1
|
Merz LM, Winter K, Richter S, Kallendrusch S, Horn A, Grunewald S, Klöting N, Krause K, Kiess W, Le Duc D, Garten A. Effects of alpelisib treatment on murine Pten-deficient lipomas. Adipocyte 2025; 14:2468275. [PMID: 39962643 PMCID: PMC11844927 DOI: 10.1080/21623945.2025.2468275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.
Collapse
Affiliation(s)
- Lea M. Merz
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Clinical Research and Systems Medicine, Health and Medical University Potsdam, Potsdam, Germany
| | - Andreas Horn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sonja Grunewald
- Department for Dermatology, Venereology and Allergology, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Xue Y, Zhu L, Karan S, Locker JD, Branch C, Zhang J, Hoang B, Maianti JP, Zhao H, Schwartz EL. Distinct outcomes from targeted perturbations of the multi-subunit SCF Skp2 E3 ubiquitin ligase in blocking Trp53/Rb1-null prostate tumorigenesis. Commun Biol 2025; 8:278. [PMID: 39987265 PMCID: PMC11846996 DOI: 10.1038/s42003-025-07662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
Identifying effective therapies targeting multi-protein complexes that lack catalytic sites or cofactor pockets remains a long-standing challenge. The proto-oncogene, ubiquitin E3 ligase SCFSkp2, is one such target. SCFSkp2 promotes the proteasomal degradation of the cyclin-dependent kinase inhibitor p27, which controls cell cycle progression. Targeted knockout of Rb1/Trp53 causes metastatic prostate cancer in mice; additional knockout of Skp2 completely blocks tumorigenesis. We compared gene-edited mice that carried two different single amino acid changes in the SCFSkp2 complex, structurally predicted to inhibit the degradation of p27. Mutation of the SCFSkp2 accessory protein Cks1 (Cks1N45R) completely blocked Rb1/Trp53-driven prostate tumorigenesis, phenocopying Skp2 knockout, whereas a mutation directly stabilizing p27 (p27T187A) did not. This was consistent with structural models that predicted the binding of both p27 and p27T187A to the SCFSkp2/Cks1/Cdk2/CyclinA/p27 complex, and their subsequent ubiquitination and degradation, albeit at different rates. Two binding modes, which differ in their dependence on phosphorylated T187, are predicted by the model. Studies confirmed the role of p27 in mediating tumorigenesis in Rb1/Trp53 mutant tumors and revealed a mutually destabilizing Skp2 and p27 feedback loop. The integration of gene editing, drug-surrogate mutations, and mouse tumor models offers a blueprint for studying SCFSkp2 and other multi-subunit biomedical targets.
Collapse
Affiliation(s)
- Yingjiao Xue
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Liang Zhu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Saumen Karan
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Joseph D Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Craig Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Pablo Maianti
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Hongling Zhao
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| | - Edward L Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
4
|
Yao G. Quiescence-Origin Senescence: A New Paradigm in Cellular Aging. Biomedicines 2024; 12:1837. [PMID: 39200301 PMCID: PMC11351160 DOI: 10.3390/biomedicines12081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cellular senescence, traditionally viewed as a consequence of proliferating and growing cells overwhelmed by extensive stresses and damage, has long been recognized as a critical cellular aging mechanism. Recent research, however, has revealed a novel pathway termed "quiescence-origin senescence", where cells directly transition into senescence from the quiescent state, bypassing cell proliferation and growth. This opinion paper presents a framework conceptualizing a continuum between quiescence and senescence with quiescence deepening as a precursor to senescence entry. We explore the triggers and controllers of this process and discuss its biological implications. Given that the majority of cells in the human body are dormant rather than proliferative, understanding quiescence-origin senescence has significant implications for tissue homeostasis, aging, cancer, and various disease processes. The new paradigm in exploring this previously overlooked senescent cell population may reshape our intervention strategies for age-related diseases and tissue regeneration.
Collapse
Affiliation(s)
- Guang Yao
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
5
|
Pan Y, Hysinger JD, Yalçın B, Lennon JJ, Byun YG, Raghavan P, Schindler NF, Anastasaki C, Chatterjee J, Ni L, Xu H, Malacon K, Jahan SM, Ivec AE, Aghoghovwia BE, Mount CW, Nagaraja S, Scheaffer S, Attardi LD, Gutmann DH, Monje M. Nf1 mutation disrupts activity-dependent oligodendroglial plasticity and motor learning in mice. Nat Neurosci 2024; 27:1555-1564. [PMID: 38816530 PMCID: PMC11303248 DOI: 10.1038/s41593-024-01654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Abstract
Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), can cause cognitive and motor impairments, traditionally attributed to intrinsic neuronal defects such as disruption of synaptic function. Activity-regulated oligodendroglial plasticity also contributes to cognitive and motor functions by tuning neural circuit dynamics. However, the relevance of oligodendroglial plasticity to neurological dysfunction in NF1 is unclear. Here we explore the contribution of oligodendrocyte progenitor cells (OPCs) to pathological features of the NF1 syndrome in mice. Both male and female littermates (4-24 weeks of age) were used equally in this study. We demonstrate that mice with global or OPC-specific Nf1 heterozygosity exhibit defects in activity-dependent oligodendrogenesis and harbor focal OPC hyperdensities with disrupted homeostatic OPC territorial boundaries. These OPC hyperdensities develop in a cell-intrinsic Nf1 mutation-specific manner due to differential PI3K/AKT activation. OPC-specific Nf1 loss impairs oligodendroglial differentiation and abrogates the normal oligodendroglial response to neuronal activity, leading to impaired motor learning performance. Collectively, these findings show that Nf1 mutation delays oligodendroglial development and disrupts activity-dependent OPC function essential for normal motor learning in mice.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jared D Hysinger
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - James J Lennon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Youkyeong Gloria Byun
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Preethi Raghavan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicole F Schindler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Haojun Xu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Karen Malacon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin M Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alexis E Ivec
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Benjamin E Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher W Mount
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Surya Nagaraja
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Suzanne Scheaffer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Bai H, Liu X, Lin M, Meng Y, Tang R, Guo Y, Li N, Clarke MF, Cai S. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer. Nat Commun 2024; 15:5154. [PMID: 38886378 PMCID: PMC11183265 DOI: 10.1038/s41467-024-49106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer incidence escalates exponentially with advancing age; however, the underlying mechanism remains unclear. In this study, we build a chronological molecular clock at single-cell transcription level with a mammary stem cell-enriched population to depict physiological aging dynamics in female mice. We find that the mammary aging process is asynchronous and progressive, initiated by an early senescence program, succeeded by an entropic late senescence program with elevated cancer associated pathways, vulnerable to cancer predisposition. The transition towards senescence program is governed by a stem cell factor Bcl11b, loss of which accelerates mammary ageing with enhanced DMBA-induced tumor formation. We have identified a drug TPCA-1 that can rejuvenate mammary cells and significantly reduce aging-related cancer incidence. Our findings establish a molecular portrait of progressive mammary cell aging and elucidate the transcriptional regulatory network bridging mammary aging and cancer predisposition, which has potential implications for the management of cancer prevalence in the aged.
Collapse
Affiliation(s)
- Huiru Bai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yuan Meng
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Michael F Clarke
- Institute of Stem Cell and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shang Cai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Tóth F, Moftakhar Z, Sotgia F, Lisanti MP. In Vitro Investigation of Therapy-Induced Senescence and Senescence Escape in Breast Cancer Cells Using Novel Flow Cytometry-Based Methods. Cells 2024; 13:841. [PMID: 38786063 PMCID: PMC11120107 DOI: 10.3390/cells13100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Although cellular senescence was originally defined as an irreversible form of cell cycle arrest, in therapy-induced senescence models, the emergence of proliferative senescence-escaped cancer cells has been reported by several groups, challenging the definition of senescence. Indeed, senescence-escaped cancer cells may contribute to resistance to cancer treatment. Here, to study senescence escape and isolate senescence-escaped cells, we developed novel flow cytometry-based methods using the proliferation marker Ki-67 and CellTrace CFSE live-staining. We investigated the role of a novel senescence marker (DPP4/CD26) and a senolytic drug (azithromycin) on the senescence-escaping ability of MCF-7 and MDA-MB-231 breast cancer cells. Our results show that the expression of DPP4/CD26 is significantly increased in both senescent MCF-7 and MDA-MB-231 cells. While not essential for senescence induction, DPP4/CD26 contributed to promoting senescence escape in MCF-7 cells but not in MDA-MB-231 cells. Our results also confirmed the potential senolytic effect of azithromycin in senescent cancer cells. Importantly, the combination of azithromycin and a DPP4 inhibitor (sitagliptin) demonstrated a synergistic effect in senescent MCF-7 cells and reduced the number of senescence-escaped cells. Although further research is needed, our results and novel methods could contribute to the investigation of the mechanisms of senescence escape and the identification of potential therapeutic targets. Indeed, DPP4/CD26 could be a promising marker and a novel target to potentially decrease senescence escape in cancer.
Collapse
Affiliation(s)
- Fanni Tóth
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Wien, Vienna, Austria
| | - Zahra Moftakhar
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| | - Federica Sotgia
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| | - Michael P. Lisanti
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| |
Collapse
|
8
|
Xie S, Zhang S, de Medeiros G, Liberali P, Skotheim JM. The G1/S transition in mammalian stem cells in vivo is autonomously regulated by cell size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588781. [PMID: 38645246 PMCID: PMC11030448 DOI: 10.1101/2024.04.09.588781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cell growth and division must be coordinated to maintain a stable cell size, but how this coordination is implemented in multicellular tissues remains unclear. In unicellular eukaryotes, autonomous cell size control mechanisms couple cell growth and division with little extracellular input. However, in multicellular tissues we do not know if autonomous cell size control mechanisms operate the same way or whether cell growth and cell cycle progression are separately controlled by cell-extrinsic signals. Here, we address this question by tracking single epidermal stem cells growing in adult mice. We find that a cell-autonomous size control mechanism, dependent on the RB pathway, sets the timing of S phase entry based on the cell's current size. Cell-extrinsic variations in the cellular microenvironment affect cell growth rates but not this autonomous coupling. Our work reassesses long-standing models of cell cycle regulation within complex metazoan tissues and identifies cell-autonomous size control as a critical mechanism regulating cell divisions in vivo and thereby a major contributor to stem cell heterogeneity.
Collapse
|
9
|
Sanidas I, Lawrence MS, Dyson NJ. Patterns in the tapestry of chromatin-bound RB. Trends Cell Biol 2024; 34:288-298. [PMID: 37648594 PMCID: PMC10899529 DOI: 10.1016/j.tcb.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The retinoblastoma protein (RB)-mediated regulation of E2F is a component of a highly conserved cell cycle machine. However, RB's tumor suppressor activity, like RB's requirement in animal development, is tissue-specific, context-specific, and sometimes appears uncoupled from cell proliferation. Detailed new information about RB's genomic distribution provides a new perspective on the complexity of RB function, suggesting that some of its functional specificity results from context-specific RB association with chromatin. Here we summarize recent evidence showing that RB targets different types of chromatin regulatory elements at different cell cycle stages. RB controls traditional RB/E2F targets prior to S-phase, but, when cells proliferate, RB redistributes to cell type-specific chromatin loci. We discuss the broad implications of the new data for RB research.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
10
|
Reimann M, Lee S, Schmitt CA. Cellular senescence: Neither irreversible nor reversible. J Exp Med 2024; 221:e20232136. [PMID: 38385946 PMCID: PMC10883852 DOI: 10.1084/jem.20232136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Cellular senescence is a critical stress response program implicated in embryonic development, wound healing, aging, and immunity, and it backs up apoptosis as an ultimate cell-cycle exit mechanism. In analogy to replicative exhaustion of telomere-eroded cells, premature types of senescence-referring to oncogene-, therapy-, or virus-induced senescence-are widely considered irreversible growth arrest states as well. We discuss here that entry into full-featured senescence is not necessarily a permanent endpoint, but dependent on essential maintenance components, potentially transient. Unlike a binary state switch, we view senescence with its extensive epigenomic reorganization, profound cytomorphological remodeling, and distinctive metabolic rewiring rather as a journey toward a full-featured arrest condition of variable strength and depth. Senescence-underlying maintenance-essential molecular mechanisms may allow cell-cycle reentry if not continuously provided. Importantly, senescent cells that resumed proliferation fundamentally differ from those that never entered senescence, and hence would not reflect a reversion but a dynamic progression to a post-senescent state that comes with distinct functional and clinically relevant ramifications.
Collapse
Affiliation(s)
- Maurice Reimann
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
| | - Soyoung Lee
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
| | - Clemens A Schmitt
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
11
|
Gardner EE, Earlie EM, Li K, Thomas J, Hubisz MJ, Stein BD, Zhang C, Cantley LC, Laughney AM, Varmus H. Lineage-specific intolerance to oncogenic drivers restricts histological transformation. Science 2024; 383:eadj1415. [PMID: 38330136 PMCID: PMC11155264 DOI: 10.1126/science.adj1415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.
Collapse
Affiliation(s)
| | - Ethan M. Earlie
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Kate Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Jerin Thomas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Melissa J. Hubisz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY
| | - Benjamin D. Stein
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Chen Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Ashley M. Laughney
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Harold Varmus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
12
|
Tabatabai A, Arora A, Höfmann S, Jauch M, von Tresckow B, Hansen J, Flümann R, Jachimowicz RD, Klein S, Reinhardt HC, Knittel G. Mouse models of diffuse large B cell lymphoma. Front Immunol 2023; 14:1313371. [PMID: 38124747 PMCID: PMC10731046 DOI: 10.3389/fimmu.2023.1313371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a genetically highly heterogeneous disease. Yet, to date, the vast majority of patients receive standardized frontline chemo-immune-therapy consisting of an anthracycline backbone. Using these regimens, approximately 65% of patients can be cured, whereas the remaining 35% of patients will face relapsed or refractory disease, which, even in the era of CAR-T cells, is difficult to treat. To systematically tackle this high medical need, it is important to design, generate and deploy suitable in vivo model systems that capture disease biology, heterogeneity and drug response. Recently published, large comprehensive genomic characterization studies, which defined molecular sub-groups of DLBCL, provide an ideal framework for the generation of autochthonous mouse models, as well as an ideal benchmark for cell line-derived or patient-derived mouse models of DLBCL. Here we discuss the current state of the art in the field of mouse modelling of human DLBCL, with a particular focus on disease biology and genetically defined molecular vulnerabilities, as well as potential targeting strategies.
Collapse
Affiliation(s)
- Areya Tabatabai
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Aastha Arora
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Svenja Höfmann
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Maximilian Jauch
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Vaghjiani VG, Cochrane CR, Jayasekara WSN, Chong WC, Szczepny A, Kumar B, Martelotto LG, McCaw A, Carey K, Kansara M, Thomas DM, Walkley C, Mudge S, Gough DJ, Downie PA, Peacock CD, Matsui W, Watkins DN, Cain JE. Ligand-dependent hedgehog signaling maintains an undifferentiated, malignant osteosarcoma phenotype. Oncogene 2023; 42:3529-3541. [PMID: 37845394 PMCID: PMC10656285 DOI: 10.1038/s41388-023-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
TP53 and RB1 loss-of-function mutations are common in osteosarcoma. During development, combined loss of TP53 and RB1 function leads to downregulation of autophagy and the aberrant formation of primary cilia, cellular organelles essential for the transmission of canonical Hedgehog (Hh) signaling. Excess cilia formation then leads to hypersensitivity to Hedgehog (Hh) ligand signaling. In mouse and human models, we now show that osteosarcomas with mutations in TP53 and RB1 exhibit enhanced ligand-dependent Hh pathway activation through Smoothened (SMO), a transmembrane signaling molecule required for activation of the canonical Hh pathway. This dependence is mediated by hypersensitivity to Hh ligand and is accompanied by impaired autophagy and increased primary cilia formation and expression of Hh ligand in vivo. Using a conditional genetic mouse model of Trp53 and Rb1 inactivation in osteoblast progenitors, we further show that deletion of Smo converts the highly malignant osteosarcoma phenotype to benign, well differentiated bone tumors. Conversely, conditional overexpression of SHH ligand, or a gain-of-function SMO mutant in committed osteoblast progenitors during development blocks terminal bone differentiation. Finally, we demonstrate that the SMO antagonist sonidegib (LDE225) induces growth arrest and terminal differentiation in vivo in osteosarcomas that express primary cilia and Hh ligand combined with mutations in TP53. These results provide a mechanistic framework for aberrant Hh signaling in osteosarcoma based on defining mutations in the tumor suppressor, TP53.
Collapse
Affiliation(s)
| | - Catherine R Cochrane
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | | | - Wai Chin Chong
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Anette Szczepny
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Beena Kumar
- Department of Pathology, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Luciano G Martelotto
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew McCaw
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Kirstyn Carey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Maya Kansara
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St.Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 1466, Australia
| | - Carl Walkley
- St. Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Stuart Mudge
- Mayne Pharma International Pty Ltd, Salisbury Sth, SA, 5106, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Peter A Downie
- Monash Children's Cancer Centre, Monash Children's Hospital, Monash Health, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - Craig D Peacock
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - William Matsui
- Department of Oncology and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, R3E-0V9, Canada.
- Department of Internal Medicine, Rady Faculty of Heath Sciences, University of Manitoba, Winnipeg, MB, R3A-1R9, Canada.
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
14
|
Gui W, Hang Y, Cheng W, Gao M, Wu J, Ouyang Z. Structural basis of CDK3 activation by cyclin E1 and inhibition by dinaciclib. Biochem Biophys Res Commun 2023; 662:126-134. [PMID: 37104883 DOI: 10.1016/j.bbrc.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Cell cycle transitions are controlled by multiple cell cycle regulators, especially CDKs. Several CDKs, including CDK1-4 and CDK6, promote cell cycle progression directly. Among them, CDK3 is critically important because it triggers the transitions of G0 to G1 and G1 to S phase through binding to cyclin C and cyclin E1, respectively. In contrast to its highly related homologs, the molecular basis of CDK3 activation remains elusive due to the lack of structural information of CDK3, particularly in cyclin bound form. Here we report the crystal structure of CDK3 in complex with cyclin E1 at 2.25 Å resolution. CDK3 resembles CDK2 in that both adopt a similar fold and bind cyclin E1 in a similar way. The structural discrepancy between CDK3 and CDK2 may reflect their substrate specificity. Profiling a panel of CDK inhibitors reveals that dinaciclib inhibits CDK3-cyclin E1 potently and specifically. The structure of CDK3-cyclin E1 bound to dinaciclib reveals the inhibitory mechanism. The structural and biochemical results uncover the mechanism of CDK3 activation by cyclin E1 and lays a foundation for structural-based drug design.
Collapse
Affiliation(s)
- Wenjun Gui
- Wuxi Biortus Biosciences Co. Ltd, 6 Dongsheng Western Road, Jiangyin, Jiangsu, 214437, China
| | - Yumo Hang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wang Cheng
- Wuxi Biortus Biosciences Co. Ltd, 6 Dongsheng Western Road, Jiangyin, Jiangsu, 214437, China
| | - Minqi Gao
- Wuxi Biortus Biosciences Co. Ltd, 6 Dongsheng Western Road, Jiangyin, Jiangsu, 214437, China
| | - Jiaquan Wu
- Wuxi Biortus Biosciences Co. Ltd, 6 Dongsheng Western Road, Jiangyin, Jiangsu, 214437, China.
| | - Zhuqing Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
15
|
Sei Y, Feng J, Zhao X, Dagur P, McCoy JP, Merchant JL, Wank SA. Tissue- and cell-specific properties of enterochromaffin cells affect the fate of tumorigenesis toward nonendocrine adenocarcinoma of the small intestine. Am J Physiol Gastrointest Liver Physiol 2023; 324:G177-G189. [PMID: 36537709 PMCID: PMC9925174 DOI: 10.1152/ajpgi.00205.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023]
Abstract
Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. However, EC cell-derived tumorigenesis remains poorly understood. Here, we examined whether the gain of Myc and the loss of RB1 and Trp53 function in EC cells result in SI-NET using tryptophan hydroxylase 1 (TPH1) Cre-ERT2-driven RB1fl Trp53fl MycLSL (RPM) mice. TPH1-Cre-induced gain of Myc and loss of RB1 and Trp53 function resulted in endocrine or neuronal tumors in pancreas, lung, enteric neurons, and brain. Lineage tracing indicated that the cellular origin for these tumors was TPH1-expressing neuroendocrine, neuronal, or their precursor cells in these organs. However, despite that TPH1 is most highly expressed in EC cells of the small intestine, we observed no incidence of EC cell tumors. Instead, the tumor of epithelial cell origin in the intestine was exclusively nonendocrine adenocarcinoma, suggesting dedifferentiation of EC cells into intestinal stem cells (ISCs) as a cellular mechanism. Furthermore, ex vivo organoid studies indicated that loss of functions of Rb1 and Trp53 accelerated dedifferentiation of EC cells that were susceptible to apoptosis with expression of activated MycT58A, suggesting that the rare dedifferentiating cells escaping cell death went on to develop adenocarcinomas. Lineage tracing demonstrated that EC cells in the small intestine were short-lived compared with neuroendocrine or neuronal cells in other organs. In contrast, EC cell-derived ISCs were long-lasting and actively cycling and thus susceptible to transformation. These results suggest that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation, affect the fate and rate of tumorigenesis induced by genetic alterations and provide important insights into EC cell-derived tumorigenesis.NEW & NOTEWORTHY Small intestinal neuroendocrine tumors are of putative enterochromaffin (EC) cell origin and are the most common malignancy in the small intestine, followed by adenocarcinoma. However, the tumorigenesis of these tumor types remains poorly understood. The present lineage tracing studies showed that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation affect the fate and rate of tumorigenesis induced by genetic alterations toward a rare occurrence of adenocarcinoma.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianying Feng
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Xilin Zhao
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Pradeep Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Juanita L Merchant
- Department of Internal Medicine-Gastroenterology, University of Arizona, Tuscan, Arizona
| | - Stephen A Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Takasugi M, Yoshida Y, Hara E, Ohtani N. The role of cellular senescence and SASP in tumour microenvironment. FEBS J 2023; 290:1348-1361. [PMID: 35106956 DOI: 10.1111/febs.16381] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 01/01/2023]
Abstract
Cellular senescence refers to a state of irreversible cell cycle arrest that can be induced by various cellular stresses and is known to play a pivotal role in tumour suppression. While senescence-associated growth arrest can inhibit the proliferation of cancer-prone cells, the altered secretory profile of senescent cells, termed the senescence-associated secretory phenotype, can contribute to the microenvironment that promotes tumour development. Although the senescence-associated secretory phenotype and its effects on tumorigenesis are both highly context dependent, mechanisms underlying such diversity are becoming better understood, thereby allowing the creation of new strategies to effectively target the senescence-associated secretory phenotype and senescent cells for cancer therapy. In this review, we discuss the current knowledge on cellular senescence and the senescence-associated secretory phenotype to develop a structural understanding of their roles in the tumour microenvironment and provide perspectives for future research, including the possibility of senotherapy for the treatment of cancer.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Japan.,Immunology Frontier Research Center (IFReC), Osaka University, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
17
|
Myers JE, Schaal DL, Nkadi EH, Ward BJH, Bienkowska-Haba M, Sapp M, Bodily JM, Scott RS. Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. J Virol 2023; 97:e0103222. [PMID: 36719239 PMCID: PMC9972952 DOI: 10.1128/jvi.01032-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Coinfection of human papillomavirus (HPV) and Epstein-Barr virus (EBV) has been detected in oropharyngeal squamous cell carcinoma. Although HPV and EBV replicate in differentiated epithelial cells, we previously reported that HPV epithelial immortalization reduces EBV replication within organotypic raft culture and that the HPV16 oncoprotein E7 was sufficient to inhibit EBV replication. A well-established function of HPV E7 is the degradation of the retinoblastoma (Rb) family of pocket proteins (pRb, p107, and p130). Here, we show that pRb knockdown in differentiated epithelia and EBV-positive Burkitt lymphoma (BL) reduces EBV lytic replication following de novo infection and reactivation, respectively. In differentiated epithelia, EBV immediate early (IE) transactivators were expressed, but loss of pRb blocked expression of the early gene product, EA-D. Although no alterations were observed in markers of epithelial differentiation, DNA damage, and p16, increased markers of S-phase progression and altered p107 and p130 levels were observed in suprabasal keratinocytes after pRb knockdown. In contrast, pRb interference in Akata BX1 Burkitt lymphoma cells showed a distinct phenotype from differentiated epithelia with no significant effect on EBV IE or EA-D expression. Instead, pRb knockdown reduced the levels of the plasmablast differentiation marker PRDM1/Blimp1 and increased the abundance of c-Myc protein in reactivated Akata BL with pRb knockdown. c-Myc RNA levels also increased following the loss of pRb in epithelial rafts. These results suggest that pRb is required to suppress c-Myc for efficient EBV replication in BL cells and identifies a mechanism for how HPV immortalization, through degradation of the retinoblastoma pocket proteins, interferes with EBV replication in coinfected epithelia. IMPORTANCE Terminally differentiated epithelium is known to support EBV genome amplification and virion morphogenesis following infection. The contribution of the cell cycle in differentiated tissues to efficient EBV replication is not understood. Using organotypic epithelial raft cultures and genetic interference, we can identify factors required for EBV replication in quiescent cells. Here, we phenocopied HPV16 E7 inhibition of EBV replication through knockdown of pRb. Loss of pRb was found to reduce EBV early gene expression and viral replication. Interruption of the viral life cycle was accompanied by increased S-phase gene expression in postmitotic keratinocytes, a process also observed in E7-positive epithelia, and deregulation of other pocket proteins. Together, these findings provide evidence of a global requirement for pRb in EBV lytic replication and provide a mechanistic framework for how HPV E7 may facilitate a latent EBV infection through its mediated degradation of pRb in copositive epithelia.
Collapse
Affiliation(s)
- Julia E. Myers
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - B. J. H. Ward
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jason M. Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
18
|
Fong BC, Chakroun I, Iqbal MA, Paul S, Bastasic J, O’Neil D, Yakubovich E, Bejjani AT, Ahmadi N, Carter A, Clark A, Leone G, Park DS, Ghanem N, Vandenbosch R, Slack RS. The Rb/E2F axis is a key regulator of the molecular signatures instructing the quiescent and activated adult neural stem cell state. Cell Rep 2022; 41:111578. [DOI: 10.1016/j.celrep.2022.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
|
19
|
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19:619-636. [PMID: 36045302 PMCID: PMC9428886 DOI: 10.1038/s41571-022-00668-4] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer. The entry of cells into senescence can act as a barrier to tumorigenesis; however, in certain contexts senescent malignant and non-malignant cells can acquire pro-tumorigenic properties. The authors of this Review discuss the cell-intrinsic and cell-extrinsic mechanisms involved in both the antitumorigenic and tumour-promoting roles of senescent cells, and describe the potential of various senolytic and senomorphic therapeutic approaches in oncology. Cellular senescence is a natural barrier to tumorigenesis; senescent cells are widely detected in premalignant lesions from patients with cancer. Cellular senescence is induced by anticancer therapy and can contribute to some treatment-related adverse events (TRAEs). Senescent cells exert both protumorigenic and antitumorigenic effects via cell-autonomous and paracrine mechanisms. Pharmacological modulation of senescence-associated phenotypes has the potential to improve therapy efficacy and reduce the incidence of TRAEs.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Johannes Kepler University, Linz, Austria.,Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.,Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
20
|
Braumüller H, Mauerer B, Berlin C, Plundrich D, Marbach P, Cauchy P, Laessle C, Biesel E, Holzner PA, Kesselring R. Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment. Front Immunol 2022; 13:908449. [PMID: 35844581 PMCID: PMC9279937 DOI: 10.3389/fimmu.2022.908449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
More than half of all patients with colorectal cancer (CRC) develop distant metastasis and, depending on the local stage of the primary tumor, up to 48% of patients present peritoneal carcinomatosis (PC). PC is often considered as a widespread metastatic disease, which is almost resistant to current systemic therapies like chemotherapeutic and immunotherapeutic regimens. Here we could show that tumor cells of PC besides being senescent also exhibit stem cell features. To investigate these surprising findings in more detail, we established a murine model based on tumor organoids that resembles the clinical setting. In this murine orthotopic transplantation model for peritoneal carcinomatosis, we could show that the metastatic site in the peritoneum is responsible for senescence and stemness induction in tumor cells and that induction of senescence is not due to oncogene activation or therapy. In both mouse and human PC, senescence is associated with a senescence-associated secretory phenotype (SASP) influencing the tumor microenvironment (TME) of PC. SASP factors are able to induce a senescence phenotype in neighbouring cells. Here we could show that SASP leads to enhanced immunosenescence in the TME of PC. Our results provide a new immunoescape mechanism in PC explaining the resistance of PC to known chemo- and immunotherapeutic approaches. Therefore, senolytic approaches may represent a novel roadmap to target this terminal stage of CRC.
Collapse
Affiliation(s)
- Heidi Braumüller
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Heidi Braumüller,
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Berlin
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothea Plundrich
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Marbach
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre Cauchy
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Laessle
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Esther Biesel
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Anton Holzner
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Integrated Analysis of Cancer Tissue and Vitreous Humor from Retinoblastoma Eyes Reveals Unique Tumor-Specific Metabolic and Cellular Pathways in Advanced and Non-Advanced Tumors. Cells 2022; 11:cells11101668. [PMID: 35626705 PMCID: PMC9139581 DOI: 10.3390/cells11101668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Retinoblastoma (Rb) is a pediatric intraocular malignancy that is proposed to originate from maturing cone cell precursors in the developing retina. The molecular mechanisms underlying the biological and clinical behaviors are important to understand in order to improve the management of advanced-stage tumors. While the genetic causes of Rb are known, an integrated understanding of the gene expression and metabolic processes in tumors of human eyes is deficient. By integrating transcriptomic profiling from tumor tissues and metabolomics from tumorous eye vitreous humor samples (with healthy, age-matched pediatric retinae and vitreous samples as controls), we uncover unique functional associations between genes and metabolites. We found distinct gene expression patterns between clinically advanced and non-advanced Rb. Global metabolomic analysis of the vitreous humor of the same Rb eyes revealed distinctly altered metabolites, indicating how tumor metabolism has diverged from healthy pediatric retina. Several key enzymes that are related to cellular energy production, such as hexokinase 1, were found to be reduced in a manner corresponding to altered metabolites; notably, a reduction in pyruvate levels. Similarly, E2F2 was the most significantly elevated E2F family member in our cohort that is part of the cell cycle regulatory circuit. Ectopic expression of the wild-type RB1 gene in the Rb-null Y79 and WERI-Rb1 cells rescued hexokinase 1 expression, while E2F2 levels were repressed. In an additional set of Rb tumor samples and pediatric healthy controls, we further validated differences in the expression of HK1 and E2F2. Through an integrated omics analysis of the transcriptomics and metabolomics of Rb, we uncovered a significantly altered tumor-specific metabolic circuit that reduces its dependence on glycolytic pathways and is governed by Rb1 and HK1.
Collapse
|
22
|
Kim KB, Kabra A, Kim DW, Xue Y, Huang Y, Hou PC, Zhou Y, Miranda LJ, Park JI, Shi X, Bender TP, Bushweller JH, Park KS. KIX domain determines a selective tumor-promoting role for EP300 and its vulnerability in small cell lung cancer. SCIENCE ADVANCES 2022; 8:eabl4618. [PMID: 35171684 PMCID: PMC8849394 DOI: 10.1126/sciadv.abl4618] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/23/2021] [Indexed: 05/20/2023]
Abstract
EP300, a transcription coactivator important in proliferation and differentiation, is frequently mutated in diverse cancer types, including small cell lung cancer (SCLC). While these mutations are thought to result in loss of EP300 function, the impact on tumorigenesis remains largely unknown. Here, we demonstrate that EP300 mutants lacking acetyltransferase domain accelerate tumor development in mouse models of SCLC. However, unexpectedly, complete Ep300 knockout suppresses SCLC development and proliferation. Dissection of EP300 domains identified kinase inducible domain-interacting (KIX) domain, specifically its interaction with transcription factors including MYB, as the determinant of protumorigenic activity. Ala627 in EP300 KIX results in a higher protein-binding affinity than Asp647 at the equivalent position in CREBBP KIX, underlying the selectivity of KIX-binding partners for EP300. Blockade of KIX-mediated interactions inhibits SCLC development in mice and cell growth. This study unravels domain-specific roles for EP300 in SCLC and unique vulnerability of the EP300 KIX domain for therapeutic intervention.
Collapse
Affiliation(s)
- Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ashish Kabra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Dong-Wook Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yongming Xue
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei-Chi Hou
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yunpeng Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Leilani J. Miranda
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Timothy P. Bender
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
23
|
Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D. Epigenetic Regulation of Cellular Senescence. Cells 2022; 11:672. [PMID: 35203320 PMCID: PMC8870565 DOI: 10.3390/cells11040672] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Senescence is a complex cellular stress response that abolishes proliferative capacity and generates a unique secretory pattern that is implicated in organismal aging and age-related disease. How a cell transitions to a senescent state is multifactorial and often requires transcriptional regulation of multiple genes. Epigenetic alterations to DNA and chromatin are powerful regulators of genome architecture and gene expression, and they play a crucial role in mediating the induction and maintenance of senescence. This review will highlight the changes in chromatin, DNA methylation, and histone alterations that establish and maintain cellular senescence, alongside the specific epigenetic regulation of the senescence-associated secretory phenotype (SASP).
Collapse
Affiliation(s)
- Jack Crouch
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Maria Shvedova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Vladimir Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Daniel Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| |
Collapse
|
24
|
Pajalunga D, Crescenzi M. Restoring the Cell Cycle and Proliferation Competence in Terminally Differentiated Skeletal Muscle Myotubes. Cells 2021; 10:cells10102753. [PMID: 34685732 PMCID: PMC8534385 DOI: 10.3390/cells10102753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Terminal differentiation is an ill-defined, insufficiently characterized, nonproliferation state. Although it has been classically deemed irreversible, it is now clear that at least several terminally differentiated (TD) cell types can be brought back into the cell cycle. We are striving to uncover the molecular bases of terminal differentiation, whose fundamental understanding is a goal in itself. In addition, the field has sought to acquire the ability to make TD cells proliferate. Attaining this end would probe the very molecular mechanisms we are trying to understand. Equally important, it would be invaluable in regenerative medicine, for tissues depending on TD cells and devoid of significant self-repair capabilities. The skeletal muscle has long been used as a model system to investigate the molecular foundations of terminal differentiation. Here, we summarize more than 50 years of studies in this field.
Collapse
Affiliation(s)
- Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marco Crescenzi
- Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
25
|
Rizzotto D, Englmaier L, Villunger A. At a Crossroads to Cancer: How p53-Induced Cell Fate Decisions Secure Genome Integrity. Int J Mol Sci 2021; 22:ijms221910883. [PMID: 34639222 PMCID: PMC8509445 DOI: 10.3390/ijms221910883] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may be cell-type- and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview of multiple ways that p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems, is critical to understand the cell-type-specific cell fate induced by p53 upon its activation in order to resolve the remaining mystery of its tumor-suppressive function.
Collapse
Affiliation(s)
- Dario Rizzotto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
26
|
Pomar CA, Serra F, Palou A, Sánchez J. Lower miR-26a levels in breastmilk affect gene expression in adipose tissue of offspring. FASEB J 2021; 35:e21924. [PMID: 34582059 DOI: 10.1096/fj.202100623r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Breastmilk miRNAs may act as epigenetic regulators of metabolism and energy homeostasis in offspring. Here, we aimed to investigate the regulatory effects of miR-26a on adipose tissue development. First, the 3T3-L1 cell model was used to identify putative target genes for miR-26a. Then, target genes were analysed in adipose tissue of offspring from dams that supplied lower levels of breastmilk miR-26a to determine whether miR-26a milk concentration might have a long-lasting impact on adipose tissue in the progeny. In the in vitro model, both over- and under-expression of miR-26a were induced by transfecting into 3T3-L1 with miR-26a mimic and inhibitor. Array analysis was performed after induction of miR-26a to ascertain the impact on mRNA target genes and influence of differentiation status. Focusing on genes related to adipose tissue development, transfection with miR-26a mimic reduced the expression of Pten, Hmga1, Stk11, Rb1, and Adam17 in both pre- and mature adipocytes. Data mostly confirmed the results found in the animal model. After weaning, descendants of cafeteria-fed dams breastfed with lower levels of miR-26a displayed greater expression of Hmag1, Rb1, and Adam17 in retroperitoneal white adipose tissue in comparison with controls. Hence, alterations in the amount of miR-26a supplied through milk during lactation is able to alter the expression of target genes in the descendants and may affect adipose tissue development. Thus, milk miR-26a may act as an epigenetic regulator influencing early metabolic program in the progeny, which emerges as a relevant component of an optimal milk composition for correct development.
Collapse
Affiliation(s)
- Catalina A Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
27
|
Schwarzenbach C, Tatsch L, Brandstetter Vilar J, Rasenberger B, Beltzig L, Kaina B, Tomicic MT, Christmann M. Targeting c-IAP1, c-IAP2, and Bcl-2 Eliminates Senescent Glioblastoma Cells Following Temozolomide Treatment. Cancers (Basel) 2021; 13:cancers13143585. [PMID: 34298797 PMCID: PMC8306656 DOI: 10.3390/cancers13143585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Despite extensive research, malignant glioma remains the most aggressive and fatal type of brain tumor. Following resection, therapy is based on radiation concomitant with the methylating agent temozolomide (TMZ), followed by adjuvant high-dose TMZ. In previous work, we showed that following TMZ exposure, most glioma cells evade apoptosis and enter a senescent state and are thereby protected against anticancer therapy. Senescent cells may escape from senescence, contributing to the formation of recurrences or can induce the senescence-associated secretory phenotype (SASP), which may impact therapy success. Therefore, direct targeting of senescent cells might be favorable to improve the effect of TMZ-based anticancer therapy. Here we show that during TMZ-induced senescence in glioblastoma cells, the antiapoptotic factors c-IAP2 and Bcl-2 are responsible for the prevention of cell death and that inhibition of these factors by BV6 and venetoclax effectively kills senescent glioblastoma cells. Abstract Therapy of malignant glioma depends on the induction of O6-methylguanine by the methylating agent temozolomide (TMZ). However, following TMZ exposure, most glioma cells evade apoptosis and become senescent and are thereby protected against further anticancer therapy. This protection is thought to be dependent on the senescent cell anti-apoptotic pathway (SCAP). Here we analyzed the factors involved in the SCAP upon exposure to TMZ in glioblastoma cell lines (LN-229, A172, U87MG) and examined whether inhibition of these factors could enhance TMZ-based toxicity by targeting senescent cells. We observed that following TMZ treatment, c-IAP2 and Bcl-2 were upregulated. Inhibition of these SCAP factors using non-toxic concentrations of the small molecule inhibitors, BV6 and venetoclax, significantly increased cell death, as measured 144 h after TMZ exposure. Most importantly, BV6 and venetoclax treatment of senescent cells strongly increased cell death after an additional 120 h. Moreover, Combenefit analyses revealed a significant synergy combining BV6 and venetoclax. In contrast to BV6 and venetoclax, AT406, embelin, and TMZ itself, teniposide and the PARP inhibitor pamiparib did not increase cell death in senescent cells. Based on these data, we suggest that BV6 and venetoclax act as senolytic agents in glioblastoma cells upon TMZ exposure.
Collapse
|
28
|
Sarver AL, Xie C, Riddle MJ, Forster CL, Wang X, Lu H, Wagner W, Tolar J, Hallstrom TC. Retinoblastoma tumor cell proliferation is negatively associated with an immune gene expression signature and increased immune cells. J Transl Med 2021; 101:701-718. [PMID: 33658609 DOI: 10.1038/s41374-021-00573-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
This study focuses on gene expression differences between early retinal states that ultimately lead to normal development, late onset retinoblastoma, or rapid bilateral retinoblastoma tumors. The late-onset and early-onset retinoblastoma tumor cells are remarkably similar to normally proliferating retinal progenitor cells, but they fail to properly express differentiation markers associated with normal development. Further, early-onset retinoblastoma tumor cells express a robust immune gene expression signature followed by accumulation of dendritic, monocyte, macrophage, and T-lymphocyte cells in the retinoblastoma tumors. This characteristic was not shared by either normal retinae or late-onset retinoblastomas. Comparison of our data with other human and mouse retinoblastoma tumor gene expression significantly confirmed, that the immune signature is present in tumors from each species. Strikingly, we observed that the immune signature in both mouse and human tumors was most highly evident in those with the lowest proliferative capacity. We directly assessed this relationship in human retinoblastoma tumors by co-analyzing proliferation and immune cell recruitment by immunohistochemistry, uncovering a significant inverse relationship between increased immune-cell infiltration in tumors and reduced tumor cell proliferation. Directly inhibiting proliferation with a PI3K/mTOR inhibitor significantly increased the number of CD45+ immune cells in the retina. This work establishes an in vivo model for the rapid recruitment of immune cells to tumorigenic neural tissue.
Collapse
Affiliation(s)
- Aaron L Sarver
- Institute for Health Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Chencheng Xie
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Megan J Riddle
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaohong Wang
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Huarui Lu
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Wyatt Wagner
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Timothy C Hallstrom
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Pisani LF, Tontini GE, Gentile C, Marinoni B, Teani I, Nandi N, Creo P, Asti E, Bonavina L, Vecchi M, Pastorelli L. Proinflammatory Interleukin-33 Induces Dichotomic Effects on Cell Proliferation in Normal Gastric Epithelium and Gastric Cancer. Int J Mol Sci 2021; 22:ijms22115792. [PMID: 34071419 PMCID: PMC8197967 DOI: 10.3390/ijms22115792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.
Collapse
Affiliation(s)
- Laura Francesca Pisani
- Gastroenterology ans Endoscopy Unit, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (L.F.P.); (P.C.)
| | - Gian Eugenio Tontini
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Carmine Gentile
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
| | - Beatrice Marinoni
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
| | - Isabella Teani
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
| | - Nicoletta Nandi
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
| | - Pasquale Creo
- Gastroenterology ans Endoscopy Unit, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (L.F.P.); (P.C.)
| | - Emanuele Asti
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
- Division of General Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Luigi Bonavina
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
- Division of General Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Gastroenterology and Liver Unit, ASST Santi Paolo e Carlo, Ospedale San Paolo, 20100 Milano, Italy
| | - Luca Pastorelli
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Department of Pathophysiology and Trasplantation, Università degli Studi di Milano, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-0252774683
| |
Collapse
|
30
|
Martínez-Sánchez M, Hernandez-Monge J, Rangel M, Olivares-Illana V. Retinoblastoma: from discovery to clinical management. FEBS J 2021; 289:4371-4382. [PMID: 34042282 DOI: 10.1111/febs.16035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
The retinoblastoma gene (RB1) was the first tumour suppressor cloned; the role of its protein product (RB) as the principal driver of the G1 checkpoint in cell cycle control has been extensively studied. However, many other RB functions are continuously reported. Its role in senescence, DNA repair and apoptosis, among others, is indications of the significance of RB in a vast network of cellular interactions, explaining why RB loss or its malfunction is one of the leading causes of a large number of paediatric and adult cancers. RB was first reported in retinoblastoma, a common intraocular malignancy in the paediatric population worldwide. Currently, its diagnosis is clinical, and in nondeveloped countries, where the incidence is higher, it is performed in advanced stages of the disease, compromising the integrity of the eye and the patient's life. Even though new treatments are being continuously developed, enucleation is still a major choice due to the late disease stage diagnosis and treatments costs. Research into biomarkers is our best option to improve the chances of good results in the treatment and hopes of patients' good quality of life. Here, we recapitulated the history of the disease and the first treatments to put the advances in its clinical management into perspective. We also review the different functions of the protein and the progress in the search for biomarkers. It is clear that there is still a long way to go, but we should offer these children and their families a better way to deal with the disease with the community's effort.
Collapse
Affiliation(s)
- Mayra Martínez-Sánchez
- Laboratorio de Interacciones Biomoleculares y Cancer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | - Jesús Hernandez-Monge
- Catedra CONACyT - Laboratorio de Biomarcadores Moleculares, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | - Martha Rangel
- Departamento de Oftalmología. Hospital Central "Ignacio Morones Prieto", San Luis Potosí, Mexico
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cancer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
31
|
Cheng Q, Wu Y, Xia H, Song X. RGL2 as an age-dependent factor regulates colon cancer progression. Comput Struct Biotechnol J 2021; 19:2190-2201. [PMID: 33995912 PMCID: PMC8102141 DOI: 10.1016/j.csbj.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Colon cancer is the fourth leading cause of cancer-related death, and exhibited clinical differences among patients of different ages, including malignancy, metastasis, and mortality rate. Few studies, however, focus on the communications between aging and colon cancer. Here we identified age-dependent differentially expressed genes (DEGs) in colon cancer using TCGA transcriptome data. Through analyzing multi-omics high throughput data, including ATAC-Seq, DNaseI-Seq and ChIP-Seq, we obtained six age-dependent transcription factors in colon cancer, and their age-dependent targets, significantly affecting patients' overall survivals. Transcription factor ETS1 potentially functioned in both aging process and colon cancer progression through regulating its targets, RGL2 and SLC2A3. In addition, comparing with its relative lower expression levels in elderly patients, higher levels of RGL2 were detected in young patients, and significantly associated with larger tumor size, higher metastasis, and invasions of colon cancer, consistent with the clinical traits that young patients' colon cancer exhibited late stages with more aggressiveness. Thus, these elements may serve as keys linking aging and colon cancer, and providing new insights and basis for mechanism researches, as well as diagnosis and therapies of colon cancer, especially in young patients.
Collapse
Affiliation(s)
- Qingyu Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yupeng Wu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, 233030, China
| | - Honghai Xia
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaoyuan Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
32
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
Wang J, Aldahamsheh O, Ferrena A, Borjihan H, Singla A, Yaguare S, Singh S, Viscarret V, Tingling J, Zi X, Lo Y, Gorlick R, Zheng D, Schwartz EL, Zhao H, Yang R, Geller DS, Hoang BH. The interaction of SKP2 with p27 enhances the progression and stemness of osteosarcoma. Ann N Y Acad Sci 2021; 1490:90-104. [PMID: 33594717 PMCID: PMC8632790 DOI: 10.1111/nyas.14578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is a highly aggressive malignancy for which treatment has remained essentially unchanged for years. Our previous studies found that the F-box protein SKP2 is overexpressed in osteosarcoma, acting as a proto-oncogene; p27Kip1 (p27) is an inhibitor of cyclin-dependent kinases and a downstream substrate of SKP2-mediated ubiquitination. Overexpression of SKP2 and underexpression of p27 are common characteristics of cancer cells. The SCFSKP2 E3 ligase ubiquitinates Thr187-phosphorylated p27 for proteasome degradation, which can be abolished by a Thr187Ala knock-in (p27T187A KI) mutation. RB1 and TP53 are two major tumor suppressors commonly coinactivated in osteosarcoma. We generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which developed osteosarcoma with full penetrance. When p27T187A KI mice were crossed on to the DKO background, p27T187A protein was found to accumulate in osteosarcoma tumor tissues. Furthermore, p27T187A promoted apoptosis in DKO tumors, slowed disease progression, and significantly prolonged overall survival. RNA sequencing analysis also linked the SCFSKP2 -p27T187A axis to potentially reduced cancer stemness. Given that RB1 and TP53 loss or coinactivation is common in human osteosarcoma, our study suggests that inhibiting the SKP2-p27 axis may represent a desirable therapeutic strategy for this cancer.
Collapse
Affiliation(s)
- Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing, China
| | - Osama Aldahamsheh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Amit Singla
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Simon Yaguare
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Valentina Viscarret
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Janet Tingling
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine Medical Center, Orange, California
| | - Yungtai Lo
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Deyou Zheng
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Edward L. Schwartz
- Departments of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Hongling Zhao
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - David S. Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Bang H. Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
34
|
Otani Y, Sur H, Rachaiah G, Namagiri S, Chowdhury A, Lewis CT, Shimizu T, Gangaplara A, Wang X, Vézina A, Maric D, Jackson S, Yan Y, Zhengping Z, Ray-Chaudhury A, Kumar S, Ballester LY, Chittiboina P, Yoo JY, Heiss J, Kaur B, Kumar Banasavadi-Siddegowda Y. Inhibiting protein phosphatase 2A increases the antitumor effect of protein arginine methyltransferase 5 inhibition in models of glioblastoma. Neuro Oncol 2021; 23:1481-1493. [PMID: 33556161 DOI: 10.1093/neuonc/noab014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor treating fields, the median survival of Glioblastoma (GBM) patients is less than 15 months. Protein Arginine Methyltransferase 5 (PRMT5) catalyzes the symmetric di-methylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of Protein Phosphatase 2A (PP2A) can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. METHODS Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. RESULTS We found that PRMT5-depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5 intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5-depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. CONCLUSION Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hannah Sur
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sriya Namagiri
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashis Chowdhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cole T Lewis
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Toshihiko Shimizu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiang Wang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Amélie Vézina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, NINDS, NIH, Bethesda, MD, USA
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yuanqing Yan
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhuang Zhengping
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine and Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ji Young Yoo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Balveen Kaur
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
35
|
Cochrane CR, Vaghjiani V, Szczepny A, Jayasekara WSN, Gonzalez-Rajal A, Kikuchi K, McCaughan GW, Burgess A, Gough DJ, Watkins DN, Cain JE. Trp53 and Rb1 regulate autophagy and ligand-dependent Hedgehog signaling. J Clin Invest 2021; 130:4006-4018. [PMID: 32568216 DOI: 10.1172/jci132513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Ligand-dependent activation of Hedgehog (Hh) signaling in cancer occurs without mutations in canonical pathway genes. Consequently, the genetic basis of Hh pathway activation in adult solid tumors, such as small-cell lung cancer (SCLC), is unknown. Here we show that combined inactivation of Trp53 and Rb1, a defining genetic feature of SCLC, leads to hypersensitivity to Hh ligand in vitro, and during neural tube development in vivo. This response is associated with the aberrant formation of primary cilia, an organelle essential for canonical Hh signaling through smoothened, a transmembrane protein targeted by small-molecule Hh inhibitors. We further show that loss of both Trp53 and Rb1 disables transcription of genes in the autophagic machinery necessary for the degradation of primary cilia. In turn, we also demonstrate a requirement for Kif3a, a gene essential for the formation of primary cilia, in a mouse model of SCLC induced by conditional deletion of both Trp53 and Rb1 in the adult airway. Our results provide a mechanistic framework for therapeutic targeting of ligand-dependent Hh signaling in human cancers with somatic mutations in both TP53 and RB1.
Collapse
Affiliation(s)
- Catherine R Cochrane
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine and.,Department of Paediatrics, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vijesh Vaghjiani
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Paediatrics, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Anette Szczepny
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | | | - Alvaro Gonzalez-Rajal
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Saint Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Geoffrey W McCaughan
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Concord, New South Wales, Australia.,Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine and
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine and.,Department of Paediatrics, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
36
|
An S, Cho SY, Kang J, Lee S, Kim HS, Min DJ, Son E, Cho KH. Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts. Proc Natl Acad Sci U S A 2020; 117:31535-31546. [PMID: 33229519 PMCID: PMC7733858 DOI: 10.1073/pnas.1920338117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is defined as a stable, persistent arrest of cell proliferation. Here, we examine whether senescent cells can lose senescence hallmarks and reenter a reversible state of cell-cycle arrest (quiescence). We constructed a molecular regulatory network of cellular senescence based on previous experimental evidence. To infer the regulatory logic of the network, we performed phosphoprotein array experiments with normal human dermal fibroblasts and used the data to optimize the regulatory relationships between molecules with an evolutionary algorithm. From ensemble analysis of network models, we identified 3-phosphoinositide-dependent protein kinase 1 (PDK1) as a promising target for inhibitors to convert the senescent state to the quiescent state. We showed that inhibition of PDK1 in senescent human dermal fibroblasts eradicates senescence hallmarks and restores entry into the cell cycle by suppressing both nuclear factor κB and mTOR signaling, resulting in restored skin regeneration capacity. Our findings provide insight into a potential therapeutic strategy to treat age-related diseases associated with the accumulation of senescent cells.
Collapse
Affiliation(s)
- Sugyun An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Si-Young Cho
- R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea
| | - Junsoo Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soobeom Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyung-Su Kim
- R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea
| | - Dae-Jin Min
- R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea
| | - EuiDong Son
- R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea;
| |
Collapse
|
37
|
Kinker GS, Greenwald AC, Tal R, Orlova Z, Cuoco MS, McFarland JM, Warren A, Rodman C, Roth JA, Bender SA, Kumar B, Rocco JW, Fernandes PACM, Mader CC, Keren-Shaul H, Plotnikov A, Barr H, Tsherniak A, Rozenblatt-Rosen O, Krizhanovsky V, Puram SV, Regev A, Tirosh I. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat Genet 2020; 52:1208-1218. [PMID: 33128048 PMCID: PMC8135089 DOI: 10.1038/s41588-020-00726-6] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Cultured cell lines are the workhorse of cancer research, but the extent to which they recapitulate the heterogeneity observed among malignant cells in tumors is unclear. Here we used multiplexed single-cell RNA-seq to profile 198 cancer cell lines from 22 cancer types. We identified 12 expression programs that are recurrently heterogeneous within multiple cancer cell lines. These programs are associated with diverse biological processes, including cell cycle, senescence, stress and interferon responses, epithelial-mesenchymal transition and protein metabolism. Most of these programs recapitulate those recently identified as heterogeneous within human tumors. We prioritized specific cell lines as models of cellular heterogeneity and used them to study subpopulations of senescence-related cells, demonstrating their dynamics, regulation and unique drug sensitivities, which were predictive of clinical response. Our work describes the landscape of heterogeneity within diverse cancer cell lines and identifies recurrent patterns of heterogeneity that are shared between tumors and specific cell lines.
Collapse
Affiliation(s)
- Gabriela S Kinker
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | - Alissa C Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zhanna Orlova
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James M McFarland
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Allison Warren
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Rodman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Roth
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samantha A Bender
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - James W Rocco
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | - Hadas Keren-Shaul
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Plotnikov
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Barr
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Aviad Tsherniak
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
38
|
Liu C, Konagaya Y, Chung M, Daigh LH, Fan Y, Yang HW, Terai K, Matsuda M, Meyer T. Altered G1 signaling order and commitment point in cells proliferating without CDK4/6 activity. Nat Commun 2020; 11:5305. [PMID: 33082317 PMCID: PMC7576148 DOI: 10.1038/s41467-020-18966-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/10/2020] [Indexed: 01/09/2023] Open
Abstract
Cell-cycle entry relies on an orderly progression of signaling events. To start, cells first activate the kinase cyclin D-CDK4/6, which leads to eventual inactivation of the retinoblastoma protein Rb. Hours later, cells inactivate APC/CCDH1 and cross the final commitment point. However, many cells with genetically deleted cyclin Ds, which activate and confer specificity to CDK4/6, can compensate and proliferate. Despite its importance in cancer, how this entry mechanism operates remains poorly characterized, and whether cells use this path under normal conditions remains unknown. Here, using single-cell microscopy, we demonstrate that cells with acutely inhibited CDK4/6 enter the cell cycle with a slowed and fluctuating cyclin E-CDK2 activity increase. Surprisingly, with low CDK4/6 activity, the order of APC/CCDH1 and Rb inactivation is reversed in both cell lines and wild-type mice. Finally, we show that as a consequence of this signaling inversion, Rb inactivation replaces APC/CCDH1 inactivation as the point of no return. Together, we elucidate the molecular steps that enable cell-cycle entry without CDK4/6 activity. Our findings not only have implications in cancer resistance, but also reveal temporal plasticity underlying the G1 regulatory circuit.
Collapse
Affiliation(s)
- Chad Liu
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, 94305, United States
| | - Yumi Konagaya
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, 94305, United States
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, 94305, United States
| | - Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, 94305, United States
| | - Yilin Fan
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, 94305, United States
| | - Hee Won Yang
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, 94305, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Pathology and Biology of Diseases, Kyoto University, Kyoto, Japan
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, 94305, United States.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
39
|
Augert A, Mathsyaraja H, Ibrahim AH, Freie B, Geuenich MJ, Cheng PF, Alibeckoff SP, Wu N, Hiatt JB, Basom R, Gazdar A, Sullivan LB, Eisenman RN, MacPherson D. MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer. Cancer Cell 2020; 38:97-114.e7. [PMID: 32470392 PMCID: PMC7363581 DOI: 10.1016/j.ccell.2020.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive and lethal neoplasm. To identify candidate tumor suppressors we applied CRISPR/Cas9 gene inactivation screens to a cellular model of early-stage SCLC. Among the top hits was MAX, the obligate heterodimerization partner for MYC family proteins that is mutated in human SCLC. Max deletion increases growth and transformation in cells and dramatically accelerates SCLC progression in an Rb1/Trp53-deleted mouse model. In contrast, deletion of Max abrogates tumorigenesis in MYCL-overexpressing SCLC. Max deletion in SCLC resulted in derepression of metabolic genes involved in serine and one-carbon metabolism. By increasing serine biosynthesis, Max-deleted cells exhibit resistance to serine depletion. Thus, Max loss results in metabolic rewiring and context-specific tumor suppression.
Collapse
Affiliation(s)
- Arnaud Augert
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Haritha Mathsyaraja
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ali H Ibrahim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael J Geuenich
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Quest University Canada, 3200 University Boulevard, Squamish, BC V8B 0N8, Canada
| | - Pei-Feng Cheng
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sydney P Alibeckoff
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nan Wu
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Joseph B Hiatt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Adi Gazdar
- University of Texas, Southwestern, USA, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Lucas B Sullivan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
41
|
Zhang M, Ma L, Liu Y, He Y, Li G, An X, Cao B. CircRNA-006258 Sponge-Adsorbs miR-574-5p to Regulate Cell Growth and Milk Synthesis via EVI5L in Goat Mammary Epithelial Cells. Genes (Basel) 2020; 11:genes11070718. [PMID: 32605180 PMCID: PMC7397305 DOI: 10.3390/genes11070718] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
The development of the udder and the milk yield are closely related to the number and vitality of mammary epithelial cells. Many previous studies have proved that non-coding RNAs (ncRNAs) are widely involved in mammary gland development and the physiological activities of lactation. Our laboratory previous sequencing data revealed that miR-574-5p was differentially expressed during the colostrum and peak lactation stages, while the molecular mechanism of the regulatory effect of miR-574-5p on goat mammary epithelial cells (GMECs) is unclear. In this study, the targeting relationship was detected between miR-574-5p or ecotropic viral integration site 5-like (EVI5L) and circRNA-006258. The results declared that miR-574-5p induced the down-regulation of EVI5L expression at both the mRNA and protein levels, while circRNA-006258 relieved the inhibitory effect through adsorbing miR-574-5p. EVI5L blocked the G1 phase and promoted the S phase by activating the Rab23/ITGB1/TIAM1/Rac1-TGF-β/Smad pathway in GMECs. By increasing the protein expression of Bcl2 and reducing the protein expression of Bax, EVI5L promoted cell growth and inhibited apoptosis. The activation of the PI3K/AKT–mTOR signaling pathway promoted the production of triacylglycerol (TAG) and β-casein in GMECs. The circRNA–006258/miR-574-5p/EVI5L axis could regulate the cell growth and milk synthesis of GMECs by sponge-adsorbed miR-574-5p. These results would provide scientific evidence for precision animal breeding in the industry of dairy goats.
Collapse
|
42
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
43
|
Ouadah Y, Rojas ER, Riordan DP, Capostagno S, Kuo CS, Krasnow MA. Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell 2020; 179:403-416.e23. [PMID: 31585080 DOI: 10.1016/j.cell.2019.09.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/29/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023]
Abstract
Pulmonary neuroendocrine (NE) cells are neurosensory cells sparsely distributed throughout the bronchial epithelium, many in innervated clusters of 20-30 cells. Following lung injury, NE cells proliferate and generate other cell types to promote epithelial repair. Here, we show that only rare NE cells, typically 2-4 per cluster, function as stem cells. These fully differentiated cells display features of classical stem cells. Most proliferate (self-renew) following injury, and some migrate into the injured area. A week later, individual cells, often just one per cluster, lose NE identity (deprogram), transit amplify, and reprogram to other fates, creating large clonal repair patches. Small cell lung cancer (SCLC) tumor suppressors regulate the stem cells: Rb and p53 suppress self-renewal, whereas Notch marks the stem cells and initiates deprogramming and transit amplification. We propose that NE stem cells give rise to SCLC, and transformation results from constitutive activation of stem cell renewal and inhibition of deprogramming.
Collapse
Affiliation(s)
- Youcef Ouadah
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Enrique R Rojas
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel P Riordan
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah Capostagno
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christin S Kuo
- Department of Pediatrics, Division of Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Zatulovskiy E, Skotheim JM. On the Molecular Mechanisms Regulating Animal Cell Size Homeostasis. Trends Genet 2020; 36:360-372. [PMID: 32294416 PMCID: PMC7162994 DOI: 10.1016/j.tig.2020.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Cell size is fundamental to cell physiology because it sets the scale of intracellular geometry, organelles, and biosynthetic processes. In animal cells, size homeostasis is controlled through two phenomenologically distinct mechanisms. First, size-dependent cell cycle progression ensures that smaller cells delay cell cycle progression to accumulate more biomass than larger cells prior to cell division. Second, size-dependent cell growth ensures that larger and smaller cells grow slower per unit mass than more optimally sized cells. This decade has seen dramatic progress in single-cell technologies establishing the diverse phenomena of cell size control in animal cells. Here, we review this recent progress and suggest pathways forward to determine the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Potential role of cyclin-dependent kinase 4/6 inhibitors in the treatment of squamous cell carcinoma of the head and neck. Curr Opin Oncol 2020; 31:122-130. [PMID: 30986809 DOI: 10.1097/cco.0000000000000513] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Human papillomavirus (HPV)-negative squamous cell carcinoma of the head and neck (SCCHN) is mainly driven by genetic aberrations involved in the cell cycle pathway resulting in cyclin-dependent kinase (CDK) 4 and 6 activation. This supports the investigation of the activity of CDK4/6 inhibitors in this disease. We review the therapeutic potential of CDK4/6 inhibitors in SCCHN. RECENT FINDINGS CDK4/6 inhibitors in monotherapy have demonstrated cytostatic activity in HPV-negative SCCHN. Combination with epidermal growth factor inhibitors, with phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathways inhibitors or with immunotherapy, have shown promising preclinical efficacy. No strong predictive biomarkers of response or resistance have been firmly identified.Phase I clinical trials have demonstrated that palbociclib or ribociclib in combination with cetuximab is well tolerated. A phase II single-arm trial combining palbociclib/cetuximab has shown promising results. SUMMARY Inhibition of CDK4/6 represents a new potential treatment for HPV-negative SCCHN patients. Randomized clinical trials that investigate these compounds in an unbiased manner are needed to fully evaluate their efficacy. However, it is unlikely that all the patients will benefit from this new approach. To determine a molecular profile/phenotype that will predict CDK4/6 inhibitor activity, researchers will have to take into account simultaneously occurring events in the cyclin-D/CDK4/CDK6/retinoblastoma and associated pathways.
Collapse
|
46
|
KOBASHIGAWA SHINKO, M. SAKAGUCHI YOSHIHIKO, MASUNAGA SHINICHIRO, MORI EIICHIRO. Stress-induced Cellular Senescence Contributes to Chronic Inflammation and Cancer Progression. ACTA ACUST UNITED AC 2019. [DOI: 10.3191/thermalmed.35.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- SHINKO KOBASHIGAWA
- Department of Future Basic Medicine, Nara Medical University
- Kyoto University, Institute of Integrated Radiation and Nuclear Science
| | | | | | - EIICHIRO MORI
- Department of Future Basic Medicine, Nara Medical University
| |
Collapse
|
47
|
Pack LR, Daigh LH, Meyer T. Putting the brakes on the cell cycle: mechanisms of cellular growth arrest. Curr Opin Cell Biol 2019; 60:106-113. [PMID: 31252282 PMCID: PMC7187785 DOI: 10.1016/j.ceb.2019.05.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023]
Abstract
Precise regulation of cellular proliferation is critical to tissue homeostasis and development, but misregulation leads to diseases of excess proliferation or cell loss. To achieve precise control, cells utilize distinct mechanisms of growth arrest such as quiescence and senescence. The decision to enter these growth-arrested states or proliferate is mediated by the core cell-cycle machinery that responds to diverse external and internal signals. Recent advances have revealed the molecular underpinnings of these cell-cycle decisions, highlighting the unique nature of cell-cycle entry from quiescence, identifying endogenous DNA damage as a quiescence-inducing signal, and establishing how persistent arrest is achieved in senescence.
Collapse
Affiliation(s)
- Lindsey R Pack
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Hubackova S, Magalhaes Novais S, Davidova E, Neuzil J, Rohlena J. Mitochondria-driven elimination of cancer and senescent cells. Biol Chem 2019; 400:141-148. [PMID: 30281511 DOI: 10.1515/hsz-2018-0256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 01/07/2023]
Abstract
Mitochondria and oxidative phosphorylation (OXPHOS) are emerging as intriguing targets for the efficient elimination of cancer cells. The specificity of this approach is aided by the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition. Recently we discovered that mitochondrial targeting can also be employed to eliminate senescent cells, where it breaks the interplay between OXPHOS and ATP transporters that appear important for the maintenance of mitochondrial morphology and viability in the senescent setting. Hence, mitochondria/OXPHOS directed pharmacological interventions show promise in several clinically-relevant scenarios that call for selective removal of cancer and senescent cells.
Collapse
Affiliation(s)
- Sona Hubackova
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Silvia Magalhaes Novais
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Eliska Davidova
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Jiri Neuzil
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport 4222, Qld, Australia
| | - Jakub Rohlena
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| |
Collapse
|
49
|
Chung M, Liu C, Yang HW, Köberlin MS, Cappell SD, Meyer T. Transient Hysteresis in CDK4/6 Activity Underlies Passage of the Restriction Point in G1. Mol Cell 2019; 76:562-573.e4. [PMID: 31543423 DOI: 10.1016/j.molcel.2019.08.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/04/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Cells escape the need for mitogens at a restriction point several hours before entering S phase. The restriction point has been proposed to result from CDK4/6 initiating partial Rb phosphorylation to trigger a bistable switch whereby cyclin E-CDK2 and Rb mutually reinforce each other to induce Rb hyperphosphorylation. Here, using single-cell analysis, we unexpectedly found that cyclin E/A-CDK activity can only maintain Rb hyperphosphorylation starting at the onset of S phase and that CDK4/6 activity, but not cyclin E/A-CDK activity, is required to hyperphosphorylate Rb throughout G1 phase. Mitogen removal in G1 results in a gradual loss of CDK4/6 activity with a high likelihood of cells sustaining Rb hyperphosphorylation until S phase, at which point cyclin E/A-CDK activity takes over. Thus, it is short-term memory, or transient hysteresis, in CDK4/6 activity following mitogen removal that sustains Rb hyperphosphorylation, demonstrating a probabilistic rather than an irreversible molecular mechanism underlying the restriction point.
Collapse
Affiliation(s)
- Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA
| | - Hee Won Yang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Marielle S Köberlin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA
| | - Steven D Cappell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Cheng B, Zhang H, Liu C, Chen X, Chen Y, Sun Y, Leng L, Li Y, Luan P, Li H. Functional Intronic Variant in the Retinoblastoma 1 Gene Underlies Broiler Chicken Adiposity by Altering Nuclear Factor-kB and SRY-Related HMG Box Protein 2 Binding Sites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9727-9737. [PMID: 31398034 DOI: 10.1021/acs.jafc.9b01719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study aimed to search for chicken abdominal fat deposition-related polymorphisms within RB1 and to provide functional evidence for significantly associated genetic variants. Association analyses showed that 11 single nucleotide polymorphisms (SNPs) in intron 17 of RB1, were significantly associated with both abdominal fat weight (P < 0.05) and abdominal fat percentage (P < 0.05). Functional analysis revealed that the A allele of g.32828A>G repressed the transcriptional efficiency of RB1 in vitro, through binding nuclear factor-kappa B (NF-KB) and SRY-related HMG box protein 2 (SOX2). Furthermore, RB1 mRNA expression levels in the abdominal fat tissue of individuals with the A/A genotype of g.32828A>G were lower than those of individuals with the G/G genotype. Collectively, we propose that the intronic SNP g.32828A>G of RB1 is an obesity-associated variant that directly affects binding with NF-KB and SOX2, leading to changes in RB1 expression which in turn may influence chicken abdominal fat deposition.
Collapse
Affiliation(s)
- Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Xi Chen
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yaofeng Chen
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yuhang Sun
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| |
Collapse
|