1
|
Li X, Shen L, Deng Z, Huang Z. New treatment for osteoarthr: pbad014itis: Gene therapy. PRECISION CLINICAL MEDICINE 2023; 6:pbad014. [PMID: 37333626 PMCID: PMC10273835 DOI: 10.1093/pcmedi/pbad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Osteoarthritis is a complex degenerative disease that affects the entire joint tissue. Currently, non-surgical treatments for osteoarthritis focus on relieving pain. While end-stage osteoarthritis can be treated with arthroplasty, the health and financial costs associated with surgery have forced the search for alternative non-surgical treatments to delay the progression of osteoarthritis and promote cartilage repair. Unlike traditional treatment, the gene therapy approach allows for long-lasting expression of therapeutic proteins at specific sites. In this review, we summarize the history of gene therapy in osteoarthritis, outlining the common expression vectors (non-viral, viral), the genes delivered (transcription factors, growth factors, inflammation-associated cytokines, non-coding RNAs) and the mode of gene delivery (direct delivery, indirect delivery). We highlight the application and development prospects of the gene editing technology CRISPR/Cas9 in osteoarthritis. Finally, we identify the current problems and possible solutions in the clinical translation of gene therapy for osteoarthritis.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Leyao Shen
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
2
|
Uebelhoer M, Lambert C, Grisart J, Guse K, Plutizki S, Henrotin Y. Interleukins, growth factors, and transcription factors are key targets for gene therapy in osteoarthritis: A scoping review. Front Med (Lausanne) 2023; 10:1148623. [PMID: 37077668 PMCID: PMC10106745 DOI: 10.3389/fmed.2023.1148623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
ObjectiveOsteoarthritis (OA) is the most common degenerative joint disease, characterized by a progressive loss of cartilage associated with synovitis and subchondral bone remodeling. There is however no treatment to cure or delay the progression of OA. The objective of this manuscript was to provide a scoping review of the preclinical and clinical studies reporting the effect of gene therapies for OA.MethodThis review followed the JBI methodology and was reported in accordance with the PRISMA-ScR checklist. All research studies that explore in vitro, in vivo, or ex vivo gene therapies that follow a viral or non-viral gene therapy approach were considered. Only studies published in English were included in this review. There were no limitations to their date of publication, country of origin, or setting. Relevant publications were searched in Medline ALL (Ovid), Embase (Elsevier), and Scopus (Elsevier) in March 2023. Study selection and data charting were performed by two independent reviewers.ResultsWe found a total of 29 different targets for OA gene therapy, including studies examining interleukins, growth factors and receptors, transcription factors and other key targets. Most articles were on preclinical in vitro studies (32 articles) or in vivo animal models (39 articles), while four articles were on clinical trials related to the development of TissueGene-C (TG-C).ConclusionIn the absence of any DMOAD, gene therapy could be a highly promising treatment for OA, even though further development is required to bring more targets to the clinical stage.
Collapse
Affiliation(s)
| | - Cécile Lambert
- musculoSKeletal Innovative Research Lab (mSKIL), Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | | | - Kilian Guse
- GeneQuine Biotherapeutics GmbH, Hamburg, Germany
| | | | - Yves Henrotin
- Artialis S.A., Liège, Belgium
- musculoSKeletal Innovative Research Lab (mSKIL), Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
3
|
Thampi P, Samulski RJ, Grieger JC, Phillips JN, McIlwraith CW, Goodrich LR. Gene therapy approaches for equine osteoarthritis. Front Vet Sci 2022; 9:962898. [PMID: 36246316 PMCID: PMC9558289 DOI: 10.3389/fvets.2022.962898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023] Open
Abstract
With an intrinsically low ability for self-repair, articular cartilage injuries often progress to cartilage loss and joint degeneration resulting in osteoarthritis (OA). Osteoarthritis and the associated articular cartilage changes can be debilitating, resulting in lameness and functional disability both in human and equine patients. While articular cartilage damage plays a central role in the pathogenesis of OA, the contribution of other joint tissues to the pathogenesis of OA has increasingly been recognized thus prompting a whole organ approach for therapeutic strategies. Gene therapy methods have generated significant interest in OA therapy in recent years. These utilize viral or non-viral vectors to deliver therapeutic molecules directly into the joint space with the goal of reprogramming the cells' machinery to secrete high levels of the target protein at the site of injection. Several viral vector-based approaches have demonstrated successful gene transfer with persistent therapeutic levels of transgene expression in the equine joint. As an experimental model, horses represent the pathology of human OA more accurately compared to other animal models. The anatomical and biomechanical similarities between equine and human joints also allow for the use of similar imaging and diagnostic methods as used in humans. In addition, horses experience naturally occurring OA and undergo similar therapies as human patients and, therefore, are a clinically relevant patient population. Thus, further studies utilizing this equine model would not only help advance the field of human OA therapy but also benefit the clinical equine patients with naturally occurring joint disease. In this review, we discuss the advancements in gene therapeutic approaches for the treatment of OA with the horse as a relevant patient population as well as an effective and commonly utilized species as a translational model.
Collapse
Affiliation(s)
- Parvathy Thampi
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Joshua C. Grieger
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jennifer N. Phillips
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - Laurie R. Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States,*Correspondence: Laurie R. Goodrich
| |
Collapse
|
4
|
Candidates for Intra-Articular Administration Therapeutics and Therapies of Osteoarthritis. Int J Mol Sci 2021; 22:ijms22073594. [PMID: 33808364 PMCID: PMC8036705 DOI: 10.3390/ijms22073594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) of the knee is a disease that significantly decreases the quality of life due to joint deformation and pain caused by degeneration of articular cartilage. Since the degeneration of cartilage is irreversible, intervention from an early stage and control throughout life is important for OA treatment. For the treatment of early OA, the development of a disease-modifying osteoarthritis drug (DMOAD) for intra-articular (IA) injection, which is attracting attention as a point-of-care therapy, is desired. In recent years, the molecular mechanisms involved in OA progression have been clarified while new types of drug development methods based on gene sequences have been established. In addition to conventional chemical compounds and protein therapeutics, the development of DMOAD from the new modalities such as gene therapy and oligonucleotide therapeutics is accelerating. In this review, we have summarized the current status and challenges of DMOAD for IA injection, especially for protein therapeutics, gene therapy, and oligonucleotide therapeutics.
Collapse
|
5
|
Creb5 establishes the competence for Prg4 expression in articular cartilage. Commun Biol 2021; 4:332. [PMID: 33712729 PMCID: PMC7955038 DOI: 10.1038/s42003-021-01857-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
A hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-β and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-β and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-β. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.
Collapse
|
6
|
Brücher D, Kirchhammer N, Smith SN, Schumacher J, Schumacher N, Kolibius J, Freitag PC, Schmid M, Weiss F, Keller C, Grove M, Greber UF, Zippelius A, Plückthun A. iMATCH: an integrated modular assembly system for therapeutic combination high-capacity adenovirus gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:572-586. [PMID: 33665227 PMCID: PMC7890373 DOI: 10.1016/j.omtm.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Adenovirus-mediated combination gene therapies have shown promising results in vaccination or treating malignant and genetic diseases. Nevertheless, an efficient system for the rapid assembly and incorporation of therapeutic genes into high-capacity adenoviral vectors (HCAdVs) is still missing. In this study, we developed the iMATCH (integrated modular assembly for therapeutic combination HCAdVs) platform, which enables the generation and production of HCAdVs encoding therapeutic combinations in high quantity and purity within 3 weeks. Our modular cloning system facilitates the efficient combination of up to four expression cassettes and the rapid integration into HCAdV genomes with defined sizes. Helper viruses (HVs) and purification protocols were optimized to produce HCAdVs with distinct capsid modifications and unprecedented purity (0.1 ppm HVs). The constitution of HCAdVs, with adapters for targeting and a shield of trimerized single-chain variable fragment (scFv) for reduced liver clearance, mediated cell- and organ-specific targeting of HCAdVs. As proof of concept, we show that a single HCAdV encoding an anti PD-1 antibody, interleukin (IL)-12, and IL-2 produced all proteins, and it led to tumor regression and prolonged survival in tumor models, comparable to a mixture of single payload HCAdVs in vitro and in vivo. Therefore, the iMATCH system provides a versatile platform for the generation of high-capacity gene therapy vectors with a high potential for clinical development.
Collapse
Affiliation(s)
- Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicole Kirchhammer
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sheena N. Smith
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jatina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jonas Kolibius
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick C. Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus Schmid
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fabian Weiss
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Corina Keller
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Corresponding author: Andreas Plückthun, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
7
|
Watkins AR, Reesink HL. Lubricin in experimental and naturally occurring osteoarthritis: a systematic review. Osteoarthritis Cartilage 2020; 28:1303-1315. [PMID: 32504786 PMCID: PMC8043104 DOI: 10.1016/j.joca.2020.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Lubricin is increasingly being evaluated as an outcome measure in studies investigating post-traumatic and naturally occurring osteoarthritis. However, there are discrepancies in results, making it unclear as to whether lubricin is increased, decreased or unchanged in osteoarthritis. The purpose of this study was to review all papers that measured lubricin in joint injury or osteoarthritis in order to draw conclusions about lubricin regulation in joint disease. DESIGN A systematic search of the Pubmed, Web of Knowledge, and EBSCOhost databases for papers was performed. Inclusion criteria were in vivo studies that measured lubricin in humans or animals with joint injury, that investigated lubricin supplementation in osteoarthritic joints, or that described the phenotype of a lubricin knock-out model. A methodological assessment was performed. RESULTS Sixty-two studies were included, of which thirty-eight measured endogenous lubricin in joint injury or osteoarthritis. Nineteen papers found an increase or no change in lubricin and nineteen reported a decrease. Papers that reported a decrease in lubricin were cited four times more often than those that reported an increase. Fifteen papers described lubricin supplementation, and all reported a beneficial effect. Eleven papers described lubricin knock-out models. CONCLUSIONS The human literature reveals similar distributions of papers reporting increased lubricin as compared to decreased lubricin in osteoarthritis. The animal literature is dominated by reports of decreased lubricin in the rat anterior cruciate ligament transection model, whereas studies in large animal models report increased lubricin. Intra-articular lubricin supplementation may be beneficial regardless of whether lubricin increases or decreases in OA.
Collapse
Affiliation(s)
- A R Watkins
- Department of Clinical Sciences, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, PA, USA
| | - H L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Zhang Y, Chen X, Tong Y, Luo J, Bi Q. Development and Prospect of Intra-Articular Injection in the Treatment of Osteoarthritis: A Review. J Pain Res 2020; 13:1941-1955. [PMID: 32801850 PMCID: PMC7414982 DOI: 10.2147/jpr.s260878] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that affects the vast majority of the elderly and may eventually embark on the road of the total knee arthroplasty (TKA), although controversy still exists in the medical community about the best therapies for osteoarthritis. Compared with physical therapy, oral analgesics and other non-operative treatments, intra-articular injection is more safe and effective. Moreover, intra-articular injection is much less invasive and has fewer adverse reactions than surgical treatment. This article reviews mechanism, benefits and adverse reactions of corticosteroids (CS), hyaluronic acid (HA), platelet-rich plasma (PRP), mesenchymal stem cell (MSCs), stromal vascular fraction (SVF) and other new therapies (for example: gene therapy). The application prospect of intra-articular injection was analyzed according to the recent progress in drug research.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China.,The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, People's Republic of China
| | - Xinji Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Yu Tong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Junchao Luo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Qing Bi
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China.,The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, People's Republic of China
| |
Collapse
|
9
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Bellini M, Pest MA, Miranda-Rodrigues M, Qin L, Jeong JW, Beier F. Overexpression of MIG-6 in the cartilage induces an osteoarthritis-like phenotype in mice. Arthritis Res Ther 2020; 22:119. [PMID: 32430054 PMCID: PMC7236969 DOI: 10.1186/s13075-020-02213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis and characterized by degeneration of the articular cartilage. Mitogen-inducible gene 6 (Mig-6) has been identified as a negative regulator of the epidermal growth factor receptor (EGFR). Cartilage-specific Mig-6 knockout (KO) mice display increased EGFR signaling, an anabolic buildup of the articular cartilage, and formation of chondro-osseous nodules. Since our understanding of the EGFR/Mig-6 network in the cartilage remains incomplete, we characterized mice with cartilage-specific overexpression of Mig-6 in this study. METHODS Utilizing knee joints from cartilage-specific Mig-6-overexpressing (Mig-6over/over) mice (at multiple time points), we evaluated the articular cartilage using histology, immunohistochemical staining, and semi-quantitative histopathological scoring (OARSI) at multiple ages. MicroCT analysis was employed to examine skeletal morphometry, body composition, and bone mineral density. RESULTS Our data show that cartilage-specific Mig-6 overexpression did not cause any major developmental abnormalities in the articular cartilage, although Mig-6over/over mice have slightly shorter long bones compared to the control group. Moreover, there was no significant difference in bone mineral density and body composition in any of the groups. However, our results indicate that Mig-6over/over male mice show accelerated cartilage degeneration at 12 and 18 months of age. Immunohistochemistry for SOX9 demonstrated that the number of positively stained cells in Mig-6over/over mice was decreased relative to controls. Immunostaining for MMP13 appeared increased in areas of cartilage degeneration in Mig-6over/over mice. Moreover, staining for phospho-EGFR (Tyr-1173) and lubricin (PRG4) was decreased in the articular cartilage of Mig-6over/over mice. CONCLUSION Overexpression of Mig-6 in the articular cartilage causes no major developmental phenotype; however, these mice develop earlier OA during aging. These data demonstrate that Mig-6/EGFR pathways are critical for joint homeostasis and might present a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Melina Bellini
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
| | - Michael A Pest
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
| | - Manuela Miranda-Rodrigues
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Western University Bone and Joint Institute, London, ON, Canada.
- Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
11
|
Abstract
Proteoglycan 4 (or lubricin), a mucin-like glycoprotein, was originally classified as a lubricating substance within diarthrodial joints. More recently, lubricin has been found in other tissues and has been implicated in 2 inflammatory pathways within the cell, via the Toll-like receptors (TLRs) and CD44. Lubricin is an antagonist of TLR2 and TLR4, and appears to enter cells via the CD44 receptor. Because of lubricin's action on these receptors, downstream processes of inflammation are halted, thereby preventing release of cytokines (a hallmark of inflammation and sepsis) from the cell, indicating lubricin's role as a biomarker and possible therapeutic for sepsis.
Collapse
Affiliation(s)
- Holly Richendrfer
- Department of Emergency Medicine, Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI 02903, USA; Department of Emergency Medicine, Research Laboratory, Rhode Island Hospital, 1 Hoppin Street, CORO West, Room 4.303, Providence, RI 02903, USA
| | - Gregory D Jay
- Department of Emergency Medicine, Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI 02903, USA; Department of Emergency Medicine, Research Laboratory, Rhode Island Hospital, 1 Hoppin Street, CORO West, Room 4.303, Providence, RI 02903, USA.
| |
Collapse
|
12
|
Shin HR, Bae HS, Kim BS, Yoon HI, Cho YD, Kim WJ, Choi KY, Lee YS, Woo KM, Baek JH, Ryoo HM. PIN1 is a new therapeutic target of craniosynostosis. Hum Mol Genet 2019; 27:3827-3839. [PMID: 30007339 PMCID: PMC6216213 DOI: 10.1093/hmg/ddy252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptors (FGFRs) cause congenital skeletal anomalies, including craniosynostosis (CS), which is characterized by the premature closure of craniofacial sutures. Apert syndrome (AS) is one of the severest forms of CS, and the only treatment is surgical expansion of prematurely fused sutures in infants. Previously, we demonstrated that the prolyl isomerase peptidyl-prolyl cis-trans isomerase interacting 1 (PIN1) plays a critical role in mediating FGFR signaling and that Pin1+/- mice exhibit delayed closure of cranial sutures. In this study, using both genetic and pharmacological approaches, we tested whether PIN1 modulation could be used as a therapeutic regimen against AS. In the genetic approach, we crossbred Fgfr2S252W/+, a mouse model of AS, and Pin1+/- mice. Downregulation of Pin1 gene dosage attenuated premature cranial suture closure and other phenotypes of AS in Fgfr2S252W/+ mutant mice. In the pharmacological approach, we intraperitoneally administered juglone, a PIN1 enzyme inhibitor, to pregnant Fgfr2S252W/+ mutant mice and found that this treatment successfully interrupted fetal development of AS phenotypes. Primary cultured osteoblasts from Fgfr2S252W/+ mutant mice expressed high levels of FGFR2 downstream target genes, but this phenotype was attenuated by PIN1 inhibition. Post-translational stabilization and activation of Runt-related transcription factor 2 (RUNX2) in Fgfr2S252W/+ osteoblasts were also attenuated by PIN1 inhibition. Based on these observations, we conclude that PIN1 enzyme activity is important for FGFR2-induced RUNX2 activation and craniofacial suture morphogenesis. Moreover, these findings highlight that juglone or other PIN1 inhibitors represent viable alternatives to surgical intervention for treatment of CS and other hyperostotic diseases.
Collapse
Affiliation(s)
- H R Shin
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H S Bae
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - B S Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H I Yoon
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Y D Cho
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - W J Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K Y Choi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Y S Lee
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K M Woo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - J H Baek
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H M Ryoo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Chavez RD, Sohn P, Serra R. Prg4 prevents osteoarthritis induced by dominant-negative interference of TGF-ß signaling in mice. PLoS One 2019; 14:e0210601. [PMID: 30629676 PMCID: PMC6328116 DOI: 10.1371/journal.pone.0210601] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Objective Prg4, also known as Lubricin, acts as a joint/boundary lubricant. Prg4 has been used to prevent surgically induced osteoarthritis (OA) in mice. Surgically induced OA serves as a good model for post-traumatic OA but is not ideal for recapitulating age-related OA. Reduced expression of the TGF-β type II receptor (TGFβR2) is associated with age-related OA in clinical samples, so we previously characterized a mouse model that exhibits OA due to expression of a mutated dominant-negative form of TGFβR2 (DNIIR). Prg4 expression was significantly reduced in DNIIR mice. Furthermore, we showed that Prg4 was a transcriptional target of TGF-ß via activation of Smad3, the main signal transducing protein for TGF-ß. The objective of the present study was to determine whether maintenance of Prg4, a down-stream transcriptional target of TGF-ß, prevents OA associated with attenuated TGF-ß signaling in mice. Design Wild-type, DNIIR, and bitransgenic mice that express both DNIIR and Prg4, were compared. Mice were assessed with a foot misplacement behavioral test, μCT, histology, and Western blot. Results Compared to DNIIR mice, bitransgenic DNIIR+Prg4 mice missed 1.3 (0.4, 2.1) fewer steps while walking (mean difference (95% confidence interval)), exhibited a cartilage fibrillation score that was 1.8 (0.4, 3.1) points lower, exhibited cartilage that was 28.2 (0.5, 55.9) μm thicker, and exhibited an OARSI score that was 6.8 (-0.9, 14.5) points lower. However, maintenance of Prg4 expression did not restore levels of phosphorylated Smad3 in DNIIR mice, indicating Prg4 does not simply stimulate TGF-ß signaling. Conclusions Our results indicate that maintenance of Prg4 expression prevents OA progression associated with reduced TGF-β signaling in mice. Since there was no evidence that Prg4 acts by stimulating the TGF-ß signaling cascade, we propose that Prg4, a transcriptional target of TGF-ß, attenuates OA progression through its joint lubrication function.
Collapse
Affiliation(s)
- Robert Dalton Chavez
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Philip Sohn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rosa Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
14
|
The Chinese Medicinal Formulation Guzhi Zengsheng Zhitongwan Modulates Chondrocyte Structure, Dynamics, and Metabolism by Controlling Multiple Functional Proteins. BIOMED RESEARCH INTERNATIONAL 2019; 2018:9847286. [PMID: 30596102 PMCID: PMC6282133 DOI: 10.1155/2018/9847286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
Traditional Chinese medicine is one of the oldest medical systems in the world and has its unique principles and theories in the prevention and treatment of human diseases, which are achieved through the interactions of different types of materia medica in the form of Chinese medicinal formulations. GZZSZTW, a classical and effective Chinese medicinal formulation, was designed and created by professor Bailing Liu who is the only national medical master professor in the clinical research field of traditional Chinese medicine and skeletal diseases. GZZSZTW has been widely used in clinical settings for several decades for the treatment of joint diseases. However, the underlying molecular mechanisms are still largely unknown. In the present study, we performed quantitative proteomic analysis to investigate the effects of GZZSZTW on mouse primary chondrocytes using state-of-the-art iTRAQ technology. We demonstrated that the Chinese medicinal formulation GZZSZTW modulates chondrocyte structure, dynamics, and metabolism by controlling multiple functional proteins that are involved in the cellular processes of DNA replication and transcription, protein synthesis and degradation, cytoskeleton dynamics, and signal transduction. Thus, this study has expanded the current knowledge of the molecular mechanism of GZZSZTW treatment on chondrocytes. It has also shed new light on possible strategies to further prevent and treat cartilage-related diseases using traditional Chinese medicinal formulations.
Collapse
|
15
|
Stone A, Grol MW, Ruan MZC, Dawson B, Chen Y, Jiang MM, Song IW, Jayaram P, Cela R, Gannon F, Lee BHL. Combinatorial Prg4 and Il-1ra Gene Therapy Protects Against Hyperalgesia and Cartilage Degeneration in Post-Traumatic Osteoarthritis. Hum Gene Ther 2018; 30:225-235. [PMID: 30070147 DOI: 10.1089/hum.2018.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of synovial joints characterized by progressive loss of articular cartilage, subchondral bone remodeling, and intra-articular inflammation with synovitis that results in chronic pain and motor impairment. Despite the economic and health impacts, current medical therapies are targeted at symptomatic relief of OA and fail to alter its progression. Given the complexity of OA pathogenesis, we hypothesized that a combinatorial gene therapy approach, designed to inhibit inflammation with interleukin-1 receptor antagonist (IL-1Ra) while promoting chondroprotection using lubricin (PRG4), would improve preservation of the joint compared to monotherapy alone. Employing two surgical techniques to model mild, moderate and severe posttraumatic OA, we found that combined delivery of helper-dependent adenoviruses (HDVs), expressing IL-1Ra and PRG4, preserved articular cartilage better than either monotherapy in both models as demonstrated by preservation of articular cartilage volume and surface area. This improved protection was associated with increased expression of proanabolic and cartilage matrix genes together with decreased expression of catabolic genes and inflammatory mediators. In addition to improvements in joint tissues, this combinatorial gene therapy prolonged protection against thermal hyperalgesia compared to either monotherapy. Taken together, our results show that a combinatorial strategy is superior to monotherapeutic approaches for treatment of posttraumatic OA.
Collapse
Affiliation(s)
- Adrianne Stone
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,2 Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas
| | - Matthew W Grol
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Merry Z C Ruan
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Brian Dawson
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yuqing Chen
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ming-Ming Jiang
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - I-Wen Song
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Prathap Jayaram
- 3 H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,4 Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Racel Cela
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Francis Gannon
- 5 Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Brendan H L Lee
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 2018; 40:67-73. [PMID: 29625332 DOI: 10.1016/j.coph.2018.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Intra-articular (IA) injections directly deliver high concentrations of therapeutics to the joint space and are routinely used in various musculoskeletal conditions such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, current IA-injected drugs are rapidly cleared and do not significantly affect the course of joint disease. In this review, we highlight recent developments in IA therapy, with a special emphasis on current and emerging therapeutic carriers and their potential to deliver disease-modifying treatment modalities for arthritis. Recent IA approaches concentrate on platforms that are safe with efficient tissue penetration, and readily translatable for controlled and sustained delivery of therapeutic agents. Gene therapy delivered by viral or non-viral vectors and cell-based therapy for cartilage preservation and regeneration are being intensively explored.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA.
| | - Christine Tn Pham
- Department of Medicine, Division of Rheumatology, 660 South Euclid Avenue, Box 8045, Saint Louis, MO 63110, USA.
| |
Collapse
|
17
|
Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017; 25:1577-1587. [PMID: 28705606 DOI: 10.1016/j.joca.2017.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/09/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) as a debilitating affliction of joints currently affects millions of people and remains an unsolved problem. The disease involves multiple cellular and molecular pathways that converge on the progressive destruction of cartilage. Activation of cartilage regenerative potential and specific targeting pathogenic mediators have been the major focus of research efforts aimed at slowing the progression of cartilage degeneration and preserve joint function. This review will summarize recent key discoveries toward better understanding of the complex mechanisms behind OA development and highlight the latest advances in basic and clinical research in the approach for cartilage regeneration. Prospectively, more potent therapeutic strategies against progressive cartilage deterioration may use a combination of cytotherapy, pharmacotherapy, and bioscaffoldings for improved chondrogenic differentiation and stem/progenitor cell homing as well as the concomitant reduced enzymatic matrix degradation and inflammation. Further, treatments need to be provided with increased preciseness of targeted therapy. One might expect that the regenerative therapies could potentially control or even possibly cure OA if performed at early stages of the disease.
Collapse
Affiliation(s)
- M H Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J B Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Q Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
|
19
|
Larson KM, Zhang L, Elsaid KA, Schmidt TA, Fleming BC, Badger GJ, Jay GD. Reduction of friction by recombinant human proteoglycan 4 in IL-1α stimulated bovine cartilage explants. J Orthop Res 2017; 35:580-589. [PMID: 27411036 PMCID: PMC5957283 DOI: 10.1002/jor.23367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
A boundary lubricant attaches and protects sliding bearing surfaces by preventing interlocking asperity-asperity contact. Proteoglycan-4 (PRG4) is a boundary lubricant found in the synovial fluid that provides chondroprotection to articular surfaces. Inflammation of the diarthrodial joint modulates local PRG4 concentration. Thus, we measured the effects of inflammation, with Interleukin-1α (IL-1α) incubation, upon boundary lubrication and PRG4 expression in bovine cartilage explants. We further aimed to determine whether the addition of exogenous human recombinant PRG4 (rhPRG4) could mitigate the effects of inflammation on boundary lubrication and PRG4 expression in vitro. Cartilage explants, following a 7 day incubation with IL-1α, were tested in a disc-on-disc configuration using either rhPRG4 or saline (PBS control) as a lubricant. Following mechanical testing, explants were studied immunohistochemically or underwent RNA extraction for real-time polymerase chain reaction (RT-PCR). We found that static coefficient of friction (COF) significantly decreased to 0.14 ± 0.065 from 0.21 ± 0.059 (p = 0.014) in IL-1α stimulated explants lubricated with rhPRG4, as compared to PBS. PRG4 expression was significantly up regulated from 30.8 ± 19 copies in control explants lubricated with PBS to 3330 ± 1760 copies in control explants lubricated with rhPRG4 (p < 0.001). Explants stimulated with IL-1α displayed no increase in PRG4 expression upon lubrication with rhPRG4, but with PBS as the lubricant, IL-1α stimulation significantly increased PRG4 expression compared to the control condition from 30.8 ± 19 copies to 401 ± 340 copies (p = 0.015). Overall, these data suggest that exogenous rhPRG4 may provide a therapeutic option for reducing friction in transient inflammatory conditions and increasing PRG4 expression. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:580-589, 2017.
Collapse
Affiliation(s)
- Katherine M. Larson
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI, USA
| | - Ling Zhang
- Emergency Medicine Research Laboratory, Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Khaled A. Elsaid
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Tannin A. Schmidt
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Braden C. Fleming
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI, USA
- Bioengineering Laboratory, Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Gary J. Badger
- Department of Medical Biostatistics, University of Vermont, Burlington, VT, USA
| | - Gregory D. Jay
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI, USA
- Emergency Medicine Research Laboratory, Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|