1
|
Carvalho CMC, Gargano R, Martins JBL, Politi JRS. Accurate rovibrational spectroscopy of relevant astrochemical complexes: CH 4⋯CH 4, CH 4⋯N 2 and CH 4⋯Ar. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126273. [PMID: 40319529 DOI: 10.1016/j.saa.2025.126273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Rovibrational spectroscopic properties of CH4⋯CH4, CH4⋯N2, and CH4⋯Ar weakly bound complexes are relevant to astrophysics and astrochemistry, with particular interest to research on Titan's atmosphere. Different methodologies were applied to achieve the high accuracy required to fill the data gap in the literature of these complexes, particularly regarding their most stable configuration. The strategy is based on the generation of potential energy curves (PECs) using the all-electron CCSD(T) method with Dunning basis sets (aug-cc-pVXZ, where X = D, T, Q, and 5), applying counterpoise correction (CP) for basis set superposition error (BSSE) and performing extrapolation to the complete basis set (CBS) limit, evaluating five extrapolation schemes. These curves were fitted with three functions, and the spectroscopic properties were obtained. Additionally, the decomposition lifetimes of the complexes as a function of temperature were determined. Therefore, the results overcame many published theoretical results and agreed with the experimental data available in the literature. Furthermore, it is worth emphasizing that the decomposition lifetime results correspond closely to the information on the Titan atmosphere, thereby indicating the reliability of the theoretical model in accurately describing this particular property. Moreover, most of these results, generated with the described methodology, were not found in the literature for the three systems to the best of our knowledge.
Collapse
Affiliation(s)
- Cassius M C Carvalho
- Coordination of Science and Technology, Federal University of Maranhão, Campus Balsas, Balsas, MA, Brazil
| | - Ricardo Gargano
- Institute of Physics, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - João B L Martins
- Institute of Chemistry, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - José Roberto S Politi
- Institute of Chemistry, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil.
| |
Collapse
|
2
|
Yang X, Yao M, Li P, van der Hoek JP, Zhang L, Liu G. Mutual symbiosis of electroactive bacteria and denitrifiers for improved refractory carbon utilization and nitrate reduction. ENVIRONMENT INTERNATIONAL 2025; 197:109330. [PMID: 39965474 DOI: 10.1016/j.envint.2025.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Mutual symbiosis of electroactive bacteria (EAB) and denitrifier may be the key for solving the refractory carbon and residual nitrogen in wastewater treatment plant effluent. However, its application is hampered by unclear co-metabolic model and uncertain electron transfer. Here, we achieved 3-5 times increase in refractory carbon degradation, 40 % improvement in denitrification, and 36.0 % decrease in N2O emission by co-culturing P. aeruginosa strain GWP-1 and G. sulfurreducens. Such an enhancement is obtained by both refractory carbon co-metabolism and interspecies electron transfer (IET) between GWP-1 and G. sulfurreducens. Importantly, IET was quantified via isotopic approach, which revealed that G. sulfureducens supplies more electrons to GWP-1 when the system was fed with cellulose (0.071 mM) than glucose (0.012 mM). This study demonstrates that the residual refractory carbon and nitrogen in treated wastewater could be further converted by mutual symbiosis of EAB and denitrifiers, which paves a synergic way for pollution and carbon reduction.
Collapse
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences 100085 Beijing, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100 PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 PR China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences 100085 Beijing, PR China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands; University of Chinese Academy of Sciences 100049 Beijing, PR China
| | - Peng Li
- China Water Environment Group, Beijing 101101 PR China
| | - Jan Peter van der Hoek
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands; Waternet, Department Research & Innovation 1090 GJ Amsterdam, the Netherlands
| | - Lujing Zhang
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands; China Water Environment Group, Beijing 101101 PR China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences 100085 Beijing, PR China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology 2628 CN Delft, the Netherlands; University of Chinese Academy of Sciences 100049 Beijing, PR China.
| |
Collapse
|
3
|
Czaplinski EC, Vu TH, Maynard-Casely H, Ennis C, Cable ML, Malaska MJ, Hodyss R. Formation and Stability of the Propionitrile:Acetylene Co-Crystal Under Titan-Relevant Conditions. ACS EARTH & SPACE CHEMISTRY 2025; 9:253-264. [PMID: 40008142 PMCID: PMC11849028 DOI: 10.1021/acsearthspacechem.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Propionitrile (also known as ethyl cyanide, CH3CH2CN) and acetylene (C2H2) are two organic molecules that have been detected in Titan's atmosphere. Over time, they may interact with each other as they are transported to Titan's surface. We sought to determine if any reactions or associations such as co-crystal formation might occur between the two molecules. Using micro-Raman spectroscopy, we characterized band shifts, new bands, and morphological changes, which are characteristic of co-crystal formation. We found that the propionitrile:acetylene co-crystal forms within minutes at 90 K and is stable from 90 to 160 K. A cryogenic powder X-ray diffraction study confirms co-crystal formation at 90 K and indexes to a monoclinic unit cell, P21/a. A thermal expansion study between 90 and 140 K indicates that the co-crystal exhibits anisotropic thermal expansion, with a limited change in the b axis over the temperature range. This information gives insight into the preferred form of propionitrile:acetylene and the nature of these molecular interactions under Titan-relevant conditions. We discuss broader implications of the propionitrile:acetylene co-crystal's participation in forming Titan's geologic features such as the karstic, labyrinth terrain. Additionally, co-crystals that include acetylene as a coformer may provide a source of energy for acetylenotrophs to harness, should putative life exist on Titan's surface or in the subsurface. The Dragonfly mission to Titan will explore the nature and distribution of Titan's organics at the surface; thus, characterizing these organics in the laboratory before surface operations will inform the likely phases Dragonfly may encounter and support data analysis and interpretation of this exciting mission.
Collapse
Affiliation(s)
- Ellen C. Czaplinski
- NASA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Tuan H. Vu
- NASA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Helen Maynard-Casely
- Australian
Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
| | - Courtney Ennis
- Department
of Chemistry, University of Otago, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Morgan L. Cable
- NASA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Michael J. Malaska
- NASA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Robert Hodyss
- NASA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| |
Collapse
|
4
|
Mazza F, van den Bekerom D. An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy. Commun Chem 2025; 8:3. [PMID: 39755874 DOI: 10.1038/s42004-024-01397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis. Here, we present an algorithm that achieves a million-fold improvement in computation time compared to existing methods. The algorithm demonstrates remarkable accuracy, with an approximation error below 0.1% across all tested probe delays, at both room temperature (296 K) and elevated temperatures (1500 K). This result could greatly expand the application of time-resolved CRS, particularly in plasma research, as well as in broader atmospheric and astrophysical sciences.
Collapse
Affiliation(s)
- Francesco Mazza
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629HS, The Netherlands
| | - Dirk van den Bekerom
- Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.
| |
Collapse
|
5
|
Kok MGM, Mora MF. Fatty Acid Analysis by Capillary Electrophoresis and Contactless Conductivity Detection for Future Life Detection Missions. Electrophoresis 2025; 46:5-12. [PMID: 39523926 DOI: 10.1002/elps.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Future life-detection missions will likely search for biosignatures within a wide range of organic compounds, including fatty acids. In order to determine such biosignatures, it is necessary to identify and quantify individual fatty acids present within a sample. In this study, we present a method using capillary electrophoresis coupled to contactless conductivity detection (CE-C4D) for the separation and detection of both saturated and unsaturated fatty acids after derivatization with N,N-diethylethylenediamine, triethylamine, and 2-chloro-1-methylpyridinium iodide at 40°C for 10 min. Operating conditions (background electrolyte, separation voltage, and temperature) were optimized to provide maximum separation of fatty acids, thereby allowing their identification and quantification. Using a background electrolyte of 2 M acetic acid in 45% acetonitrile, an optimal separation was obtained with a separation voltage of 10 kV and a capillary temperature of 15°C. The optimized CE-C4D method was used to analyze samples of the cyanobacterium Spirulina. Multiple fatty acids were detected in the samples, showing the potential of this method for detection of fatty acid biosignatures during future spaceflight missions.
Collapse
Affiliation(s)
- Miranda G M Kok
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
6
|
Kramer MJ, Trump BA, Daemen LL, Balderas-Xicohtencatl R, Cheng Y, Ramirez-Cuesta AJ, Brown CM, Runčevski T. Neutron Vibrational Spectroscopic Study of the Acetylene: Ammonia (1:1) Cocrystal Relevant to Titan, Saturn's Moon. J Phys Chem A 2024; 128:5676-5683. [PMID: 38968334 DOI: 10.1021/acs.jpca.4c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The surface of Titan, Saturn's icy moon, is believed to be composed of various molecular minerals with a great diversity in structure and composition. Under the surface conditions, 93 K and 1.45 atm, most small molecules solidify and form minerals, including acetylene and ammonia. These two compounds can not only form single-component solids but also a 1:1 binary cocrystal that exhibits intriguing rotor phase behavior. This cocrystal is a putative mineral on Titan and other planetary bodies such as comets. In addition, the structure of the cocrystal is relevant to fundamental science as it can help better understand the emergence of rotor phases. Here, we present a detailed vibrational neutron spectroscopic study supported by a neutron powder diffraction study on the cocrystal and the single-phase solids. The experimentally observed spectral bands were assigned based on theoretical calculations. The established spectra-properties correlations for the cocrystal corroborate the observed properties. To the best of our knowledge, this study presents the first example of the application of neutron vibrational spectroscopy in studying Titan-relevant organic minerals.
Collapse
Affiliation(s)
- Morgan J Kramer
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Benjamin A Trump
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Luke L Daemen
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - Yongqiang Cheng
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - Craig M Brown
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
7
|
Nixon CA. The Composition and Chemistry of Titan's Atmosphere. ACS EARTH & SPACE CHEMISTRY 2024; 8:406-456. [PMID: 38533193 PMCID: PMC10961852 DOI: 10.1021/acsearthspacechem.2c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/02/2023] [Accepted: 02/02/2024] [Indexed: 03/28/2024]
Abstract
In this review I summarize the current state of knowledge about the composition of Titan's atmosphere and our current understanding of the suggested chemistry that leads to that observed composition. I begin with our present knowledge of the atmospheric composition, garnered from a variety of measurements including Cassini-Huygens, the Atacama Large Millimeter/submillimeter Array, and other ground- and space-based telescopes. This review focuses on the typical vertical profiles of gases at low latitudes rather than global and temporal variations. The main body of the review presents a chemical description of how complex molecules are believed to arise from simpler species, considering all known "stable" molecules-those that have been uniquely identified in the neutral atmosphere. The last section of the review is devoted to the gaps in our present knowledge of Titan's chemical composition and how further work may fill those gaps.
Collapse
Affiliation(s)
- Conor A. Nixon
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, United
States
| |
Collapse
|
8
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Lu L, Jiang P, Gao H. Observation of Continuum State Dissociation Enables the Determination of N 2 Bond Dissociation Energy to Spectroscopic Accuracy. J Phys Chem Lett 2023:10974-10979. [PMID: 38038992 DOI: 10.1021/acs.jpclett.3c02665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Nitrogen (N) is one of the most fundamental elements of life. Precise determination of the bond dissociation energy (BDE) of the corresponding homonuclear diatomic molecule N2 is not only important for calculating the enthalpies of formation for any N-containing molecules but also provides the best benchmark for evaluating theoretical computational methods. Thus, it has attracted many experimental and theoretical studies, while controversies still exist. Here, we report the observation of continuum state dissociation of N2 into the channel N(2D5/2,3/2)+N(2D5/2,3/2) for the first time by using the vacuum ultraviolet (VUV)-pump-VUV-probe time-sliced velocity-mapped imaging setup. The quantum-state-resolved images enable the direct visualization of the dissociation onsets corresponding to each of the correlated spin-orbit fine-structure channels within a few tenths of wavenumber. The BDEs of 14N2 and 15N2 are directly determined to be 78691.8 ± 0.3 cm-1 and 78731.5 ± 0.3 cm-1, respectively, which should represent the most accurate BDE of N2 thus far.
Collapse
Affiliation(s)
- Liya Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Vaneeva EE, Lepeshkin SV, Oganov AR. Prediction and Rationalization of Abundant C-N-H Molecules in Different Environments. J Phys Chem Lett 2023; 14:8367-8375. [PMID: 37705151 DOI: 10.1021/acs.jpclett.3c01753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The extreme chemical diversity of CmNnHk molecules is at the same time very important (central in organic chemistry) and difficult to rationalize in the sense that some molecules are abundant and easy to synthesize, while others are rare and difficult to make. Using the recently developed criteria of molecular "magicity", combined with evolutionary structure prediction and quantum-chemical calculations, we study these molecules in a wide range of compositions (0 ≤ m ≤ 13, 0 ≤ n ≤ 4, and 0 ≤ k ≤ 14). "Magic" molecules are defined as those that are lower in energy than any isochemical mixture of molecules with the nearest compositions. The predicted "magic" molecules are in good agreement with compounds found in versatile environments (interstellar and circumstellar media, Titan's lower atmosphere, and crude oil fractions) and in experimental chemistry. This work shows the predictive power of our approach, capable of predicting and explaining stable molecules in complex systems.
Collapse
Affiliation(s)
- Elizaveta E Vaneeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russian Federation
| | - Sergey V Lepeshkin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russian Federation
- Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Ave. 53, 119991 Moscow, Russian Federation
- Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences, Kosygin St. 19, 119991 Moscow, Russian Federation
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russian Federation
| |
Collapse
|
11
|
Balucani N, Caracciolo A, Vanuzzo G, Skouteris D, Rosi M, Pacifici L, Casavecchia P, Hickson KM, Loison JC, Dobrijevic M. An experimental and theoretical investigation of the N( 2D) + C 6H 6 (benzene) reaction with implications for the photochemical models of Titan. Faraday Discuss 2023; 245:327-351. [PMID: 37293920 DOI: 10.1039/d3fd00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on a combined experimental and theoretical investigation of the N(2D) + C6H6 (benzene) reaction, which is of relevance in the aromatic chemistry of the atmosphere of Titan. Experimentally, the reaction was studied (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (Ec) of 31.8 kJ mol-1 to determine the primary products, their branching fractions (BFs), and the reaction micromechanism, and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 K to 296 K. Theoretically, electronic structure calculations of the doublet C6H6N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to the aromatic ring of C6H6, followed by formation of several cyclic (five-, six-, and seven-membered ring) and linear isomeric C6H6N intermediates that can undergo unimolecular decomposition to bimolecular products. Statistical estimates of product BFs on the theoretical PES were carried out under the conditions of the CMB experiments and at the temperatures relevant for Titan's atmosphere. In all conditions the ring-contraction channel leading to C5H5 (cyclopentadienyl) + HCN is dominant, while minor contributions come from the channels leading to o-C6H5N (o-N-cycloheptatriene radical) + H, C4H4N (pyrrolyl) + C2H2 (acetylene), C5H5CN (cyano-cyclopentadiene) + H, and p-C6H5N + H. Rate constants (which are close to the gas kinetic limit at all temperatures, with the recommended value of 2.19 ± 0.30 × 10-10 cm3 s-1 over the 50-296 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundances as a function of the altitude.
Collapse
Affiliation(s)
- Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Adriana Caracciolo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | | | - Marzio Rosi
- Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, 06100, Perugia, Italy
| | - Leonardo Pacifici
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Kevin M Hickson
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | | |
Collapse
|
12
|
Ni Z, Arevalo R, Bardyn A, Willhite L, Ray S, Southard A, Danell R, Graham J, Li X, Chou L, Briois C, Thirkell L, Makarov A, Brinckerhoff W, Eigenbrode J, Junge K, Nunn BL. Detection of Short Peptides as Putative Biosignatures of Psychrophiles via Laser Desorption Mass Spectrometry. ASTROBIOLOGY 2023; 23:657-669. [PMID: 37134219 DOI: 10.1089/ast.2022.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Studies of psychrophilic life on Earth provide chemical clues as to how extraterrestrial life could maintain viability in cryogenic environments. If living systems in ocean worlds (e.g., Enceladus) share a similar set of 3-mer and 4-mer peptides to the psychrophile Colwellia psychrerythraea on Earth, spaceflight technologies and analytical methods need to be developed to detect and sequence these putative biosignatures. We demonstrate that laser desorption mass spectrometry, as implemented by the CORALS spaceflight prototype instrument, enables the detection of protonated peptides, their dimers, and metal adducts. The addition of silicon nanoparticles promotes the ionization efficiency, improves mass resolving power and mass accuracies via reduction of metastable decay, and facilitates peptide de novo sequencing. The CORALS instrument, which integrates a pulsed UV laser source and an Orbitrap™ mass analyzer capable of ultrahigh mass resolving powers and mass accuracies, represents an emerging technology for planetary exploration and a pathfinder for advanced technique development for astrobiological objectives. Teaser: Current spaceflight prototype instrument proposed to visit ocean worlds can detect and sequence peptides that are found enriched in at least one strain of microbe surviving in subzero icy brines via silicon nanoparticle-assisted laser desorption analysis.
Collapse
Affiliation(s)
- Ziqin Ni
- University of Maryland, College Park, Maryland, USA
| | | | - Anais Bardyn
- University of Maryland, College Park, Maryland, USA
| | | | - Soumya Ray
- University of Maryland, College Park, Maryland, USA
| | | | - Ryan Danell
- Danell Consulting, Winterville, North Carolina, USA
| | - Jacob Graham
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Xiang Li
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | | | | | | | - Karen Junge
- University of Washington, Seattle, Washington, USA
| | - Brook L Nunn
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Kelly EM, Egan MJ, Colόn A, Angel SM, Sharma SK. Remote Raman Sensing Using a Single-Grating Monolithic Spatial Heterodyne Raman Spectrometer: A Potential Tool for Planetary Exploration. APPLIED SPECTROSCOPY 2023; 77:534-549. [PMID: 36223496 DOI: 10.1177/00037028221121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Advances in Raman instrumentation have led to the implementation of a remote dispersive Raman spectrometer on the Perseverance rover on Mars, which is used for remote sensing. For remote applications, dispersive spectrometers suffer from a few setbacks such as relatively larger sizes, low light throughput, limited spectral ranges, relatively low resolutions for small devices, and high sensitivity to misalignment. A spatial heterodyne Raman spectrometer (SHRS), which is a fixed grating interferometer, helps overcome some of these problems. Most SHRS devices that have been described use two fixed diffraction gratings, but a variance of the SHRS called the one-grating SHRS (1g-SHRS) replaces one of the gratings with a mirror, which makes it more compact. In a recent paper we described monolithic two-gratings SHRS, and in this paper, we investigate a single-grating monolithic SHRS (1g-mSHRS), which combines the 1g-SHRS with a monolithic setup previously tested at the University of South Carolina. This setup integrates the beamsplitter, grating, and mirror into a single monolithic device. This reduces the number of adjustable components, allows for easier alignment, and reduces the footprint of the device (35 × 35 × 25 mm with a weight of 80 g). This instrument provides a high spectral resolution (∼9 cm-1) and large spectral range (7327 cm-1) while decreasing the sensitivity to alignment with a field of view of 5.61 mm at 3m. We discuss the characteristics of the 1g-mSHRS by measuring the time-resolved remote Raman spectra of a few inorganic salts, organics, and minerals at 3 m. The 1g-mSHRS makes a good candidate for planetary exploration because of its large spectral range, greater sensitivity, competitively higher spectral resolution, low alignment sensitivity, and high light throughput in a compact easily aligned system with no moving parts.
Collapse
Affiliation(s)
- Evan M Kelly
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Miles J Egan
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Arelis Colόn
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - S Michael Angel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shiv K Sharma
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
14
|
Czaplinski EC, Vu TH, Cable ML, Choukroun M, Malaska MJ, Hodyss R. Experimental Characterization of the Pyridine:Acetylene Co-crystal and Implications for Titan's Surface. ACS EARTH & SPACE CHEMISTRY 2023; 7:597-608. [PMID: 36960425 PMCID: PMC10026175 DOI: 10.1021/acsearthspacechem.2c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Titan, Saturn's largest moon, has a plethora of organic compounds in the atmosphere and on the surface that interact with each other. Cryominerals such as co-crystals may influence the geologic processes and chemical composition of Titan's surface, which in turn informs our understanding of how Titan may have evolved, how the surface is continuing to change, and the extent of Titan's habitability. Previous works have shown that a pyridine:acetylene (1:1) co-crystal forms under specific temperatures and experimental conditions; however, this has not yet been demonstrated under Titan-relevant conditions. Our work here demonstrates that the pyridine:acetylene co-crystal is stable from 90 K, Titan's average surface temperature, up to 180 K under an atmosphere of N2. In particular, the co-crystal forms via liquid-solid interactions within minutes upon mixing of the constituents at 150 K, as evidenced by distinct, new Raman bands and band shifts. X-ray diffraction (XRD) results indicate moderate anisotropic thermal expansion (about 0.5-1.1%) along the three principal axes between 90-150 K. Additionally, the co-crystal is detectable after being exposed to liquid ethane, implying stability in a residual ethane "wetting" scenario on Titan. These results suggest that the pyridine:acetylene co-crystal could form in specific geologic contexts on Titan that allow for warm environments in which liquid pyridine could persist, and as such, this cryomineral may preserve the evidence of impact, cryovolcanism, or subsurface transport in surface materials.
Collapse
Affiliation(s)
- Ellen C. Czaplinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Tuan H. Vu
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Morgan L. Cable
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Mathieu Choukroun
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Michael J. Malaska
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Robert Hodyss
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
15
|
Diederich P, Geisberger T, Yan Y, Seitz C, Ruf A, Huber C, Hertkorn N, Schmitt-Kopplin P. Formation, stabilization and fate of acetaldehyde and higher aldehydes in an autonomously changing prebiotic system emerging from acetylene. Commun Chem 2023; 6:38. [PMID: 36813975 PMCID: PMC9947100 DOI: 10.1038/s42004-023-00833-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Many essential building blocks of life, including amino acids, sugars, and nucleosides, require aldehydes for prebiotic synthesis. Pathways for their formation under early earth conditions are therefore of great importance. We investigated the formation of aldehydes by an experimental simulation of primordial early earth conditions, in line with the metal-sulfur world theory in an acetylene-containing atmosphere. We describe a pH-driven, intrinsically autoregulatory environment that concentrates acetaldehyde and other higher molecular weight aldehydes. We demonstrate that acetaldehyde is rapidly formed from acetylene over a nickel sulfide catalyst in an aqueous solution, followed by sequential reactions progressively increasing the molecular diversity and complexity of the reaction mixture. Interestingly, through inherent pH changes, the evolution of this complex matrix leads to auto-stabilization of de novo synthesized aldehydes and alters the subsequent synthesis of relevant biomolecules rather than yielding uncontrolled polymerization products. Our results emphasize the impact of progressively generated compounds on the overall reaction conditions and strengthen the role of acetylene in forming essential building blocks that are fundamental for the emergence of terrestrial life.
Collapse
Affiliation(s)
- Philippe Diederich
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Thomas Geisberger
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Yingfei Yan
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Christian Seitz
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Alexander Ruf
- grid.510544.1Excellence Cluster ORIGINS, Boltzmannstraße 2, 85748 Garching, Germany ,grid.5252.00000 0004 1936 973XFaculty of Physics, LMU Munich, Schellingstraße 4, 80799 Munich, Germany
| | - Claudia Huber
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Norbert Hertkorn
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany. .,Technical University of Munich, Analytische Lebensmittel Chemie; Maximus-von-Forum 2, 85354, Freising, Germany. .,Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Gießebachstraße 1, 85748, Garching bei München, Germany.
| |
Collapse
|
16
|
Farnsworth KK, Soto A, Chevrier VF, Steckloff JK, Soderblom JM. Floating Liquid Droplets on the Surface of Cryogenic Liquids: Implications for Titan Rain. ACS EARTH & SPACE CHEMISTRY 2023; 7:439-448. [PMID: 36824999 PMCID: PMC9940721 DOI: 10.1021/acsearthspacechem.2c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Saturn's moon, Titan, has a hydrocarbon-based hydrologic cycle with methane and ethane rainfall. Because of Titan's low gravity, "floating liquid droplets" (coherent droplets of liquid hydrocarbons that float upon a liquid surface) may form on the surface of Titan's hydrocarbon lakes and seas during rainfall. Floating liquid droplets, however, have not been investigated in the laboratory under conditions appropriate for the surface of Titan (cryogenic, hydrocarbon, liquids). We conducted a set of experiments to simulate methane and ethane rainfall under Titan surface conditions (89-94 K, 1.5 bar nitrogen atmosphere) and find that floating ethane droplets form in a wide range of bulk liquid compositions, yet floating methane droplets only form in a narrow compositional range and impact velocity. We find droplet formation is independent of the liquid density and hypothesize that dissolved atmospheric nitrogen in the bulk liquid may repel liquid ethane droplets at the surface. We propose that liquid droplets will form in Titan's methane-rich lakes and seas during ethane rainfall with a droplet radius of ≤3 mm and an impact velocity of ≤0.7 m/s. The presence of these droplets on Titan's lakes may result in a liquid surface layer that is dominated in rainfall composition.
Collapse
Affiliation(s)
- Kendra K. Farnsworth
- NASA
Postdoctoral Program Fellow, NASA Goddard
Space Flight Center, 8800 Greenbelt Rd, Greenbelt, Maryland20771, United States
- Center
for Space and Planetary Sciences, University
of Arkansas, 332 N. Arkansas
Ave., Fayetteville, Arkansas72701, United States
| | - Alejandro Soto
- Southwest
Research Institute, 1050 Walnut Street, Suite 300, Boulder, Colorado80302, United States
| | - Vincent F. Chevrier
- Center
for Space and Planetary Sciences, University
of Arkansas, 332 N. Arkansas
Ave., Fayetteville, Arkansas72701, United States
| | - Jordan K. Steckloff
- Planetary
Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, Arizona85719, United States
- Department
of Aerospace Engineering and Engineering Mechanics, W.R. Woolrich
Laboratories, C0600, University of Texas
at Austin, 201 East 24th
Street, Austin, Texas78712, United States
| | - Jason M. Soderblom
- Department
of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts02139, United States
| |
Collapse
|
17
|
Pavithraa S, Ramachandran R, Mifsud DV, Meka JK, Lo JI, Chou SL, Cheng BM, Rajasekhar BN, Bhardwaj A, Mason NJ, Sivaraman B. VUV photoabsorption of thermally processed carbon disulfide and ammonia ice mixtures - Implications for icy objects in the solar system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121645. [PMID: 36037552 DOI: 10.1016/j.saa.2022.121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Many icy bodies in the solar system have been found to contain a rich mixture of simple molecules on their surfaces. Similarly, comets are now known to be a reservoir of molecules ranging from water to amides. The processing of planetary/cometary ices leads to the synthesis of more complex molecules some of which may be the harbingers of life. Carbon disulphide (CS2) and ammonia (NH3) are known to be present on many icy satellites and comets. Reactions involving CS2 and NH3 may lead to the formation of larger molecules that are stable under space conditions. In this paper we present temperature dependent VUV spectra of pure CS2 in the ice phase, and of CS2 and NH3 ices deposited as (i) layered, and (ii) mixed ices at 10 K and warmed to higher temperatures until their sublimation. Pure CS2 ice is found to have a broad absorption in the VUV region, which is unique for a small molecule in the ice phase. In layered and mixed ices, the molecules tend to affect the phase change and sublimation temperature of each other and also leave behind a form of CS2-NH3 complex after thermal annealing. This study of CS2-NH3 ice systems in layered and mixed configurations would support the detection of these species/complexes in mixed molecular ices analogous to that on planetary and cometary surfaces.
Collapse
Affiliation(s)
- S Pavithraa
- Physical Research Laboratory, Ahmedabad, India
| | | | - D V Mifsud
- Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK; Institute for Nuclear Research (Atomki), Debrecen 4026, Hungary
| | - J K Meka
- Physical Research Laboratory, Ahmedabad, India
| | - J I Lo
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - S L Chou
- National Synchrotron Radiation Research Center, Taiwan
| | - Bing-Ming Cheng
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | | | - N J Mason
- Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK
| | - B Sivaraman
- Physical Research Laboratory, Ahmedabad, India.
| |
Collapse
|
18
|
Vanuzzo G, Mancini L, Pannacci G, Liang P, Marchione D, Recio P, Tan Y, Rosi M, Skouteris D, Casavecchia P, Balucani N, Hickson KM, Loison JC, Dobrijevic M. Reaction N( 2D) + CH 2CCH 2 (Allene): An Experimental and Theoretical Investigation and Implications for the Photochemical Models of Titan. ACS EARTH & SPACE CHEMISTRY 2022; 6:2305-2321. [PMID: 36303717 PMCID: PMC9589905 DOI: 10.1021/acsearthspacechem.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We report on a combined experimental and theoretical investigation of the N(2D) + CH2CCH2 (allene) reaction of relevance in the atmospheric chemistry of Titan. Experimentally, the reaction was investigated (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (E c) of 33 kJ/mol to determine the primary products and the reaction micromechanism and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 to 296 K. Theoretically, electronic structure calculations of the doublet C3H4N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to one of the two equivalent carbon-carbon double bonds of CH2CCH2, followed by the formation of several cyclic and linear isomeric C3H4N intermediates that can undergo unimolecular decomposition to bimolecular products with elimination of H, CH3, HCN, HNC, and CN. The kinetic experiments confirm the barrierless nature of the reaction through the measurement of rate constants close to the gas-kinetic rate at all temperatures. Statistical estimates of product branching fractions (BFs) on the theoretical PES were carried out under the conditions of the CMB experiments at room temperature and at temperatures (94 and 175 K) relevant for Titan. Up to 14 competing product channels were statistically predicted with the main ones at E c = 33 kJ/mol being formation of cyclic-CH2C(N)CH + H (BF = 87.0%) followed by CHCCHNH + H (BF = 10.5%) and CH2CCNH + H (BF = 1.4%) the other 11 possible channels being negligible (BFs ranging from 0 to 0.5%). BFs under the other conditions are essentially unchanged. Experimental dynamical information could only be obtained on the overall H-displacement channel, while other possible channels could not be confirmed within the sensitivity of the method. This is also in line with theoretical predictions as the other possible channels are predicted to be negligible, including the HCN/HNC + C2H3 (vinyl) channels (overall BF < 1%). The dynamics and product distributions are dramatically different with respect to those observed in the isomeric reaction N(2D) + CH3CCH (propyne), where at a similar E c the main product channels are CH2NH (methanimine) + C2H (BF = 41%), c-C(N)CH + CH3 (BF = 32%), and CH2CHCN (vinyl cyanide) + H (BF = 12%). Rate coefficients (the recommended value is 1.7 (±0.2) × 10-10 cm3 s-1 over the 50-300 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundance (including any new products formed) as a function of the altitude.
Collapse
Affiliation(s)
- Gianmarco Vanuzzo
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Luca Mancini
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Giacomo Pannacci
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Pengxiao Liang
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Demian Marchione
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Pedro Recio
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Yuxin Tan
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Marzio Rosi
- Dipartimento
di Ingegneria Civile e Ambientale, Università
degli Studi di Perugia, 06100 Perugia, Italy
| | | | - Piergiorgio Casavecchia
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Nadia Balucani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Kevin M. Hickson
- Université
de Bordeaux, Institut des Sciences Moléculaires,
UMR 5255, F-33400 Talence, France
- CNRS,
Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Jean-Christophe Loison
- Université
de Bordeaux, Institut des Sciences Moléculaires,
UMR 5255, F-33400 Talence, France
- CNRS,
Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Michel Dobrijevic
- Laboratoire
d’Astrophysique de Bordeaux, Université
de Bordeaux, CNRS, B18N,
allée Geoffroy Saint-Hilaire, F-33615 Pessac, France
| |
Collapse
|
19
|
Leseigneur G, Bredehöft JH, Gautier T, Giri C, Krüger H, MacDermott AJ, Meierhenrich UJ, Caro GMM, Raulin F, Steele A, Steininger H, Szopa C, Thiemann W, Ulamec S, Goesmann F. ESA's Cometary Mission Rosetta—Re‐Characterization of the COSAC Mass Spectrometry Results. Angew Chem Int Ed Engl 2022; 61:e202201925. [PMID: 35460531 PMCID: PMC9400906 DOI: 10.1002/anie.202201925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/10/2022]
Abstract
The most pristine material of the Solar System is assumed to be preserved in comets in the form of dust and ice as refractory matter. ESA's mission Rosetta and its lander Philae had been developed to investigate the nucleus of comet 67P/Churyumov–Gerasimenko in situ. Twenty‐five minutes after the initial touchdown of Philae on the surface of comet 67P in November 2014, a mass spectrum was recorded by the time‐of‐flight mass spectrometer COSAC onboard Philae. The new characterization of this mass spectrum through non‐negative least squares fitting and Monte Carlo simulations reveals the chemical composition of comet 67P. A suite of 12 organic molecules, 9 of which also found in the original analysis of this data, exhibit high statistical probability to be present in the grains sampled from the cometary nucleus. These volatile molecules are among the most abundant in the comet's chemical composition and represent an inventory of the first raw materials present in the early Solar System.
Collapse
Affiliation(s)
- Guillaume Leseigneur
- Université Côte d'Azur, CNRS UMR 7272 Institut de Chimie de Nice 28 Avenue Valrose 06108 Nice France
| | - Jan Hendrik Bredehöft
- University of Bremen Department 02 Biology/Chemistry Institute for Applied and Physical Chemistry Leobener Str. 5 28359 Bremen Germany
| | - Thomas Gautier
- Laboratoire Atmosphère, Milieux, Observations Spatiales (LATMOS) LATMOS/IPSL UVSQ Université Paris-Saclay Sorbonne Université, CNRS 11 Bd d'Alembert 78280 Guyancourt France
- LESIA, Observatoire de Paris Université PSL, CNRS Sorbonne Université Université de Paris 5 place Jules Janssen 92195 Meudon France
| | - Chaitanya Giri
- Research and Information System for Developing Countries India Habitat Centre Lodhi Road New Delhi 110 003 India
- Earth-Life Science Institute Tokyo Institute of Technology 2-12-1-IE-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Harald Krüger
- Max Planck Institute for Solar System Research Justus von Liebig Weg 3 37077 Göttingen Germany
| | | | - Uwe J. Meierhenrich
- Université Côte d'Azur, CNRS UMR 7272 Institut de Chimie de Nice 28 Avenue Valrose 06108 Nice France
| | - Guillermo M. Muñoz Caro
- Centro de Astrobiología (CSIC-INTA) Ctra. de Ajalvir, km 4, Torrejón de Ardoz 28850 Madrid Spain
| | - François Raulin
- Univ Paris Est Créteil and Université de Paris, CNRS LISA F-94010 Créteil France
| | - Andrew Steele
- Geophysical Laboratory, Carnegie Institution of Washington Washington, DC USA
| | - Harald Steininger
- Design Assurance Department OHB System AG Universitätsallee 27 28359 Bremen Germany
| | - Cyril Szopa
- Laboratoire Atmosphère, Milieux, Observations Spatiales (LATMOS) LATMOS/IPSL UVSQ Université Paris-Saclay Sorbonne Université, CNRS 11 Bd d'Alembert 78280 Guyancourt France
| | - Wolfram Thiemann
- University of Bremen Institute for Applied and Physical Chemistry Leobener Strasse NW2 28359 Bremen Germany
| | - Stephan Ulamec
- German Aerospace Center (DLR) Space Operations and Astronaut Training Linder Höhe 51147 Cologne Germany
| | - Fred Goesmann
- Max Planck Institute for Solar System Research Justus von Liebig Weg 3 37077 Göttingen Germany
| |
Collapse
|
20
|
Armenta Butt S, Price SD. Bimolecular reactions of CH 2CN 2+ with Ar, N 2 and CO: reactivity and dynamics. Phys Chem Chem Phys 2022; 24:15824-15839. [PMID: 35758308 DOI: 10.1039/d2cp01523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity, energetics and dynamics of bimolecular reactions between CH2CN2+ and three neutral species (Ar, N2 and CO) have been studied using a position sensitive coincidence methodology at centre-of-mass collision energies of 4.3-5.0 eV. This is the first study of bimolecular reactions involving CH2CN2+, a species relevant to the ionospheres of planets and satellites, including Titan. All of the collision systems investigated display two collision-induced dissociation (CID) channels, resulting in the formation of C+ + CH2N+ and H+ + HC2N+. Evidence for channels involving further dissociation of the CID product HC2N+, forming H + CCN+, were detected in the N2 and CO systems. Proton-transfer from the dication to the neutral species occurs in all three of the systems via a direct mechanism. Additionally, there are product channels resulting from single electron transfer following collisions of CH2CN2+ with both N2 and CO, but interestingly no electron transfer following collisions with Ar. Electronic structure calculations of the lowest energy electronic states of CH2CN2+ reveal six local geometric minima: both doublet and quartet spin states for cyclic, linear (CH2CN), and linear isocyanide (CH2NC) molecular geometries. The lowest energy electronic state was determined to be the doublet state of the cyclic dication. The ready generation of C+ ions by collision-induced dissociation suggests that the cyclic or linear isocyanide dication geometries are present in the [CH2CN]2+ beam.
Collapse
Affiliation(s)
- Sam Armenta Butt
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Stephen D Price
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
21
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry Throughout This Solar System. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:197-219. [PMID: 35300527 DOI: 10.1146/annurev-anchem-061020-125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the greatest and most long-lived scientific pursuits of humankind has been to discover and study the planetary objects comprising our solar system. Information gained from solar system observations, via both remote sensing and in situ measurements, is inherently constrained by the analytical (often chemical) techniques we employ in these endeavors. The past 50 years of planetary science missions have resulted in immense discoveries within and beyond our solar system, enabled by state-of-the-art analytical chemical instrument suites on board these missions. In this review, we highlight and discuss some of the most impactful analytical chemical instruments flown on planetary science missions within the last 20 years, including analytical techniques ranging from remote spectroscopy to in situ chemical separations. We first highlight mission-based remote and in situ spectroscopic techniques, followed by in situ separation and mass spectrometry analyses. The results of these investigations are discussed, and their implications examined, from worlds as close as Venus and familiar as Mars to as far away and exotic as Titan. Instruments currently in development for planetary science missions in the near future are also discussed, as are the promises their capabilities bring. Analytical chemistry is critical to understanding what lies beyond Earth in our solar system, and this review seeks to highlight how questions, analytical tools, and answers have intersected over the past 20 years and their implications for the near future.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
22
|
Leseigneur G, Bredehöft JH, Gautier T, Giri C, Krüger H, MacDermott AJ, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Steele A, Steininger H, Szopa C, Thiemann W, Ulamec S, Goesmann F. ESA’s Cometary Mission Rosetta – Re‐Characterization of the COSAC Mass Spectrometry Results. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guillaume Leseigneur
- Universite Cote d'Azur Institut de Chimie de Nice 28 Avenue Valrose 06108 Nice FRANCE
| | - Jan Hendrik Bredehöft
- University of Bremen Faculty 2 Biology Chemistry: Universitat Bremen Fachbereich 2 Biologie Chemie Institute for Applied and Physical Chemistry Leobener Str.5 28359 Bremen GERMANY
| | | | - Chaitanya Giri
- Tokyo Institute of Technology ILA: Tokyo Kogyo Daigaku Liberal Arts Kenkyu Kyoikuin Earth-Life Science Institute JAPAN
| | - Harald Krüger
- Max Planck Institute for Solar System Research: Max-Planck-Institut fur Sonnensystemforschung MPI Justus von Liebig Weg 3 37077 Göttingen GERMANY
| | | | - Uwe J. Meierhenrich
- Universite Cote d'Azur Chemistry Parc ValroseFaculté de Sciences 6108 Nice FRANCE
| | | | | | - Andrew Steele
- Carnegie Institution of Washington: Carnegie Institution for Science Geophysical Laboratory UNITED STATES
| | - Harald Steininger
- OHB System AG Design Assurance Department Universitätsallee 27 28359 Bremen GERMANY
| | - Cyril Szopa
- Université Paris-Saclay: Universite Paris-Saclay LATMOS FRANCE
| | - Wolfram Thiemann
- University of Bremen Faculty 2 Biology Chemistry: Universitat Bremen Fachbereich 2 Biologie Chemie Fachbereich 2 Biologie Chemie GERMANY
| | - Stephan Ulamec
- DLR Bonn: Deutsches Zentrum fur Luft- und Raumfahrt DLR Standort Bonn Space Operations and Astronaut Training GERMANY
| | - Fred Goesmann
- Max Planck Institute for Solar System Research: Max-Planck-Institut fur Sonnensystemforschung MPI GERMANY
| |
Collapse
|
23
|
Battalio JM, Lora JM, Rafkin S, Soto A. The interaction of deep convection with the general circulation in Titan's atmosphere. Part 2: Impacts on the climate. ICARUS 2022; 373:114623. [PMID: 34916707 PMCID: PMC8670386 DOI: 10.1016/j.icarus.2021.114623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The impact of methane convection on the circulation of Titan is investigated in the Titan Atmospheric Model (TAM), using a simplified Betts-Miller (SBM) moist convection parameterization scheme. We vary the reference relative humidity (RHSBM ) and relaxation timescale of convection (τ) parameters of the SBM scheme. Titan's atmosphere is mostly insensitive to changes in τ, but convective instability and precipitation are highly impacted by changes in RHSBM . Convection changes behavior from occurring in infrequent (<1 per Titan year), intense events at summer solstice that quickly encompass the entire globe at low RHSBM to near-continuous precipitation at the poles during summer at high RHSBM (>85%). The intermediate regime (RHSBM =70-80%) consists of frequent events (~10 per Titan year) of moderate intensity that are limited in meridional extent to their respective hemisphere. Using results from the Titan Regional Atmospheric Modeling System (TRAMS) and observations, we tune the parameters of the SBM parameterization with optimum values of RH=80% and τ=28800 s. We present a simulated decadal climatology that qualitatively matches observations of Titan's humidity and cloud activity and generally resembles previous results with TAM. Comparing this simulation to one without moist convection demonstrates that convection strengthens the meridional circulation, warms the mid-levels and cools the surface at the poles, and magnifies zonal-mean global moisture anomalies.
Collapse
Affiliation(s)
- J Michael Battalio
- Department of Earth and Planetary Sciences, Yale University, 210 Whitney Ave., New Haven, CT 06511
| | - Juan M Lora
- Department of Earth and Planetary Sciences, Yale University, 210 Whitney Ave., New Haven, CT 06511
| | - Scot Rafkin
- Department of Space Studies, Southwest Research Institute, 1050 Walnut St, Suite 300, Boulder, Colorado, USA 80302
| | - Alejandro Soto
- Department of Space Studies, Southwest Research Institute, 1050 Walnut St, Suite 300, Boulder, Colorado, USA 80302
| |
Collapse
|
24
|
Brann M, Hansknecht SP, Ma X, Sibener SJ. Differential Condensation of Methane Isotopologues Leading to Isotopic Enrichment under Non-equilibrium Gas-Surface Collision Conditions. J Phys Chem A 2021; 125:9405-9413. [PMID: 34658236 PMCID: PMC8558857 DOI: 10.1021/acs.jpca.1c07826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Indexed: 11/30/2022]
Abstract
We examine the initial differential sticking probability of CH4 and CD4 on CH4 and CD4 ices under nonequilibrium flow conditions using a combination of experimental methods and numerical simulations. The experimental methods include time-resolved in situ reflection-absorption infrared spectroscopy (RAIRS) for monitoring on-surface gaseous condensation and complementary King and Wells mass spectrometry techniques for monitoring sticking probabilities that provide confirmatory results via a second independent measurement method. Seeded supersonic beams are employed so that the entrained CH4 and CD4 have the same incident velocity but different kinetic energies and momenta. We found that as the incident velocity of CH4 and CD4 increases, the sticking probabilities for both molecules on a CH4 condensed film decrease systematically, but that preferential sticking and condensation occur for CD4. These observations differ when condensed CD4 is used as the target interface, indicating that the film's phonon and rovibrational densities of states, and collisional energy transfer cross sections, have a role in differential energy accommodation between isotopically substituted incident species. Lastly, we employed a mixed incident supersonic beam composed of both CH4 and CD4 in a 3:1 ratio and measured the condensate composition as well as the sticking probability. When doing so, we see the same effect in the condensed mixed film, supporting an isotopic enrichment of the heavier isotope. We propose that enhanced multi-phonon interactions and inelastic cross sections between the incident CD4 projectile and the CH4 film allow for more efficacious gas-surface energy transfer. VENUS code MD simulations show the same sticking probability differences between isotopologues as observed in the gas-surface scattering experiments. Ongoing analyses of these trajectories will provide additional insights into energy and momentum transfer between the incident species and the interface. These results offer a new route for isotope enrichment via preferential condensation of heavier isotopes and isotopologues during gas-surface collisions under specifically selected substrate, gas-mixture, and incident velocity conditions. They also yield valuable insights into gaseous condensation under non-equilibrium conditions such as occur in aircraft flight in low-temperature environments. Moreover, these results can help to explain the increased abundance of deuterium in solar system planets and can be incorporated into astrophysical models of interstellar icy dust grain surface processes.
Collapse
Affiliation(s)
- Michelle
R. Brann
- The James Franck Institute
and Department of Chemistry, The University
of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United
States
| | - Stephen P. Hansknecht
- The James Franck Institute
and Department of Chemistry, The University
of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United
States
| | - Xinyou Ma
- The James Franck Institute
and Department of Chemistry, The University
of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United
States
| | - S. J. Sibener
- The James Franck Institute
and Department of Chemistry, The University
of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United
States
| |
Collapse
|
25
|
Vazquez T, Vuppala S, Ayodeji I, Song L, Grimes N, Evans-Nguyen T. IN SITU MASS SPECTROMETERS FOR APPLICATIONS IN SPACE. MASS SPECTROMETRY REVIEWS 2021; 40:670-691. [PMID: 32949473 DOI: 10.1002/mas.21648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Mass spectrometry (MS) has played a remarkable role in exploring the chemical make-up of our solar system. In situ probes were historically developed to analyze inorganic/elemental compositions while leveraging native ions or harsh ionization methods to aid in exploring astrophysics applications (e.g., heliophysics). The part played by MS is demonstrated in a majority of scientific payloads focused on exploration, particularly at the turn of the century with missions including Cassini-Huygens, Rosetta, and now Mars Science Laboratory. Plasma mass spectrometers have grown more sophisticated to interrogate fundamental inorganic analysis (e.g., solar wind and magnetospheres) including both native ions and neutrals. Cosmic dust floating in-between and orbiting planetary bodies has been targeted by unique sampling via impact ionization. More complex systems rely on landed planetary instrumentation with lessons learned from pioneering missions in the 1970s and 1980s to near neighbors Mars and Venus. Modern probes have expanded applicable target chemicals by recognizing the needs to provide for molecular analyses, extended mass range, and high resolution to provide unequivocal detection and identification. Notably, as the field surrounding astrobiology has gained momentum, so has the in situ detection of complex molecular chemistry including the chemical evolution of organic molecules. Mission context often includes long term timelines from spacecraft launch to arrival and additionally the diverse target environments across various planets. Therefore, customized experimental designs for space MS have been born of necessity. To this point, the development of MS instrumentation on Earth has now far outpaced development for experiments in space. Therefore, exciting developments lie ahead among various international space agencies conducting current and future mission planning with increasingly enhanced instrumentation. For instance, near-neighbor Mars has entertained considerable attention with complex MS instrumentation with laser desorption ionization aboard the Mars Organic Molecule Analyzer instrument. To study comets, the Rosetta mission employs a secondary ionization mechanism. Meanwhile, the various moons of Jupiter and Saturn have intriguing surface and subsurface properties that warrant more advanced analyzer systems. Instrumentation design will continue to evolve as requirements develop and this review serves as a reflection of the contribution of in situ MS to space exploration in the past 20 years and the anticipated contribution yet to come. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Timothy Vazquez
- Department of Chemistry, University of South Florida, Tampa, FL
| | - Sinduri Vuppala
- Department of Chemistry, University of South Florida, Tampa, FL
| | | | - Linxia Song
- Department of Chemistry, University of South Florida, Tampa, FL
| | - Nathan Grimes
- Department of Chemistry, University of South Florida, Tampa, FL
| | | |
Collapse
|
26
|
Abstract
This Feature introduces and discusses the findings of key analytical techniques used to study planetary bodies in our solar system in the search for life beyond Earth, future missions planned for high-priority astrobiology targets in our solar system, and the challenges we face in performing these investigations.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Amanda Michelle Stockton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Petuya C, Choukroun M, Vu TH, Desmedt A, Davies AG, Sotin C. Cage occupancy of methane clathrate hydrates in the ternary H 2O-NH 3-CH 4 system. Chem Commun (Camb) 2020; 56:12391-12394. [PMID: 32935703 DOI: 10.1039/d0cc04339g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of ammonia inside methane clathrate hydrate is of great interest to the hydrate chemistry community. We investigated the phase behavior of methane clathrate formed from aqueous ammonia solution. Ammonia's presence decreases methane occupancy in the large cages, without definitive Raman spectroscopic evidence for its incorporation inside the structure.
Collapse
Affiliation(s)
- Claire Petuya
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Fairén AG, Gómez-Elvira J, Briones C, Prieto-Ballesteros O, Rodríguez-Manfredi JA, López Heredero R, Belenguer T, Moral AG, Moreno-Paz M, Parro V. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. ASTROBIOLOGY 2020; 20:1076-1096. [PMID: 32856927 PMCID: PMC7116096 DOI: 10.1089/ast.2019.2167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca New York, USA
| | - Javier Gómez-Elvira
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | | | | | - Raquel López Heredero
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Tomás Belenguer
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Andoni G. Moral
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | - Víctor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
29
|
Ligterink NFW, Grimaudo V, Moreno-García P, Lukmanov R, Tulej M, Leya I, Lindner R, Wurz P, Cockell CS, Ehrenfreund P, Riedo A. ORIGIN: a novel and compact Laser Desorption - Mass Spectrometry system for sensitive in situ detection of amino acids on extraterrestrial surfaces. Sci Rep 2020; 10:9641. [PMID: 32541786 PMCID: PMC7296031 DOI: 10.1038/s41598-020-66240-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
For the last four decades space exploration missions have searched for molecular life on planetary surfaces beyond Earth. Often pyrolysis gas chromatography mass spectrometry has been used as payload on such space exploration missions. These instruments have relatively low detection sensitivity and their measurements are often undermined by the presence of chloride salts and minerals. Currently, ocean worlds in the outer Solar System, such as the icy moons Europa and Enceladus, represent potentially habitable environments and are therefore prime targets for the search for biosignatures. For future space exploration missions, novel measurement concepts, capable of detecting low concentrations of biomolecules with significantly improved sensitivity and specificity are required. Here we report on a novel analytical technique for the detection of extremely low concentrations of amino acids using ORIGIN, a compact and lightweight laser desorption ionization - mass spectrometer designed and developed for in situ space exploration missions. The identified unique mass fragmentation patterns of amino acids coupled to a multi-position laser scan, allows for a robust identification and quantification of amino acids. With a detection limit of a few fmol mm-2, and the possibility for sub-fmol detection sensitivity, this measurement technique excels current space exploration systems by three orders of magnitude. Moreover, our detection method is not affected by chemical alterations through surface minerals and/or salts, such as NaCl that is expected to be present at the percent level on ocean worlds. Our results demonstrate that ORIGIN is a promising instrument for the detection of signatures of life and ready for upcoming space missions, such as the Europa Lander.
Collapse
Affiliation(s)
| | - Valentine Grimaudo
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Pavel Moreno-García
- Interfacial Electrochemistry Group, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Rustam Lukmanov
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Marek Tulej
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Ingo Leya
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Robert Lindner
- Life Support and Physical Sciences Instrumentation Section, European Space Agency, ESTEC, Bern, The Netherlands
| | - Peter Wurz
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Charles S Cockell
- School of Physics and Astronomy, UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Pascale Ehrenfreund
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
- Space Policy Institute, George Washington University, 20052, Washington, DC, USA
| | - Andreas Riedo
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
30
|
Gautier T, Serigano J, Bourgalais J, Hörst SM, Trainer MG. Decomposition of electron ionization mass spectra for space application using a Monte-Carlo approach. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8684. [PMID: 31783433 DOI: 10.1002/rcm.8684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Quadrupole mass spectrometers equipped with an electron ionization (EI) sources have been widely used in space exploration to investigate the composition of planetary surfaces and atmospheres. However, the complexity of the samples and the minimal calibration for the fragmentation of molecules in the ionization chambers have prevented the deconvolution of the majority of the mass spectra obtained at different targets, thus limiting the determination of the exact composition of the samples analyzed. We propose a Monte-Carlo approach to solve this issue mathematically. METHODS We decomposed simulated mass spectra of mixtures acquired with unit resolving power mass spectrometers and EI sources into the sum of the single components fragmentation patterns weighted by their relative concentration using interior-point least-square fitting. To fit compounds with poorly known fragmentation patterns, we used a Monte-Carlo method to vary the intensity of individual fragment ions. We then decomposed the spectrum thousands of times to obtain a statistical distribution. RESULTS By performing the deconvolution on a mixture of seven different molecules with interfering fragmentation patterns (H2 O, O2 , CH4 , Ar, N2 , C2 H4 , and C2 H6 ) we show that this approach retrieves the mixing ratio of the individual components more accurately than regular mass spectra decomposition methods that rely on fragmentation patterns from general databases. It also provides the probability density function for each species's mixing ratio. CONCLUSIONS By removing the solution degeneracy in the decomposition of mass spectra, the method described herein could significantly increase the scientific retrieval from archived space flight mass spectrometry data, where calibration of the ionization source is no longer an option.
Collapse
Affiliation(s)
- Thomas Gautier
- LATMOS-IPSL, CNRS, Sorbonne Université, UVSQ - Planetary Sciences, Guyancourt, France
| | - Joseph Serigano
- Johns Hopkins University, Earth and Planetary Sciences, Baltimore, Maryland
| | - Jérémy Bourgalais
- LATMOS-IPSL, CNRS, Sorbonne Université, UVSQ - Planetary Sciences, Guyancourt, France
| | - Sarah M Hörst
- Johns Hopkins University, Earth and Planetary Sciences, Baltimore, Maryland
| | | |
Collapse
|
31
|
Maillard J, Ferey J, Rüger CP, Schmitz-Afonso I, Bekri S, Gautier T, Carrasco N, Afonso C, Tebani A. Optimization of ion trajectories in a dynamically harmonized Fourier-transform ion cyclotron resonance cell using a design of experiments strategy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8659. [PMID: 31800128 DOI: 10.1002/rcm.8659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/07/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE With the recent introduction of the dynamically harmonized Fourier-transform ion cyclotron resonance (FT-ICR) cell, the complexity of tuning has expanded drastically, and fine-tuning of the direct current voltages is required to optimize the ion cloud movement. As this adjustment must typically be performed manually, more reliable computational methods would be useful. METHODS Here we propose a computational method based on a design of experiments (DoE) strategy to overcome the limits of classical manual tuning. This DoE strategy was exemplarily applied on a 12 T FT-ICR instrument equipped with a dynamically harmonized ICR cell. The chemometric approach, based on a central composite face (CCF) design, was first applied to a reference material (sodium trifluoroacetate) allowing for the evaluation of the primary cell parameters. Eight factors related to shimming and gating were identified. The summed intensity of the signal corresponding to the even harmonics was defined as one quality criterion. RESULTS The DoE response allowed for rapid and complete mapping of cell parameters resulting in an optimized parameter set. The new set of cell parameters was applied to the study of an ultra-complex sample: Tholins, an ultra-complex mixture that mimics the haze present on Titan, was chosen. We observed a substantial improvement in mass spectrometric performance. The sum of signals related to harmonics was decreased by a factor of three (from 4% for conventional tuning to 1.3%). Furthermore, the dynamic range was also increased, which in turn led to an increase in attributed peaks by 13%. CONCLUSIONS This computational procedure based on an experimental design can be applied to any other mass spectrometric parameter optimization problem. This strategy will lead to a more transparent and data-driven method development.
Collapse
Affiliation(s)
- Julien Maillard
- LATMOS/IPSL, Université Versailles St Quentin, UPMC Université Paris 06, CNRS, Guyancourt, France
- Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, IRCOF, 1 Rue Tesnière, Mont St Aignan Cedex, France
| | - Justine Ferey
- Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, IRCOF, 1 Rue Tesnière, Mont St Aignan Cedex, France
| | - Christopher P Rüger
- Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, IRCOF, 1 Rue Tesnière, Mont St Aignan Cedex, France
| | - Isabelle Schmitz-Afonso
- Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, IRCOF, 1 Rue Tesnière, Mont St Aignan Cedex, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Thomas Gautier
- LATMOS/IPSL, Université Versailles St Quentin, UPMC Université Paris 06, CNRS, Guyancourt, France
| | - Nathalie Carrasco
- LATMOS/IPSL, Université Versailles St Quentin, UPMC Université Paris 06, CNRS, Guyancourt, France
| | - Carlos Afonso
- Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, IRCOF, 1 Rue Tesnière, Mont St Aignan Cedex, France
| | - Abdellah Tebani
- LATMOS/IPSL, Université Versailles St Quentin, UPMC Université Paris 06, CNRS, Guyancourt, France
- Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, IRCOF, 1 Rue Tesnière, Mont St Aignan Cedex, France
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| |
Collapse
|
32
|
Abstract
The Cassini-Huygens mission to Saturn provided a close-up study of the gas giant planet, as well as its rings, moons, and magnetosphere. The Cassini spacecraft arrived at Saturn in 2004, dropped the Huygens probe to study the atmosphere and surface of Saturn's planet-sized moon Titan, and orbited Saturn for the next 13 years. In 2017, when it was running low on fuel, Cassini was intentionally vaporized in Saturn's atmosphere to protect the ocean moons, Enceladus and Titan, where it had discovered habitats potentially suitable for life. Mission findings include Enceladus' south polar geysers, the source of Saturn's E ring; Titan's methane cycle, including rain that creates hydrocarbon lakes; dynamic rings containing ice, silicates, and organics; and Saturn's differential rotation. This Review discusses highlights of Cassini's investigations, including the mission's final year.
Collapse
Affiliation(s)
- Linda Spilker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| |
Collapse
|
33
|
McConville CA, Tao Y, Evans HA, Trump BA, Lefton JB, Xu W, Yakovenko AA, Kraka E, Brown CM, Runčevski T. Peritectic phase transition of benzene and acetonitrile into a cocrystal relevant to Titan, Saturn's moon. Chem Commun (Camb) 2020; 56:13520-13523. [DOI: 10.1039/d0cc04999a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the phase diagram of acetonitrile and benzene with the focus on a 1 : 3 acetonitrile : benzene cocrystal relevant to mineralogy of Titan, Saturn's moon.
Collapse
Affiliation(s)
| | - Yunwen Tao
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| | - Hayden A. Evans
- National Institute of Standards and Technology
- Center for Neutron Research
- Gaithersburg
- USA
| | - Benjamin A. Trump
- National Institute of Standards and Technology
- Center for Neutron Research
- Gaithersburg
- USA
| | | | - Wenqian Xu
- X-Ray Science Division, Advanced Photon Source
- Argonne National Laboratory
- Argonne
- USA
| | - Andrey A. Yakovenko
- X-Ray Science Division, Advanced Photon Source
- Argonne National Laboratory
- Argonne
- USA
| | - Elfi Kraka
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| | - Craig M. Brown
- National Institute of Standards and Technology
- Center for Neutron Research
- Gaithersburg
- USA
- Department of Chemical and Biomolecular Engineering
| | - Tomče Runčevski
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| |
Collapse
|
34
|
Arevalo R, Ni Z, Danell RM. Mass spectrometry and planetary exploration: A brief review and future projection. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4454. [PMID: 31663201 PMCID: PMC7050511 DOI: 10.1002/jms.4454] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 05/11/2023]
Abstract
Since the inception of mass spectrometry more than a century ago, the field has matured as analytical capabilities have progressed, instrument configurations multiplied, and applications proliferated. Modern systems are able to characterize volatile and nonvolatile sample materials, quantitatively measure abundances of molecular and elemental species with low limits of detection, and determine isotopic compositions with high degrees of precision and accuracy. Consequently, mass spectrometers have a rich history and promising future in planetary exploration. Here, we provide a short review on the development of mass analyzers and supporting subsystems (eg, ionization sources and detector assemblies) that have significant heritage in spaceflight applications, and we introduce a selection of emerging technologies that may enable new and/or augmented mission concepts in the coming decades.
Collapse
Affiliation(s)
- Ricardo Arevalo
- Department of GeologyUniversity of MarylandCollege ParkMaryland
| | - Ziqin Ni
- Department of GeologyUniversity of MarylandCollege ParkMaryland
| | | |
Collapse
|
35
|
Waller SE, Belousov A, Kidd RD, Nikolić D, Madzunkov SM, Wiley JS, Darrach MR. Chemical Ionization Mass Spectrometry: Applications for the In Situ Measurement of Nonvolatile Organics at Ocean Worlds. ASTROBIOLOGY 2019; 19:1196-1210. [PMID: 31347911 DOI: 10.1089/ast.2018.1961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new technique that has applications for the detection of nonvolatile organics on Ocean Worlds has been developed. Here, liquid mixtures of fatty acids (FAs) and/or amino acids (AAs) are introduced directly into a miniature quadrupole ion trap mass spectrometer (QITMS) developed at Jet Propulsion Laboratory and analyzed. Two ionization methods, electron impact and chemical ionization (EI and CI, respectively), are compared and contrasted. Further, multiple CI reagents are tested to explore their potential to "soften" ionization of FAs and AAs. Both EI and CI yield mass spectra that bear signatures of FAs or AAs; however, soft CI yields significantly cleaner mass spectra that are easier to interpret. The combination of soft CI with tandem mass spectrometry (MS/MS) has also been demonstrated for AAs, generating "fingerprint" mass spectra of fragments from protonated parent ions. To mimic potential Ocean World conditions, water is used as the primary collision gas in MS/MS experiments. This technique has the potential for the in situ analysis of molecules in the cryogenic plumes of Ocean Worlds (e.g., Enceladus) and comets with the ultimate goal of detecting potential biosignatures.
Collapse
Affiliation(s)
- Sarah E Waller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Anton Belousov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Richard D Kidd
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Dragan Nikolić
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Stojan M Madzunkov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Joshua S Wiley
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Murray R Darrach
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
36
|
Abplanalp MJ, Frigge R, Kaiser RI. Low-temperature synthesis of polycyclic aromatic hydrocarbons in Titan's surface ices and on airless bodies. SCIENCE ADVANCES 2019; 5:eaaw5841. [PMID: 31663015 PMCID: PMC6795510 DOI: 10.1126/sciadv.aaw5841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Titan's equatorial dunes represent the most monumental surface structures in our Solar System, but the chemical composition of their dark organics remains a fundamental, unsolved enigma, with solid acetylene detected near the dunes implicated as a key feedstock. Here, we reveal in laboratory simulation experiments that aromatics such as benzene, naphthalene, and phenanthrene-prospective building blocks of the organic dune material-can be efficiently synthesized via galactic cosmic ray exposure of low-temperature acetylene ices on Titan's surface, hence challenging conventional wisdom that aromatic hydrocarbons are formed solely in Titan's atmosphere. These processes are also of critical importance in unraveling the origin and chemical composition of the dark surfaces of airless bodies in the outer Solar System, where hydrocarbon precipitation from the atmosphere cannot occur. This finding notably advances our understanding of the distribution of carbon throughout our Solar System such as on Kuiper belt objects like Makemake.
Collapse
Affiliation(s)
- Matthew J. Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Robert Frigge
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ralf I. Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
37
|
d'Ischia M, Manini P, Moracci M, Saladino R, Ball V, Thissen H, Evans RA, Puzzarini C, Barone V. Astrochemistry and Astrobiology: Materials Sciencein Wonderland? Int J Mol Sci 2019; 20:E4079. [PMID: 31438518 PMCID: PMC6747172 DOI: 10.3390/ijms20174079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/04/2023] Open
Abstract
Astrochemistry and astrobiology, the fascinating disciplines that strive to unravel the origin of life, have opened unprecedented and unpredicted vistas into exotic compounds as well as extreme or complex reaction conditions of potential relevance for a broad variety of applications. Representative, and so far little explored sources of inspiration include complex organic systems, such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives; hydrogen cyanide (HCN) and formamide (HCONH2) oligomers and polymers, like aminomalononitrile (AMN)-derived species; and exotic processes, such as solid-state photoreactions on mineral surfaces, phosphorylation by minerals, cold ice irradiation and proton bombardment, and thermal transformations in fumaroles. In addition, meteorites and minerals like forsterite, which dominate dust chemistry in the interstellar medium, may open new avenues for the discovery of innovative catalytic processes and unconventional methodologies. The aim of this review was to offer concise and inspiring, rather than comprehensive, examples of astrochemistry-related materials and systems that may be of relevance in areas such as surface functionalization, nanostructures, and hybrid material design, and for innovative technological solutions. The potential of computational methods to predict new properties from spectroscopic data and to assess plausible reaction pathways on both kinetic and thermodynamic grounds has also been highlighted.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Naples, Italy.
| | - Paola Manini
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Naples, Italy
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, Via S. Camillo de Lellis, University of Tuscia, 01100 Viterbo, Italy
| | - Vincent Ball
- Institut National de la Santé et de la RechercheMédicale, 11 rue Humann, 67085 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 1 Place de l'Hôpital, 67000 Strasbourg, France
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3168, Australia
| | - Richard A Evans
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3168, Australia
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
38
|
Cunsolo V, Foti S, Ner‐Kluza J, Drabik A, Silberring J, Muccilli V, Saletti R, Pawlak K, Harwood E, Yu F, Ciborowski P, Anczkiewicz R, Altweg K, Spoto G, Pawlaczyk A, Szynkowska MI, Smoluch M, Kwiatkowska D. Mass Spectrometry Applications. Mass Spectrom (Tokyo) 2019. [DOI: 10.1002/9781119377368.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Dimitrov V. Kinetic Modelling of Global Evolution of Titan's Atmosphere. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967405779134001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methane CH4 is the only highly reactive and short-lived background component in Titan's atmosphere, so its overall reserve predetermines both features and duration of atmospheric chemical activity. Current methane atmospheric abundance is provided by its global circulation. There are two sources of methane replenishment, i.e. recycling of the primordial reserve trapped in Titan's interior and reconversion of non-saturated final products of the atmospheric photochemical process, reconversion being the minor constituent in the global methane balance. The total bulk of primordial methane gas hydrate depends on the packing index (cage-filling efficiency) α, the latter being limited to 7.2 × 10−4< α < 5 × 10−2 {kg CH4/kg clathrate}. The specification of α seems to be one of the most relevant problems of the experimental modelling of Titan's chemistry. The total number of methane renewal cycles so far equals Np ∼ 200.
Collapse
Affiliation(s)
- Vasili Dimitrov
- Department of Geophysics and Planetary Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
40
|
Contributions from Accreted Organics to Titan’s Atmosphere: New Insights from Cometary and Chondritic Data. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/aaf561] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Arevalo R, Selliez L, Briois C, Carrasco N, Thirkell L, Cherville B, Colin F, Gaubicher B, Farcy B, Li X, Makarov A. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1875-1886. [PMID: 30048021 DOI: 10.1002/rcm.8244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The investigation of cryogenic planetary environments as potential harbors for extant life and/or contemporary sites of organic synthesis represents an emerging focal point in planetary exploration. Next generation instruments need to be capable of unambiguously determining elemental and/or molecular stoichiometry via highly accurate mass measurements and the separation of isobaric interferences. METHODS An Orbitrap™ analyzer adapted for spaceflight (referred to as the CosmOrbitrap), coupled with a commercial pulsed UV laser source (266 nm), was used to successfully characterize a variety of planetary analog samples via ultrahigh resolution laser desorption/ablation mass spectrometry. The materials analyzed in this study include: jarosite (a hydrous sulfate detected on Mars); magnesium sulfate (a potential component of the subsurface ocean on Europa); uracil (a nucleobase of RNA); and a variety of amino acids. RESULTS The instrument configuration tested here enables: measurement of major elements and organic molecules with ultrahigh mass resolution (m/Δm ≥ 120,000, FWHM); quantification of isotopic abundances with <1.0% (2σ) precision; and identification of highly accurate masses within 3.2 ppm of absolute values. The analysis of a residue of a dilute solution of amino acids demonstrates the capacity to detect twelve amino acids in positive ion mode at concentrations as low as ≤1 pmol/mm2 while maintaining mass resolution and accuracy requirements. CONCLUSIONS The CosmOrbitrap mass analyzer is highly sensitive and delivers mass resolution/accuracy unmatched by any instrument sent into orbit or launched into deep space. This prototype instrument, which maps to a spaceflight implementation, represents a mission-enabling technology capable of advancing planetary exploration for decades to come.
Collapse
Affiliation(s)
- Ricardo Arevalo
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Laura Selliez
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Nathalie Carrasco
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Barnabé Cherville
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Fabrice Colin
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Bertrand Gaubicher
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Benjamin Farcy
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Xiang Li
- Center for Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | | |
Collapse
|
42
|
Xu Y, Xiong B, Chang YC, Ng CY. Quantum-State-Selected Integral Cross Sections and Branching Ratios for the Ion–Molecule Reaction of N2+(X2Σg+: ν+ = 0–2) + C2H4 in the Collision Energy Range of 0.05–10.00 eV. J Phys Chem A 2018; 122:6491-6499. [DOI: 10.1021/acs.jpca.8b04587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuntao Xu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Bo Xiong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yih Chung Chang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Cheuk-Yiu Ng
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
43
|
Jones RM, Goordial JM, Orcutt BN. Low Energy Subsurface Environments as Extraterrestrial Analogs. Front Microbiol 2018; 9:1605. [PMID: 30072971 PMCID: PMC6058055 DOI: 10.3389/fmicb.2018.01605] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.
Collapse
Affiliation(s)
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
44
|
Neish CD, Lorenz RD, Turtle EP, Barnes JW, Trainer MG, Stiles B, Kirk R, Hibbitts CA, Malaska MJ. Strategies for Detecting Biological Molecules on Titan. ASTROBIOLOGY 2018; 18:571-585. [PMID: 29718687 DOI: 10.1089/ast.2017.1758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Saturn's moon Titan has all the ingredients needed to produce "life as we know it." When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry. In this work, we examine the ideal locales to search for evidence of, or progression toward, life on Titan. We determine that the best sites to identify biological molecules are deposits of impact melt on the floors of large, fresh impact craters, specifically Sinlap, Selk, and Menrva craters. We find that it is not possible to identify biomolecules on Titan through remote sensing, but rather through in situ measurements capable of identifying a wide range of biological molecules. Given the nonuniformity of impact melt exposures on the floor of a weathered impact crater, the ideal lander would be capable of precision targeting. This would allow it to identify the locations of fresh impact melt deposits, and/or sites where the melt deposits have been exposed through erosion or mass wasting. Determining the extent of prebiotic chemistry within these melt deposits would help us to understand how life could originate on a world very different from Earth. Key Words: Titan-Prebiotic chemistry-Solar system exploration-Impact processes-Volcanism. Astrobiology 18, 571-585.
Collapse
Affiliation(s)
- Catherine D Neish
- 1 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Ralph D Lorenz
- 2 The Johns Hopkins Applied Physics Laboratory , Laurel, Maryland
| | | | - Jason W Barnes
- 3 Department of Physics, University of Idaho , Moscow, Idaho
| | | | - Bryan Stiles
- 5 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Randolph Kirk
- 6 United States Geological Survey, Astrogeology Science Center , Flagstaff, Arizona
| | | | - Michael J Malaska
- 5 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| |
Collapse
|
45
|
Abplanalp MJ, Jones BM, Kaiser RI. Untangling the methane chemistry in interstellar and solar system ices toward ionizing radiation: a combined infrared and reflectron time-of-flight analysis. Phys Chem Chem Phys 2018; 20:5435-5468. [PMID: 28972622 DOI: 10.1039/c7cp05882a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure methane (CH4/CD4) ices were exposed to three ionizing radiation sources at 5.5 K under ultrahigh vacuum conditions to compare the complex hydrocarbon spectrum produced across several interstellar environments. These irradiation sources consisted of energetic electrons to simulate secondary electrons formed in the track of galactic cosmic rays (GCRs), Lyman α (10.2 eV; 121.6 nm) photons simulated the internal VUV field in a dense cloud, and broadband (112.7-169.8 nm; 11.0-7.3 eV) photons which mimic the interstellar ultra-violet field. The in situ chemical evolution of the ices was monitored via Fourier transform infrared spectroscopy (FTIR) and during heating via mass spectrometry utilizing a quadrupole mass spectrometer with an electron impact ionization source (EI-QMS) and a reflectron time-of-flight mass spectrometer with a photoionization source (PI-ReTOF-MS). The FTIR analysis detected six small hydrocarbon products from the three different irradiation sources: propane [C3H8(C3D8)], ethane [C2H6(C2D6)], the ethyl radical [C2H5(C2D5)], ethylene [C2H4(C2D4)], acetylene [C2H2(C2D2)], and the methyl radical [CH3(CD3)]. The sensitive PI-ReTOF-MS analysis identified a complex array of products with different products being detected between experiments with general formulae: CnH2n+2 (n = 4-8), CnH2n (n = 3-9), CnH2n-2 (n = 3-9), CnH2n-4 (n = 4-9), and CnH2n-6 (n = 6-7) from electron irradiation and CnH2n+2 (n = 4-8), CnH2n (n = 3-10), CnH2n-2 (n = 3-11), CnH2n-4 (n = 4-11), CnH2n-6 (n = 5-11), and CnH2n-8 (n = 6-11) from broadband photolysis and Lyman α photolysis. These experiments show that even the simplest hydrocarbon can produce important complex hydrocarbons such as C3H4 and C4H6 isomers. Distinct isomers from these groups have been shown to be important reactants in the synthesis of polycyclic aromatic hydrocarbons like indene (C9H8) and naphthalene (C10H8) under interstellar conditions.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822, USA.
| | | | | |
Collapse
|
46
|
Olsson-Francis K, Ramkissoon NK, Price AB, Slade DJ, Macey MC, Pearson VK. The Study of Microbial Survival in Extraterrestrial Environments Using Low Earth Orbit and Ground-Based Experiments. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Shebanits O, Vigren E, Wahlund JE, Edberg NJT, Cui J, Mandt KE, Waite JH. Photoionization Modeling of Titan's Dayside Ionosphere. THE ASTROPHYSICAL JOURNAL. LETTERS 2017; 850:L26. [PMID: 31105929 PMCID: PMC6525073 DOI: 10.3847/2041-8213/aa998d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous modeling studies of Titan's dayside ionosphere predict electron number densities that are roughly a factor of 2 higher than those observed by the RPWS/Langmuir probe. The issue can equivalently be described as the ratio between the calculated electron production rates and the square of the observed electron number densities resulting in roughly a factor of 4 higher effective recombination coefficient than expected from the ion composition and the electron temperature. Here we make an extended reassessment of Titan's dayside ionization balance, focusing on 34 flybys between TA and T120. Using a recalibrated data set and by taking the presence of negative ions into account, we arrive at lower effective recombination coefficients compared with earlier studies. The values are still higher than expected from the ion composition and the electron temperature, but by a factor of ~2-3 instead of a factor of ~4. We have also investigated whether the derived effective recombination coefficients display dependencies on the solar zenith angle (SZA), the integrated solar EUV intensity (<80 nm), and the corotational plasma ram direction (RAM), and found statistically significant trends, which may be explained by a declining photoionization against the background ionization by magnetospheric particles (trends in SZA and RAM) and altered photochemistry (trend in EUV). We find that a series of flybys that occurred during solar minimum (2008) and with similar flyby geometries are associated with enhanced values of the effective recombination coefficient compared with the remaining data set, which also suggests a chemistry dependence on the sunlight conditions.
Collapse
Affiliation(s)
- O Shebanits
- Swedish Institute of Space Physics, Uppsala, Sweden
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - E Vigren
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - J-E Wahlund
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - N J T Edberg
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - J Cui
- School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - K E Mandt
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
| | - J H Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
| |
Collapse
|
48
|
|
49
|
The formation and evolution of Titan's winter polar vortex. Nat Commun 2017; 8:1586. [PMID: 29162820 PMCID: PMC5698511 DOI: 10.1038/s41467-017-01839-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/18/2017] [Indexed: 11/09/2022] Open
Abstract
Saturn’s largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan’s 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter polar vortex formation. Throughout 2010–2011, strengthening subsidence produced a mesospheric hot-spot and caused extreme enrichment of photochemically produced trace gases. However, in 2012 unexpected and rapid mesospheric cooling was observed. Here we show extreme trace gas enrichment within the polar vortex dramatically increases mesospheric long-wave radiative cooling efficiency, causing unusually cold temperatures 2–6 years post-equinox. The long time-frame to reach a stable vortex configuration results from the high infrared opacity of Titan’s trace gases and the relatively long atmospheric radiative time constant. Winter polar hot-spots have been observed on other planets, but detection of post-equinox cooling is so far unique to Titan. The polar hot-spot appeared in Titan after equinox in 2010 suddenly cooled in early 2012, which wasn’t predicted by models. Here the authors use observations to show that the increase in trace gases during the hot-spot resulted in radiative cooling feedback.
Collapse
|
50
|
Ozgurel O, Pauzat F, Pilmé J, Ellinger Y, Bacchus-Montabonel MC, Mousis O. Protonated ions as systemic trapping agents for noble gases: From electronic structure to radiative association. J Chem Phys 2017; 147:134305. [DOI: 10.1063/1.4994630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|