1
|
Hojjatian A, Taylor DW, Daneshparvar N, Fagnant PM, Trybus KM, Taylor KA. Double-headed binding of myosin II to F-actin shows the effect of strain on head structure. J Struct Biol 2023; 215:107995. [PMID: 37414375 PMCID: PMC10544818 DOI: 10.1016/j.jsb.2023.107995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Force production in muscle is achieved through the interaction of myosin and actin. Strong binding states in active muscle are associated with Mg·ADP bound to the active site; release of Mg·ADP allows rebinding of ATP and dissociation from actin. Thus, Mg·ADP binding is positioned for adaptation as a force sensor. Mechanical loads on the lever arm can affect the ability of myosin to release Mg·ADP but exactly how this is done is poorly defined. Here we use F-actin decorated with double-headed smooth muscle myosin fragments in the presence of Mg·ADP to visualize the effect of internally supplied tension on the paired lever arms using cryoEM. The interaction of the paired heads with two adjacent actin subunits is predicted to place one lever arm under positive and the other under negative strain. The converter domain is believed to be the most flexible domain within myosin head. Our results, instead, point to the segment of heavy chain between the essential and regulatory light chains as the location of the largest structural change. Moreover, our results suggest no large changes in the myosin coiled coil tail as the locus of strain relief when both heads bind F-actin. The method would be adaptable to double-headed members of the myosin family. We anticipate that the study of actin-myosin interaction using double-headed fragments enables visualization of domains that are typically noisy in decoration with single-headed fragments.
Collapse
Affiliation(s)
- Alimohammad Hojjatian
- Inst. of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Dianne W Taylor
- Inst. of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Nadia Daneshparvar
- Inst. of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Patricia M Fagnant
- Dept of Molecular Physiology & Biophysics, University of Vermont College of Medicine, Burlington, VT 05405, United States
| | - Kathleen M Trybus
- Dept of Molecular Physiology & Biophysics, University of Vermont College of Medicine, Burlington, VT 05405, United States
| | - Kenneth A Taylor
- Inst. of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
2
|
Jiang X, Ho DBT, Mahe K, Mia J, Sepulveda G, Antkowiak M, Jiang L, Yamada S, Jao LE. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. J Cell Sci 2021; 134:jcs258897. [PMID: 34308971 PMCID: PMC8349556 DOI: 10.1242/jcs.258897] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
At the onset of mitosis, centrosomes expand the pericentriolar material (PCM) to maximize their microtubule-organizing activity. This step, termed centrosome maturation, ensures proper spindle organization and faithful chromosome segregation. However, as the centrosome expands, how PCM proteins are recruited and held together without membrane enclosure remains elusive. We found that endogenously expressed pericentrin (PCNT), a conserved PCM scaffold protein, condenses into dynamic granules during late G2/early mitosis before incorporating into mitotic centrosomes. Furthermore, the N-terminal portion of PCNT, enriched with conserved coiled-coils (CCs) and low-complexity regions (LCRs), phase separates into dynamic condensates that selectively recruit PCM proteins and nucleate microtubules in cells. We propose that CCs and LCRs, two prevalent sequence features in the centrosomal proteome, are preserved under evolutionary pressure in part to mediate liquid-liquid phase separation, a process that bestows upon the centrosome distinct properties critical for its assembly and functions.
Collapse
Affiliation(s)
- Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Dac Bang Tam Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Jennielee Mia
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Linhao Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
3
|
Rahmani H, Ma W, Hu Z, Daneshparvar N, Taylor DW, McCammon JA, Irving TC, Edwards RJ, Taylor KA. The myosin II coiled-coil domain atomic structure in its native environment. Proc Natl Acad Sci U S A 2021; 118:e2024151118. [PMID: 33782130 PMCID: PMC8040620 DOI: 10.1073/pnas.2024151118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The atomic structure of the complete myosin tail within thick filaments isolated from Lethocerus indicus flight muscle is described and compared to crystal structures of recombinant, human cardiac myosin tail segments. Overall, the agreement is good with three exceptions: the proximal S2, in which the filament has heads attached but the crystal structure doesn't, and skip regions 2 and 4. At the head-tail junction, the tail α-helices are asymmetrically structured encompassing well-defined unfolding of 12 residues for one myosin tail, ∼4 residues of the other, and different degrees of α-helix unwinding for both tail α-helices, thereby providing an atomic resolution description of coiled-coil "uncoiling" at the head-tail junction. Asymmetry is observed in the nonhelical C termini; one C-terminal segment is intercalated between ribbons of myosin tails, the other apparently terminating at Skip 4 of another myosin tail. Between skip residues, crystal and filament structures agree well. Skips 1 and 3 also agree well and show the expected α-helix unwinding and coiled-coil untwisting in response to skip residue insertion. Skips 2 and 4 are different. Skip 2 is accommodated in an unusual manner through an increase in α-helix radius and corresponding reduction in rise/residue. Skip 4 remains helical in one chain, with the other chain unfolded, apparently influenced by the acidic myosin C terminus. The atomic model may shed some light on thick filament mechanosensing and is a step in understanding the complex roles that thick filaments of all species undergo during muscle contraction.
Collapse
Affiliation(s)
- Hamidreza Rahmani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380
- Department of Physics, Florida State University, Tallahassee, FL 32306-4380
| | - Wen Ma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380
| | - Nadia Daneshparvar
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380
- Department of Physics, Florida State University, Tallahassee, FL 32306-4380
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Robert J Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380;
| |
Collapse
|
4
|
Singh RR, Dunn JW, Qadan MM, Hall N, Wang KK, Root DD. Whole length myosin binding protein C stabilizes myosin S2 as measured by gravitational force spectroscopy. Arch Biochem Biophys 2017; 638:41-51. [PMID: 29229286 DOI: 10.1016/j.abb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/21/2023]
Abstract
The mechanical stability of the myosin subfragment-2 (S2) was tested with simulated force spectroscopy (SFS) and gravitational force spectroscopy (GFS). Experiments examined unzipping S2, since it required less force than stretching parallel to the coiled coil. Both GFS and SFS demonstrated that the force required to destabilize the light meromyosin (LMM) was greater than the force required to destabilize the coiled coil at each of three different locations along S2. GFS data also conveyed that the mechanical stability of the S2 region is independent from its association with the myosin thick filament using cofilaments of myosin tail and a single intact myosin. The C-terminal end of myosin binding protein C (MyBPC) binds to LMM and the N-terminal end can bind either S2 or actin. The force required to destabilize the myosin coiled coil molecule was 3 times greater in the presence of MyBPC than in its absence. Furthermore, the in vitro motility assay with full length slow skeletal MyBPC slowed down the actin filament sliding over myosin thick filaments. This study demonstrates that skeletal MyBPC both enhanced the mechanical stability of the S2 coiled coil and reduced the sliding velocity of actin filaments over polymerized myosin filaments.
Collapse
Affiliation(s)
- Rohit R Singh
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - James W Dunn
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Motamed M Qadan
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Nakiuda Hall
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Kathy K Wang
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Douglas D Root
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
5
|
Bope CD, Tong D, Li X, Lu L. Fluctuation matching approach for elastic network model and structure-based model of biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:100-112. [DOI: 10.1016/j.pbiomolbio.2016.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/25/2016] [Accepted: 12/19/2016] [Indexed: 10/24/2022]
|
6
|
Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod. J Struct Biol 2017; 200:219-228. [PMID: 28743637 DOI: 10.1016/j.jsb.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
Abstract
X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 - Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.
Collapse
|
7
|
Simm D, Hatje K, Kollmar M. Distribution and evolution of stable single α-helices (SAH domains) in myosin motor proteins. PLoS One 2017; 12:e0174639. [PMID: 28369123 PMCID: PMC5378345 DOI: 10.1371/journal.pone.0174639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss.
Collapse
Affiliation(s)
- Dominic Simm
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Klas Hatje
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
8
|
Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution. SCIENCE ADVANCES 2016; 2:e1600058. [PMID: 27704041 PMCID: PMC5045269 DOI: 10.1126/sciadv.1600058] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/23/2016] [Indexed: 05/09/2023]
Abstract
We describe a cryo-electron microscopy three-dimensional image reconstruction of relaxed myosin II-containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin's long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation.
Collapse
Affiliation(s)
- Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
| | - Dianne W. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
| | - Michael K. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607, USA
| | - Robert J. Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607, USA
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
- Corresponding author.
| |
Collapse
|
9
|
Li J, Lu Q, Zhang M. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking. Traffic 2016; 17:822-38. [PMID: 26842936 DOI: 10.1111/tra.12383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 01/17/2023]
Abstract
Unconventional myosins are a superfamily of actin-based molecular motors playing diverse roles including cellular trafficking, mechanical supports, force sensing and transmission, etc. The variable neck and tail domains of unconventional myosins function to bind to specific cargoes including proteins and lipid vesicles and thus are largely responsible for the diverse cellular functions of myosins in vivo. In addition, the tail regions, together with their cognate cargoes, can regulate activities of the motor heads. This review outlines the advances made in recent years on cargo recognition and cargo binding-induced regulation of the activity of several unconventional myosins including myosin-I, V, VI and X in cellular trafficking. We approach this topic by describing a series of high-resolution structures of the neck and tail domains of these unconventional myosins either alone or in complex with their specific cargoes, and by discussing potential implications of these structural studies on cellular trafficking of these myosin motors.
Collapse
Affiliation(s)
- Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qing Lu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Chantler PD. Scallop Adductor Muscles. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-62710-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Li M, Zhang JZH, Xia F. A new algorithm for construction of coarse-grained sites of large biomolecules. J Comput Chem 2015; 37:795-804. [PMID: 26668124 DOI: 10.1002/jcc.24265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
The development of coarse-grained (CG) models for large biomolecules remains a challenge in multiscale simulations, including a rigorous definition of CG representations for them. In this work, we proposed a new stepwise optimization imposed with the boundary-constraint (SOBC) algorithm to construct the CG sites of large biomolecules, based on the s cheme of essential dynamics CG. By means of SOBC, we can rigorously derive the CG representations of biomolecules with less computational cost. The SOBC is particularly efficient for the CG definition of large systems with thousands of residues. The resulted CG sites can be parameterized as a CG model using the normal mode analysis based fluctuation matching method. Through normal mode analysis, the obtained modes of CG model can accurately reflect the functionally related slow motions of biomolecules. The SOBC algorithm can be used for the construction of CG sites of large biomolecules such as F-actin and for the study of mechanical properties of biomaterials.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai, 200062, China
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Fei Xia
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
12
|
Gáspári Z, Nyitray L. Coiled coils as possible models of protein structure evolution. Biomol Concepts 2015; 2:199-210. [PMID: 25962029 DOI: 10.1515/bmc.2011.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/01/2011] [Indexed: 01/05/2023] Open
Abstract
Coiled coils are formed by two or more α-helices wrapped around one another. This structural motif often guides di-, tri- or multimerization of proteins involved in diverse biological processes such as membrane fusion, signal transduction and the organization of the cytoskeleton. Although coiled coil motifs seem conceptually simple and their existence was proposed in the early 1950s, the high variability of the motif makes coiled coil prediction from sequence a difficult task. They might be confused with intrinsically disordered sequences and even more with a recently described structural motif, the charged single α-helix. By contrast, the versatility of coiled coil structures renders them an ideal candidate for protein (re)design and many novel variants have been successfully created to date. In this paper, we review coiled coils in the light of protein evolution by putting our present understanding of the motif and its variants in the context of structural interconversions. We argue that coiled coils are ideal subjects for studies of subtle and large-scale structural changes because of their well-characterized and versatile nature.
Collapse
|
13
|
Lu Q, Li J, Zhang M. Cargo recognition and cargo-mediated regulation of unconventional myosins. Acc Chem Res 2014; 47:3061-70. [PMID: 25230296 DOI: 10.1021/ar500216z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Organized motions are hallmarks of living organisms. Such motions range from collective cell movements during development and muscle contractions at the macroscopic scale all the way down to cellular cargo (e.g., various biomolecules and organelles) transportation and mechanoforce sensing at more microscopic scales. Energy required for these biological motions is almost invariably provided by cellular chemical fuels in the form of nucleotide triphosphate. Biological systems have designed a group of nanoscale engines, known as molecular motors, to convert cellular chemical fuels into mechanical energy. Molecular motors come in various forms including cytoskeleton motors (myosin, kinesin, and dynein), nucleic-acid-based motors, cellular membrane-based rotary motors, and so on. The main focus of this Account is one subfamily of actin filament-based motors called unconventional myosins (other than muscle myosin II, the remaining myosins are collectively referred to as unconventional myosins). In general, myosins can use ATP to fuel two types of mechanomotions: dynamic tethering actin filaments with various cellular compartments or structures and actin filament-based intracellular transport. In contrast to rich knowledge accumulated over many decades on ATP hydrolyzing motor heads and their interactions with actin filaments, how various myosins recognize their specific cargoes and whether and how cargoes can in return regulate functions of motors are less understood. Nonetheless, a series of biochemical and structural investigations in the past few years, including works from our own laboratory, begin to shed lights on these latter questions. Some myosins (e.g., myosin-VI) can function both as cellular transporters and as mechanical tethers. To function as a processive transporter, myosins need to form dimers or multimers. To be a mechanical tether, a monomeric myosin is sufficient. It has been shown for myosin-VI that its cellular cargo proteins can play critical roles in determining the motor properties. Dab2, an adaptor protein linking endocytic vesicles with actin-filament-bound myosin-VI, can induce the motor to form a transport competent dimer. Such a cargo-mediated dimerization mechanism has also been observed in other myosins including myosin-V and myosin-VIIa. The tail domains of myosins are very diverse both in their lengths and protein domain compositions and thus enable motors to engage a broad range of different cellular cargoes. Remarkably, the cargo binding tail of one myosin alone often can bind to multiple distinct target proteins. A series of atomic structures of myosin-V/cargo complexes solved recently reveals that the globular cargo binding tail of the motor contains a number of nonoverlapping target recognition sites for binding to its cargoes including melanophilin, vesicle adaptors RILPL2, and vesicle-bound GTPase Rab11. The structures of the MyTH4-FERM tandems from myosin-VIIa and myosin-X in complex with their respective targets reveal that MyTH4 and FERM domains extensively interact with each other forming structural and functional supramodules in both motors and demonstrate that the structurally similar MyTH4-FERM tandems of the two motors display totally different target binding modes. These structural studies have also shed light on why numerous mutations found in these myosins can cause devastating human diseases such as deafness and blindness, intellectual disabilities, immune disorders, and diabetes.
Collapse
Affiliation(s)
- Qing Lu
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jianchao Li
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mingjie Zhang
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Center of Systems Biology and Human Health, School of
Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
14
|
Deiss S, Hernandez Alvarez B, Bär K, Ewers CP, Coles M, Albrecht R, Hartmann MD. Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors. J Struct Biol 2014; 186:380-5. [DOI: 10.1016/j.jsb.2014.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/07/2023]
|
15
|
Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications. Proc Natl Acad Sci U S A 2013; 110:8561-6. [PMID: 23650385 DOI: 10.1073/pnas.1218462110] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin filaments of muscle are regulated either by phosphorylation of their regulatory light chains or Ca(2+) binding to the essential light chains, contributing to on-off switching or modulation of contraction. Phosphorylation-regulated filaments in the relaxed state are characterized by an asymmetric interaction between the two myosin heads, inhibiting their actin binding or ATPase activity. Here, we have tested whether a similar interaction switches off activity in myosin filaments regulated by Ca(2+) binding. Cryo-electron microscopy and single-particle image reconstruction of Ca(2+)-regulated (scallop) filaments reveals a helical array of myosin head-pair motifs above the filament surface. Docking of atomic models of scallop myosin head domains into the motifs reveals that the heads interact in a similar way to those in phosphorylation-regulated filaments. The results imply that the two major evolutionary branches of myosin regulation--involving phosphorylation or Ca(2+) binding--share a common structural mechanism for switching off thick-filament activity in relaxed muscle. We suggest that the Ca(2+)-binding mechanism evolved from the more ancient phosphorylation-based system to enable rapid response of myosin-regulated muscles to activation. Although the motifs are similar in both systems, the scallop structure is more tilted and higher above the filament backbone, leading to different intermolecular interactions. The reconstruction reveals how the myosin tail emerges from the motif, connecting the heads to the filament backbone, and shows that the backbone is built from supramolecular assemblies of myosin tails. The reconstruction provides a native structural context for understanding past biochemical and biophysical studies of this model Ca(2+)-regulated myosin.
Collapse
|
16
|
Abstract
A multiscale coarse-graining method called the normal-mode analysis based fluctuation matching (NMA-FM) is developed for constructing coarse-grained models of biomolecular systems. In the framework of normal-mode analysis, an arbitrary fine-grained model can be systematically converted to a more coarse-grained model, while the crucial low-frequency motions of the fine-grained system are able to be reproduced in the coarse-grained modeling. The method relies on the technique of fluctuation matching that has been devised earlier for parametrizing heterogeneous elastic network models based on data from atomistic molecular dynamics simulations. The new approach is quite efficient since it avoids expensive atomistic molecular dynamics simulations and can start from already coarse-grained elastic network models. In the practical aspect, the method is suitable for conformational analyses of large biomacromolecules and calculations of mechanical properties of biomaterials, which is demonstrated by the studied systems including an amyloid dimer, lysozyme and adenylate kinase proteins, and the S2 subdomain of myosin.
Collapse
Affiliation(s)
- Fei Xia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| |
Collapse
|
17
|
Abstract
Processive movements of unconventional myosins on actin filaments generally require motor dimerization. A commonly accepted myosin dimerization mechanism is via formation of a parallel coiled-coil dimer by a stretch of amino acid residues immediately carboxyl-terminal to the motor's lever-arm domain. Here, we discover that the predicted coiled-coil region of myosin X forms a highly stable, antiparallel coiled-coil dimer (anti-CC). Disruption of the anti-CC either by single-point mutations or by replacement of the anti-CC with a parallel coiled coil with a similar length compromised the filopodial induction activity of myosin X. We further show that the anti-CC and the single α-helical domain of myosin X are connected by a semirigid helical linker. The anti-CC-mediated dimerization may enable myosin X to walk on both single and bundled actin filaments.
Collapse
|
18
|
Pfuhl M, Gautel M. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? J Muscle Res Cell Motil 2012; 33:83-94. [PMID: 22527637 DOI: 10.1007/s10974-012-9291-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/24/2012] [Indexed: 02/04/2023]
Abstract
The thick filament protein myosin-binding protein-C shows a highly modular architecture, with the C-terminal region responsible for tethering to the myosin and titin backbone of the thick filament. The N-terminal region shows the most significant differences between cardiac and skeletal muscle isogenes: an entire Ig-domain (C0) is added, together with highly regulated phosphorylation sites between Ig domains C1 and C2. These structural and functional differences at the N-terminus reflect important functions in cardiac muscle regulation in health and disease. Alternative interactions of this part of MyBP-C with the head-tail (S1-S2) junction of myosin or to actin filaments have been proposed, but with conflicting experimental evidence. The regulation of myosin or actin interaction by phosphorylation of the cardiac MyBP-C N-terminus may play an additional role in length-dependent contraction regulation. We discuss here the evidence for these proposed interactions, considering the required properties of MyBP-C, the way in which they may be regulated in muscle contraction and the way they might be related to heart disease. We also attempt to shed some light on experimental pitfalls and future strategies.
Collapse
Affiliation(s)
- Mark Pfuhl
- Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London BHF Centre of Research Excellence, London, UK.
| | | |
Collapse
|
19
|
Syamaladevi DP, Spudich JA, Sowdhamini R. Structural and functional insights on the Myosin superfamily. Bioinform Biol Insights 2012; 6:11-21. [PMID: 22399849 PMCID: PMC3290112 DOI: 10.4137/bbi.s8451] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The myosin superfamily is a versatile group of molecular motors involved in the transport of specific biomolecules, vesicles and organelles in eukaryotic cells. The processivity of myosins along an actin filament and transport of intracellular ‘cargo’ are achieved by generating physical force from chemical energy of ATP followed by appropriate conformational changes. The typical myosin has a head domain, which harbors an ATP binding site, an actin binding site, and a light-chain bound ‘lever arm’, followed often by a coiled coil domain and a cargo binding domain. Evolution of myosins started at the point of evolution of eukaryotes, S. cerevisiae being the simplest one known to contain these molecular motors. The coiled coil domain of the myosin classes II, V and VI in whole genomes of several model organisms display differences in the length and the strength of interactions at the coiled coil interface. Myosin II sequences have long-length coiled coil regions that are predicted to have a highly stable dimeric interface. These are interrupted, however, by regions that are predicted to be unstable, indicating possibilities of alternate conformations, associations to make thick filaments, and interactions with other molecules. Myosin V sequences retain intermittent regions of strong and weak interactions, whereas myosin VI sequences are relatively devoid of strong coiled coil motifs. Structural deviations at coiled coil regions could be important for carrying out normal biological function of these proteins.
Collapse
Affiliation(s)
- Divya P Syamaladevi
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | | | | |
Collapse
|
20
|
Ovchinnikov V, Cecchini M, Vanden-Eijnden E, Karplus M. A conformational transition in the myosin VI converter contributes to the variable step size. Biophys J 2011; 101:2436-44. [PMID: 22098742 PMCID: PMC3218336 DOI: 10.1016/j.bpj.2011.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/12/2011] [Accepted: 09/21/2011] [Indexed: 11/25/2022] Open
Abstract
Myosin VI (MVI) is a dimeric molecular motor that translocates backwards on actin filaments with a surprisingly large and variable step size, given its short lever arm. A recent x-ray structure of MVI indicates that the large step size can be explained in part by a novel conformation of the converter subdomain in the prepowerstroke state, in which a 53-residue insert, unique to MVI, reorients the lever arm nearly parallel to the actin filament. To determine whether the existence of the novel converter conformation could contribute to the step-size variability, we used a path-based free-energy simulation tool, the string method, to show that there is a small free-energy difference between the novel converter conformation and the conventional conformation found in other myosins. This result suggests that MVI can bind to actin with the converter in either conformation. Models of MVI/MV chimeric dimers show that the variability in the tilting angle of the lever arm that results from the two converter conformations can lead to step-size variations of ∼12 nm. These variations, in combination with other proposed mechanisms, could explain the experimentally determined step-size variability of ∼25 nm for wild-type MVI. Mutations to test the findings by experiment are suggested.
Collapse
Affiliation(s)
- V. Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - M. Cecchini
- Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France
| | - E. Vanden-Eijnden
- Courant Institute of Mathematical Sciences, New York University, New York, New York
| | - M. Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
- Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Klenchin VA, Frye JJ, Jones MH, Winey M, Rayment I. Structure-function analysis of the C-terminal domain of CNM67, a core component of the Saccharomyces cerevisiae spindle pole body. J Biol Chem 2011; 286:18240-50. [PMID: 21454609 PMCID: PMC3093896 DOI: 10.1074/jbc.m111.227371] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/09/2011] [Indexed: 11/06/2022] Open
Abstract
The spindle pole body of the budding yeast Saccharomyces cerevisiae has served as a model system for understanding microtubule organizing centers, yet very little is known about the molecular structure of its components. We report here the structure of the C-terminal domain of the core component Cnm67 at 2.3 Å resolution. The structure determination was aided by a novel approach to crystallization of proteins containing coiled-coils that utilizes globular domains to stabilize the coiled-coils. This enhances their solubility in Escherichia coli and improves their crystallization. The Cnm67 C-terminal domain (residues Asn-429-Lys-581) exhibits a previously unseen dimeric, interdigitated, all α-helical fold. In vivo studies demonstrate that this domain alone is able to localize to the spindle pole body. In addition, the structure reveals a large functionally indispensable positively charged surface patch that is implicated in spindle pole body localization. Finally, the C-terminal eight residues are disordered but are critical for protein folding and structural stability.
Collapse
Affiliation(s)
- Vadim A. Klenchin
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Jeremiah J. Frye
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Michele H. Jones
- the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Mark Winey
- the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Ivan Rayment
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 and
| |
Collapse
|
22
|
Rapali P, Radnai L, Süveges D, Harmat V, Tölgyesi F, Wahlgren WY, Katona G, Nyitray L, Pál G. Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. PLoS One 2011; 6:e18818. [PMID: 21533121 PMCID: PMC3078936 DOI: 10.1371/journal.pone.0018818] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/10/2011] [Indexed: 11/27/2022] Open
Abstract
LC8 dynein light chain (DYNLL) is a eukaryotic hub protein that is thought to function as a dimerization engine. Its interacting partners are involved in a wide range of cellular functions. In its dozens of hitherto identified binding partners DYNLL binds to a linear peptide segment. The known segments define a loosely characterized binding motif: [D/S]-4K-3X-2[T/V/I]-1Q0[T/V]1[D/E]2. The motifs are localized in disordered segments of the DYNLL-binding proteins and are often flanked by coiled coil or other potential dimerization domains. Based on a directed evolution approach, here we provide the first quantitative characterization of the binding preference of the DYNLL binding site. We displayed on M13 phage a naïve peptide library with seven fully randomized positions around a fixed, naturally conserved glutamine. The peptides were presented in a bivalent manner fused to a leucine zipper mimicking the natural dimer to dimer binding stoichiometry of DYNLL-partner complexes. The phage-selected consensus sequence V-5S-4R-3G-2T-1Q0T1E2 resembles the natural one, but is extended by an additional N-terminal valine, which increases the affinity of the monomeric peptide twentyfold. Leu-zipper dimerization increases the affinity into the subnanomolar range. By comparing crystal structures of an SRGTQTE-DYNLL and a dimeric VSRGTQTE-DYNLL complex we find that the affinity enhancing valine is accommodated in a binding pocket on DYNLL. Based on the in vitro evolved sequence pattern we predict a large number of novel DYNLL binding partners in the human proteome. Among these EML3, a microtubule-binding protein involved in mitosis contains an exact match of the phage-evolved consensus and binds to DYNLL with nanomolar affinity. These results significantly widen the scope of the human interactome around DYNLL and will certainly shed more light on the biological functions and organizing role of DYNLL in the human and other eukaryotic interactomes.
Collapse
Affiliation(s)
- Péter Rapali
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Radnai
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Süveges
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Harmat
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
- Protein Modeling Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Tölgyesi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | - Gergely Katona
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail: (LN); (GP)
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail: (LN); (GP)
| |
Collapse
|
23
|
Swiecki M, Scheaffer SM, Allaire M, Fremont DH, Colonna M, Brett TJ. Structural and biophysical analysis of BST-2/tetherin ectodomains reveals an evolutionary conserved design to inhibit virus release. J Biol Chem 2011; 286:2987-97. [PMID: 21084286 PMCID: PMC3024793 DOI: 10.1074/jbc.m110.190538] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/02/2010] [Indexed: 11/06/2022] Open
Abstract
BST-2/tetherin is a host antiviral molecule that functions to potently inhibit the release of enveloped viruses from infected cells. In return, viruses have evolved antagonists to this activity. BST-2 traps budding virions by using two separate membrane-anchoring regions that simultaneously incorporate into the host and viral membranes. Here, we detailed the structural and biophysical properties of the full-length BST-2 ectodomain, which spans the two membrane anchors. The 1.6-Å crystal structure of the complete mouse BST-2 ectodomain reveals an ∼145-Å parallel dimer in an extended α-helix conformation that predominantly forms a coiled coil bridged by three intermolecular disulfides that are required for stability. Sequence analysis in the context of the structure revealed an evolutionarily conserved design that destabilizes the coiled coil, resulting in a labile superstructure, as evidenced by solution x-ray scattering displaying bent conformations spanning 150 and 180 Å for the mouse and human BST-2 ectodomains, respectively. Additionally, crystal packing analysis revealed possible curvature-sensing tetrameric structures that may aid in proper placement of BST-2 during the genesis of viral progeny. Overall, this extended coiled-coil structure with inherent plasticity is undoubtedly necessary to accommodate the dynamics of viral budding while ensuring separation of the anchors.
Collapse
Affiliation(s)
| | | | - Marc Allaire
- the National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
| | - Daved H. Fremont
- From the Departments of Pathology and Immunology
- Biochemistry and Molecular Biophysics, and
| | | | - Tom J. Brett
- Internal Medicine
- Biochemistry and Molecular Biophysics, and
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
24
|
Fiumara F, Fioriti L, Kandel ER, Hendrickson WA. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell 2011; 143:1121-35. [PMID: 21183075 DOI: 10.1016/j.cell.2010.11.042] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 08/23/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022]
Abstract
The functional switch of glutamine/asparagine (Q/N)-rich prions and the neurotoxicity of polyQ-expanded proteins involve complex aggregation-prone structural transitions, commonly presumed to be forming β sheets. By analyzing sequences of interaction partners of these proteins, we discovered a recurrent presence of coiled-coil domains both in the partners and in segments that flank or overlap Q/N-rich and polyQ domains. Since coiled coils can mediate protein interactions and multimerization, we studied their possible involvement in Q/N-rich and polyQ aggregations. Using circular dichroism and chemical crosslinking, we found that Q/N-rich and polyQ peptides form α-helical coiled coils in vitro and assemble into multimers. Using structure-guided mutagenesis, we found that coiled-coil domains modulate in vivo properties of two Q/N-rich prions and polyQ-expanded huntingtin. Mutations that disrupt coiled coils impair aggregation and activity, whereas mutations that enhance coiled-coil propensity promote aggregation. These findings support a coiled-coil model for the functional switch of Q/N-rich prions and for the pathogenesis of polyQ-expansion diseases.
Collapse
Affiliation(s)
- Ferdinando Fiumara
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
25
|
Ghosh P. The nonideal coiled coil of M protein and its multifarious functions in pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:197-211. [PMID: 21557065 DOI: 10.1007/978-94-007-0940-9_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The M protein is a major virulence factor of Streptococcus pyogenes (group A Streptococcus, GAS). This gram-positive bacterial pathogen is responsible for mild infections, such as pharyngitis, and severe invasive disease, like streptococcal toxic shock syndrome. M protein contributes to GAS virulence in multifarious ways, including blocking deposition of antibodies and complement, helping formation of microcolonies, neutralizing antimicrobial peptides, and triggering a proinflammatory and procoagulatory state. These functions are specified by interactions between M protein and many host components, especially C4BP and fibrinogen. The former interaction is conserved among many antigenically variant M protein types but occurs in a strikingly sequence-independent manner, and the latter is associated in the M1 protein type with severe invasive disease. Remarkably for a protein of such diverse interactions, the M protein has a relatively simple but nonideal α-helical coiled coil sequence. This sequence nonideality is a crucial feature of M protein. Nonideal residues give rise to specific irregularities in its coiled-coil structure, which are essential for interactions with fibrinogen and establishment of a proinflammatory state. In addition, these structural irregularities are reminiscent of those in myosin and tropomyosin, which are targets for crossreactive antibodies in patients suffering from autoimmune sequelae of GAS infection.
Collapse
Affiliation(s)
- Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, 92093-0375, USA.
| |
Collapse
|
26
|
Hinz A, Miguet N, Natrajan G, Usami Y, Yamanaka H, Renesto P, Hartlieb B, McCarthy AA, Simorre JP, Göttlinger H, Weissenhorn W. Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Cell Host Microbe 2010; 7:314-323. [PMID: 20399176 DOI: 10.1016/j.chom.2010.03.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/11/2010] [Accepted: 03/08/2010] [Indexed: 12/31/2022]
Abstract
The restriction factor BST-2/tetherin contains two membrane anchors employed to retain some enveloped viruses, including HIV-1 tethered to the plasma membrane in the absence of virus-encoded antagonists. The 2.77 A crystal structure of the BST-2/tetherin extracellular core presented here reveals a parallel 90 A long disulfide-linked coiled-coil domain, while the complete extracellular domain forms an extended 170 A long rod-like structure based on small-angle X-ray scattering data. Mutagenesis analyses indicate that both the coiled coil and the N-terminal region are required for retention of HIV-1, suggesting that the elongated structure can function as a molecular ruler to bridge long distances. The structure reveals substantial irregularities and instabilities throughout the coiled coil, which contribute to its low stability in the absence of disulfide bonds. We propose that the irregular coiled coil provides conformational flexibility, ensuring that BST-2/tetherin anchoring both in the plasma membrane and in the newly formed virus membrane is maintained during virus budding.
Collapse
Affiliation(s)
- Andreas Hinz
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Nolwenn Miguet
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Ganesh Natrajan
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Yoshiko Usami
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hikaru Yamanaka
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Patricia Renesto
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Bettina Hartlieb
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Andrew A McCarthy
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France; EMBL, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | - Heinrich Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France.
| |
Collapse
|
27
|
Brown JH. How sequence directs bending in tropomyosin and other two-stranded alpha-helical coiled coils. Protein Sci 2010; 19:1366-75. [PMID: 20506487 PMCID: PMC2974828 DOI: 10.1002/pro.415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/15/2010] [Accepted: 05/02/2010] [Indexed: 12/31/2022]
Abstract
A quantitative analysis of the direction of bending of two-stranded alpha-helical coiled coils in crystal structures has been carried out to help determine how the amino acid sequence of the coiled coil influences its shape and function. Change in the axial staggering of the coiled coil, occurring at the boundaries of either clusters of core alanines in tropomyosin or of clusters of core bulky residues in the myosin rod, causes bending within the plane of the local dimer. The results also reveal that large gaps in the core of the coiled coil, which are seen for small core residues near large core residues or for unbranched core residues near canonical branched core residues, are correlated with bending out of the local dimeric plane. Comparison of tropomyosin structures determined in independent crystal environments provides further evidence for the concept that sequence directs the bending of the coiled coil, but that crystal environment is at least as important as sequence for determining the magnitude of bending. Tropomyosin thus appears to consist of more directionally restrained hinge-like joints rather than directionally variable universal joints, which helps account for and predicts the geometric and dynamic nature of its binding to F-actin.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
28
|
Petzhold D, Lossie J, Behlke J, Keller S, Haase H, Morano I. Auto-inhibitory effects of an IQ motif on protein structure and function. Biochem Biophys Res Commun 2010; 396:939-43. [DOI: 10.1016/j.bbrc.2010.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/06/2010] [Indexed: 11/15/2022]
|
29
|
Lowey S, Trybus KM. Common structural motifs for the regulation of divergent class II myosins. J Biol Chem 2010; 285:16403-7. [PMID: 20339003 DOI: 10.1074/jbc.r109.025551] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This minireview focuses on structural studies that have provided insights into our current understanding of thick filament regulation in muscle. We describe how different domains in the myosin molecule interact to produce an inactive "off" state; included are head-head and head-rod interactions, the role of the regulatory light chain, and the significance of the alpha-helical coiled-coil rod in regulation. Several of these interactions have now been visualized in a wide variety of native myosin filaments, testifying to the generality of these structural motifs across the phylogenetic tree.
Collapse
Affiliation(s)
- Susan Lowey
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA.
| | | |
Collapse
|
30
|
Szappanos B, Süveges D, Nyitray L, Perczel A, Gáspári Z. Folded-unfolded cross-predictions and protein evolution: the case study of coiled-coils. FEBS Lett 2010; 584:1623-7. [PMID: 20303956 DOI: 10.1016/j.febslet.2010.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/13/2010] [Accepted: 03/15/2010] [Indexed: 12/29/2022]
Abstract
Here we report a thorough analysis of cross-predictions between coiled-coil and disordered protein segments using various prediction algorithms for both sequence classes. Coiled-coils are often predicted to be unstructured, consistent with their obligate multimeric nature, whereas reverse cross-predictions are rare due to the regularity of coiled-coil sequences. We propose the simultaneous use of the programs Coils and IUPred to achieve acceptable prediction accuracy and minimize the extent of cross-predictions. The relevance of observed cross-predictions might be that disordered sequences can adopt coiled-coil conformation relatively easily during protein evolution.
Collapse
Affiliation(s)
- Balázs Szappanos
- Eötvös Loránd University, Institute of Chemistry, Structural Chemistry and Biology Laboratory, Budapest, Hungary
| | | | | | | | | |
Collapse
|
31
|
Structural insights into the molecular mechanisms of cauliflower mosaic virus transmission by its insect vector. J Virol 2010; 84:4706-13. [PMID: 20181714 DOI: 10.1128/jvi.02662-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted from plant to plant through a seemingly simple interaction with insect vectors. This process involves an aphid receptor and two viral proteins, P2 and P3. P2 binds to both the aphid receptor and P3, itself tightly associated with the virus particle, with the ensemble forming a transmissible viral complex. Here, we describe the conformations of both unliganded CaMV P3 protein and its virion-associated form. X-ray crystallography revealed that the N-terminal domain of unliganded P3 is a tetrameric parallel coiled coil with a unique organization showing two successive four-stranded subdomains with opposite supercoiling handedness stabilized by a ring of interchain disulfide bridges. A structural model of virus-liganded P3 proteins, folding as an antiparallel coiled-coil network coating the virus surface, was derived from molecular modeling. Our results highlight the structural and biological versatility of this coiled-coil structure and provide new insights into the molecular mechanisms involved in CaMV acquisition and transmission by the insect vector.
Collapse
|
32
|
Pant K, Watt J, Greenberg M, Jones M, Szczesna-Cordary D, Moore JR. Removal of the cardiac myosin regulatory light chain increases isometric force production. FASEB J 2009; 23:3571-80. [PMID: 19470801 DOI: 10.1096/fj.08-126672] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The myosin neck, which is supported by the interactions between light chains and the underlying alpha-helical heavy chain, is thought to act as a lever arm to amplify movements originating in the globular motor domain. Here, we studied the role of the cardiac myosin regulatory light chains (RLCs) in the capacity of myosin to produce force using a novel optical-trap-based isometric force in vitro motility assay. We measured the isometric force and actin filament velocity for native porcine cardiac (PC) myosin, RLC-depleted PC (PC(depl)) myosin, and PC myosin reconstituted with recombinant bacterially expressed human cardiac RLC (PC(recon)). RLC depletion reduced unloaded actin filament velocity by 58% and enhanced the myosin-based isometric force approximately 2-fold. No significant change between PC and PC(depl) preparations was observed in the maximal rate of actin-activated myosin ATPase activity. Reconstitution of PC(depl) myosin with human RLC partially restored the velocity and force levels to near untreated values. The reduction in unloaded velocity after RLC extraction is consistent with the myosin neck acting as a lever, while the enhancement in isometric force can be directly related to enhancement of unitary force. The force data are consistent with a model in which the neck region behaves as a cantilevered beam.
Collapse
Affiliation(s)
- Kiran Pant
- Boston University School of Medicine, Department of Physiology and Biophysics, 72 E. Concord St., Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
33
|
Buvoli M, Hamady M, Leinwand LA, Knight R. Bioinformatics assessment of beta-myosin mutations reveals myosin's high sensitivity to mutations. Trends Cardiovasc Med 2008; 18:141-9. [PMID: 18555187 DOI: 10.1016/j.tcm.2008.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 01/12/2023]
Abstract
More than 200 mutations in the beta-myosin gene (MYH7) that cause clinically distinct cardiac and/or skeletal myopathies have been reported, but to date, no comprehensive statistical analysis of these mutations has been performed. As a part of this review, we developed a new interactive database and research tool called MyoMAPR (Myopathic Mutation Analysis Profiler and Repository). We report that the distribution of mutations along the beta-myosin gene is not homogeneous, and that myosin is a highly constrained molecule with an uncommon sensitivity to amino acid substitutions. Increasing knowledge of the characteristics of MH7 mutations may provide a valuable resource for scientists and clinicians studying diagnosis, risk stratification, and treatment of disease associated with these mutations.
Collapse
Affiliation(s)
- Massimo Buvoli
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
34
|
Alamo L, Wriggers W, Pinto A, Bártoli F, Salazar L, Zhao FQ, Craig R, Padrón R. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. J Mol Biol 2008; 384:780-97. [PMID: 18951904 DOI: 10.1016/j.jmb.2008.10.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/27/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
Abstract
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.
Collapse
Affiliation(s)
- Lorenzo Alamo
- Departamento de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
36
|
Barth P, Schoeffler A, Alber T. Targeting Metastable Coiled-Coil Domains by Computational Design. J Am Chem Soc 2008; 130:12038-44. [DOI: 10.1021/ja802447e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick Barth
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220
| | - Allyn Schoeffler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220
| | - Tom Alber
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220
| |
Collapse
|
37
|
Li JF, Nebenführ A. Inter-dependence of dimerization and organelle binding in myosin XI. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:478-490. [PMID: 18429938 DOI: 10.1111/j.1365-313x.2008.03522.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cytoplasmic streaming is a ubiquitous process in plant cells that is thought to be driven by the active movement of myosin XI motor proteins along actin filaments. These myosin motors bind to organelles through their C-terminal globular tail domain, although recent studies have also suggested a role for the central coiled-coil region during organelle binding. Here we have investigated the relationship between these two protein domains of MYA1, an Arabidopsis myosin XI, in a series of in vivo experiments demonstrating that dimerization of the coiled-coil region stabilizes organelle binding of the globular tail. Surprisingly, yeast two-hybrid assays, bimolecular fluorescence complementation, Förster resonance energy transfer and in vitro pull-down experiments all demonstrated that dimerization of the 174-residue MYA1 coiled coils by themselves was unstable. Furthermore, only the first of the two major coiled-coil segments in MYA1 contributed significantly to dimer formation. Interestingly, dimerization of myosin tail constructs that included the organelle-binding globular tail was stable, although the globular tails by themselves did not interact. This suggests an inter-dependent relationship between dimerization and organelle binding in myosin XI, whereby each process synergistically stimulates the other.
Collapse
Affiliation(s)
- Jian-Feng Li
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA.
| | | |
Collapse
|
38
|
Adamovic I, Mijailovich SM, Karplus M. The elastic properties of the structurally characterized myosin II S2 subdomain: a molecular dynamics and normal mode analysis. Biophys J 2008; 94:3779-89. [PMID: 18234833 PMCID: PMC2367198 DOI: 10.1529/biophysj.107.122028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/14/2007] [Indexed: 11/18/2022] Open
Abstract
The elastic properties (stretching and bending moduli) of myosin are expected to play an important role in its function. Of particular interest is the extended alpha-helical coiled-coil portion of the molecule. Since there is no high resolution structure for the entire coiled-coil, a study is made of the scallop myosin II S2 subdomain for which an x-ray structure is available (Protein Data Bank 1nkn). We estimate the stretching and bending moduli of the S2 subdomain with an atomic level model by use of molecular simulations. Results were obtained from nonequilibrium molecular dynamics simulations in the presence of an external force, from the fluctuations in equilibrium molecular dynamics simulations and from normal modes. In addition, a poly-Ala (78 amino acid residues) alpha-helix model was examined to test the methodology and because of its interest as part of the lever arm. As expected, both the alpha-helix and coiled-coil S2 subdomain are very stiff for stretching along the main axis, with the stretching stiffness constant in the range 60-80 pN/nm (scaled to the 60 nm long S2). Both molecules are much more flexible for bending with a lateral stiffness of approximately 0.010 pN/nm for the S2 and 0.0055 pN/nm for the alpha-helix (scaled to 60 nm). These results are expected to be useful in estimating cross-bridge elasticity, which is required for understanding the strain-dependent transitions in the actomyosin cycle and for the development of three-dimensional models of muscle contraction.
Collapse
Affiliation(s)
- Ivana Adamovic
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
39
|
McNamara C, Zinkernagel AS, Macheboeuf P, Cunningham MW, Nizet V, Ghosh P. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. Science 2008; 319:1405-8. [PMID: 18323455 PMCID: PMC2288698 DOI: 10.1126/science.1154470] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the approximately 3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.
Collapse
Affiliation(s)
- Case McNamara
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
40
|
Subunit b-dimer of the Escherichia coli ATP synthase can form left-handed coiled-coils. Biophys J 2008; 94:5040-52. [PMID: 18326648 DOI: 10.1529/biophysj.107.121012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichia coli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures.
Collapse
|
41
|
Brown JH, Yang Y, Reshetnikova L, Gourinath S, Süveges D, Kardos J, Hóbor F, Reutzel R, Nyitray L, Cohen C. An unstable head-rod junction may promote folding into the compact off-state conformation of regulated myosins. J Mol Biol 2008; 375:1434-43. [PMID: 18155233 PMCID: PMC2665131 DOI: 10.1016/j.jmb.2007.11.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 11/24/2022]
Abstract
The N-terminal region of myosin's rod-like subfragment 2 (S2) joins the two heads of this dimeric molecule and is key to its function. Previously, a crystal structure of this predominantly coiled-coil region was determined for a short fragment (51 residues plus a leucine zipper) of the scallop striated muscle myosin isoform. In that study, the N-terminal 10-14 residues were found to be disordered. We have now determined the structure of the same scallop peptide in three additional crystal environments. In each of two of these structures, improved order has allowed visualization of the entire N-terminus in one chain of the dimeric peptide. We have also compared the melting temperatures of this scallop S2 peptide with those of analogous peptides from three other isoforms. Taken together, these experiments, along with examination of sequences, point to a diminished stability of the N-terminal region of S2 in regulated myosins, compared with those myosins whose regulation is thin filament linked. It seems plain that this isoform-specific instability promotes the off-state conformation of the heads in regulated myosins. We also discuss how myosin isoforms with varied thermal stabilities share the basic capacity to transmit force efficiently in order to produce contraction in their on states.
Collapse
Affiliation(s)
- Jerry H. Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - Yuting Yang
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - Ludmilla Reshetnikova
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - S. Gourinath
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dániel Süveges
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - József Kardos
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Fruzsina Hóbor
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Robbie Reutzel
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Carolyn Cohen
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| |
Collapse
|
42
|
Guo L, Han A, Bates DL, Cao J, Chen L. Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Proc Natl Acad Sci U S A 2007; 104:4297-302. [PMID: 17360518 PMCID: PMC1838596 DOI: 10.1073/pnas.0608041104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamine-rich sequences exist in a wide range of proteins across multiple species. A subset of glutamine-rich sequences has been shown to form amyloid fibers implicated in human diseases. The physiological functions of these sequence motifs are not well understood, partly because of the lack of structural information. Here we have determined a high-resolution structure of a glutamine-rich domain from human histone deacetylase 4 (HDAC4) by x-ray crystallography. The glutamine-rich domain of HDAC4 (19 glutamines of 68 residues) folds into a straight alpha-helix that assembles as a tetramer. In contrast to most coiled coil proteins, the HDAC4 tetramer lacks regularly arranged apolar residues and an extended hydrophobic core. Instead, the protein interfaces consist of multiple hydrophobic patches interspersed with polar interaction networks, wherein clusters of glutamines engage in extensive intra- and interhelical interactions. In solution, the HDAC4 tetramer undergoes rapid equilibrium with monomer and intermediate species. Structure-guided mutations that expand or disrupt hydrophobic patches drive the equilibrium toward the tetramer or monomer, respectively. We propose that a general role of glutamine-rich motifs be to mediate protein-protein interactions characteristic of a large component of polar interaction networks that may facilitate reversible assembly and disassembly of protein complexes.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215
| | - Aidong Han
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215
- *To whom correspondence should be sent at the present address:
Molecular and Computational Biology, Room 204c, University of Southern California, Los Angeles, CA 90089-2910. E-mail:
| | - Darren L. Bates
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215
| | - Jue Cao
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215
| | - Lin Chen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215
- *To whom correspondence should be sent at the present address:
Molecular and Computational Biology, Room 204c, University of Southern California, Los Angeles, CA 90089-2910. E-mail:
| |
Collapse
|
43
|
Kinosita K, Shiroguchi K, Ali MY, Adachi K, Itoh H. On the walking mechanism of linear molecular motors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:369-84. [PMID: 17278380 DOI: 10.1007/978-4-431-38453-3_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Kazuhiko Kinosita
- Department of Physics, Faculty of Science and Technology, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
44
|
Blankenfeldt W, Thomä NH, Wray JS, Gautel M, Schlichting I. Crystal structures of human cardiac beta-myosin II S2-Delta provide insight into the functional role of the S2 subfragment. Proc Natl Acad Sci U S A 2006; 103:17713-7. [PMID: 17095604 PMCID: PMC1693812 DOI: 10.1073/pnas.0606741103] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin II is the major component of the muscle thick filament. It consists of two N-terminal S1 subfragments ("heads") connected to a long dimeric coiled-coil rod. The rod is in itself twofold symmetric, but in the filament, the two heads point away from the filament surface and are therefore not equivalent. This breaking of symmetry requires the initial section of the rod, subfragment 2 (S2), to be relatively flexible. S2 is an important functional element, involved in various mechanisms by which the activity of smooth and striated muscle is regulated. We have determined crystal structures of the 126 N-terminal residues of S2 from human cardiac beta-myosin II (S2-Delta), of both WT and the disease-associated E924K mutant. S2-Delta is a straight parallel dimeric coiled coil, but the N terminus of one chain is disordered in WT-S2-Delta due to crystal contacts, indicative of unstable local structure. Bulky noncanonical side chains pack into a/d positions of S2-Delta's N terminus, leading to defined local asymmetry and axial stagger, which could induce nonequivalence of the S1 subfragments. Additionally, S2 possesses a conserved charge distribution with three prominent rings of negative potential within S2-Delta, the first of which may provide a binding interface for the "blocked head" of smooth muscle myosin in the OFF state. The observation that many disease-associated mutations affect the second negatively charged ring further suggests that charge interactions play an important role in regulation of cardiac muscle activity through myosin-binding protein C.
Collapse
Affiliation(s)
- Wulf Blankenfeldt
- *Max Planck Institute of Molecular Physiology, Department of Physical Biochemistry, 44227 Dortmund, Germany
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120 Heidelberg, Germany; and
- To whom correspondence may be addressed. E-mail:
or
| | - Nicolas H. Thomä
- *Max Planck Institute of Molecular Physiology, Department of Physical Biochemistry, 44227 Dortmund, Germany
| | - John S. Wray
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120 Heidelberg, Germany; and
| | - Mathias Gautel
- *Max Planck Institute of Molecular Physiology, Department of Physical Biochemistry, 44227 Dortmund, Germany
- King's College London, Department of Muscle Cell Biology, The Randall Centre, New Hunt's House, SE 1 UL London, United Kingdom
| | - Ilme Schlichting
- *Max Planck Institute of Molecular Physiology, Department of Physical Biochemistry, 44227 Dortmund, Germany
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120 Heidelberg, Germany; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
45
|
Nath S. A novel systems biology/engineering approach solves fundamental molecular mechanistic problems in bioenergetics and motility. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Abstract
Computational studies of large macromolecular assemblages have come a long way during the past 10 years. With the explosion of computer power and parallel computing, timescales of molecular dynamics simulations have been extended far beyond the hundreds of picoseconds timescale. However, limitations remain for studies of large-scale conformational changes occurring on timescales beyond nanoseconds, especially for large macromolecules. In this review, we describe recent methods based on normal mode analysis that have enabled us to study dynamics on the microsecond timescale for large macromolecules using different levels of coarse graining, from atomically detailed models to those employing only low-resolution structural information. Emerging from such studies is a control principle for robustness in Nature's machines. We discuss this idea in the context of large-scale functional reorganization of the ribosome, virus particles, and the muscle protein myosin.
Collapse
Affiliation(s)
- Florence Tama
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
47
|
Deng Y, Liu J, Zheng Q, Eliezer D, Kallenbach NR, Lu M. Antiparallel four-stranded coiled coil specified by a 3-3-1 hydrophobic heptad repeat. Structure 2006; 14:247-55. [PMID: 16472744 PMCID: PMC7126439 DOI: 10.1016/j.str.2005.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/30/2005] [Accepted: 10/12/2005] [Indexed: 11/24/2022]
Abstract
Coiled-coil sequences in proteins commonly share a seven-amino acid repeat with nonpolar side chains at the first (a) and fourth (d) positions. We investigate here the role of a 3-3-1 hydrophobic repeat containing nonpolar amino acids at the a, d, and g positions in determining the structures of coiled coils using mutants of the GCN4 leucine zipper dimerization domain. When three charged residues at the g positions in the parental sequence are replaced by nonpolar alanine or valine side chains, stable four-helix structures result. The X-ray crystal structures of the tetramers reveal antiparallel, four-stranded coiled coils in which the a, d, and g side chains interlock in a combination of knobs-into-knobs and knobs-into-holes packing. Interfacial interactions in a coiled coil can therefore be prescribed by hydrophobic-polar patterns beyond the canonical 3-4 heptad repeat. The results suggest that the conserved, charged residues at the g positions in the GCN4 leucine zipper can impart a negative design element to disfavor thermodynamically more stable, antiparallel tetramers.
Collapse
Affiliation(s)
- Yiqun Deng
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
48
|
Xie P, Dou SX, Wang PY. A hand-over-hand diffusing model for myosin-VI molecular motors. Biophys Chem 2006; 122:90-100. [PMID: 16564612 DOI: 10.1016/j.bpc.2006.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/20/2006] [Accepted: 02/21/2006] [Indexed: 11/22/2022]
Abstract
Single molecules of dimeric myosin-VI have been demonstrated to be able to move processively towards the pointed end of actin filament with a mean step size of approximately 36 nm. Here we present a hand-over-hand diffusing mechanism for this unidirectional movement. Based on this mechanism, its dynamical behaviors such as the step-size distribution, dwell-time distributions and mean dwell time at various ATP and ADP concentrations and under various loads are studied in detail. The calculated results show good agreement with previous experimental results. The processive movement of mutant myosin-V with its neck domains truncated to only one IQ motif can also be explained by using this hand-over-hand diffusing model.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China.
| | | | | |
Collapse
|
49
|
Carniel E, Taylor MRG, Sinagra G, Di Lenarda A, Ku L, Fain PR, Boucek MM, Cavanaugh J, Miocic S, Slavov D, Graw SL, Feiger J, Zhu XZ, Dao D, Ferguson DA, Bristow MR, Mestroni L. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 2006; 112:54-9. [PMID: 15998695 DOI: 10.1161/circulationaha.104.507699] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in the beta-myosin heavy-chain (betaMyHC) gene cause hypertrophic (HCM) and dilated (DCM) forms of cardiomyopathy. In failing human hearts, downregulation of alphaMyHC mRNA or protein has been correlated with systolic dysfunction. We hypothesized that mutations in alphaMyHC could also lead to pleiotropic cardiac phenotypes, including HCM and DCM. METHODS AND RESULTS A cohort of 434 subjects, 374 (134 affected, 214 unaffected, 26 unknown) belonging to 69 DCM families and 60 (29 affected, 30 unaffected, 1 unknown) in 21 HCM families, was screened for alphaMyHC gene (MYH6) mutations. Three heterozygous MYH6 missense mutations were identified in DCM probands (P830L, A1004S, and E1457K; 4.3% of probands). A Q1065H mutation was detected in 1 of 21 HCM probands and was absent in 2 unaffected offspring. All MYH6 mutations were distributed in highly conserved residues, were predicted to change the structure or chemical bonds of alphaMyHC, and were absent in at least 300 control chromosomes from an ethnically similar population. The DCM carrier phenotype was characterized by late onset, whereas the HCM phenotype was characterized by progression toward dilation, left ventricular dysfunction, and refractory heart failure. CONCLUSIONS This study suggests that mutations in MYH6 may cause a spectrum of phenotypes ranging from DCM to HCM.
Collapse
Affiliation(s)
- Elisa Carniel
- Familial Cardiomyopathy Registry Research Group, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Root DD, Yadavalli VK, Forbes JG, Wang K. Coiled-coil nanomechanics and uncoiling and unfolding of the superhelix and alpha-helices of myosin. Biophys J 2006; 90:2852-66. [PMID: 16439474 PMCID: PMC1414572 DOI: 10.1529/biophysj.105.071597] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nanomechanical properties of the coiled-coils of myosin are fundamentally important in understanding muscle assembly and contraction. Force spectra of single molecules of double-headed myosin, single-headed myosin, and coiled-coil tail fragments were acquired with an atomic force microscope and displayed characteristic triphasic force-distance responses to stretch: a rise phase (R) and a plateau phase (P) and an exponential phase (E). The R and P phases arise mainly from the stretching of the coiled-coils, with the hinge region being the main contributor to the rise phase at low force. Only the E phase was analyzable by the worm-like chain model of polymer elasticity. Restrained molecular mechanics simulations on an existing x-ray structure of scallop S2 yielded force spectra with either two or three phases, depending on the mode of stretch. It revealed that coiled-coil chains separate completely near the end of the P phase and the stretching of the unfolded chains gives rise to the E phase. Extensive conformational searching yielded a P phase force near 40 pN that agreed well with the experimental value. We suggest that the flexible and elastic S2 region, particularly the hinge region, may undergo force-induced unfolding and extend reversibly during actomyosin powerstroke.
Collapse
Affiliation(s)
- Douglas D Root
- Department of Biological Sciences, University of North Texas, Denton, 76203-5220, USA
| | | | | | | |
Collapse
|