1
|
Zou C, Choi J, Li Q, Ye S, Yin C, Garcia-Fernandez M, Agrestini S, Qiu Q, Cai X, Xiao Q, Zhou X, Zhou KJ, Wang Y, Peng Y. Evolution from a charge-ordered insulator to a high-temperature superconductor in Bi 2Sr 2(Ca,Dy)Cu 2O 8+δ. Nat Commun 2024; 15:7739. [PMID: 39231956 PMCID: PMC11375163 DOI: 10.1038/s41467-024-52124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
How Cooper pairs form and condense has been the main challenge in the physics of copper-oxide high-temperature superconductors. Great efforts have been made in the 'underdoped' region of the phase diagram, through doping a Mott insulator or cooling a strange metal. However, there is still no consensus on how superconductivity emerges when electron-electron correlations dominate and the Fermi surface is missing. To address this issue, here we carry out high-resolution resonant inelastic X-ray scattering and scanning tunneling microscopy studies on prototype cuprates Bi2Sr2Ca0.6Dy0.4Cu2O8+δ near the onset of superconductivity, combining bulk and surface, momentum- and real-space information. We show that an incipient charge order exists in the antiferromagnetic regime down to 0.04 holes per CuO2 unit, entangled with a particle-hole asymmetric pseudogap. The charge order induces an intensity anomaly in the bond-buckling phonon branch, which exhibits an abrupt increase once the system enters the superconducting dome. Our results suggest that the Cooper pairs grow out of a charge-ordered insulating state, and then condense accompanied by an enhanced interplay between charge excitations and electron-phonon coupling.
Collapse
Affiliation(s)
- Changwei Zou
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot, UK
| | - Qizhi Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
- Shenzhen Pinghu Laboratory, Building C, Chinese Sciences Vally, Industrial Park (iBT), Shenzhen, China
| | - Shusen Ye
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Chaohui Yin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | | | - Qingzheng Qiu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Xinqiang Cai
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Qian Xiao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, UK
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China.
- Frontier Science Center for Quantum Information, Beijing, China.
| | - Yingying Peng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
2
|
Zhang R, Lane C, Nokelainen J, Singh B, Barbiellini B, Markiewicz RS, Bansil A, Sun J. Emergence of Competing Stripe Phases in Undoped Infinite-Layer Nickelates. PHYSICAL REVIEW LETTERS 2024; 133:066401. [PMID: 39178441 DOI: 10.1103/physrevlett.133.066401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 08/25/2024]
Abstract
Recent discovery of superconductivity in infinite-layer nickelates has ignited renewed theoretical and experimental interest in the role of electronic correlations in their properties. Here, using first-principles simulations, we show that the parent compound of the nickelate family, LaNiO_{2}, hosts competing low-energy stripe phases, similar to doped cuprates. The stripe states are shown to be driven by multiorbital electronic mechanisms and Peierls distortions. Our study indicates that both strong correlations and electron-phonon coupling effects play a key role in the physics of infinite-layer nickelates, and sheds light on the microscopic origin of electronic inhomogeneity and the lack of long-range order in the nickelates.
Collapse
Affiliation(s)
| | | | - Johannes Nokelainen
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Quantum Materials and Sensing Institute, Northeastern University, Burlington, Massachusetts 01803, USA
| | | | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Quantum Materials and Sensing Institute, Northeastern University, Burlington, Massachusetts 01803, USA
| | | | | | | |
Collapse
|
3
|
Ding C, Dong W, Jiao X, Zhang Z, Gong G, Wei Z, Wang L, Jia JF, Xue QK. Unidirectional Charge Orders Induced by Oxygen Vacancies on SrTiO 3(001). ACS NANO 2024; 18:17786-17793. [PMID: 38935417 DOI: 10.1021/acsnano.4c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The discovery of high-mobility two-dimensional electron gas and low carrier density superconductivity in multiple SrTiO3-based heterostructures has stimulated intense interest in the surface properties of SrTiO3. The recent discovery of high-Tc superconductivity in the monolayer FeSe/SrTiO3 led to the upsurge and underscored the atomic precision probe of the surface structure. By performing atomically resolved cryogenic scanning tunneling microscopy/spectroscopy characterization on dual-TiO2-δ-terminated SrTiO3(001) surfaces with (√13 × √13), c(4 × 2), mixed (2 × 1), and (2 × 2) reconstructions, we disclosed universally broken rotational symmetry and contrasting bias- and temperature-dependent electronic states for apical and equatorial oxygen sites. With the sequentially evolved surface reconstructions and simultaneously increasing equatorial oxygen vacancies, the surface anisotropy reduces and the work function lowers. Intriguingly, unidirectional stripe orders appear on the c(4 × 2) surface, whereas local (4 × 4) order emerges and eventually forms long-range unidirectional c(4 × 4) charge order on the (2 × 2) surface. This work reveals robust unidirectional charge orders induced by oxygen vacancies due to strong and delicate electronic-lattice interaction under broken rotational symmetry, providing insights into understanding the complex behaviors in perovskite oxide-based heterostructures.
Collapse
Affiliation(s)
- Cui Ding
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
| | - Wenfeng Dong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xiaotong Jiao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhiyu Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Guanming Gong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhongxu Wei
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Jin-Feng Jia
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
4
|
Wang X, Zhu W. A microscopic view of checkerboard and striped charge orders through doping antiferromagnetic Mott insulator. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:265602. [PMID: 38518372 DOI: 10.1088/1361-648x/ad3709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
The emergence of charge order in doped Mott insulators has received considerable attention due to its relevance to a variety of realistic materials and experiments. To investigate the interplay between magnetic and charge order, we have studied the semiclassical Kondo lattice model, which includes both electronic and magnetic degrees of freedom. By combining Langevin dynamical simulations with the kernel polynomial method, our results reveal the presence of charged stripe order, checkerboard order, and non-uniform charge disorder in the near-half-filling regime. Importantly, our simulations show that both the doping level and the strength of thes-dexchange coupling play a crucial role in facilitating charge order formation. These phases give rise to distinct electronic structures as well as excitations in the magnetic dynamics, providing insights into the underlying mechanism of charge ordering phenomena.
Collapse
Affiliation(s)
- Xuanlan Wang
- Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Wei Zhu
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, People's Republic of China
| |
Collapse
|
5
|
Choi J, Li J, Nag A, Pelliciari J, Robarts H, Tam CC, Walters A, Agrestini S, García-Fernández M, Song D, Eisaki H, Johnston S, Comin R, Ding H, Zhou KJ. Universal Stripe Symmetry of Short-Range Charge Density Waves in Cuprate Superconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307515. [PMID: 37830432 DOI: 10.1002/adma.202307515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Indexed: 10/14/2023]
Abstract
The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short-range CDW in bismuth-based cuprates. Here, high-resolution resonant inelastic x-ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2 Sr2 - x Lax CuO6 + δ . Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real-space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°-rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates.
Collapse
Affiliation(s)
- Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jiemin Li
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jonathan Pelliciari
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hannah Robarts
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Charles C Tam
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Andrew Walters
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Stefano Agrestini
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | | | - Dongjoon Song
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hiroshi Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan
| | - Steve Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
- Institute for Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hong Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| |
Collapse
|
6
|
Aishwarya A, May-Mann J, Raghavan A, Nie L, Romanelli M, Ran S, Saha SR, Paglione J, Butch NP, Fradkin E, Madhavan V. Magnetic-field-sensitive charge density waves in the superconductor UTe 2. Nature 2023; 618:928-933. [PMID: 37380690 DOI: 10.1038/s41586-023-06005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/23/2023] [Indexed: 06/30/2023]
Abstract
The intense interest in triplet superconductivity partly stems from theoretical predictions of exotic excitations such as non-Abelian Majorana modes, chiral supercurrents and half-quantum vortices1-4. However, fundamentally new and unexpected states may emerge when triplet superconductivity appears in a strongly correlated system. Here we use scanning tunnelling microscopy to reveal an unusual charge-density-wave (CDW) order in the heavy-fermion triplet superconductor UTe2 (refs. 5-8). Our high-resolution maps reveal a multi-component incommensurate CDW whose intensity gets weaker with increasing field, with the CDW eventually disappearing at the superconducting critical field Hc2. To understand the phenomenology of this unusual CDW, we construct a Ginzburg-Landau theory for a uniform triplet superconductor coexisting with three triplet pair-density-wave states. This theory gives rise to daughter CDWs that would be sensitive to magnetic field owing to their origin in a pair-density-wave state and provides a possible explanation for our data. Our discovery of a CDW state that is sensitive to magnetic fields and strongly intertwined with superconductivity provides important information for understanding the order parameters of UTe2.
Collapse
Affiliation(s)
- Anuva Aishwarya
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian May-Mann
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Arjun Raghavan
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Laimei Nie
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Marisa Romanelli
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sheng Ran
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Department of Physics, Washington University in St. Louis, St Louis, MO, USA
| | - Shanta R Saha
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
| | - Johnpierre Paglione
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Nicholas P Butch
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Eduardo Fradkin
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Vidya Madhavan
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Mai P, Nichols NS, Karakuzu S, Bao F, Del Maestro A, Maier TA, Johnston S. Robust charge-density-wave correlations in the electron-doped single-band Hubbard model. Nat Commun 2023; 14:2889. [PMID: 37210389 DOI: 10.1038/s41467-023-38566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
There is growing evidence that the hole-doped single-band Hubbard and t - J models do not have a superconducting ground state reflective of the high-temperature cuprate superconductors but instead have striped spin- and charge-ordered ground states. Nevertheless, it is proposed that these models may still provide an effective low-energy model for electron-doped materials. Here we study the finite temperature spin and charge correlations in the electron-doped Hubbard model using quantum Monte Carlo dynamical cluster approximation calculations and contrast their behavior with those found on the hole-doped side of the phase diagram. We find evidence for a charge modulation with both checkerboard and unidirectional components decoupled from any spin-density modulations. These correlations are inconsistent with a weak-coupling description based on Fermi surface nesting, and their doping dependence agrees qualitatively with resonant inelastic x-ray scattering measurements. Our results provide evidence that the single-band Hubbard model describes the electron-doped cuprates.
Collapse
Affiliation(s)
- Peizhi Mai
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6494, USA
- Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nathan S Nichols
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Seher Karakuzu
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6494, USA
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY, 10010, USA
| | - Feng Bao
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
| | - Adrian Del Maestro
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
- Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas A Maier
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6494, USA
| | - Steven Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA.
- Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
8
|
Song CL, Main EJ, Simmons F, Liu S, Phillabaum B, Dahmen KA, Hudson EW, Hoffman JE, Carlson EW. Critical nematic correlations throughout the superconducting doping range in Bi 2-zPb zSr 2-yLa yCuO 6+x. Nat Commun 2023; 14:2622. [PMID: 37147296 PMCID: PMC10162959 DOI: 10.1038/s41467-023-38249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Charge modulations have been widely observed in cuprates, suggesting their centrality for understanding the high-Tc superconductivity in these materials. However, the dimensionality of these modulations remains controversial, including whether their wavevector is unidirectional or bidirectional, and also whether they extend seamlessly from the surface of the material into the bulk. Material disorder presents severe challenges to understanding the charge modulations through bulk scattering techniques. We use a local technique, scanning tunneling microscopy, to image the static charge modulations on Bi2-zPbzSr2-yLayCuO6+x. The ratio of the phase correlation length ξCDW to the orientation correlation length ξorient points to unidirectional charge modulations. By computing new critical exponents at free surfaces including that of the pair connectivity correlation function, we show that these locally 1D charge modulations are actually a bulk effect resulting from classical 3D criticality of the random field Ising model throughout the entire superconducting doping range.
Collapse
Affiliation(s)
- Can-Li Song
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Elizabeth J Main
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Forrest Simmons
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Quantum Science and Engineering Institute, West Lafayette, IN, 47907, USA
| | - Shuo Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Benjamin Phillabaum
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Karin A Dahmen
- Department of Physics, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Eric W Hudson
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Erica W Carlson
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Quantum Science and Engineering Institute, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Chen Z, Li D, Lu Z, Liu Y, Zhang J, Li Y, Yin R, Li M, Zhang T, Dong X, Yan YJ, Feng DL. Charge order driven by multiple-Q spin fluctuations in heavily electron-doped iron selenide superconductors. Nat Commun 2023; 14:2023. [PMID: 37041177 PMCID: PMC10090174 DOI: 10.1038/s41467-023-37792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Intertwined spin and charge orders have been widely studied in high-temperature superconductors, since their fluctuations may facilitate electron pairing; however, they are rarely identified in heavily electron-doped iron selenides. Here, using scanning tunneling microscopy, we show that when the superconductivity of (Li0.84Fe0.16OH)Fe1-xSe is suppressed by introducing Fe-site defects, a short-ranged checkerboard charge order emerges, propagating along the Fe-Fe directions with an approximately 2aFe period. It persists throughout the whole phase space tuned by Fe-site defect density, from a defect-pinned local pattern in optimally doped samples to an extended order in samples with lower Tc or non-superconducting. Intriguingly, our simulations indicate that the charge order is likely driven by multiple-Q spin density waves originating from the spin fluctuations observed by inelastic neutron scattering. Our study proves the presence of a competing order in heavily electron-doped iron selenides, and demonstrates the potential of charge order as a tool to detect spin fluctuations.
Collapse
Affiliation(s)
- Ziyuan Chen
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Dong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zouyouwei Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiakang Zhang
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yuanji Li
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ruotong Yin
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Mingzhe Li
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Tong Zhang
- Department of Physics, State Key Laboratory of Surface Physics and Advanced Material Laboratory, Fudan University, Shanghai, 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China
| | - Xiaoli Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Ya-Jun Yan
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Dong-Lai Feng
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China.
| |
Collapse
|
10
|
Lee KS, Kim JJ, Joo SH, Park MS, Yoo JH, Gu G, Lee J. Atomic-scale interpretation of the quantum oscillations in cuprate superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:21LT01. [PMID: 36898156 DOI: 10.1088/1361-648x/acc379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Cuprate superconductors display unusual features in bothkspace and real space as the superconductivity is suppressed-a broken Fermi surface, charge density wave, and pseudogap. Contrarily, recent transport measurements on cuprates under high magnetic fields report quantum oscillations (QOs), which imply rather a usual Fermi liquid behavior. To settle the disagreement, we investigated Bi2Sr2CaCu2O8+δunder a magnetic field in an atomic scale. A particle-hole (p-h) asymmetrically dispersing density of states (DOSs) modulation was found at the vortices on a slightly underdoped sample, while on a highly underdoped sample, no trace of the vortex was found even at 13 T. However, a similar p-h asymmetric DOS modulation persisted in almost an entire field of view. From this observation, we infer an alternative explanation of the QO results by providing a unifying picture where the aforementioned seemingly conflicting evidence from angle-resolved photoemission spectroscopy, spectroscopic imaging scanning tunneling microscopy, and magneto-transport measurements can be understood solely in terms of the DOS modulations.
Collapse
Affiliation(s)
- K S Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - J-J Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - S H Joo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - M S Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - J H Yoo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Genda Gu
- CMPMS Department, Brookhaven National Laboratory, Upton, New York 11973, United States of America
| | - Jinho Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Yang H, Konečná A, Xu X, Cheong SW, Batson PE, García de Abajo FJ, Garfunkel E. Simultaneous Imaging of Dopants and Free Charge Carriers by Monochromated EELS. ACS NANO 2022; 16:18795-18805. [PMID: 36317944 DOI: 10.1021/acsnano.2c07540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Doping inhomogeneities in solids are not uncommon, but their microscopic observation and understanding are limited due to the lack of bulk-sensitive experimental techniques with high enough spatial and spectral resolution. Here, we demonstrate nanoscale imaging of both dopants and free charge carriers in La-doped BaSnO3 (BLSO) using high-resolution electron energy-loss spectroscopy (EELS). By analyzing high- and low-energy excitations in EELS, we reveal chemical and electronic inhomogeneities within a single BLSO nanocrystal. The inhomogeneous doping leads to distinctive localized infrared surface plasmons, including a previously unobserved plasmon mode that is highly confined between high- and low-doping regions. We further quantify the carrier density, effective mass, and dopant activation percentage by EELS and transport measurements on the bulk single crystals of BLSO. These results not only represent a practical approach for studying heterogeneities in solids and understanding structure-property relationships at the nanoscale, but also demonstrate the possibility of infrared plasmon tuning by leveraging nanoscale doping texture.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
| | - Andrea Konečná
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- Central European Institute of Technology, Brno University of Technology, 61200Brno, Czech Republic
| | - Xianghan Xu
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - Sang-Wook Cheong
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - Philip E Batson
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010Barcelona, Spain
| | - Eric Garfunkel
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| |
Collapse
|
12
|
Zhang S, Zhang P, Chern GW. Anomalous phase separation in a correlated electron system: Machine-learning-enabled large-scale kinetic Monte Carlo simulations. Proc Natl Acad Sci U S A 2022; 119:e2119957119. [PMID: 35486688 PMCID: PMC9170136 DOI: 10.1073/pnas.2119957119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
SignificancePhase separation is crucial to the functionalities of many correlated electron materials with notable examples including colossal magnetoresistance in manganites and high-Tc superconductivity in cuprates. However, the nonequilibrium phase-separation dynamics in such systems are poorly understood theoretically, partly because the required multiscale modeling is computationally very demanding. With the aid of machine-learning methods, we have achieved large-scale dynamical simulations in a representative correlated electron system. We observe an unusual relaxation process that is beyond the framework of classical phase-ordering theories. We also uncover a correlation-induced freezing behavior, which could be a generic feature of phase separation in correlated electron systems.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Physics, University of Virginia, Charlottesville, VA 22904
| | - Puhan Zhang
- Department of Physics, University of Virginia, Charlottesville, VA 22904
| | - Gia-Wei Chern
- Department of Physics, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
13
|
Direct visualization of a static incommensurate antiferromagnetic order in Fe-doped Bi 2Sr 2CaCu 2O 8+δ. Proc Natl Acad Sci U S A 2021; 118:2115317118. [PMID: 34916295 DOI: 10.1073/pnas.2115317118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.
Collapse
|
14
|
Li H, Ye S, Zhao J, Jin C, Wang Y. Imaging the atomic-scale electronic states induced by a pair of hole dopants in Ca 2CuO 2Cl 2 Mott insulator. Sci Bull (Beijing) 2021; 66:1395-1400. [PMID: 36654365 DOI: 10.1016/j.scib.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/20/2023]
Abstract
We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca2CuO2Cl2 parent Mott insulator of cuprates. We find that when the two dopants approach each other, the transfer of spectral weight from high energy Hubbard band to low energy in-gap state creates a broad peak and nearly V-shaped gap around the Fermi level. The peak position shows a sudden drop at distance around 4 a0 and then remains almost constant. The in-gap states exhibit peculiar spatial distributions depending on the configuration of the two dopants relative to the underlying Cu lattice. These results shed important new lights on the evolution of low energy electronic states when a few holes are doped into parent cuprates.
Collapse
Affiliation(s)
- Haiwei Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shusen Ye
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jianfa Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan 523808, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changqing Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan 523808, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China.
| |
Collapse
|
15
|
Incommensurate smectic phase in close proximity to the high-T c superconductor FeSe/SrTiO 3. Nat Commun 2021; 12:2196. [PMID: 33850158 PMCID: PMC8044195 DOI: 10.1038/s41467-021-22516-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Superconductivity is significantly enhanced in monolayer FeSe grown on SrTiO3, but not for multilayer films, in which large strength of nematicity develops. However, the link between the high-transition temperature superconductivity in monolayer and the correlation related nematicity in multilayer FeSe films is not well understood. Here, we use low-temperature scanning tunneling microscopy to study few-layer FeSe thin films grown by molecular beam epitaxy. We observe an incommensurate long-range smectic phase, which solely appears in bilayer FeSe films. The smectic order still locally exists and gradually fades away with increasing film thickness, while it suddenly vanishes in monolayer FeSe, indicative of an abrupt smectic phase transition. Surface alkali-metal doping can suppress the smectic phase and induce high-Tc superconductivity in bilayer FeSe. Our observations provide evidence that the monolayer FeSe is in close proximity to the smectic phase, and its superconductivity is likely enhanced by this electronic instability as well. The relation between enhanced superconductivity in monolayer FeSe grown on SrTiO3 and the large nematicity in multilayer FeSe on SrTiO3 remains not well understood. Here, the authors observe a long-range smectic phase in bilayer FeSe films but vanishes in monolayer FeSe, providing a new instability to help enhance the superconductivity.
Collapse
|
16
|
On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model. CONDENSED MATTER 2021. [DOI: 10.3390/condmat6010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigate the role of kinetic energy for the stability of superconducting state in the two-dimensional Hubbard model on the basis of an optimization variational Monte Carlo method. The wave function is optimized by multiplying by correlation operators of site off-diagonal type. This wave function is written in an exponential-type form given as ψλ=exp(−λK)ψG for the Gutzwiller wave function ψG and a kinetic operator K. The kinetic correlation operator exp(−λK) plays an important role in the emergence of superconductivity in large-U region of the two-dimensional Hubbard model, where U is the on-site Coulomb repulsive interaction. We show that the superconducting condensation energy mainly originates from the kinetic energy in the strongly correlated region. This may indicate a possibility of high-temperature superconductivity due to the kinetic energy effect in correlated electron systems.
Collapse
|
17
|
Oh E, Gye G, Yeom HW. Defect-Selective Charge-Density-Wave Condensation in 2H-NbSe_{2}. PHYSICAL REVIEW LETTERS 2020; 125:036804. [PMID: 32745437 DOI: 10.1103/physrevlett.125.036804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Defects have been known to substantially affect quantum states of materials including charge density wave (CDW). However, the microscopic mechanism of the influence of defects is often elusive due partly to the lack of atomic scale characterization of defects themselves. We investigate native defects of a prototypical CDW material 2H-NbSe_{2} and their microscopic interaction with CDW. Three prevailing types of atomic scale defects are classified by scanning tunneling microscope, and their atomic structures are identified by density functional theory calculations as Se vacancies and Nb intercalants. Above the transition temperature, two distinct CDW structures are found to be induced selectively by different types of defects. This intriguing phenomenon is explained by competing CDW ground states and local lattice strain fields induced by defects, providing a clear microscopic mechanism of the defect-CDW interaction.
Collapse
Affiliation(s)
- Eunseok Oh
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea and Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongcheol Gye
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea and Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea and Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
18
|
Mello EVLD. A framework for the description of charge order, pseudo and superconducting gap, critical temperature and pairing interaction in cuprate superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:40LT02. [PMID: 32580169 DOI: 10.1088/1361-648x/ab9fd5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
A unified phenomenological description framework is proposed for the evaluation of some of the most important observables of the cuprate superconductors: the pseudogap (PG) ΔPG, the local superconducting amplitudes ΔSC(ri), the critical temperatureTcand charge ordering (CO) parameters. Recent detailed measurements of CO structures and CO wavelengthsλCOare faithfully reproduced by solutions of a Cahn-Hilliard differential equation with a free energy potentialVGLthat produces alternating small charge modulations. The charge oscillations induce atomic fluctuations that mediate the SC pair interaction proportional to theVGLamplitude. The local SC amplitude and phaseθiare connected by Josephson couplingEJ(rij) and the SC long-range order transition occurs whenEJ∼kBTc. The calculated results of the wavelengthλCO, ΔPG,ΔSCandTccalculations are in good agreement with a variety of experiments.
Collapse
Affiliation(s)
- E V L de Mello
- Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
| |
Collapse
|
19
|
Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity. Proc Natl Acad Sci U S A 2020; 117:14805-14811. [PMID: 32546526 PMCID: PMC7334493 DOI: 10.1073/pnas.2002429117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By making a variety of quantitative comparisons between electronic visualization experiments and a theory describing coexisting pair density wave and superconductive states in cuprates, we find striking correspondence throughout. Our model can thus explain the microscopic origins of many key atomic-scale phenomena of the cuprate broken-symmetry state. These observations are consistent with the possibility that a short-range pair density wave (PDW) state coexists with superconductivity below a critical hole density in Bi2Sr2CaCu2O8, that the charge density wave modulations in cuprates are a consequence of the PDW state, that the cuprate pseudogap is the antinodal gap of the PDW, and that the critical point in the cuprate phase diagram occurs due to disappearance of the PDW. The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states Nr,E is predicted at the terminal BiO surface of Bi2Sr2CaCu2O8 and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of Nr,E, the modulations of the coherence peak energy Δpr, and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space q-space. Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi2Sr2CaCu2O8 does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.
Collapse
|
20
|
Frano A, Blanco-Canosa S, Keimer B, Birgeneau RJ. Charge ordering in superconducting copper oxides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:374005. [PMID: 31829986 DOI: 10.1088/1361-648x/ab6140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtained by scattering methods. In particular, we discuss the structure, periodicity, and stability range of the charge-ordered state, its response to various external perturbations, the influence of disorder, the coexistence and competition with superconductivity, as well as collective charge dynamics. In the context of this journal issue which honors Roger Cowley's legacy, we also discuss the connection of charge ordering with lattice vibrations and the central-peak phenomenon. We end the review with an outlook on research opportunities offered by new synthesis methods and experimental platforms, including cuprate thin films and superlattices.
Collapse
Affiliation(s)
- Alex Frano
- Department of Physics, University of California, San Diego, CA 92093, United States of America
| | - Santiago Blanco-Canosa
- Donostia International Physics Center, DIPC, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Robert J Birgeneau
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, United States of America
| |
Collapse
|
21
|
Kamber U, Bergman A, Eich A, Iuşan D, Steinbrecher M, Hauptmann N, Nordström L, Katsnelson MI, Wegner D, Eriksson O, Khajetoorians AA. Self-induced spin glass state in elemental and crystalline neodymium. Science 2020; 368:368/6494/eaay6757. [PMID: 32467362 DOI: 10.1126/science.aay6757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/14/2020] [Accepted: 04/10/2020] [Indexed: 11/02/2022]
Abstract
Spin glasses are a highly complex magnetic state of matter intricately linked to spin frustration and structural disorder. They exhibit no long-range order and exude aging phenomena, distinguishing them from quantum spin liquids. We report a previously unknown type of spin glass state, the spin-Q glass, observable in bulk-like crystalline metallic neodymium thick films. Using spin-polarized scanning tunneling microscopy combined with ab initio calculations and atomistic spin-dynamics simulations, we visualized the variations in atomic-scale noncolinear order and its response to magnetic field and temperature. We quantified the aging phenomena relating the glassiness to crystalline symmetry and the energy landscape. This result not only resolves the long-standing debate of the magnetism of neodymium, but also suggests that glassiness may arise in other magnetic solids lacking extrinsic disorder.
Collapse
Affiliation(s)
- Umut Kamber
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Anders Bergman
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Andreas Eich
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Diana Iuşan
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Manuel Steinbrecher
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Nadine Hauptmann
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Lars Nordström
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Mikhail I Katsnelson
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Daniel Wegner
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands.
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.,School of Science and Technology, Örebro University, Örebro, Sweden
| | | |
Collapse
|
22
|
Nelson JN, Parzyck CT, Faeth BD, Kawasaki JK, Schlom DG, Shen KM. Mott gap collapse in lightly hole-doped Sr 2-xK xIrO 4. Nat Commun 2020; 11:2597. [PMID: 32444617 PMCID: PMC7244596 DOI: 10.1038/s41467-020-16425-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/23/2020] [Indexed: 11/09/2022] Open
Abstract
The evolution of Sr2IrO4 upon carrier doping has been a subject of intense interest, due to its similarities to the parent cuprates, yet the intrinsic behaviour of Sr2IrO4 upon hole doping remains enigmatic. Here, we synthesize and investigate hole-doped Sr2-xKxIrO4 utilizing a combination of reactive oxide molecular-beam epitaxy, substitutional diffusion and in-situ angle-resolved photoemission spectroscopy. Upon hole doping, we observe the formation of a coherent, two-band Fermi surface, consisting of both hole pockets centred at (π, 0) and electron pockets centred at (π/2, π/2). In particular, the strong similarities between the Fermi surface topology and quasiparticle band structure of hole- and electron-doped Sr2IrO4 are striking given the different internal structure of doped electrons versus holes.
Collapse
Affiliation(s)
- J N Nelson
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - C T Parzyck
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - B D Faeth
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - J K Kawasaki
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA.,Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York, 14853, USA.,Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - D G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York, 14853, USA
| | - K M Shen
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA. .,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York, 14853, USA.
| |
Collapse
|
23
|
Wang X, Yuan Y, Xue QK, Li W. Charge ordering in high-temperature superconductors visualized by scanning tunneling microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:013002. [PMID: 31487703 DOI: 10.1088/1361-648x/ab41c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the discovery of stripe order in La1.6-x Nd0.4Sr x CuO4 superconductors in 1995, charge ordering in cuprate superconductors has been intensively studied by various experimental techniques. Among these studies, scanning tunneling microscope (STM) plays an irreplaceable role in determining the real space structures of charge ordering. STM imaging of different families of cuprates over a wide range of doping levels reveal similar checkerboard-like patterns, indicating that such a charge ordered state is likely a ubiquitous and intrinsic characteristic of cuprate superconductors, which may shed light on understanding the mechanism of high-temperature superconductivity. In another class of high-temperature superconductors, iron-based superconductors, STM studies reveal several charge ordered states as well, but their real-space patterns and the interplay with superconductivity are markedly different among different materials. In this paper, we present a brief review on STM studies of charge ordering in these two classes of high-temperature superconductors. Possible origins of charge ordering and its interplay with superconductivity will be discussed.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
24
|
von Rohr FO, Orain JC, Khasanov R, Witteveen C, Shermadini Z, Nikitin A, Chang J, Wieteska AR, Pasupathy AN, Hasan MZ, Amato A, Luetkens H, Uemura YJ, Guguchia Z. Unconventional scaling of the superfluid density with the critical temperature in transition metal dichalcogenides. SCIENCE ADVANCES 2019; 5:eaav8465. [PMID: 31819897 PMCID: PMC6884407 DOI: 10.1126/sciadv.aav8465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
We report on muon spin rotation experiments probing the magnetic penetration depth λ(T) in the layered superconductors in 2H-NbSe2 and 4H-NbSe2. The current results, along with our earlier findings on 1T'-MoTe2 (Guguchia et al.), demonstrate that the superfluid density scales linearly with T c in the three transition metal dichalcogenide superconductors. Upon increasing pressure, we observe a substantial increase of the superfluid density in 2H-NbSe2, which we find to correlate with T c. The correlation deviates from the abovementioned linear trend. A similar deviation from the Uemura line was also observed in previous pressure studies of optimally doped cuprates. This correlation between the superfluid density and T c is considered a hallmark feature of unconventional superconductivity. Here, we show that this correlation is an intrinsic property of the superconductivity in transition metal dichalcogenides, whereas the ratio T c/T F is approximately a factor of 20 lower than the ratio observed in hole-doped cuprates. We, furthermore, find that the values of the superconducting gaps are insensitive to the suppression of the charge density wave state.
Collapse
Affiliation(s)
- F. O. von Rohr
- Department of Chemistry, University of Zürich, CH-8057 Zürich, Switzerland
- Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - J.-C. Orain
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - R. Khasanov
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - C. Witteveen
- Department of Chemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Z. Shermadini
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - A. Nikitin
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - J. Chang
- Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - A. R. Wieteska
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - A. N. Pasupathy
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - M. Z. Hasan
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - A. Amato
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - H. Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Y. J. Uemura
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Z. Guguchia
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Department of Physics, Columbia University, New York, NY 10027, USA
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
25
|
High-temperature superconductivity in monolayer Bi 2Sr 2CaCu 2O 8+δ. Nature 2019; 575:156-163. [PMID: 31666697 DOI: 10.1038/s41586-019-1718-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/23/2019] [Indexed: 11/09/2022]
Abstract
Although copper oxide high-temperature superconductors constitute a complex and diverse material family, they all share a layered lattice structure. This curious fact prompts the question of whether high-temperature superconductivity can exist in an isolated monolayer of copper oxide, and if so, whether the two-dimensional superconductivity and various related phenomena differ from those of their three-dimensional counterparts. The answers may provide insights into the role of dimensionality in high-temperature superconductivity. Here we develop a fabrication process that obtains intrinsic monolayer crystals of the high-temperature superconductor Bi2Sr2CaCu2O8+δ (Bi-2212; here, a monolayer refers to a half unit cell that contains two CuO2 planes). The highest superconducting transition temperature of the monolayer is as high as that of optimally doped bulk. The lack of dimensionality effect on the transition temperature defies expectations from the Mermin-Wagner theorem, in contrast to the much-reduced transition temperature in conventional two-dimensional superconductors such as NbSe2. The properties of monolayer Bi-2212 become extremely tunable; our survey of superconductivity, the pseudogap, charge order and the Mott state at various doping concentrations reveals that the phases are indistinguishable from those in the bulk. Monolayer Bi-2212 therefore displays all the fundamental physics of high-temperature superconductivity. Our results establish monolayer copper oxides as a platform for studying high-temperature superconductivity and other strongly correlated phenomena in two dimensions.
Collapse
|
26
|
Gerasimenko YA, Vaskivskyi I, Litskevich M, Ravnik J, Vodeb J, Diego M, Kabanov V, Mihailovic D. Quantum jamming transition to a correlated electron glass in 1T-TaS 2. NATURE MATERIALS 2019; 18:1078-1083. [PMID: 31308513 DOI: 10.1038/s41563-019-0423-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/04/2019] [Indexed: 05/17/2023]
Abstract
Distinct many-body states may be created under non-equilibrium conditions through different ordering paths, even when their constituents are subjected to the same fundamental interactions. The phase-transition mechanism to such states remains poorly understood. Here, we show that controlled optical or electromagnetic perturbations can lead to an amorphous metastable state of strongly correlated electrons in a quasi-two-dimensional dichalcogenide. Scanning tunnelling microscopy reveals a hyperuniform pattern of localized charges, whereas multitip surface nanoscale conductivity measurements and tunnelling spectroscopy show an electronically gapless conducting state that is different from conventional Coulomb glasses and many-body localized systems. The state is stable up to room temperature and shows no signs of either local charge order or phase separation. The mechanism for its formation is attributed to a dynamical localization of electrons through mutual interactions. Theoretical calculations confirm the correlations between localized charges to be crucial for the state's unusual stability.
Collapse
Affiliation(s)
| | | | - Maksim Litskevich
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Jan Ravnik
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Jaka Vodeb
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Michele Diego
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Viktor Kabanov
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Dragan Mihailovic
- CENN Nanocenter, Ljubljana, Slovenia.
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia.
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
27
|
Wu Y, Fang S, Liu G, Zhang Y. Possible cluster pairing correlation in the checkerboard Hubbard model: a quantum Monte Carlo study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:375601. [PMID: 31146272 DOI: 10.1088/1361-648x/ab25cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Constrained-path quantum Monte Carlo method is applied to study the pairing correlation in the checkerboard Hubbard model with inhomogeneous nearest-neighbor hopping at a low doping of holes. The inhomogeneous hopping can enhance the pairing correlation among different plaquette clusters. An obvious maximum for the pairing correlation is observed at a certain inhomogeneous hopping. The cluster pairing correlation shows the strongest long-range behavior at the optimal inhomogeneity. The enhancement of cluster pairing correlation might be associated with the transition of the Fermi surface structure. This work indicates that the inhomogeneous hopping could tailor the pairing correlation effectively.
Collapse
Affiliation(s)
- Yongzheng Wu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Mechanism of High-Temperature Superconductivity in Correlated-Electron Systems. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4020057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is very important to elucidate the mechanism of superconductivity for achieving room temperature superconductivity. In the first half of this paper, we give a brief review on mechanisms of superconductivity in many-electron systems. We believe that high-temperature superconductivity may occur in a system with interaction of large-energy scale. Empirically, this is true for superconductors that have been found so far. In the second half of this paper, we discuss cuprate high-temperature superconductors. We argue that superconductivity of high temperature cuprates is induced by the strong on-site Coulomb interaction, that is, the origin of high-temperature superconductivity is the strong electron correlation. We show the results on the ground state of electronic models for high temperature cuprates on the basis of the optimization variational Monte Carlo method. A high-temperature superconducting phase will exist in the strongly correlated region.
Collapse
|
29
|
Myasnikova AE, Nazdracheva TF, Lutsenko AV, Dmitriev AV, Dzhantemirov AH, Zhileeva EA, Moseykin DV. Strong long-range electron-phonon interaction as possible driving force for charge ordering in cuprates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:235602. [PMID: 30840947 DOI: 10.1088/1361-648x/ab0d6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A model resulting in charge ordering (CO) similar to that observed in cuprate superconductors is under study. It includes strong long-range electron-phonon interaction (EPI) and high density of correlated carriers. Coexistence of large bipolarons and delocalized carriers is a feature of such system. We develop generalized variation method to calculate the bipolaron size (CO period) in the ground normal state of such system at various doping. The approach allows the revealing of a possible physical reason of strongly different doping behavior of the CO wave vector in different cuprates. Obtained doping dependences of the CO period and temperature of the CO decay demonstrate quantitative agreement with those observed in cuprates. Predicted in the suggested approach ratio of the CO wave vector to the wave vector of the high-energy anomaly (HEA) in ARPES spectrum is in consent with that in cuprates. Calculated resonant x-rays scattering on the CO emerging in the model is in good agreement with experiments on cuprates including the asymmetry of the CO peaks' cross-section. A gap arises in the spectrum of delocalized carriers near antinodal direction due to their scattering on the periodic potential created by autolocalized carriers, analogously to photon crystal effect.
Collapse
|
30
|
Harada JK, Charles N, Poeppelmeier KR, Rondinelli JM. Heteroanionic Materials by Design: Progress Toward Targeted Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805295. [PMID: 30861235 DOI: 10.1002/adma.201805295] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/16/2019] [Indexed: 05/16/2023]
Abstract
The burgeoning field of anion engineering in oxide-based compounds aims to tune physical properties by incorporating additional anions of different size, electronegativity, and charge. For example, oxychalcogenides, oxynitrides, oxypnictides, and oxyhalides may display new or enhanced responses not readily predicted from or even absent in the simpler homoanionic (oxide) compounds because of their proximity to the ionocovalent-bonding boundary provided by contrasting polarizabilities of the anions. In addition, multiple anions allow heteroanionic materials to span a more complex atomic structure design palette and interaction space than the homoanionic oxide-only analogs. Here, established atomic and electronic principles for the rational design of properties in heteroanionic materials are contextualized. Also described are synergistic quantum mechanical methods and laboratory experiments guided by these principles to achieve superior properties. Lastly, open challenges in both the synthesis and the understanding and prediction of the electronic, optical, and magnetic properties afforded by anion-engineering principles in heteroanionic materials are reviewed.
Collapse
Affiliation(s)
- Jaye K Harada
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Nenian Charles
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | | | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
31
|
Chen Y, Summers B, Dahal A, Lauter V, Vignale G, Singh DK. Field and Current Control of the Electrical Conductivity of an Artificial 2D Honeycomb Lattice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808298. [PMID: 30811683 DOI: 10.1002/adma.201808298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 06/09/2023]
Abstract
The conductivity of a neodymium-based artificial honeycomb lattice undergoes dramatic changes upon application of magnetic fields and currents. These changes are attributed to a redistribution of magnetic charges that are formed at the vertices of the honeycomb due to the nonvanishing net flux of magnetization from adjacent magnetic elements. It is suggested that the application of a large magnetic field or a current causes a transition from a disordered state, in which magnetic charges are distributed at random, to an ordered state, in which they are regularly arranged on the sites of two interpenetrating triangular Wigner crystals. The field and current tuning of electrical properties are highly desirable functionalities for spintronics applications. Consequently, a new spintronics research platform can be envisaged using artificial magnetic honeycomb lattices.
Collapse
Affiliation(s)
- Yiyao Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Brock Summers
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Ashutosh Dahal
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Valeria Lauter
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Giovanni Vignale
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Deepak K Singh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
32
|
Chen XM, Mazzoli C, Cao Y, Thampy V, Barbour AM, Hu W, Lu M, Assefa TA, Miao H, Fabbris G, Gu GD, Tranquada JM, Dean MPM, Wilkins SB, Robinson IK. Charge density wave memory in a cuprate superconductor. Nat Commun 2019; 10:1435. [PMID: 30926816 PMCID: PMC6440992 DOI: 10.1038/s41467-019-09433-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
Although CDW correlations are a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for pinning the CDW to the lattice. Here, we report coherent resonant X-ray speckle correlation analysis, which directly determines the reproducibility of CDW domain patterns in La1.875Ba0.125CuO4 (LBCO 1/8) with thermal cycling. While CDW order is only observed below 54 K, where a structural phase transition creates inequivalent Cu-O bonds, we discover remarkably reproducible CDW domain memory upon repeated cycling to far higher temperatures. That memory is only lost on cycling to 240(3) K, which recovers the four-fold symmetry of the CuO2 planes. We infer that the structural features that develop below 240 K determine the CDW pinning landscape below 54 K. This opens a view into the complex coupling between charge and lattice degrees of freedom in superconducting cuprates.
Collapse
Affiliation(s)
- X M Chen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA. .,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - C Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Y Cao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - V Thampy
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - A M Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - W Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - T A Assefa
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - H Miao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - G D Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - J M Tranquada
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - S B Wilkins
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - I K Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA. .,London Centre for Nanotechnology, University College, Gower St., London, WC1E 6BT, UK.
| |
Collapse
|
33
|
Sluchanko NE, Azarevich AN, Bogach AV, Bolotina NB, Glushkov VV, Demishev SV, Dudka AP, Khrykina ON, Filipov VB, Shitsevalova NY, Komandin GA, Muratov AV, Aleshchenko YA, Zhukova ES, Gorshunov BP. Observation of dynamic charge stripes in Tm 0.19Yb 0.81B 12 at the metal-insulator transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:065604. [PMID: 30524111 DOI: 10.1088/1361-648x/aaf44e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Accurate low temperature charge transport measurements in combination with high-precision x-ray diffraction experiments have allowed detection of the symmetry lowering in the single domain Tm0.19Yb0.81B12 crystals that belong to the family of dodecaborides with metal-insulator transition. Based on the fine structure analysis we discover the formation of dynamic charge stripes within the semiconducting matrix of Tm0.19Yb0.81B12. The charge dynamics in these conducting nano-size channels is characterized by broad-band optical spectroscopy that allowed estimating the frequency (~2.4 × 1011 Hz) of quantum motion of the charge carriers. It is suggested that cooperative Jahn-Teller effect in the boron sublattice is a cause of the large-amplitude rattling modes of the Tm and Yb ions responsible for the 'modulation' of the conduction band along one of the [Formula: see text] directions through the variation of 5d-2p hybridization of electron states.
Collapse
Affiliation(s)
- N E Sluchanko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow 119991, Russia. Moscow Institute of Physics and Technology, 9, Institutskii per., Dolgoprudnyi, Moscow region 141700, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhao H, Ren Z, Rachmilowitz B, Schneeloch J, Zhong R, Gu G, Wang Z, Zeljkovic I. Charge-stripe crystal phase in an insulating cuprate. NATURE MATERIALS 2019; 18:103-107. [PMID: 30559411 DOI: 10.1038/s41563-018-0243-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
High-temperature (high-Tc) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases1. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state1-3, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi2Sr2CaCu2O8+x. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4a0 period along the Cu-O-Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-Tc cuprates.
Collapse
Affiliation(s)
- He Zhao
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Zheng Ren
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | | | | | | | - Genda Gu
- Brookhaven National Laboratory, Upton, NY, USA
| | - Ziqiang Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Ilija Zeljkovic
- Department of Physics, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
35
|
Wang Z, Okada Y, O'Neal J, Zhou W, Walkup D, Dhital C, Hogan T, Clancy P, Kim YJ, Hu YF, Santos LH, Wilson SD, Trivedi N, Madhavan V. Disorder induced power-law gaps in an insulator-metal Mott transition. Proc Natl Acad Sci U S A 2018; 115:11198-11202. [PMID: 30322914 PMCID: PMC6217382 DOI: 10.1073/pnas.1808056115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A correlated material in the vicinity of an insulator-metal transition (IMT) exhibits rich phenomenology and a variety of interesting phases. A common avenue to induce IMTs in Mott insulators is doping, which inevitably leads to disorder. While disorder is well known to create electronic inhomogeneity, recent theoretical studies have indicated that it may play an unexpected and much more profound role in controlling the properties of Mott systems. Theory predicts that disorder might play a role in driving a Mott insulator across an IMT, with the emergent metallic state hosting a power-law suppression of the density of states (with exponent close to 1; V-shaped gap) centered at the Fermi energy. Such V-shaped gaps have been observed in Mott systems, but their origins are as-yet unknown. To investigate this, we use scanning tunneling microscopy and spectroscopy to study isovalent Ru substitutions in Sr3(Ir1-xRux)2O7 (0 ≤ x ≤ 0.5) which drive the system into an antiferromagnetic, metallic state. Our experiments reveal that many core features of the IMT, such as power-law density of states, pinning of the Fermi energy with increasing disorder, and persistence of antiferromagnetism, can be understood as universal features of a disordered Mott system near an IMT and suggest that V-shaped gaps may be an inevitable consequence of disorder in doped Mott insulators.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Yoshinori Okada
- Quantum Materials Science Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Jared O'Neal
- Mathematics Department, The Ohio State University, Columbus, OH 43210
| | - Wenwen Zhou
- Department of Physics, Boston College, Chestnut Hill, MA 02467
| | - Daniel Walkup
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Chetan Dhital
- Department of Physics, Kennesaw State University, Marietta, GA 30060
| | - Tom Hogan
- Materials Department, University of California, Santa Barbara, CA 93106
| | - Patrick Clancy
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - Young-June Kim
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - Y F Hu
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - Luiz H Santos
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Institute for Condensed Matter Theory, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Stephen D Wilson
- Materials Department, University of California, Santa Barbara, CA 93106
| | - Nandini Trivedi
- Department of Physics, The Ohio State University, Columbus, Ohio 43210
| | - Vidya Madhavan
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801;
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
36
|
Myasnikova AE, Zhileeva EA, Moseykin DV. Relaxation of strongly coupled electron and phonon fields after photoemission and high-energy part of ARPES spectra of cuprates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:125601. [PMID: 29406313 DOI: 10.1088/1361-648x/aaad3e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An approach to considering systems with a high concentration of correlated carriers and strong long-range electron-phonon interaction and to calculating the high-energy part of the angle-resolved photoemission spectroscopy (ARPES) spectra of such systems is suggested. Joint relaxation of strongly coupled fields-a field of correlated electrons and phonon field-after photoemission is studied to clarify the nature of characteristic features observed in the high-energy part of the ARPES spectra of cuprate superconductors. Such relaxation occurs in systems with strong predominantly long-range electron-phonon interaction at sufficiently high carrier concentration due to the coexistence of autolocalized and delocalized carriers. A simple method to calculate analytically a high-energy part of the ARPES spectrum arising is proposed. It takes advantage of using the coherent states basis for the phonon field in the polaron and bipolaron states. The approach suggested yields all the high-energy spectral features like broad Gaussian band and regions of 'vertical dispersion' being in good quantitative agreement with the experiments on cuprates at any doping with both types of carriers. Demonstrated coexistence of autolocalized and delocalized carriers in superconducting cuprates changes the idea about their ground state above the superconducting transition temperature that is important for understanding transport and magnetic properties. High density of large-radius autolocalized carriers revealed may be a key to the explanation of charge ordering in doped cuprates.
Collapse
Affiliation(s)
- A E Myasnikova
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia
| | | | | |
Collapse
|
37
|
Chen M, Chen X, Yang H, Du Z, Zhu X, Wang E, Wen HH. Discrete energy levels of Caroli-de Gennes-Matricon states in quantum limit in FeTe 0.55Se 0.45. Nat Commun 2018; 9:970. [PMID: 29511191 PMCID: PMC5840178 DOI: 10.1038/s41467-018-03404-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/11/2018] [Indexed: 11/13/2022] Open
Abstract
Caroli-de Gennes-Matricon (CdGM) states were predicted in 1964 as low-energy excitations within vortex cores of type-II superconductors. In the quantum limit, the energy levels of these states were predicted to be discrete with the basic levels at ±μΔ2/EF (μ = 1/2, 3/2, 5/2, …) with Δ the superconducting energy gap and EF the Fermi energy. However, due to the small ratio of Δ/EF in most type-II superconductors, it is very difficult to observe the discrete CdGM states, but rather a symmetric peak which appears at zero bias at the vortex center. Here we report the clear observation of these discrete energy levels of CdGM states in FeTe0.55Se0.45. The rather stable energies of these bound state peaks vs. space clearly validate our conclusion. Analysis based on the energies of these CdGM states indicates that the Fermi energy in the present system is very small.
Collapse
Affiliation(s)
- Mingyang Chen
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Xiaoyu Chen
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Huan Yang
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Zengyi Du
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Xiyu Zhu
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Enyu Wang
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Hai-Hu Wen
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| |
Collapse
|
38
|
Hwang IH, Jin Z, Park CI, Han SW. The influence of structural disorder and phonon on metal-to-insulator transition of VO 2. Sci Rep 2017; 7:14802. [PMID: 29093503 PMCID: PMC5666023 DOI: 10.1038/s41598-017-14235-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
We used temperature-dependent x-ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO2 films. A direct comparison of the simultaneously-measured resistance and XAFS regarding the VO2 films showed that the thermally-driven structural transition occurred prior to the resistance transition during a heating, while this change simultaneously occured during a cooling. Extended-XAFS (EXAFS) analysis revealed significant increases of the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO2 that are due to the phonons of the V-V arrays along the same direction in a metallic phase. The existance of a substantial amount of structural disorder on the V-V pairs along the c-axis in both M1 and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder that was observed on all atomic sites at the structural phase transition prevents the migration of the V 3d1 electrons, resulting in a Mott insulator in the M2-phase VO2.
Collapse
Affiliation(s)
- In-Hui Hwang
- Department of Physics Education and Institute of Fusion Science, Jeonbuk(Chonbuk) National University, Jeonju, 54896, Korea
| | - Zhenlan Jin
- Department of Physics Education and Institute of Fusion Science, Jeonbuk(Chonbuk) National University, Jeonju, 54896, Korea
| | - Chang-In Park
- Department of Physics Education and Institute of Fusion Science, Jeonbuk(Chonbuk) National University, Jeonju, 54896, Korea
| | - Sang-Wook Han
- Department of Physics Education and Institute of Fusion Science, Jeonbuk(Chonbuk) National University, Jeonju, 54896, Korea.
| |
Collapse
|
39
|
Hänke T, Singh UR, Cornils L, Manna S, Kamlapure A, Bremholm M, Hedegaard EMJ, Iversen BB, Hofmann P, Hu J, Mao Z, Wiebe J, Wiesendanger R. Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces. Nat Commun 2017; 8:13939. [PMID: 28059102 PMCID: PMC5227097 DOI: 10.1038/ncomms13939] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
Establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe1+yTe, the parent compound of Fe1+ySe1−xTex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe1+yTe and thin films grown on the topological insulator Bi2Te3 is canted out of the high-symmetry directions of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk. Knowledge of the spin structure in parent compounds of unconventional superconductors is crucial for an understanding of the complex physics in these materials. Here, the authors report canted spin structure on the surface as well as on the thin film form of Fe1+yTe, different from the bulk.
Collapse
Affiliation(s)
- Torben Hänke
- Department of Physics, Hamburg University, Jungiusstrasse 9A, 20355 Hamburg, Germany
| | - Udai Raj Singh
- Department of Physics, Hamburg University, Jungiusstrasse 9A, 20355 Hamburg, Germany
| | - Lasse Cornils
- Department of Physics, Hamburg University, Jungiusstrasse 9A, 20355 Hamburg, Germany
| | - Sujit Manna
- Department of Physics, Hamburg University, Jungiusstrasse 9A, 20355 Hamburg, Germany
| | - Anand Kamlapure
- Department of Physics, Hamburg University, Jungiusstrasse 9A, 20355 Hamburg, Germany
| | - Martin Bremholm
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ellen Marie Jensen Hedegaard
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bo Brummerstedt Iversen
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Philip Hofmann
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jin Hu
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Los Angeles 70118, USA
| | - Zhiqiang Mao
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Los Angeles 70118, USA
| | - Jens Wiebe
- Department of Physics, Hamburg University, Jungiusstrasse 9A, 20355 Hamburg, Germany
| | - Roland Wiesendanger
- Department of Physics, Hamburg University, Jungiusstrasse 9A, 20355 Hamburg, Germany
| |
Collapse
|
40
|
Liu M, Sternbach AJ, Basov DN. Nanoscale electrodynamics of strongly correlated quantum materials. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:014501. [PMID: 27811387 DOI: 10.1088/0034-4885/80/1/014501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electronic, magnetic, and structural phase inhomogeneities are ubiquitous in strongly correlated quantum materials. The characteristic length scales of the phase inhomogeneities can range from atomic to mesoscopic, depending on their microscopic origins as well as various sample dependent factors. Therefore, progress with the understanding of correlated phenomena critically depends on the experimental techniques suitable to provide appropriate spatial resolution. This requirement is difficult to meet for some of the most informative methods in condensed matter physics, including infrared and optical spectroscopy. Yet, recent developments in near-field optics and imaging enabled a detailed characterization of the electromagnetic response with a spatial resolution down to 10 nm. Thus it is now feasible to exploit at the nanoscale well-established capabilities of optical methods for characterization of electronic processes and lattice dynamics in diverse classes of correlated quantum systems. This review offers a concise description of the state-of-the-art near-field techniques applied to prototypical correlated quantum materials. We also discuss complementary microscopic and spectroscopic methods which reveal important mesoscopic dynamics of quantum materials at different energy scales.
Collapse
Affiliation(s)
- Mengkun Liu
- Department of Physics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
41
|
Barborini M, Sorella S, Rontani M, Corni S. Correlation Effects in Scanning Tunneling Microscopy Images of Molecules Revealed by Quantum Monte Carlo. J Chem Theory Comput 2016; 12:5339-5349. [PMID: 27709944 DOI: 10.1021/acs.jctc.6b00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scanning tunneling microscopy (STM) and spectroscopy probe the local density of states of single molecules electrically insulated from the substrate. The experimental images, although usually interpreted in terms of single-particle molecular orbitals, are associated with quasiparticle wave functions dressed by the whole electron-electron interaction. Here we propose an ab initio approach based on quantum Monte Carlo to calculate the quasiparticle wave functions of molecules. Through the comparison between Monte Carlo wave functions and their uncorrelated Hartree-Fock counterparts we visualize the electronic correlation embedded in the simulated STM images, highlighting the many-body features that might be observed.
Collapse
Affiliation(s)
| | - Sandro Sorella
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and CNR-IOM Democritos National Simulation Center, via Bonomea 265, 34136 Trieste, Italy
| | | | | |
Collapse
|
42
|
Mou D, Sapkota A, Kung HH, Krapivin V, Wu Y, Kreyssig A, Zhou X, Goldman AI, Blumberg G, Flint R, Kaminski A. Discovery of an Unconventional Charge Density Wave at the Surface of K_{0.9}Mo_{6}O_{17}. PHYSICAL REVIEW LETTERS 2016; 116:196401. [PMID: 27232028 DOI: 10.1103/physrevlett.116.196401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 06/05/2023]
Abstract
We use angle resolved photoemission spectroscopy, Raman spectroscopy, low energy electron diffraction, and x-ray scattering to reveal an unusual electronically mediated charge density wave (CDW) in K_{0.9}Mo_{6}O_{17}. Not only does K_{0.9}Mo_{6}O_{17} lack signatures of electron-phonon coupling, but it also hosts an extraordinary surface CDW, with T_{S_CDW}=220 K nearly twice that of the bulk CDW, T_{B_CDW}=115 K. While the bulk CDW has a BCS-like gap of 12 meV, the surface gap is 10 times larger and well in the strong coupling regime. Strong coupling behavior combined with the absence of signatures of strong electron-phonon coupling indicates that the CDW is likely mediated by electronic interactions enhanced by low dimensionality.
Collapse
Affiliation(s)
- Daixiang Mou
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - A Sapkota
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - H-H Kung
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Viktor Krapivin
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yun Wu
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - A Kreyssig
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Xingjiang Zhou
- National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - A I Goldman
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - G Blumberg
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Rebecca Flint
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Adam Kaminski
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
43
|
Abstract
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.
Collapse
|
44
|
Observation of a three-dimensional quasi-long-range electronic supermodulation in YBa2Cu3O(7-x)/La0.7Ca0.3MnO3 heterostructures. Nat Commun 2016; 7:10852. [PMID: 26927313 PMCID: PMC4773509 DOI: 10.1038/ncomms10852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/27/2016] [Indexed: 11/23/2022] Open
Abstract
Recent developments in high-temperature superconductivity highlight a generic tendency of the cuprates to develop competing electronic (charge) supermodulations. While coupled with the lattice and showing different characteristics in different materials, these supermodulations themselves are generally conceived to be quasi-two-dimensional, residing mainly in individual CuO2 planes, and poorly correlated along the c axis. Here we observed with resonant elastic X-ray scattering a distinct type of electronic supermodulation in YBa2Cu3O7−x (YBCO) thin films grown epitaxially on La0.7Ca0.3MnO3 (LCMO). This supermodulation has a periodicity nearly commensurate with four lattice constants in-plane, eight out of plane, with long correlation lengths in three dimensions. It sets in far above the superconducting transition temperature and competes with superconductivity below this temperature for electronic states predominantly in the CuO2 plane. Our finding sheds light on the nature of charge ordering in cuprates as well as a reported long-range proximity effect between superconductivity and ferromagnetism in YBCO/LCMO heterostructures. Understanding the nature of competing phases is a key to understanding the superconducting mechanism of unconventional superconductors. Here, the authors demonstrate a three-dimensional charge ordering state which competes with superconductivity in epitaxial YBa2Cu3O7-x thin films grown on La0.7Ca0.3MnO3 substrates.
Collapse
|
45
|
Fanfarillo L, Mori M, Campetella M, Grilli M, Caprara S. Glue function of optimally and overdoped cuprates from inversion of the Raman spectra. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:065701. [PMID: 26790363 DOI: 10.1088/0953-8984/28/6/065701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We address the issue of identifying the mediators of effective interactions in cuprates superconductors. Specifically, we use inversion theory to analyze Raman spectra of optimally and over-doped La2-x Sr x CuO4 samples. This allows us to extract the so-called glue function without making any a priori assumption based on any specific model. We use instead two different techniques, namely the singular value decomposition and a multi-rectangle decomposition. With both techniques we find consistent results showing that: (i) two distinct excitations are responsible for the glue function, which have completely different doping dependence. One excitation becomes weak above optimal doping, where on the contrary the other keeps (or even slightly increases) its strength; (ii) there is a marked temperature dependence on the weight and spectral distribution of these excitations, which therefore must have a somewhat critical character. It is quite natural to identify and characterize these two distinct excitations as damped antiferromagnetic spin waves and damped charge density waves, respectively. This sets the stage for a scenario in which superconductivity is concomitant and competing with a charge ordering instability.
Collapse
Affiliation(s)
- L Fanfarillo
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
Markiewicz RS, Lorenzana J, Seibold G, Bansil A. Short range smectic order driving long range nematic order: example of cuprates. Sci Rep 2016; 6:19678. [PMID: 26813579 PMCID: PMC4728556 DOI: 10.1038/srep19678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/19/2015] [Indexed: 12/03/2022] Open
Abstract
We present a model for describing the combined presence of nematic and 'smectic' or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a 'Pomeranchuk wave'. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. A variety of experimental results are shown to be consistent with our theoretical predictions.
Collapse
Affiliation(s)
- R. S. Markiewicz
- Physics Department, Northeastern University, Boston MA 02115, USA
| | - J. Lorenzana
- ISC-CNR and Dipartimento di Fisica, Università di Roma “La Sapienza”, P. Aldo Moro 2, 00185 Roma, Italy
- ISC-CNR, Via dei Taurini 19, I-00185 Roma, Italy
| | - G. Seibold
- Institut Für Physik, BTU Cottbus-Senftenberg, PBox 101344, 03013 Cottbus, Germany
| | - A. Bansil
- Physics Department, Northeastern University, Boston MA 02115, USA
| |
Collapse
|
47
|
Fine BV. Comment on "Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y". Science 2016; 351:235. [PMID: 26816370 DOI: 10.1126/science.aac4454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Comin et al. (Reports, 20 March 2015, p. 1335) have interpreted their resonant x-ray scattering experiment as indicating that charge inhomogeneities in the family of high-temperature superconductors YBa2Cu3O6+y (YBCO) have the character of one-dimensional stripes rather than two-dimensional checkerboards. The present Comment shows that one cannot distinguish between stripes and checkerboards on the basis of the above experiment.
Collapse
Affiliation(s)
- B V Fine
- Skolkovo Institute of Science and Technology, 100 Novaya Street, Skolkovo, Moscow Region 143025, Russia. Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Tu WL, Lee TK. Genesis of charge orders in high temperature superconductors. Sci Rep 2016; 6:18675. [PMID: 26732076 PMCID: PMC4702086 DOI: 10.1038/srep18675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022] Open
Abstract
One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy.
Collapse
Affiliation(s)
- Wei-Lin Tu
- Department of Physics, National Taiwan University, Daan Taipei 10617, Taiwan
- Institute of Physics, Academia Sinica, Nankang Taipei 11529, Taiwan
| | - Ting-Kuo Lee
- Institute of Physics, Academia Sinica, Nankang Taipei 11529, Taiwan
| |
Collapse
|
49
|
de la Torre A, McKeown Walker S, Bruno FY, Riccó S, Wang Z, Gutierrez Lezama I, Scheerer G, Giriat G, Jaccard D, Berthod C, Kim TK, Hoesch M, Hunter EC, Perry RS, Tamai A, Baumberger F. Collapse of the Mott Gap and Emergence of a Nodal Liquid in Lightly Doped Sr(2)IrO(4). PHYSICAL REVIEW LETTERS 2015; 115:176402. [PMID: 26551128 DOI: 10.1103/physrevlett.115.176402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 06/05/2023]
Abstract
We report angle resolved photoemission experiments on the electron doped Heisenberg antiferromagnet (Sr(1-x)La(x))(2)IrO(4). For a doping level of x=0.05, we find an unusual metallic state with coherent nodal excitations and an antinodal pseudogap bearing strong similarities with underdoped cuprates. This state emerges from a rapid collapse of the Mott gap with doping resulting in a large underlying Fermi surface that is backfolded by a (π,π) reciprocal lattice vector which we attribute to the intrinsic structural distortion of Sr(2)IrO(4).
Collapse
Affiliation(s)
- A de la Torre
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - S McKeown Walker
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - F Y Bruno
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - S Riccó
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Z Wang
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - I Gutierrez Lezama
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - G Scheerer
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - G Giriat
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - D Jaccard
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - C Berthod
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - T K Kim
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - M Hoesch
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - E C Hunter
- School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 2TT, United Kingdom
| | - R S Perry
- London Centre for Nanotechnology and UCL Centre for Materials Discovery, University College London, London WC1E 6BT, United Kingdom
| | - A Tamai
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - F Baumberger
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom
| |
Collapse
|
50
|
Baireuther P, Hyart T, Tarasinski B, Beenakker CWJ. Andreev-Bragg Reflection from an Amperian Superconductor. PHYSICAL REVIEW LETTERS 2015; 115:097001. [PMID: 26371674 DOI: 10.1103/physrevlett.115.097001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 06/05/2023]
Abstract
We show how an electrical measurement can detect the pairing of electrons on the same side of the Fermi surface (Amperian pairing), recently proposed by Patrick Lee for the pseudogap phase of high-Tc cuprate superconductors. Bragg scattering from the pair-density wave introduces odd multiples of 2k(F) momentum shifts when an electron incident from a normal metal is Andreev reflected as a hole. These Andreev-Bragg reflections can be detected in a three-terminal device, containing a ballistic Y junction between normal leads (1, 2) and the superconductor. The cross-conductance dI1/dV2 has the opposite sign for Amperian pairing than it has either in the normal state or for the usual BCS pairing.
Collapse
Affiliation(s)
- P Baireuther
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - T Hyart
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - B Tarasinski
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - C W J Beenakker
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|