different serotype can result in successful long-term delivery of an immunogenic antibody.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - José M Martinez-Navio
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ronald C Desrosiers
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
22
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
23
|
Abstract
Pompe disease (PD) is caused by the deficiency of the lysosomal enzyme acid α-glucosidase (GAA), resulting in systemic pathological glycogen accumulation. PD can present with cardiac, skeletal muscle, and central nervous system manifestations, as a continuum of phenotypes among two main forms: classical infantile-onset PD (IOPD) and late-onset PD (LOPD). IOPD is caused by severe GAA deficiency and presents at birth with cardiac hypertrophy, muscle hypotonia, and severe respiratory impairment, leading to premature death, if not treated. LOPD is characterized by levels of residual GAA activity up to ∼20% of normal and presents both in children and adults with a varied severity of muscle weakness and motor and respiratory deficit. Enzyme replacement therapy (ERT), based on repeated intravenous (i.v.) infusions of recombinant human GAA (rhGAA), represents the only available treatment for PD. Upon more than 10 years from its launch, it is becoming evident that ERT can extend the life span of IOPD and stabilize disease progression in LOPD; however, it does not represent a cure for PD. The limited uptake of the enzyme in key affected tissues and the high immunogenicity of rhGAA are some of the hurdles that limit ERT efficacy. GAA gene transfer with adeno-associated virus (AAV) vectors has been shown to reduce glycogen storage and improve the PD phenotype in preclinical studies following different approaches. Here, we present an overview of the different gene therapy approaches for PD, focusing on in vivo gene transfer with AAV vectors and discussing the potential opportunities and challenges in developing safe and effective gene therapies for the disease. Based on emerging safety and efficacy data from clinical trials for other protein deficiencies, in vivo gene therapy with AAV vectors appears to have the potential to provide a therapeutically relevant, stable source of GAA enzyme, which could be highly beneficial in PD.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, Evry, France.,Department of Pediatrics, Stanford University, Stanford, California
| | - Federico Mingozzi
- Genethon, Evry, France.,Spark Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Byrne BJ, Fuller DD, Smith BK, Clement N, Coleman K, Cleaver B, Vaught L, Falk DJ, McCall A, Corti M. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:290. [PMID: 31392202 DOI: 10.21037/atm.2019.05.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pompe disease is a neuromuscular disease caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase leading to lysosomal and cytoplasmic glycogen accumulation in neurons and striated muscle. In the decade since availability of first-generation enzyme replacement therapy (ERT) a better understanding of the clinical spectrum of disease has emerged. The most severe form of early onset disease is typically identified with symptoms in the first year of life, known as infantile-onset Pompe disease (IOPD). Infants are described at floppy babies with cardiac hypertrophy in the first few months of life. A milder form with late onset (LOPD) of symptoms is mostly free of cardiac involvement with slower rate of progression. Glycogen accumulation in the CNS and skeletal muscle is observed in both IOPD and LOPD. In both circumstances, multi-system disease (principally motoneuron and myopathy) leads to progressive weakness with associated respiratory and feeding difficulty. In IOPD the untreated natural history leads to cardiorespiratory failure and death in the first year of life. In the current era of ERT clinical outcomes are improved, yet, many patients have an incomplete response and a substantial unmet need remains. Since the neurological manifestations of the disease are not amenable to peripheral enzyme replacement, we set out to better understand the pathophysiology and potential for treatment of disease manifestations using adeno-associated virus (AAV)-mediated gene transfer, with the first clinical gene therapy studies initiated by our group in 2006. This review focuses on the preclinical studies and clinical study findings which are pertinent to the development of a comprehensive gene therapy strategy for both IOPD and LOPD. Given the advent of newborn screening, a significant focus of our recent work has been to establish the basis for repeat administration of AAV vectors to enhance neuromuscular therapeutic efficacy over the life span.
Collapse
Affiliation(s)
- Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Nathalie Clement
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Kirsten Coleman
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Brian Cleaver
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Lauren Vaught
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | | | - Angela McCall
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Manuela Corti
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Ronzitti G, Collaud F, Laforet P, Mingozzi F. Progress and challenges of gene therapy for Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:287. [PMID: 31392199 DOI: 10.21037/atm.2019.04.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pompe disease (PD) is a monogenic disorder caused by mutations in the acid alpha-glucosidase gene (Gaa). GAA is a lysosomal enzyme essential for the degradation of glycogen. Deficiency of GAA results in a severe, systemic disorder that, in its most severe form, can be fatal. About a decade ago, the prognosis of PD has changed dramatically with the marketing authorization of an enzyme replacement therapy (ERT) based on recombinant GAA. Despite the breakthrough nature of ERT, long-term follow-up of both infantile and late-onset Pompe disease patients (IOPD and LOPD, respectively), revealed several limitations of the approach. In recent years several investigational therapies for PD have entered preclinical and clinical development, with a few next generation ERTs entering late-stage clinical development. Gene therapy holds the potential to change dramatically the way we treat PD, based on the ability to express the Gaa gene long-term, ideally driving enhanced therapeutic efficacy compared to ERT. Several gene therapy approaches to PD have been tested in preclinical animal models, with a handful of early phase clinical trials started or about to start. The complexity of PD and of the endpoints used to measure efficacy of investigational treatments remains a challenge, however the hope is for a future with more therapeutic options for both IOPD and LOPD patients.
Collapse
Affiliation(s)
| | | | - Pascal Laforet
- Raymond Poincaré Teaching Hospital, APHP, Garches, France.,Nord/Est/Ile de France Neuromuscular Center, France
| | | |
Collapse
|
26
|
Threshold for Pre-existing Antibody Levels Limiting Transduction Efficiency of Systemic rAAV9 Gene Delivery: Relevance for Translation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:453-462. [PMID: 31193101 PMCID: PMC6517378 DOI: 10.1016/j.omtm.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023]
Abstract
Widespread anti-AAV antibodies (Abs) in humans pose a critical challenge for the translation of AAV gene therapies, limiting patient eligibility. In this study, non-human primates (NHPs) with pre-existing αAAV Abs were used to investigate the impact of αAAV9 Ab levels on the transduction efficiency of rAAV9 via systemic delivery. No significant differences were observed in vector genome (vg) biodistribution in animals with ≤1:400 total serum αAAV9-IgG compared to αAAV9-Ab-negative animals, following an intravenous (i.v.) rAAV9-hNAGLUop (codon-optimized human α-N-acetylglucosaminidase coding sequence cDNA) injection. Serum αAAV9-IgG at >1:400 resulted in a >200-fold decrease in vg in the liver, but had no significant effect on vg levels in brain and most of the peripheral tissues. Although tissue NAGLU activities declined significantly, they remained above endogenous levels. Notably, there were higher vg copies but lower NAGLU activity in the spleen in NHPs with >1:400 αAAV9 Abs than in those with ≤1:400 Abs. We demonstrate here the presence of a threshold of pre-existing αAAV9 Abs for diminishing the transduction of i.v.-delivered AAV vectors, supporting the expansion of patient eligibility for systemic rAAV treatments. Our data also indicate that high pre-existing αAAV9 Abs may promote phagocytosis and that phagocytized vectors are not processed for transgene expression, suggesting that effectively suppressing innate immunity may have positive impacts on transduction efficiency in individuals with high Ab titers.
Collapse
|
27
|
Lim JA, Yi H, Gao F, Raben N, Kishnani PS, Sun B. Intravenous Injection of an AAV-PHP.B Vector Encoding Human Acid α-Glucosidase Rescues Both Muscle and CNS Defects in Murine Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:233-245. [PMID: 30809555 PMCID: PMC6376130 DOI: 10.1016/j.omtm.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Abstract
Pompe disease, a severe and often fatal neuromuscular disorder, is caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The disease is characterized by the accumulation of excess glycogen in the heart, skeletal muscle, and CNS. Currently approved enzyme replacement therapy or experimental adeno-associated virus (AAV)-mediated gene therapy has little effect on CNS correction. Here we demonstrate that a newly developed AAV-PHP.B vector can robustly transduce both the CNS and skeletal muscles in GAA-knockout (GAAKO) mice. A single intravenous injection of an AAV-PHP.B vector expressing human GAA under the control of cytomegalovirus (CMV) enhancer-chicken β-actin (CB) promoter into 2-week-old GAAKO mice resulted in widespread GAA expression in the affected tissues. Glycogen contents were reduced to wild-type levels in the brain and heart, and they were significantly decreased in skeletal muscle by the AAV treatment. The histological assay showed no visible glycogen in any region of the brain and spinal cord of AAV-treated mice. In this study, we describe a set of behavioral tests that can detect early neurological deficits linked to extensive lysosomal glycogen accumulation in the CNS of untreated GAAKO mice. Furthermore, we demonstrate that the therapy can help prevent the development of these abnormalities.
Collapse
Affiliation(s)
- Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Haiqing Yi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
28
|
Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:184-201. [PMID: 30705923 PMCID: PMC6349562 DOI: 10.1016/j.omtm.2018.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) and hemophilia B (HB) are X-linked bleeding disorders due to inheritable deficiencies in either coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Recently, gene therapy clinical trials with adeno-associated virus (AAV) vectors and protein-engineered transgenes, B-domain deleted (BDD) FVIII and FIX-Padua, have reported near-phenotypic cures in subjects with HA and HB, respectively. Here, we review the biology and the clinical development of FVIII-BDD and FIX-Padua as transgenes. We also examine alternative bioengineering strategies for FVIII and FIX, as well as the immunological challenges of these approaches. Other engineered proteins and their potential use in gene therapy for hemophilia with inhibitors are also discussed. Continued advancement of gene therapy for HA and HB using protein-engineered transgenes has the potential to alleviate the substantial medical and psychosocial burdens of the disease.
Collapse
|
29
|
Owens P, Wong M, Bhattacharya K, Ellaway C. Infantile-onset Pompe disease: A case series highlighting early clinical features, spectrum of disease severity and treatment response. J Paediatr Child Health 2018; 54:1255-1261. [PMID: 29889338 DOI: 10.1111/jpc.14070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/26/2018] [Accepted: 05/02/2018] [Indexed: 02/03/2023]
Abstract
AIM Pompe disease is a rare, autosomal, recessive disorder. Alterations in the gene encoding lysosomal acid alpha-glucosidase cause impaired glycogen degradation and resultant lysosomal glycogen accumulation. Classic infantile-onset Pompe disease (IPD) manifests soon after birth, severe cases have complete/near complete enzyme deficiency. IPD is associated with a broad spectrum of non-specific clinical features, and diagnostic delays are common. Without treatment, death typically occurs within the first 2 years of life. We present case experiences to help expand paediatricians' understanding of factors contributing to diagnostic delay, clinical decline and to highlight the need for timely therapy. METHODS Data were extracted from IPD cases managed at our hospital. Key aspects of clinical presentation, diagnosis, genetic variations, management and overall outcomes were collated then compared with what is already known in the literature. RESULTS We report four IPD cases (three female). Two patients were cross-reactive immunological material negative. Age at symptom onset was 3-9 months, presenting clinical features were varied, and confirmatory diagnosis was significantly delayed in one patient. In concert with the literature, cardiomegaly, ventricular hypertrophy and delayed developmental milestones were seen in all four cases. Our cases demonstrate a range of disease severity, response to enzyme replacement therapy and antibody development. Significant immune responses were seen in two cases (one cross-reactive immunological material positive); despite immunomodulation therapy, both were associated with fatal outcomes. CONCLUSION Timely diagnosis and initiation of enzyme replacement therapy is critical to patient outcomes as IPD progresses rapidly and irreversible changes in clinical status may occur during the delay.
Collapse
Affiliation(s)
- Penny Owens
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Melanie Wong
- Department of Immunology, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia.,Discipline of Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia.,Discipline of Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Abstract
Pompe disease is a rare and deadly muscle disorder. As a clinical entity, the disease has been known for over 75 years. While an optimist might be excited about the advances made during this time, a pessimist would note that we have yet to find a cure. However, both sides would agree that many findings in basic science-such as the Nobel prize-winning discoveries of glycogen metabolism, the lysosome, and autophagy-have become the foundation of our understanding of Pompe disease. The disease is a glycogen storage disorder, a lysosomal disorder, and an autophagic myopathy. In this review, we will discuss how these past discoveries have guided Pompe research and impacted recent therapeutic developments.
Collapse
Affiliation(s)
- Lara Kohler
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Lenders M, Brand E. Effects of Enzyme Replacement Therapy and Antidrug Antibodies in Patients with Fabry Disease. J Am Soc Nephrol 2018; 29:2265-2278. [PMID: 30093456 DOI: 10.1681/asn.2018030329] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Malte Lenders
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
32
|
Puertollano R, Raben N. Pompe disease: how to solve many problems with one solution. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:313. [PMID: 30211201 DOI: 10.21037/atm.2018.06.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosa Puertollano
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation. PLoS One 2018; 13:e0198154. [PMID: 29874260 PMCID: PMC5991358 DOI: 10.1371/journal.pone.0198154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics.
Collapse
|
34
|
Kwon K, Sherman A, Chang W, Kamesh A, Biswas M, Herzog RW, Daniell H. Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1148-1160. [PMID: 29106782 PMCID: PMC5936678 DOI: 10.1111/pbi.12859] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 05/11/2023]
Abstract
Inhibitor formation is a serious complication of factor VIII (FVIII) replacement therapy for the X-linked bleeding disorder haemophilia A and occurs in 20%-30% of patients. No prophylactic tolerance protocol currently exists. Although we reported oral tolerance induction using FVIII domains expressed in tobacco chloroplasts, significant challenges in clinical advancement include expression of the full-length CTB-FVIII sequence to cover the entire patient population, regardless of individual CD4+ T-cell epitope responses. Codon optimization of FVIII heavy chain (HC) and light chain (LC) increased expression 15- to 42-fold higher than the native human genes. Homoplasmic lettuce lines expressed CTB fusion proteins of FVIII-HC (99.3 kDa), LC (91.8 kDa), C2 (31 kDa) or single chain (SC, 178.2 kDa) up to 3622, 263, 3321 and 852 μg/g in lyophilized plant cells, when grown in a cGMP hydroponic facility (Fraunhofer). CTB-FVIII-SC is the largest foreign protein expressed in chloroplasts; despite a large pentamer size (891 kDa), assembly, folding and disulphide bonds were maintained upon lyophilization and long-term storage as revealed by GM1-ganglioside receptor binding assays. Repeated oral gavages (twice/week for 2 months) of CTB-FVIII-HC/CTB-FVIII-LC reduced inhibitor titres ~10-fold (average 44 BU/mL to 4.7 BU/mL) in haemophilia A mice. Most importantly, increase in the frequency of circulating LAP-expressing CD4+ CD25+ FoxP3+ Treg in tolerized mice could be used as an important cellular biomarker in human clinical trials for plant-based oral tolerance induction. In conclusion, this study reports the first clinical candidate for oral tolerance induction that is urgently needed to protect haemophilia A patients receiving FVIII injections.
Collapse
Affiliation(s)
- Kwang‐Chul Kwon
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | | - Wan‐Jung Chang
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aditya Kamesh
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Moanaro Biswas
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
| | | | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
35
|
Vandamme C, Adjali O, Mingozzi F. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Hum Gene Ther 2018; 28:1061-1074. [PMID: 28835127 PMCID: PMC5649404 DOI: 10.1089/hum.2017.150] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, vectors derived from adeno-associated virus (AAV) have established themselves as a powerful tool for in vivo gene transfer, allowing long-lasting and safe transgene expression in a variety of human tissues. Nevertheless, clinical trials demonstrated how B and T cell immune responses directed against the AAV capsid, likely arising after natural infection with wild-type AAV, might potentially impact gene transfer safety and efficacy in patients. Seroprevalence studies have evidenced that most individuals carry anti-AAV neutralizing antibodies that can inhibit recombinant AAV transduction of target cells following in vivo administration of vector particles. Likewise, liver- and muscle-directed clinical trials have shown that capsid-reactive memory CD8+ T cells could be reactivated and expanded upon presentation of capsid-derived antigens on transduced cells, potentially leading to loss of transgene expression and immune-mediated toxicities. In celebration of the 25th anniversary of the European Society of Gene and Cell Therapy, this review article summarizes progress made during the past decade in understanding and modulating AAV vector immunogenicity. While the knowledge generated has contributed to yield impressive clinical results, several important questions remain unanswered, making the study of immune responses to AAV a priority for the field of in vivo transfer.
Collapse
Affiliation(s)
- Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Oumeya Adjali
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Federico Mingozzi
- Genethon and IMSERM U951, Evry, France
- University Pierre and Marie Curie and INSERM U974, Paris, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| |
Collapse
|
36
|
Lim JA, Sun B, Puertollano R, Raben N. Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Mol Ther 2018; 26:1783-1796. [PMID: 29804932 DOI: 10.1016/j.ymthe.2018.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
The complexity of the pathogenic cascade in lysosomal storage disorders suggests that combination therapy will be needed to target various aspects of pathogenesis. The standard of care for Pompe disease (glycogen storage disease type II), a deficiency of lysosomal acid alpha glucosidase, is enzyme replacement therapy (ERT). Many patients have poor outcomes due to limited efficacy of the drug in clearing muscle glycogen stores. The resistance to therapy is linked to massive autophagic buildup in the diseased muscle. We have explored two strategies to address the problem. Genetic suppression of autophagy in muscle of knockout mice resulted in the removal of autophagic buildup, increase in muscle force, decrease in glycogen level, and near-complete clearance of lysosomal glycogen following ERT. However, this approach leads to accumulation of ubiquitinated proteins, oxidative stress, and exacerbation of muscle atrophy. Another approach involves AAV-mediated TSC knockdown in knockout muscle leading to upregulation of mTOR, inhibition of autophagy, reversal of atrophy, and efficient cellular clearance on ERT. Importantly, this approach reveals the possibility of reversing already established autophagic buildup, rather than preventing its development.
Collapse
Affiliation(s)
- Jeong-A Lim
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA; Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
37
|
Lenders M, Oder D, Nowak A, Canaan-Kühl S, Arash-Kaps L, Drechsler C, Schmitz B, Nordbeck P, Hennermann JB, Kampmann C, Reuter S, Brand SM, Wanner C, Brand E. Impact of immunosuppressive therapy on therapy-neutralizing antibodies in transplanted patients with Fabry disease. J Intern Med 2017; 282:241-253. [PMID: 28682471 DOI: 10.1111/joim.12647] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Inhibitory antibodies towards enzyme replacement therapy (ERT) are associated with disease progression and poor outcome in affected male patients with lysosomal disorders such as Fabry disease (FD). However, little is known about the impact of immunosuppressive therapy on ERT inhibition in these patients with FD. METHODS In this retrospective study, we investigated the effect of long-term immunosuppression on ERT inhibition in male patients with FD (n = 26) receiving immunosuppressive therapy due to kidney (n = 24) or heart (n = 2) transplantation. RESULTS No ERT-naïve transplanted patient (n = 8) developed antibodies within follow-up (80 ±72 months) after ERT initiation. Seven (26.9%) patients were tested ERT inhibition positive prior to transplantation. No de novo ERT inhibition was observed after transplantation (n = 18). In patients treated with high dosages of immunosuppressive medication such as prednisolone, tacrolimus and mycophenolate-mofetil/mycophenolate acid, ERT inhibition decreased after transplantation (n = 12; P = 0.0160). Tapering of immunosuppression (especially prednisolone) seemed to re-increase ERT inhibition (n = 4, median [range]: 16.6 [6.9; 36.9] %; P = 0.0972) over time. One ERT inhibition-positive patient required interventions with steroid therapy and increased doses of tacrolimus, which also lowered ERT inhibition. CONCLUSION We conclude that the immunosuppressive maintenance therapy after transplantations seems to be sufficient to prevent de novo ERT inhibition in ERT-naïve patients. Intensified high dosages of immunosuppressive drugs are associated with decreased antibody titres and decreased ERT inhibition in affected patients, but did not result in long-term protection. Future studies are needed to establish ERT inhibition-specific immunosuppressive protocols with long-term modulating properties to warrant an improved disease course in ERT inhibition-positive males.
Collapse
Affiliation(s)
- M Lenders
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - D Oder
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, Comprehensive Heart Failure Center (CHFC), Fabry Center for Interdisciplinary Therapy (FAZIT), University of Wuerzburg, Wuerzburg, Germany
| | - A Nowak
- Department of Internal Medicine, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - S Canaan-Kühl
- Department of Medicine, Division of Nephrology, Campus Virchow-Klinikum, University Hospital Charité, Berlin, Germany
| | - L Arash-Kaps
- Villa Metabolica, Department for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - C Drechsler
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, Comprehensive Heart Failure Center (CHFC), Fabry Center for Interdisciplinary Therapy (FAZIT), University of Wuerzburg, Wuerzburg, Germany
| | - B Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - P Nordbeck
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, Comprehensive Heart Failure Center (CHFC), Fabry Center for Interdisciplinary Therapy (FAZIT), University of Wuerzburg, Wuerzburg, Germany
| | - J B Hennermann
- Villa Metabolica, Department for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - C Kampmann
- Villa Metabolica, Department for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - S Reuter
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - S-M Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - C Wanner
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, Comprehensive Heart Failure Center (CHFC), Fabry Center for Interdisciplinary Therapy (FAZIT), University of Wuerzburg, Wuerzburg, Germany
| | - E Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
38
|
Kronn DF, Day-Salvatore D, Hwu WL, Jones SA, Nakamura K, Okuyama T, Swoboda KJ, Kishnani PS. Management of Confirmed Newborn-Screened Patients With Pompe Disease Across the Disease Spectrum. Pediatrics 2017; 140:S24-S45. [PMID: 29162675 DOI: 10.1542/peds.2016-0280e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
After a Pompe disease diagnosis is confirmed in infants identified through newborn screening (NBS), when and if to start treatment with enzyme replacement therapy (ERT) with alglucosidase alfa must be determined. In classic infantile-onset Pompe disease, ERT should start as soon as possible. Once started, regular, routine follow-up is necessary to monitor for treatment effects, disease progression, and adverse effects. Decision-making for when or if to start ERT in late-onset Pompe disease (LOPD) is more challenging because patients typically have no measurable signs or symptoms or predictable time of symptom onset at NBS. With LOPD, adequate, ongoing follow-up and assessments for onset or progression of signs and symptoms are important to track disease state and monitor and adjust care before and after treatment is started. Because numerous tests are used to monitor patients at variable frequencies, a standardized approach across centers is lacking. Significant variability in patient assessments may result in missed opportunities for early intervention. Management of Pompe disease requires a comprehensive, multidisciplinary approach with timely disease-specific interventions that target the underlying disease process and symptom-specific manifestations. Regardless of how identified, all patients who have signs or symptoms of the disease require coordinated medical care and follow-up tailored to individual needs throughout their lives. The Pompe Disease Newborn Screening Working Group identifies key considerations before starting and during ERT; summarizes what comprises an indication to start ERT; and provides guidance on how to determine appropriate patient management and monitoring and guide the frequency and type of follow-up assessments for all patients identified through NBS.
Collapse
Affiliation(s)
- David F Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, New York
| | | | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kathryn J Swoboda
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
39
|
Abstract
After two decades of research, in vivo gene transfer with adeno-associated viral (AAV) vectors has now resulted in successful treatments and even cures for several human diseases. However, the potential for immune responses against the therapeutic gene products remains one of the concerns as this approach is broadened to more patients, diverse diseases, and target organs. Immune responses following gene transfer of coagulation factor IX (FIX) for the treatment of the bleeding disorder hemophilia B has been extensively investigated in multiple animal models. Findings from these studies have not only influenced clinical trial design but have broader implications for other diseases. The impact of vector design and dose, as well as target organ/route of administration on humoral and cellular immune responses are reviewed. Furthermore, the potential for tolerance induction by hepatic gene transfer or combination with immune modulation is discussed.
Collapse
Affiliation(s)
- Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
40
|
Plasmacytoid and conventional dendritic cells cooperate in crosspriming AAV capsid-specific CD8 + T cells. Blood 2017; 129:3184-3195. [PMID: 28468798 DOI: 10.1182/blood-2016-11-751040] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/01/2017] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) is a replication-deficient parvovirus that is extensively used as a gene therapy vector. CD8+ T-cell responses against the AAV capsid protein can, however, affect therapeutic efficacy. Little is known about the in vivo mechanism that leads to the crosspriming of CD8+ T cells against the input viral capsid antigen. In this study, we report that the Toll-like receptor 9 (TLR9)-MyD88 pattern-recognition receptor pathway is uniquely capable of initiating this response. By contrast, the absence of TLR2, STING, or the addition of TLR4 agonist has no effect. Surprisingly, both conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) are required for the crosspriming of capsid-specific CD8+ T cells, whereas other antigen-presenting cells are not involved. TLR9 signaling is specifically essential in pDCs but not in cDCs, indicating that sensing of the viral genome by pDCs activates cDCs in trans to cross-present capsid antigen during CD8+ T-cell activation. Cross-presentation and crosspriming depend not only on TLR9, but also on interferon type I signaling, and both mechanisms can be inhibited by administering specific molecules to prevent induction of capsid-specific CD8+ T cells. Thus, these outcomes directly point to therapeutic interventions and demonstrate that innate immune blockade can eliminate unwanted immune responses in gene therapy.
Collapse
|
41
|
|
42
|
Herzog RW, Nichols TC, Su J, Zhang B, Sherman A, Merricks EP, Raymer R, Perrin GQ, Häger M, Wiinberg B, Daniell H. Oral Tolerance Induction in Hemophilia B Dogs Fed with Transplastomic Lettuce. Mol Ther 2017; 25:512-522. [PMID: 28153098 PMCID: PMC5368425 DOI: 10.1016/j.ymthe.2016.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Abstract
Anti-drug antibodies in hemophilia patients substantially complicate treatment. Their elimination through immune tolerance induction (ITI) protocols poses enormous costs, and ITI is often ineffective for factor IX (FIX) inhibitors. Moreover, there is no prophylactic ITI protocol to prevent anti-drug antibody (ADA) formation. Using general immune suppression is problematic. To address this urgent unmet medical need, we delivered antigen bioencapsulated in plant cells to hemophilia B dogs. Commercial-scale production of CTB-FIX fusion expressed in lettuce chloroplasts was done in a hydroponic facility. CTB-FIX (∼1 mg/g) in lyophilized cells was stable with proper folding, disulfide bonds, and pentamer assembly after 30-month storage at ambient temperature. Robust suppression of immunoglobulin G (IgG)/inhibitor and IgE formation against intravenous FIX was observed in three of four hemophilia B dogs fed with lyophilized lettuce cells expressing CTB-FIX. No side effects were detected after feeding CTB-FIX-lyophilized plant cells for >300 days. Coagulation times were markedly shortened by intravenous FIX in orally tolerized treated dogs, in contrast to control dogs that formed high-titer antibodies to FIX. Commercial-scale production, stability, prolonged storage of lyophilized cells, and efficacy in tolerance induction in a large, non-rodent model of human disease offer a novel concept for oral tolerance and low-cost production and delivery of biopharmaceuticals.
Collapse
Affiliation(s)
- Roland W Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, Chapel Hill, NC 25716, USA
| | - Jin Su
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bei Zhang
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Sherman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, Chapel Hill, NC 25716, USA
| | - Robin Raymer
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, Chapel Hill, NC 25716, USA
| | - George Q Perrin
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mattias Häger
- Global Research, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Bo Wiinberg
- Global Research, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Biswas M, Rogers GL, Sherman A, Byrne BJ, Markusic DM, Jiang H, Herzog RW. Combination therapy for inhibitor reversal in haemophilia A using monoclonal anti-CD20 and rapamycin. Thromb Haemost 2016; 117:33-43. [PMID: 27683758 DOI: 10.1160/th16-05-0404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/12/2016] [Indexed: 01/19/2023]
Abstract
Development of antibodies (inhibitors) against coagulation factor VIII (FVIII) is a major complication of intravenous replacement therapy in haemophilia A (HA). Current immune tolerance induction (ITI) regimens are not universally effective. Rituximab, a B cell-depleting antibody against CD20, has shown mixed results for inhibitor reversal in patients. This study aims to develop a combinatorial therapy for inhibitor reversal in HA, using anti-murine CD20 (anti-mCD20) antibody and rapamycin, which targets both B and T cell responses. Additionally, it extensively characterises the role of the IgG backbone in B cell depletion by anti-CD20 antibodies. For this, inhibitors were generated in BALB/c-HA mice by weekly IV injection of FVIII. Subsequently, anti-mCD20 (18B12) with IgG2a or IgG1 backbone was injected IV in two doses three weeks apart and B cell depletion and recovery was characterised. Rapamycin was administered orally 3x/week (for 1 month) while continuing FVIII injections. Altering the IgG backbone of anti-mCD20 from IgG2a to IgG1 reduced overall depletion of B cells (including memory B cells), and marginal zone, B-10, and B-1b cells were specifically unaffected. While neither antibody was effective alone, in combination with rapamycin, anti-mCD20 IgG2a but not IgG1 was able to reverse inhibitors in HA mice. This regimen was particularly effective for starting titres of ~10 BU. Although IgG1 anti-mCD20 spared potentially tolerogenic B cell subsets, IgG2a directed sustained hyporesponsiveness when administered in conjunction with rapamycin. This regimen represents a promising treatment for inhibitor reversal in HA, as both of these compounds have been extensively used in human patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roland W Herzog
- Roland W. Herzog, PhD, University of Florida, Cancer and Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610, USA, Tel.: +1 352 273 8113, Fax: +1 352 273 8342, E-mail:
| |
Collapse
|