1
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Hughes L, Lopez LV, Kearns-Jonker M. Prostaglandin E2 Induces YAP1 and Agrin Through EP4 in Neonatally-Derived Islet-1+ Stem Cells. Stem Cells Dev 2024; 33:496-504. [PMID: 38943285 DOI: 10.1089/scd.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Prostaglandin E2 (PGE2) has recently gained attention in the field of regenerative medicine because of the beneficial effects of this molecule on stem cell proliferation and migration. Furthermore, PGE2 has the ability to mitigate immune rejection and fibrosis. In the colon and kidney, PGE2 induces YAP1, a transcription factor critical for cardiac regeneration. Establishing a similar connection in stem cells that can be transplanted in the heart could lead to the development of more effective therapeutics. In this report, we identify the effects of PGE2 on neonatal Islet-1+ stem cells. These stem cells synthesize PGE2, which functions by stimulating the transcription of the extracellular matrix protein Agrin. Agrin upregulates YAP1. Consequently, both YAP1 and Agrin are induced by PGE2 treatment. Our study shows that PGE2 upregulated the expression of both YAP1 and Agrin in Islet-1+ stem cells through the EP4 receptor and stimulated proliferation using the same mechanisms. PGE2 administration further elevated the expression of stemness markers and the matrix metalloproteinase MMP9, a key regulator of remodeling in the extracellular matrix post-injury. The expression of PGE2 in neonatal Islet-1+ cells is a factor which contributes to improving the functional efficacy of these cells for cardiac repair.
Collapse
Affiliation(s)
- Lorelei Hughes
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
3
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Eschenhagen T, Weinberger F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:515-524. [PMID: 39195938 DOI: 10.1038/s44161-024-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/04/2024] [Indexed: 08/29/2024]
Abstract
Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
5
|
Carvalho AB, Kasai-Brunswick TH, Campos de Carvalho AC. Advanced cell and gene therapies in cardiology. EBioMedicine 2024; 103:105125. [PMID: 38640834 PMCID: PMC11052923 DOI: 10.1016/j.ebiom.2024.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.
Collapse
Affiliation(s)
- Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tais Hanae Kasai-Brunswick
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
7
|
Ma J, Wang W, Zhang W, Xu D, Ding J, Wang F, Peng X, Wang D, Li Y. The recent advances in cell delivery approaches, biochemical and engineering procedures of cell therapy applied to coronary heart disease. Biomed Pharmacother 2023; 169:115870. [PMID: 37952359 DOI: 10.1016/j.biopha.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Cell therapy is an important topic in the field of regeneration medicine that is gaining attention within the scientific community. However, its potential for treatment in coronary heart disease (CHD) has yet to be established. Several various strategies, types of cells, routes of distribution, and supporting procedures have been tried and refined to trigger heart rejuvenation in CHD. However, only a few of them result in a real considerable promise for clinical usage. In this review, we give an update on techniques and clinical studies of cell treatment as used to cure CHD that are now ongoing or have been completed in the previous five years. We also highlight the emerging efficacy of stem cell treatment for CHD. We specifically examine and comment on current breakthroughs in cell treatment applied to CHD, including the most effective types of cells, transport modalities, engineering, and biochemical approaches used in this context. We believe the current review will be helpful for the researcher to distill this information and design future studies to overcome the challenges faced by this revolutionary approach for CHD.
Collapse
Affiliation(s)
- Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 13000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dahai Wang
- Department of Rehabilitation, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Yanwei Li
- Department of General Practice and Family Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
8
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
9
|
Chi C, Song K. Cellular reprogramming of fibroblasts in heart regeneration. J Mol Cell Cardiol 2023; 180:84-93. [PMID: 36965699 PMCID: PMC10347886 DOI: 10.1016/j.yjmcc.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Myocardial infarction causes the loss of cardiomyocytes and the formation of cardiac fibrosis due to the activation of cardiac fibroblasts, leading to cardiac dysfunction and heart failure. Unfortunately, current therapeutic interventions can only slow the disease progression. Furthermore, they cannot fully restore cardiac function, likely because the adult human heart lacks sufficient capacity to regenerate cardiomyocytes. Therefore, intensive efforts have focused on developing therapeutics to regenerate the damaged heart. Several strategies have been intensively investigated, including stimulation of cardiomyocyte proliferation, transplantation of stem cell-derived cardiomyocytes, and conversion of fibroblasts into cardiac cells. Resident cardiac fibroblasts are critical in the maintenance of the structure and contractility of the heart. Fibroblast plasticity makes this type of cells be reprogrammed into many cell types, including but not limited to induced pluripotent stem cells, induced cardiac progenitor cells, and induced cardiomyocytes. Fibroblasts have become a therapeutic target due to their critical roles in cardiac pathogenesis. This review summarizes the reprogramming of fibroblasts into induced pluripotent stem cell-derived cardiomyocytes, induced cardiac progenitor cells, and induced cardiomyocytes to repair a damaged heart, outlines recent findings in utilizing fibroblast-derived cells for heart regeneration, and discusses the limitations and challenges.
Collapse
Affiliation(s)
- Congwu Chi
- Division of Cardiology, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Bryl R, Nawrocki MJ, Jopek K, Kaczmarek M, Bukowska D, Antosik P, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Transcriptomic Characterization of Genes Regulating the Stemness in Porcine Atrial Cardiomyocytes during Primary In Vitro Culture. Genes (Basel) 2023; 14:1223. [PMID: 37372403 PMCID: PMC10297922 DOI: 10.3390/genes14061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Heart failure remains a major cause of death worldwide. There is a need to establish new management options as current treatment is frequently suboptimal. Clinical approaches based on autologous stem cell transplant is potentially a good alternative. The heart was long considered an organ unable to regenerate and renew. However, several reports imply that it may possess modest intrinsic regenerative potential. To allow for detailed characterization of cell cultures, whole transcriptome profiling was performed after 0, 7, 15, and 30 days of in vitro cell cultures (IVC) from the right atrial appendage and right atrial wall utilizing microarray technology. In total, 4239 differentially expressed genes (DEGs) with ratio > abs |2| and adjusted p-value ≤ 0.05 for the right atrial wall and 4662 DEGs for the right atrial appendage were identified. It was shown that a subset of DEGs, which have demonstrated some regulation of expression levels with the duration of the cell culture, were enriched in the following GO BP (Gene Ontology Biological Process) terms: "stem cell population maintenance" and "stem cell proliferation". The results were validated by RT-qPCR. The establishment and detailed characterization of in vitro culture of myocardial cells may be important for future applications of these cells in heart regeneration processes.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, 61-614 Poznan, Poland;
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
11
|
Chatchavalvanich S, Boomsma RA, Tietema JM, Geenen DL. Inhibition of Gap Junction Formation Prior to Implantation of Bone Marrow-Derived Mesenchymal Cells Improves Function in the Ischemic Myocardium. Int J Mol Sci 2023; 24:9653. [PMID: 37298612 PMCID: PMC10253678 DOI: 10.3390/ijms24119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSC) are reported to induce beneficial effects in the heart following ischemia, but a loss of these cells within hours of implantation could significantly diminish their long-term effect. We hypothesized that early coupling between BM-MSC and ischemic cardiomyocytes through gap junctions (GJ) may play an important role in stem cell survival and retention in the acute phase of myocardial ischemia. To determine the effect of GJ inhibition on murine BM-MSC in vivo, we induced ischemia in mice using 90 min left anterior descending coronary artery (LAD) occlusion followed by BM-MSC implantation and reperfusion. The inhibition of GJ coupling prior to BM-MSC implantation led to early improvement in cardiac function compared to mice in which GJ coupling was not inhibited. Our results with in vitro studies also demonstrated increased survival in BM-MSCs subjected to hypoxia after inhibition of GJ. While functional GJ are critical for the long-term integration of stem cells within the myocardium, early GJ communication may represent a novel paradigm whereby ischemic cardiomyocytes induce a "bystander effect" when coupled to newly transplanted BM-MSC and thus impair cell retention and survival.
Collapse
Affiliation(s)
- Santipongse Chatchavalvanich
- Department of Basic Biomedical Sciences, Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Robert A. Boomsma
- Biology Department, Trinity Christian College, Palos Heights, IL 60463, USA;
| | - Jack M. Tietema
- Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA;
| | - David L. Geenen
- Physician Assistant Studies Department, College of Health Professions, Grand Valley State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
12
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules 2023; 13:biom13020358. [PMID: 36830727 PMCID: PMC9953631 DOI: 10.3390/biom13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease in newborns. ISL1 is a master transcription factor in second heart field development, whereas the roles of ISL1 gene promoter variants in TOF patients have not been genetically investigated. Total DNA extraction from 601 human subjects, including 308 TOF patients and 293 healthy controls, and Sanger sequencing were performed. Four variants (including one novel heterozygous variant) within the ISL1 gene promoter were only found in TOF patients. Functional analysis of DNA sequence variants was performed by using the dual-luciferase reporter assay and demonstrated that three of the four variants significantly decreased the transcriptional activity of ISL1 gene promoter in HL-1 cells (p < 0.05). Further, the online JASPAR database and electrophoretic mobility shift assay showed that the three variants affected the binding of transcription factors and altered ISL1 expression levels. In conclusion, the current study for the first time demonstrated that the variants identified from the ISL1 gene promoter region are likely involved in the development of TOF by affecting the transcriptional activity and altering the ISL1 expression level. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of TOF.
Collapse
Affiliation(s)
- Xiu-Yun Yin
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Zhuo Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- Correspondence: or ; Tel.: +86-22-6520-9089
| |
Collapse
|
13
|
Han L, Wu Y, Fang K, Sweeney S, Roesner UK, Parrish M, Patel K, Walter T, Piermattei J, Trimboli A, Lefler J, Timmers CD, Yu XZ, Jin VX, Zimmermann MT, Mathison AJ, Urrutia R, Ostrowski MC, Leone G. The splanchnic mesenchyme is the tissue of origin for pancreatic fibroblasts during homeostasis and tumorigenesis. Nat Commun 2023; 14:1. [PMID: 36596776 PMCID: PMC9810714 DOI: 10.1038/s41467-022-34464-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/26/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is characterized by abundant desmoplasia, a dense stroma composed of extra-cellular and cellular components, with cancer associated fibroblasts (CAFs) being the major cellular component. However, the tissue(s) of origin for CAFs remains controversial. Here we determine the tissue origin of pancreatic CAFs through comprehensive lineage tracing studies in mice. We find that the splanchnic mesenchyme, the fetal cell layer surrounding the endoderm from which the pancreatic epithelium originates, gives rise to the majority of resident fibroblasts in the normal pancreas. In a genetic mouse model of pancreatic cancer, resident fibroblasts expand and constitute the bulk of CAFs. Single cell RNA profiling identifies gene expression signatures that are shared among the fetal splanchnic mesenchyme, adult fibroblasts and CAFs, suggesting a persistent transcriptional program underlies splanchnic lineage differentiation. Together, this study defines the phylogeny of the mesenchymal component of the pancreas and provides insights into pancreatic morphogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kun Fang
- Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Sean Sweeney
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Ulyss K Roesner
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Melodie Parrish
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Khushbu Patel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Tom Walter
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Julia Piermattei
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Anthony Trimboli
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Julia Lefler
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Cynthia D Timmers
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Victor X Jin
- Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael T Zimmermann
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Angela J Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Raul Urrutia
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA.
| | - Gustavo Leone
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
14
|
Haridhasapavalan KK, Borthakur A, Thummer RP. Direct Cardiac Reprogramming: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:1-18. [PMID: 36662416 DOI: 10.1007/5584_2022_760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atreyee Borthakur
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
15
|
Kanda M, Nagai T, Kondo N, Matsuura K, Akazawa H, Komuro I, Kobayashi Y. Pericardial Grafting of Cardiac Progenitor Cells in Self-Assembling Peptide Scaffold Improves Cardiac Function After Myocardial Infarction. Cell Transplant 2023; 32:9636897231174078. [PMID: 37191272 PMCID: PMC10192947 DOI: 10.1177/09636897231174078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Many studies have explored cardiac progenitor cell (CPC) therapy for heart disease. However, optimal scaffolds are needed to ensure the engraftment of transplanted cells. We produced a three-dimensional hydrogel scaffold (CPC-PRGmx) in which high-viability CPCs were cultured for up to 8 weeks. CPC-PRGmx contained an RGD peptide-conjugated self-assembling peptide with insulin-like growth factor-1 (IGF-1). Immediately after creating myocardial infarction (MI), we transplanted CPC-PRGmx into the pericardial space on to the surface of the MI area. Four weeks after transplantation, red fluorescent protein-expressing CPCs and in situ hybridization analysis in sex-mismatched transplantations revealed the engraftment of CPCs in the transplanted scaffold (which was cellularized with host cells). The average scar area of the CPC-PRGmx-treated group was significantly smaller than that of the non-treated group (CPC-PRGmx-treated group = 46 ± 5.1%, non-treated MI group = 59 ± 4.5%; p < 0.05). Echocardiography showed that the transplantation of CPC-PRGmx improved cardiac function and attenuated cardiac remodeling after MI. The transplantation of CPCs-PRGmx promoted angiogenesis and inhibited apoptosis, compared to the untreated MI group. CPCs-PRGmx secreted more vascular endothelial growth factor than CPCs cultured on two-dimensional dishes. Genetic fate mapping revealed that CPC-PRGmx-treated mice had more regenerated cardiomyocytes than non-treated mice in the MI area (CPC-PRGmx-treated group = 0.98 ± 0.25%, non-treated MI group = 0.25 ± 0.04%; p < 0.05). Our findings reveal the therapeutic potential of epicardial-transplanted CPC-PRGmx. Its beneficial effects may be mediated by sustainable cell viability, paracrine function, and the enhancement of de novo cardiomyogenesis.
Collapse
Affiliation(s)
- Masato Kanda
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Nagai
- Department of Cardiology, Chemotherapy
Research Institute, KAKEN Hospital, International University of Health and Welfare,
Ichikawa-shi, Japan
| | - Naomichi Kondo
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Cardiology, Tokyo Women’s
Medical University, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine,
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine,
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
Renikunta H, Chakrabarti R, Duddu S, Bhattacharya A, Chakravorty N, Shukla PC. Stem Cells and Therapies in Cardiac Regeneration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
17
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
18
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
19
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
20
|
Gonzalez DM, Schrode N, Ebrahim TAM, Broguiere N, Rossi G, Drakhlis L, Zweigerdt R, Lutolf MP, Beaumont KG, Sebra R, Dubois NC. Dissecting mechanisms of chamber-specific cardiac differentiation and its perturbation following retinoic acid exposure. Development 2022; 149:275658. [DOI: 10.1242/dev.200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The specification of distinct cardiac lineages occurs before chamber formation and acquisition of bona fide atrial or ventricular identity. However, the mechanisms underlying these early specification events remain poorly understood. Here, we performed single cell analysis at the murine cardiac crescent, primitive heart tube and heart tube stages to uncover the transcriptional mechanisms underlying formation of atrial and ventricular cells. We find that progression towards differentiated cardiomyocytes occurs primarily based on heart field progenitor identity, and that progenitors contribute to ventricular or atrial identity through distinct differentiation mechanisms. We identify new candidate markers that define such differentiation processes and examine their expression dynamics using computational lineage trajectory methods. We further show that exposure to exogenous retinoic acid causes defects in ventricular chamber size, dysregulation in FGF signaling and a shunt in differentiation towards orthogonal lineages. Retinoic acid also causes defects in cell-cycle exit resulting in formation of hypomorphic ventricles. Collectively, our data identify, at a single cell level, distinct lineage trajectories during cardiac specification and differentiation, and the precise effects of manipulating cardiac progenitor patterning via retinoic acid signaling.
Collapse
Affiliation(s)
- David M. Gonzalez
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| | - Nadine Schrode
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
| | - Tasneem A. M. Ebrahim
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| | - Nicolas Broguiere
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
| | - Giuliana Rossi
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
| | - Lika Drakhlis
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Robert Zweigerdt
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Matthias P. Lutolf
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Kristin G. Beaumont
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) 8 , Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG) , , Hannover , Germany
- REBIRTH–Research Center for Translational Regenerative Medicine, Hannover Medical School 8 , Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG) , , Hannover , Germany
| | - Robert Sebra
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
- Sema4, a Mount Sinai venture 9 , Stamford, CT 06902 , USA
| | - Nicole C. Dubois
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| |
Collapse
|
21
|
Kuang J, Huang T, Pei D. The Art of Reprogramming for Regenerative Medicine. Front Cell Dev Biol 2022; 10:927555. [PMID: 35846373 PMCID: PMC9280648 DOI: 10.3389/fcell.2022.927555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional pharmaceuticals in the forms of small chemical compounds or macromolecules such as proteins or RNAs have provided lifesaving solutions to many acute and chronic conditions to date. However, there are still many unmet medical needs, especially those of degenerative nature. The advent of cell-based therapy holds the promise to meet these challenges. In this review, we highlight a relatively new paradigm for generating or regenerating functional cells for replacement therapy against conditions such as type I diabetes, myocardial infarction, neurodegenerative diseases and liver fibrosis. We focus on the latest progresses in cellular reprogramming for generating diverse functional cell types. We will also discuss the mechanisms involved and conclude with likely general principles underlying reprogramming.
Collapse
Affiliation(s)
- Junqi Kuang
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tao Huang
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Duanqing Pei
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- *Correspondence: Duanqing Pei,
| |
Collapse
|
22
|
Omatsu-Kanbe M, Fukunaga R, Mi X, Matsuura H. Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules 2022; 12:biom12070896. [PMID: 35883452 PMCID: PMC9313223 DOI: 10.3390/biom12070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the adult mammalian heart, no data have yet shown the existence of cardiomyocyte-differentiable stem cells that can be used to practically repair the injured myocardium. Atypically shaped cardiomyocytes (ACMs) are found in cultures of the cardiomyocyte-removed fraction obtained from cardiac ventricles from neonatal to aged mice. ACMs are thought to be a subpopulation of cardiomyocytes or immature cardiomyocytes, most closely resembling cardiomyocytes due to their spontaneous beating, well-organized sarcomere and the expression of cardiac-specific proteins, including some fetal cardiac gene proteins. In this review, we focus on the characteristics of ACMs compared with ventricular myocytes and discuss whether these cells can be substitutes for damaged cardiomyocytes. ACMs reside in the interstitial spaces among ventricular myocytes and survive under severely hypoxic conditions fatal to ventricular myocytes. ACMs have not been observed to divide or proliferate, similar to cardiomyocytes, but they maintain their ability to fuse with each other. Thus, it is worthwhile to understand the role of ACMs and especially how these cells perform cell fusion or function independently in vivo. It may aid in the development of new approaches to cell therapy to protect the injured heart or the clarification of the pathogenesis underlying arrhythmia in the injured heart.
Collapse
|
23
|
Li X, Wang X, He P, Bennett E, Haggard E, Ma J, Cai C. Mitochondrial Membrane Potential Identifies a Subpopulation of Mesenchymal Progenitor Cells to Promote Angiogenesis and Myocardial Repair. Cells 2022; 11:1713. [PMID: 35626749 PMCID: PMC9139404 DOI: 10.3390/cells11101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Identifying effective donor cells is one of obstacles that limits cell therapy for heart disease. In this study, we sorted a subpopulation of human mesenchymal progenitor cells (hMPCs) from the right atrial appendage using the low mitochondrial membrane potential. Compared to the non-sorted cells, hMPCs hold the capacity for stemness and enrich mesenchymal stem cell markers. The hMPCs display better ability for survival, faster proliferation, less production of reactive oxygen species (ROS), and greater release of cytoprotective cytokines. The hMPCs exhibit decreased expression of senescence genes and increased expression of anti-apoptotic and antioxidant genes. Intramyocardial injection of hMPCs into the infarcted heart resulted in increased left ventricular ejection fraction and reduced cardiac remodeling and infarct size in the group of animals receiving hMPCs. Both in vitro and in vivo studies indicated hMPCs have the potential to differentiate into endothelial cells and smooth muscle cells. Immunohistochemistry staining showed that cell therapy with hMPCs enhances cardiac vascular regeneration and cardiac proliferation, and decreases cardiac cell apoptosis, which is associated with the increased secretion of cytoprotective and pro-angiogenic cytokines. Overall, we discovered a subpopulation of human mesenchymal progenitor cells via their low mitochondrial membrane potential, which might provide an alternative donor cell source for cellular therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Xiuchun Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (X.L.); (X.W.); (E.H.); (J.M.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA;
| | - Xiaoliang Wang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (X.L.); (X.W.); (E.H.); (J.M.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA;
| | - Pan He
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA;
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, Albany, NY 12208, USA;
| | - Erin Haggard
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (X.L.); (X.W.); (E.H.); (J.M.)
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (X.L.); (X.W.); (E.H.); (J.M.)
| | - Chuanxi Cai
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (X.L.); (X.W.); (E.H.); (J.M.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA;
| |
Collapse
|
24
|
Anto Michel N, Ljubojevic-Holzer S, Bugger H, Zirlik A. Cellular Heterogeneity of the Heart. Front Cardiovasc Med 2022; 9:868466. [PMID: 35548426 PMCID: PMC9081371 DOI: 10.3389/fcvm.2022.868466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in technology such as the introduction of high throughput multidimensional tools like single cell sequencing help to characterize the cellular composition of the human heart. The diversity of cell types that has been uncovered by such approaches is by far greater than ever expected before. Accurate identification of the cellular variety and dynamics will not only facilitate a much deeper understanding of cardiac physiology but also provide important insights into mechanisms underlying its pathological transformation. Distinct cellular patterns of cardiac cell clusters may allow differentiation between a healthy heart and a sick heart while potentially predicting future disease at much earlier stages than currently possible. These advances have already extensively improved and will ultimately revolutionize our knowledge of the mechanisms underlying cardiovascular disease as such. In this review, we will provide an overview of the cells present in the human and rodent heart as well as genes that may be used for their identification.
Collapse
|
25
|
Wang J, Gu S, Liu F, Chen Z, Xu H, Liu Z, Cheng W, Wu L, Xu T, Chen Z, Chen D, Chen X, Zeng F, Zhao Z, Zhang M, Cao N. Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions. Nat Biomed Eng 2022; 6:403-420. [PMID: 35361933 DOI: 10.1038/s41551-022-00865-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
A major hurdle in cardiac cell therapy is the lack of a bona fide autologous stem-cell type that can be expanded long-term and has authentic cardiovascular differentiation potential. Here we report that a proliferative cell population with robust cardiovascular differentiation potential can be generated from mouse or human fibroblasts via a combination of six small molecules. These chemically induced cardiovascular progenitor cells (ciCPCs) self-renew long-term in fully chemically defined and xeno-free conditions, with faithful preservation of the CPC phenotype and of cardiovascular differentiation capacity in vitro and in vivo. Transplantation of ciCPCs into infarcted mouse hearts improved animal survival and cardiac function up to 13 weeks post-infarction. Mechanistically, activated fibroblasts revert to a plastic state permissive to cardiogenic signals, enabling their reprogramming into ciCPCs. Expanded autologous cardiovascular cells may find uses in drug discovery, disease modelling and cardiac cell therapy.
Collapse
Affiliation(s)
- Jia Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Fang Liu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Zihao Chen
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - He Xu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Zhun Liu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Weisheng Cheng
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Linwei Wu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Tao Xu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Zhongyan Chen
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Ding Chen
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Xuena Chen
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Fanzhu Zeng
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Zhiju Zhao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Mingliang Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China. .,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China.
| |
Collapse
|
26
|
Picchio V, Bordin A, Floris E, Cozzolino C, Dhori X, Peruzzi M, Frati G, De Falco E, Pagano F, Chimenti I. The dynamic facets of the cardiac stroma: from classical markers to omics and translational perspectives. Am J Transl Res 2022; 14:1172-1187. [PMID: 35273721 PMCID: PMC8902528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Cardiac stromal cells have been long underestimated in their functions in homeostasis and repair. Recent evidence has changed this perspective in that many more players and facets than just "cardiac fibroblasts" have entered the field. Single cell transcriptomic studies on cardiac interstitial cells have shed light on the phenotypic plasticity of the stroma, whose transcriptional profile is dynamically regulated in homeostatic conditions and in response to external stimuli. Different populations and/or functional states that appear in homeostasis and pathology have been described, particularly increasing the complexity of studying the cardiac response to injury. In this review, we outline current phenotypical and molecular markers, and the approaches developed for identifying and classifying cardiac stromal cells. Significant advances in our understanding of cardiac stromal populations will provide a deeper knowledge on myocardial functional cellular components, as well as a platform for future developments of novel therapeutic strategies to counteract cardiac fibrosis and adverse cardiac remodeling.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Xhulio Dhori
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Mariangela Peruzzi
- Mediterranea CardiocentroNapoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of RomeItaly
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- IRCCS NeuromedPozzilli, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- Mediterranea CardiocentroNapoli, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Institute, CNRMonterotondo, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- Mediterranea CardiocentroNapoli, Italy
| |
Collapse
|
27
|
Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochem Soc Trans 2022; 50:269-281. [PMID: 35129611 PMCID: PMC9042388 DOI: 10.1042/bst20210231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Myocardial infarction is a leading cause of death globally due to the inability of the adult human heart to regenerate after injury. Cell therapy using cardiac-derived progenitor populations emerged about two decades ago with the aim of replacing cells lost after ischaemic injury. Despite early promise from rodent studies, administration of these populations has not translated to the clinic. We will discuss the need for cardiac regeneration and review the debate surrounding how cardiac progenitor populations exert a therapeutic effect following transplantation into the heart, including their ability to form de novo cardiomyocytes and the release of paracrine factors. We will also discuss limitations hindering the cell therapy field, which include the challenges of performing cell-based clinical trials and the low retention of administered cells, and how future research may overcome them.
Collapse
|
28
|
Generation of the organotypic kidney structure by integrating pluripotent stem cell-derived renal stroma. Nat Commun 2022; 13:611. [PMID: 35105870 PMCID: PMC8807595 DOI: 10.1038/s41467-022-28226-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/03/2022] [Indexed: 01/12/2023] Open
Abstract
Organs consist of the parenchyma and stroma, the latter of which coordinates the generation of organotypic structures. Despite recent advances in organoid technology, induction of organ-specific stroma and recapitulation of complex organ configurations from pluripotent stem cells (PSCs) have remained challenging. By elucidating the in vivo molecular features of the renal stromal lineage at a single-cell resolution level, we herein establish an in vitro induction protocol for stromal progenitors (SPs) from mouse PSCs. When the induced SPs are assembled with two differentially induced parenchymal progenitors (nephron progenitors and ureteric buds), the completely PSC-derived organoids reproduce the complex kidney structure, with multiple types of stromal cells distributed along differentiating nephrons and branching ureteric buds. Thus, integration of PSC-derived lineage-specific stroma into parenchymal organoids will pave the way toward recapitulation of the organotypic architecture and functions.
Collapse
|
29
|
Stem Cell Studies in Cardiovascular Biology and Medicine: A Possible Key Role of Macrophages. BIOLOGY 2022; 11:biology11010122. [PMID: 35053119 PMCID: PMC8773242 DOI: 10.3390/biology11010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Stem cells are used in cardiovascular biology and biomedicine and this field of research is expanding. Two types of stem cells have been used in research: induced pluripotent and somatic stem cells. Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells (ESCs) in that they can differentiate into somatic cells. Bone marrow stem/stromal cells (BMSCs), adipose-derived stem cells (ASCs), and cardiac stem cells (CSCs) are somatic stem cells that have been used for cardiac regeneration. Recent studies have indicated that exosomes and vesicles from BMSCs and ASCs can be used in regenerative medicine and diagnostics. Chemokines and exosomes can contribute to the communication between inflammatory cells and stem cells to differentiate stem cells into the cell types required for tissue regeneration or repair. In this review, we address these issues based on our research and previous publications. Abstract Stem cells are used in cardiovascular biology and biomedicine, and research in this field is expanding. Two types of stem cells have been used in research: induced pluripotent and somatic stem cells. Stem cell research in cardiovascular medicine has developed rapidly following the discovery of different types of stem cells. Induced pluripotent stem cells (iPSCs) possess potent differentiation ability, unlike somatic stem cells, and have been postulated for a long time. However, differentiating into adult-type mature and functional cardiac myocytes (CMs) remains difficult. Bone marrow stem/stromal cells (BMSCs), adipose-derived stem cells (ASCs), and cardiac stem cells (CSCs) are somatic stem cells used for cardiac regeneration. Among somatic stem cells, bone marrow stem/stromal cells (BMSCs) were the first to be discovered and are relatively well-characterized. BMSCs were once thought to have differentiation ability in infarcted areas of the heart, but it has been identified that paracrine cytokines and micro-RNAs derived from BMSCs contributed to that effect. Moreover, vesicles and exosomes from these cells have similar effects and are effective in cardiac repair. The molecular signature of exosomes can also be used for diagnostics because exosomes have the characteristics of their origin cells. Cardiac stem cells (CSCs) differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells, and supply cardiomyocytes during myocardial infarction by differentiating into newly formed cardiomyocytes. Stem cell niches and inflammatory cells play important roles in stem cell regulation and the recovery of damaged tissues. In particular, chemokines can contribute to the communication between inflammatory cells and stem cells. In this review, we present the current status of this exciting and promising research field.
Collapse
|
30
|
Stamm C. [Cardiac cell therapy-Lost in translation?]. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2022; 36:107-114. [PMID: 35013648 PMCID: PMC8730298 DOI: 10.1007/s00398-021-00476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
Cardiac cell therapy covers more than two decades of tumultuous history. In this period of time, the perception of the heart as an organ consisting of a fixed number of terminally differentiated cardiomyocytes fundamentally changed. Suddenly, the myocardium was (or is) considered to be regenerative by intrinsic progenitor cells, inducible proliferation, and in particular by exogenic transplanted cells. While the clinical translation of real cardiomyocytes obtained by cellular reprogramming has progressed only slowly, a multitude of clinical studies were carried out with cell products of somatic origin. This was mostly based on assumptions and experimentally acquired data with respect to the plasticity of adult precursor cells that, in retrospect, lacked validity. Accordingly, on closer inspection the results of the clinical studies were not convincing but they were nevertheless often presented and viewed in a very optimistic light. Today, cardiac cell therapy with cells of a somatic origin is considered to have failed. Recapitulating the stages of this era can help recognize and avoid such undesirable developments in the future.
Collapse
Affiliation(s)
- Christof Stamm
- Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Deutschland
- Charité Universitätsmedizin, Berlin, Deutschland
- BIH Center for Regenerative Therapies, Berlin, Deutschland
- Deutsches Zentrum für Herz-Kreislaufforschung, Standort Berlin, Berlin, Deutschland
- Institut für Aktive Polymere, Helmholtz Zentrum Geesthacht, Teltow, Deutschland
| |
Collapse
|
31
|
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol 2021; 9:793605. [PMID: 34901033 PMCID: PMC8656156 DOI: 10.3389/fcell.2021.793605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac transcription factors orchestrate a regulatory network controlling cardiovascular development. Isl1, a LIM-homeodomain transcription factor, acts as a key player in multiple organs during embryonic development. Its crucial roles in cardiovascular development have been elucidated by extensive studies, especially as a marker gene for the second heart field progenitors. Here, we summarize the roles of Isl1 in cardiovascular development and function, and outline its cellular and molecular modes of action, thus providing insights for the molecular basis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Danxiu Miao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
32
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
33
|
Yuko AE, Carvalho Rigaud VO, Kurian J, Lee JH, Kasatkin N, Behanan M, Wang T, Luchesse AM, Mohsin S, Koch WJ, Wang H, Khan M. LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biol 2021; 47:102162. [PMID: 34628272 PMCID: PMC8515487 DOI: 10.1016/j.redox.2021.102162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Cell-based therapeutics have been extensively used for cardiac repair yet underperform due to inability of the donated cells to survive in near anoxia after cardiac injury. Cellular metabolism is linked to maintenance of cardiac stem cell (CSC) renewal, proliferation and survival. Ex vivo expansion alters (CSC) metabolism increasing reliance on oxygen dependent respiration. Whether promoting 'metabolic flexibility' in CSCs augments their ability to survive in near anoxia and repair the heart after injury remains untested. OBJECTIVE Determine the effect of LIN28a induced metabolic flexibility on cardiac tissue derived stem like cell (CTSC) survival and repair after cardiac injury. METHODS AND RESULTS LIN28a expression coincides during heart development but is lost in adult CTSCs. Reintroduction of LIN28a in adult CTSC (CTSC-LIN) increased proliferation, survival, expression of pluripotency genes and reduced senescence compared to control (CTSC-GFP). Metabolomic analysis show glycolytic intermediates upregulated in CTSC-LIN together with increased lactate production, pyruvate kinase activity, glucose uptake, ECAR and expression of glycolytic enzymes compared to CTSC-GFP. Additionally, CTSC-LIN showed significantly reduced ROS generation and increase antioxidant markers. In response to H2O2 induced oxidative stress, CTSC-LIN showed increased survival and expression of glycolytic genes. LIN28a salutary effects on CTSCs were linked to PDK1/let-7 signaling pathway with loss of PDK1 or alteration of let-7 abrogating LIN28a effects. Following transplantation in the heart after myocardial infarction (MI), CTSC-LIN showed 6% survival rate at day 7 after injection compared to control cells together with increased proliferation and significant increase in cardiac structure and function 8 weeks after MI. Finally, CSTC-LIN showed enhanced ability to secrete paracrine factors under hypoxic conditions and ability to promote cardiomyocyte proliferation following ischemic cardiac injury. CONCLUSIONS LIN28a modification promotes metabolic flexibility in CTSCs enhancing proliferation and survival post transplantation including ability to repair the heart after myocardial injury.
Collapse
Affiliation(s)
| | | | | | - Ji H Lee
- Center for Metabolic Disease Research (CMDR), USA
| | | | | | - Tao Wang
- Cardiovascular Research Institute (CVRC), USA
| | | | - Sadia Mohsin
- Cardiovascular Research Institute (CVRC), USA; Department of Pharmacology, LKSOM, Temple University, LKSOM, Temple University, USA
| | - Walter J Koch
- Center for Translational Medicine (CTM), LKSOM, Temple University, USA
| | - Hong Wang
- Center for Metabolic Disease Research (CMDR), USA
| | - Mohsin Khan
- Center for Metabolic Disease Research (CMDR), USA; Department of Physiology, LKSOM, Temple University, USA.
| |
Collapse
|
34
|
Miyamoto M, Nam L, Kannan S, Kwon C. Heart organoids and tissue models for modeling development and disease. Semin Cell Dev Biol 2021; 118:119-128. [PMID: 33775518 PMCID: PMC8513373 DOI: 10.1016/j.semcdb.2021.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Organoids, or miniaturized organs formed in vitro, hold potential to revolutionize how researchers approach and answer fundamental biological and pathological questions. In the context of cardiac biology, development of a bona fide cardiac organoid enables study of heart development, function, and pathogenesis in a dish, providing insight into the nature of congenital heart disease and offering the opportunity for high-throughput probing of adult heart disease and drug discovery. Recently, multiple groups have reported novel methods for generating in vitro models of the heart; however, there are substantial conceptual and methodological differences. In this review we will evaluate recent cardiac organoid studies through the lens of the core principles of organoid technology: patterned self-organization of multiple cell types resembling the in vivo organ. Based on this, we will classify systems into the following related types of tissues: developmental cardiac organoids, chamber cardiac organoids, microtissues, and engineered heart tissues. Furthermore, we highlight the interventions which allow for organoid formation, such as modulation of highly conserved cardiogenic signaling pathways mediated by developmental morphogens. We expect that consolidation and categorization of existing organoid models will help eliminate confusion in the field and facilitate progress towards creation of an ideal cardiac organoid.
Collapse
Affiliation(s)
- Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Lucy Nam
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
35
|
Uslu FE, Davidson CD, Mailand E, Bouklas N, Baker BM, Sakar MS. Engineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102641. [PMID: 34363246 PMCID: PMC11481068 DOI: 10.1002/adma.202102641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Mechanobiology explores how forces regulate cell behaviors and what molecular machinery are responsible for the sensing, transduction, and modulation of mechanical cues. To this end, probing of cells cultured on planar substrates has served as a primary experimental setting for many decades. However, native extracellular matrices (ECMs) consist of fibrous protein assemblies where the physical properties spanning from the individual fiber to the network architecture can influence the transmission of forces to and from the cells. Here, a robotic manipulation platform that allows wireless, localized, and programmable deformation of an engineered fibrous ECM is introduced. A finite-element-based digital twin of the fiber network calibrated against measured local and global parameters enables the calculation of deformations and stresses generated by different magnetic actuation schemes across a range of network properties. Physiologically relevant mechanical forces are applied to cells cultured on the fiber network, statically or dynamically, revealing insights into the effects of matrix-borne forces and deformations as well as force-mediated matrix remodeling on cell migration and intracellular signaling. These capabilities are not matched by any existing approach, and this versatile platform has the potential to uncover fundamental mechanisms of mechanobiology in settings with greater relevance to living tissues.
Collapse
Affiliation(s)
- Fazil E. Uslu
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | | | - Erik Mailand
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Brendon M. Baker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| |
Collapse
|
36
|
Huang X, Lin X, Liu F, Wu G, Yang Z, Meng A. The rise of developmental biology in China. Dev Growth Differ 2021; 64:106-115. [PMID: 34510425 DOI: 10.1111/dgd.12751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/30/2022]
Abstract
Developmental biology research in China started from experimental embryology, in particular from studies on aquatic and reptile animals. The recent growth of the developmental biology community in China parallels the increased governmental funding support and the recruitment of overseas talents. This flourishing field in China embraces the activities of developmental biology-related societies, national meetings, key research initiatives and talented scientists. The first Development paper from China, published in 2000, marked the beginning of a new era. More recently, the second decade in the 21st century witnessed the blossoming of developmental biology research in China. Significant research spotlights, technical advances, and up-and-coming areas will be discussed in this overview.
Collapse
Affiliation(s)
- Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gen Wu
- High Technology Research and Development Center, Beijing, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Amnion signals are essential for mesoderm formation in primates. Nat Commun 2021; 12:5126. [PMID: 34446705 PMCID: PMC8390679 DOI: 10.1038/s41467-021-25186-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
Embryonic development is largely conserved among mammals. However, certain genes show divergent functions. By generating a transcriptional atlas containing >30,000 cells from post-implantation non-human primate embryos, we uncover that ISL1, a gene with a well-established role in cardiogenesis, controls a gene regulatory network in primate amnion. CRISPR/Cas9-targeting of ISL1 results in non-human primate embryos which do not yield viable offspring, demonstrating that ISL1 is critically required in primate embryogenesis. On a cellular level, mutant ISL1 embryos display a failure in mesoderm formation due to reduced BMP4 signaling from the amnion. Via loss of function and rescue studies in human embryonic stem cells we confirm a similar role of ISL1 in human in vitro derived amnion. This study highlights the importance of the amnion as a signaling center during primate mesoderm formation and demonstrates the potential of in vitro primate model systems to dissect the genetics of early human embryonic development. Human and murine embryonic development has disparities, highlighting the need for primate systems. Here, the authors construct a post-implantation transcriptional atlas from non-human primate embryos and show ISL1 controls a gene regulatory network in the amnion required for mesoderm formation.
Collapse
|
38
|
Olesen K, Rodin S, Mak WC, Felldin U, Österholm C, Tilevik A, Grinnemo KH. Spatiotemporal extracellular matrix modeling for in situ cell niche studies. Stem Cells 2021; 39:1751-1765. [PMID: 34418223 DOI: 10.1002/stem.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
Extracellular matrix (ECM) components govern a range of cell functions, such as migration, proliferation, maintenance of stemness, and differentiation. Cell niches that harbor stem-/progenitor cells, with matching ECM, have been shown in a range of organs, although their presence in the heart is still under debate. Determining niches depends on a range of in vitro and in vivo models and techniques, where animal models are powerful tools for studying cell-ECM dynamics; however, they are costly and time-consuming to use. In vitro models based on recombinant ECM proteins lack the complexity of the in vivo ECM. To address these issues, we present the spatiotemporal extracellular matrix model for studies of cell-ECM dynamics, such as cell niches. This model combines gentle decellularization and sectioning of cardiac tissue, allowing retention of a complex ECM, with recellularization and subsequent image processing using image stitching, segmentation, automatic binning, and generation of cluster maps. We have thereby developed an in situ representation of the cardiac ECM that is useful for assessment of repopulation dynamics and to study the effect of local ECM composition on phenotype preservation of reseeded mesenchymal progenitor cells. This model provides a platform for studies of organ-specific cell-ECM dynamics and identification of potential cell niches.
Collapse
Affiliation(s)
- Kim Olesen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,School of Bioscience, University of Skövde, Skövde, Sweden.,Polymer Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergey Rodin
- Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Ulrika Felldin
- Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| |
Collapse
|
39
|
Abstract
Cardiovascular diseases top the list of fatal illnesses worldwide. Cardiac tissues is known to be one of te least proliferative in the human body, with very limited regenraive capacity. Stem cell therapy has shown great potential for treatment of cardiovascular diseases in the experimental setting, but success in human trials has been limited. Applications of stem cell therapy for cardiovascular regeneration necessitate understamding of the complex and unique structure of the heart unit, and the embryologic development of the heart muscles and vessels. This chapter aims to provide an insight into cardiac progenitor cells and their potential applications in regenerative medicine. It also provides an overview of the embryological development of cardiac tissue, and the major findings on the development of cardiac stem cells, their characterization, and differentiation, and their regenerative potential. It concludes with clinical applications in treating cardiac disease using different approaches, and concludes with areas for future research.
Collapse
|
40
|
Zhou W, Ma T, Ding S. Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Semin Cell Dev Biol 2021; 122:28-36. [PMID: 34238675 DOI: 10.1016/j.semcdb.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Heart disease is the leading cause of human deaths worldwide. Due to lacking cardiomyocytes with replicative capacity and cardiac progenitor cells with differentiation potential in adult hearts, massive loss of cardiomyocytes after ischemic events produces permanent damage, ultimately leading to heart failure. Cellular reprogramming is a promising strategy to regenerate heart by induction of cardiomyocytes from other cell types, such as cardiac fibroblasts. In contrast to conventional virus-based cardiac reprogramming, non-viral approaches greatly reduce the potential risk that includes disruption of genome integrity by integration of foreign DNAs, expression of exogenous genes with oncogenic potential, and appearance of partially reprogrammed cells harmful for the physiological functions of tissues/organs, which impedes their in-vivo applications. Here, we review the recent progress in development of non-viral approaches to directly reprogram somatic cells towards cardiomyocytes and their therapeutic application for heart regeneration.
Collapse
Affiliation(s)
- Wei Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Fanni D, Gerosa C, Loddo C, Castagnola M, Fanos V, Zaffanello M, Faa G. Stem/progenitor cells in fetuses and newborns: overview of immunohistochemical markers. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:22. [PMID: 34219203 PMCID: PMC8255250 DOI: 10.1186/s13619-021-00084-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
Microanatomy of the vast majority of human organs at birth is characterized by marked differences as compared to adult organs, regarding their architecture and the cell types detectable at histology. In preterm neonates, these differences are even more evident, due to the lower level of organ maturation and to ongoing cell differentiation. One of the most remarkable finding in preterm tissues is the presence of huge amounts of stem/progenitor cells in multiple organs, including kidney, brain, heart, adrenals, and lungs. In other organs, such as liver, the completely different burden of cell types in preterm infants is mainly related to the different function of the liver during gestation, mainly focused on hematopoiesis, a function that is taken by bone marrow after birth. Our preliminary studies showed that the antigens expressed by stem/progenitors differ significantly from one organ to the next. Moreover, within each developing human tissue, reactivity for different stem cell markers also changes during gestation, according with the multiple differentiation steps encountered by each progenitor during development. A better knowledge of stem/progenitor cells of preterms will allow neonatologists to boost preterm organ maturation, favoring the differentiation of the multiple cells types that characterize each organ in at term neonates.
Collapse
Affiliation(s)
- D Fanni
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| | - C Gerosa
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| | - C Loddo
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M Castagnola
- Laboratory of Biochemistry and Metabolomics, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - V Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M Zaffanello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Piazzale Stefani, 1, I-37126, Verona, Italy.
| | - G Faa
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| |
Collapse
|
42
|
Beliën H, Evens L, Hendrikx M, Bito V, Bronckaers A. Combining stem cells in myocardial infarction: The road to superior repair? Med Res Rev 2021; 42:343-373. [PMID: 34114238 DOI: 10.1002/med.21839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022]
Abstract
Myocardial infarction irreversibly destroys millions of cardiomyocytes in the ventricle, making it the leading cause of heart failure worldwide. Over the past two decades, many progenitor and stem cell types were proposed as the ideal candidate to regenerate the heart after injury. The potential of stem cell therapy has been investigated thoroughly in animal and human studies, aiming at cardiac repair by true tissue replacement, by immune modulation, or by the secretion of paracrine factors that stimulate endogenous repair processes. Despite some successful results in animal models, the outcome from clinical trials remains overall disappointing, largely due to the limited stem cell survival and retention after transplantation. Extensive interest was developed regarding the combinational use of stem cells and various priming strategies to improve the efficacy of regenerative cell therapy. In this review, we provide a critical discussion of the different stem cell types investigated in preclinical and clinical studies in the field of cardiac repair. Moreover, we give an update on the potential of stem cell combinations as well as preconditioning and explore the future promises of these novel regenerative strategies.
Collapse
Affiliation(s)
- Hanne Beliën
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
43
|
Kiuchi S, Usami A, Shimoyama T, Otsuka F, Suzuki S, Ono K. Generation of cardiomyocytes by atrioventricular node cells in long-term cultures. Biochem Biophys Rep 2021; 26:101018. [PMID: 34095551 PMCID: PMC8166639 DOI: 10.1016/j.bbrep.2021.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 11/08/2022] Open
Abstract
Turnover of cardiac pacemaker cells may occur during the lifetime of the body, and we recently raised the hypothesis that specialized cardiac cells have in common the potential to generate cardiomyocytes from fibroblasts. To examine this hypothesis, we analyzed the ability of atrioventricular node cells (AVNCs) to generate functional cardiomyocytes in long-term culture. AVNCs were isolated from adult guinea pig hearts and cultured for up to three weeks. Under phase-contrast microscopic observation over time, it was found that within a week, a number of fibroblasts gathered around the AVNCs and formed cell clusters, and thereafter the cell clusters started to beat spontaneously. The nascent cell clusters expanded their area gradually by three weeks in culture and expressed specific cardiac genes and proteins. Maturation of newly formed cardiomyocytes seems to be slow in cultures of AVNCs compared with those of sinoatrial node cells. Stimulation of muscarinic receptors with acetylcholine induced a beating rate decrease which was blocked by atropine, and activation of adenylate cyclase activity with forskolin increased the beat rate, while stimulation of beta adrenoceptors by isoproterenol had no effect. These results indicate that AVNCs form a cluster of cells with properties of functional cardiomyocytes and provide evidence to support the hypothesis. Atrioventricular node cells formed spontaneously beating cell clusters in culture. The cell clusters expressed specific cardiac genes and proteins. The properties of the cell clusters depended on their spontaneous beating rate. Specialized cardiac cells may in common have the ability to generate cardiomyocytes.
Collapse
Affiliation(s)
- Shigeki Kiuchi
- Laboratory of Molecular Physiology and Pharmacology, Faculty of Pharma-Sciences, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Akino Usami
- Laboratory of Molecular Physiology and Pharmacology, Faculty of Pharma-Sciences, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Tae Shimoyama
- Laboratory of Molecular Environmental Health, Faculty of Pharma-Sciences, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Fuminori Otsuka
- Laboratory of Molecular Environmental Health, Faculty of Pharma-Sciences, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Shigeto Suzuki
- Laboratory of Molecular Physiology and Pharmacology, Faculty of Pharma-Sciences, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Kageyoshi Ono
- Laboratory of Molecular Physiology and Pharmacology, Faculty of Pharma-Sciences, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
44
|
Phosphatidylserine Supplementation as a Novel Strategy for Reducing Myocardial Infarct Size and Preventing Adverse Left Ventricular Remodeling. Int J Mol Sci 2021; 22:ijms22094401. [PMID: 33922385 PMCID: PMC8122843 DOI: 10.3390/ijms22094401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserines are known to sustain skeletal muscle activity during intense activity or hypoxic conditions, as well as preserve neurocognitive function in older patients. Our previous studies pointed out a potential cardioprotective role of phosphatidylserine in heart ischemia. Therefore, we investigated the effects of phosphatidylserine oral supplementation in a mouse model of acute myocardial infarction (AMI). We found out that phosphatidylserine increases, significantly, the cardiomyocyte survival by 50% in an acute model of myocardial ischemia-reperfusion. Similar, phosphatidylserine reduced significantly the infarcted size by 30% and improved heart function by 25% in a chronic model of AMI. The main responsible mechanism seems to be up-regulation of protein kinase C epsilon (PKC-ε), the main player of cardio-protection during pre-conditioning. Interestingly, if the phosphatidylserine supplementation is started before induction of AMI, but not after, it selectively inhibits neutrophil's activation, such as Interleukin 1 beta (IL-1β) expression, without affecting the healing and fibrosis. Thus, phosphatidylserine supplementation may represent a simple way to activate a pre-conditioning mechanism and may be a promising novel strategy to reduce infarct size following AMI and to prevent myocardial injury during myocardial infarction or cardiac surgery. Due to the minimal adverse effects, further investigation in large animals or in human are soon possible to establish the exact role of phosphatidylserine in cardiac diseases.
Collapse
|
45
|
Lauschke K, Volpini L, Liu Y, Vinggaard AM, Hall VJ. A Comparative Assessment of Marker Expression Between Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells and the Developing Pig Heart. Stem Cells Dev 2021; 30:374-385. [PMID: 33599158 DOI: 10.1089/scd.2020.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The course of differentiation of pluripotent stem cells into cardiomyocytes and the intermediate cell types are characterized using molecular markers for different stages of development. These markers have been selected primarily from studies in the mouse and from a limited number of human studies. However, it is not clear how well mouse cardiogenesis compares with human cardiogenesis at the molecular level. We tackle this issue by analyzing and comparing the expression of common cardiomyogenesis markers [platelet-derived growth factor receptor, alpha polypeptide (PDGFR-α), fetal liver kinase 1 (FLK1), ISL1, NK2 homeobox 5 (NKX2.5), cardiac troponin T (CTNT), connexin43 (CX43), and myosin heavy chain 7 (MYHC-B)] in the developing pig heart at embryonic day (E)15, E16, E18, E20, E22, and E24 and in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs). We found that porcine expression of the mesoderm marker FLK1 and the cardiac progenitor marker ISL1 was in line with our differentiating hiPSC and reported murine expression. The cardiac lineage marker NKX2.5 was expressed at almost all stages in the pig and hiPSC, with an earlier onset in the hiPSC compared with reported murine expression. Markers of immature cardiomyocytes, CTNT, and MYHC-B were consistently expressed throughout E16-E70 in the pig, which is comparable with mouse development, whereas the markers increased over time in the hiPSC. However, the commonly used mature cardiomyocyte marker, CX43, should be used with caution, as it was also expressed in the pig mesoderm, as well as hiPSC immature cardiomyocytes, while this has not been reported in mice. Based on our observations in the various species, we suggest to use FLK1/PDGFR-α for identifying cardiac mesoderm and ISL1/NKX2.5 for cardiac progenitors. Furthermore, a combination of two or more of the following, CTNT+/MYHC-B+/ISL1+ could mark immature cardiomyocytes and CTNT+/ISL1- mature cardiomyocytes. CX43 should be used together with sarcomeric proteins. This knowledge may help improving differentiation of hiPSC into more in vivo-like cardiac tissue in the future.
Collapse
Affiliation(s)
- Karin Lauschke
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Department for Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luca Volpini
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yong Liu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
46
|
Muscle Enriched Lamin Interacting Protein ( Mlip) Binds Chromatin and Is Required for Myoblast Differentiation. Cells 2021; 10:cells10030615. [PMID: 33802236 PMCID: PMC7998221 DOI: 10.3390/cells10030615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (Mlip) is a recently discovered Amniota gene that encodes proteins of unknown biological function. Here we report Mlip’s direct interaction with chromatin, and it may function as a transcriptional co-factor. Chromatin immunoprecipitations with microarray analysis demonstrated a propensity for Mlip to associate with genomic regions in close proximity to genes that control tissue-specific differentiation. Gel mobility shift assays confirmed that Mlip protein complexes with genomic DNA. Blocking Mlip expression in C2C12 myoblasts down-regulates myogenic regulatory factors (MyoD and MyoG) and subsequently significantly inhibits myogenic differentiation and the formation of myotubes. Collectively our data demonstrate that Mlip is required for C2C12 myoblast differentiation into myotubes. Mlip may exert this role as a transcriptional regulator of a myogenic program that is unique to amniotes.
Collapse
|
47
|
Hatzistergos KE, Durante MA, Valasaki K, Wanschel ACBA, Harbour JW, Hare JM. A novel cardiomyogenic role for Isl1 + neural crest cells in the inflow tract. SCIENCE ADVANCES 2020; 6:6/49/eaba9950. [PMID: 33268364 PMCID: PMC7821887 DOI: 10.1126/sciadv.aba9950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Biology, Department of Genetics, Development and Molecular Biology, Thessaloniki 54124, Greece.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A Durante
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Amarylis C B A Wanschel
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J William Harbour
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
48
|
Kuerbitz J, Madhavan M, Ehrman LA, Kohli V, Waclaw RR, Campbell K. Temporally Distinct Roles for the Zinc Finger Transcription Factor Sp8 in the Generation and Migration of Dorsal Lateral Ganglionic Eminence (dLGE)-Derived Neuronal Subtypes in the Mouse. Cereb Cortex 2020; 31:1744-1762. [PMID: 33230547 DOI: 10.1093/cercor/bhaa323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Progenitors in the dorsal lateral ganglionic eminence (dLGE) are known to give rise to olfactory bulb (OB) interneurons and intercalated cells (ITCs) of the amygdala. The dLGE enriched transcription factor Sp8 is required for the normal generation of ITCs as well as OB interneurons, particularly the calretinin (CR)-expressing subtype. In this study, we used a genetic gain-of-function approach in mice to examine the roles Sp8 plays in controlling the development of dLGE-derived neuronal subtypes. Misexpression of Sp8 throughout the ventral telencephalic subventricular zone (SVZ) from early embryonic stages, led to an increased generation of ITCs which was dependent on Tshz1 gene dosage. Additionally, Sp8 misexpression impaired rostral migration of OB interneurons with clusters of CR interneurons seen in the SVZ along with decreased differentiation of calbindin OB interneurons. Sp8 misexpression throughout the ventral telencephalon also reduced ventral LGE neuronal subtypes including striatal projection neurons. Delaying Sp8 misexpression until E14-15 rescued the striatal and amygdala phenotypes but only partially rescued OB interneuron reductions, consistent with an early window of striatal and amygdala neurogenesis and ongoing OB interneuron generation at this late stage. Our results demonstrate critical roles for the timing and neuronal cell-type specificity of Sp8 expression in mouse LGE neurogenesis.
Collapse
Affiliation(s)
- J Kuerbitz
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M Madhavan
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - L A Ehrman
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - V Kohli
- Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - R R Waclaw
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - K Campbell
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
49
|
The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety? Int J Mol Sci 2020; 21:ijms21217950. [PMID: 33114756 PMCID: PMC7663133 DOI: 10.3390/ijms21217950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.
Collapse
|
50
|
Taroc EZM, Katreddi RR, Forni PE. Identifying Isl1 Genetic Lineage in the Developing Olfactory System and in GnRH-1 Neurons. Front Physiol 2020; 11:601923. [PMID: 33192618 PMCID: PMC7609815 DOI: 10.3389/fphys.2020.601923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
During embryonic development, symmetric ectodermal thickenings [olfactory placodes (OP)] give rise to several cell types that comprise the olfactory system, such as those that form the terminal nerve ganglion (TN), gonadotropin releasing hormone-1 neurons (GnRH-1ns), and other migratory neurons in rodents. Even though the genetic heterogeneity among these cell types is documented, unidentified cell populations arising from the OP remain. One candidate to identify placodal derived neurons in the developing nasal area is the transcription factor Isl1, which was recently identified in GnRH-3 neurons of the terminal nerve in fish, as well as expression in neurons of the nasal migratory mass (MM). Here, we analyzed the Isl1 genetic lineage in chemosensory neuronal populations in the nasal area and migratory GnRH-1ns in mice using in situ hybridization, immunolabeling a Tamoxifen inducible Isl1CreERT and a constitutive Isl1Cre knock-in mouse lines. In addition, we also performed conditional Isl1 ablation in developing GnRH neurons. We found Isl1 lineage across non-sensory cells of the respiratory epithelium and sustentacular cells of OE and VNO. We identified a population of transient embryonic Isl1 + neurons in the olfactory epithelium and sparse Isl1 + neurons in postnatal VNO. Isl1 is expressed in almost all GnRH neurons and in approximately half of the other neuron populations in the MM. However, Isl1 conditional ablation alone does not significantly compromise GnRH-1 neuronal migration or GnRH-1 expression, suggesting compensatory mechanisms. Further studies will elucidate the functional and mechanistic role of Isl1 in development of migratory endocrine neurons.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Raghu Ram Katreddi
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|