1
|
You Q, Zhang C, Wang Y, Bi X, Li Z, Zhang L, Zhang D, Fang Y, Wang P. Biexcitons-plasmon coupling of Ag@Au hollow nanocube/MoS 2 heterostructures based on scattering spectra. OPTICS EXPRESS 2024; 32:9105-9115. [PMID: 38571151 DOI: 10.1364/oe.515667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 04/05/2024]
Abstract
The strong interaction between light and matter is one of the current research hotspots in the field of nanophotonics, and provides a suitable platform for fundamental physics research such as on nanolasers, high-precision sensing in biology, quantum communication and quantum computing. In this study, double Rabi splitting was achieved in a composite structure monolayer MoS2 and a single Ag@Au hollow nanocube (HNC) in room temperature mainly due to the two excitons in monolayer MoS2. Moreover, the tuning of the plasmon resonance peak was realized in the scattering spectrum by adjusting the thickness of the shell to ensure it matches the energy of the two excitons. Two distinct anticrossings are observed at both excitons resonances, and large double Rabi splittings (90 meV and 120 meV) are obtained successfully. The finite-difference time domain (FDTD) method was also used to simulate the scattering spectra of the nanostructures, and the simulation results were in good agreement with the experimental results. Additionally, the local electromagnetic field ability of the Ag@Au hollow HNC was proved to be stronger by calculating and comparing the mode volume of different nanoparticles. Our findings provides a good platform for the realization of strong multi-mode coupling and open up a new way to construct nanoscale photonic devices.
Collapse
|
2
|
Fukami M, Marcks JC, Candido DR, Weiss LR, Soloway B, Sullivan SE, Delegan N, Heremans FJ, Flatté ME, Awschalom DD. Magnon-mediated qubit coupling determined via dissipation measurements. Proc Natl Acad Sci U S A 2024; 121:e2313754120. [PMID: 38165926 PMCID: PMC10786302 DOI: 10.1073/pnas.2313754120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 01/04/2024] Open
Abstract
Controlled interaction between localized and delocalized solid-state spin systems offers a compelling platform for on-chip quantum information processing with quantum spintronics. Hybrid quantum systems (HQSs) of localized nitrogen-vacancy (NV) centers in diamond and delocalized magnon modes in ferrimagnets-systems with naturally commensurate energies-have recently attracted significant attention, especially for interconnecting isolated spin qubits at length-scales far beyond those set by the dipolar coupling. However, despite extensive theoretical efforts, there is a lack of experimental characterization of the magnon-mediated interaction between NV centers, which is necessary to develop such hybrid quantum architectures. Here, we experimentally determine the magnon-mediated NV-NV coupling from the magnon-induced self-energy of NV centers. Our results are quantitatively consistent with a model in which the NV center is coupled to magnons by dipolar interactions. This work provides a versatile tool to characterize HQSs in the absence of strong coupling, informing future efforts to engineer entangled solid-state systems.
Collapse
Affiliation(s)
- Masaya Fukami
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Jonathan C. Marcks
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| | - Denis R. Candido
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA52242
| | - Leah R. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Advanced Institute for Materials Research, Tohoku University, Sendai980-8577, Japan
| | - Benjamin Soloway
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Sean E. Sullivan
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| | - Nazar Delegan
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| | - F. Joseph Heremans
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| | - Michael E. Flatté
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA52242
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven5600 MB, Netherlands
| | - David D. Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| |
Collapse
|
3
|
Yang L, Yuan Y, Fu B, Yang J, Dai D, Shi S, Yan S, Zhu R, Han X, Li H, Zuo Z, Wang C, Huang Y, Jin K, Gong Q, Xu X. Revealing broken valley symmetry of quantum emitters in WSe 2 with chiral nanocavities. Nat Commun 2023; 14:4265. [PMID: 37460549 DOI: 10.1038/s41467-023-39972-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Single photon emission of quantum emitters (QEs) carrying internal degrees of freedom such as spin and angular momentum plays an important role in quantum optics. Recently, QEs in two-dimensional semiconductors have attracted great interest as promising quantum light sources. However, whether those QEs are characterized by the same valley physics as delocalized valley excitons is still under debate. Moreover, the potential applications of such QEs still need to be explored. Here we show experimental evidence of valley symmetry breaking for neutral QEs in WSe2 monolayer by interacting with chiral plasmonic nanocavities. The anomalous magneto-optical behaviour of the coupled QEs suggests that the polarization state of emitted photon is modulated by the chiral nanocavity instead of the valley-dependent optical selection rules. Calculations of cavity quantum electrodynamics further show the absence of intrinsic valley polarization. The cavity-dependent circularly polarized single-photon output also offers a strategy for future applications in chiral quantum optics.
Collapse
Affiliation(s)
- Longlong Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Yuan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Fu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Jingnan Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Danjie Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shushu Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sai Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hancong Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Zhanchun Zuo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Xiulai Xu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China.
| |
Collapse
|
4
|
Zheng H, Bai Y, Zhang Q, Liu S. Multi-mode strong coupling in Fabry-Pérot cavity-WS 2 photonic crystal hybrid structures. OPTICS EXPRESS 2023; 31:24976-24987. [PMID: 37475312 DOI: 10.1364/oe.496305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Optical microcavities embedded with transition metal dichalcogenide (TMDC) membranes have been demonstrated as excellent platforms to explore strong light-matter interactions. Most of the previous studies focus on strong coupling between excitons of unpatterned TMDC membranes and optical resonances of various microcavities. It is recently found that TMDC membranes patterned into photonic crystal (PhC) slabs can sustain guided-mode resonances that can be excited and probed by far-fields. Here, we present a comprehensive theoretical and numerical study on optical responses of Fabry-Pérot (F-P) cavity-WS2 PhC hybrid structures to investigate the multi-mode coupling effects between excitons, guided-mode resonances and F-P modes. We show that both the exciton resonance and the guide-mode resonance of the WS2 PhC can strongly interact with F-P modes of the cavity to reach strong coupling regime. Moreover, a Rabi splitting as large as 63 meV is observed for the strong coupling between the guided-mode resonance and the F-P mode, which is much larger than their average dissipation rate. We further demonstrate that it is even possible to realize a triple mode strong coupling by tuning the guide-mode resonances spectrally overlapped with the exciton resonance and the F-P modes. The hybrid polariton states generated from the triple mode coupling exhibit a Rabi splitting of 120 meV that greatly exceeds the criterion of a triple mode strong coupling (∼29.3 meV). Our results provide that optical microcavities embedded with TMDC PhCs can serve as promising candidates for polariton devices based on multi-mode strong coupling.
Collapse
|
5
|
Lin T, Gu SS, Xu YQ, Jiang SL, Ye SK, Wang BC, Li HO, Guo GC, Zou CL, Hu X, Cao G, Guo GP. Collective Microwave Response for Multiple Gate-Defined Double Quantum Dots. NANO LETTERS 2023; 23:4176-4182. [PMID: 37133858 DOI: 10.1021/acs.nanolett.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high-impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity (Ctotal > 17.6) interaction between the qubit ensemble and the resonator, we tune the charge-photon coupling and observe the collective microwave response changing from linear to nonlinear. Our results present the maximum number of DQDs coupled to a resonator and manifest a potential platform for scaling up qubits and studying collective quantum effects in semiconductor-superconductor hybrid cavity quantum electrodynamics systems.
Collapse
Affiliation(s)
- Ting Lin
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Si-Si Gu
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Qiang Xu
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shun-Li Jiang
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu-Kun Ye
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bao-Chuan Wang
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Ou Li
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guang-Can Guo
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chang-Ling Zou
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xuedong Hu
- Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260-1500, United States of America
| | - Gang Cao
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guo-Ping Guo
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Origin Quantum Computing Company Limited, Hefei, Anhui 230088, China
| |
Collapse
|
6
|
Pérez-González B, Gómez-León Á, Platero G. Topology detection in cavity QED. Phys Chem Chem Phys 2022; 24:15860-15870. [PMID: 35758058 DOI: 10.1039/d2cp01806c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We explore the physics of topological lattice models immersed in c-QED architectures for arbitrary coupling strength with the photon field. We propose the use of the cavity transmission as a topological marker and study its behaviour. For this, we develop an approach combining the input-output formalism with a Mean-Field plus fluctuations description of the setup. We illustrate our results with the specific case of a fermionic Su-Schrieffer-Heeger (SSH) chain coupled to a single-mode cavity. Our findings confirm that the cavity can indeed act as a quantum sensor for topological phases, where the initial state preparation plays a crucial role. Additionally, we discuss the persistence of topological features when the coupling strength increases, in terms of an effective Hamiltonian, and calculate the entanglement entropy. Our approach can be applied to other fermionic systems, opening a route to the characterization of their topological properties in terms of experimental observables.
Collapse
Affiliation(s)
- Beatriz Pérez-González
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Calle Sor Juana Inés de la Cruz, n°3, 28049 Madrid, Spain.
| | - Álvaro Gómez-León
- Instituto de Física Fundamental, IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain
| | - Gloria Platero
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Calle Sor Juana Inés de la Cruz, n°3, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Deng F, Huang H, Chen JD, Liu S, Pang H, He X, Lan S. Greatly Enhanced Plasmon-Exciton Coupling in Si/WS 2/Au Nanocavities. NANO LETTERS 2022; 22:220-228. [PMID: 34962400 DOI: 10.1021/acs.nanolett.1c03576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A strong light-matter interaction is highly desirable from the viewpoint of both fundamental research and practical application. Here, we propose a dielectric-metal hybrid nanocavity composed of a silicon (Si) nanoparticle and a thin gold (Au) film and investigate numerically and experimentally the coupling between the plasmons supported by the nanocavity and the excitons in an embedded tungsten disulfide (WS2) monolayer. When a Si/WS2/Au nanocavity is excited by the surface plasmon polariton generated on the surface of the Au film, greatly enhanced plasmon-exciton coupling originating from the hybridization of the surface plasmon polariton, the mirror-image-induced magnetic dipole, and the exciton modes is clearly revealed in the angle- or size-resolved scattering spectra. A Rabi splitting as large as ∼240 meV is extracted by fitting the experimental data with a coupled harmonic oscillator model containing three oscillators. Our findings open new horizons for constructing nanoscale photonic devices by exploiting dielectric-metal hybrid nanocavities.
Collapse
Affiliation(s)
- Fu Deng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Hongxin Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jing-Dong Chen
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Shimei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Huajian Pang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xiaobing He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
8
|
Edge Caching in Fog-Based Sensor Networks through Deep Learning-Associated Quantum Computing Framework. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6138434. [PMID: 35035461 PMCID: PMC8759837 DOI: 10.1155/2022/6138434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022]
Abstract
Fog computing (FC) based sensor networks have emerged as a propitious archetype for next-generation wireless communication technology with caching, communication, and storage capacity services in the edge. Mobile edge computing (MEC) is a new era of digital communication and has a rising demand for intelligent devices and applications. It faces performance deterioration and quality of service (QoS) degradation problems, especially in the Internet of Things (IoT) based scenarios. Therefore, existing caching strategies need to be enhanced to augment the cache hit ratio and manage the limited storage to accelerate content deliveries. Alternatively, quantum computing (QC) appears to be a prospect of more or less every typical computing problem. The framework is basically a merger of a deep learning (DL) agent deployed at the network edge with a quantum memory module (QMM). Firstly, the DL agent prioritizes caching contents via self organizing maps (SOMs) algorithm, and secondly, the prioritized contents are stored in QMM using a Two-Level Spin Quantum Phenomenon (TLSQP). After selecting the most appropriate lattice map (32 × 32) in 750,000 iterations using SOMs, the data points below the dark blue region are mapped onto the data frame to get the videos. These videos are considered a high priority for trending according to the input parameters provided in the dataset. Similarly, the light-blue color region is also mapped to get medium-prioritized content. After the SOMs algorithm's training, the topographic error (TE) value together with quantization error (QE) value (i.e., 0.0000235) plotted the most appropriate map after 750,000 iterations. In addition, the power of QC is due to the inherent quantum parallelism (QP) associated with the superposition and entanglement principles. A quantum computer taking “n” qubits that can be stored and execute 2n presumable combinations of qubits simultaneously reduces the utilization of resources compared to conventional computing. It can be analyzed that the cache hit ratio will be improved by ranking the content, removing redundant and least important content, storing the content having high and medium prioritization using QP efficiently, and delivering precise results. The experiments for content prioritization are conducted using Google Colab, and IBM's Quantum Experience is considered to simulate the quantum phenomena.
Collapse
|
9
|
Pang H, Huang H, Zhou L, Mao Y, Deng F, Lan S. Strong Dipole-Quadrupole-Exciton Coupling Realized in a Gold Nanorod Dimer Placed on a Two-Dimensional Material. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1619. [PMID: 34203113 PMCID: PMC8235324 DOI: 10.3390/nano11061619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Simple systems in which strong coupling of different excitations can be easily realized are highly important, not only for fundamental research but also for practical applications. Here, we proposed a T-shaped gold nanorod (GNR) dimer composed of a long GNR and a short GNR perpendicular to each other and revealed that the dark quadrupole mode of the long GNR can be activated by utilizing the dipole mode excited in the short GNR. It was found that the strong coupling between the dipole and quadrupole modes can be achieved by exciting the T-shaped GNR dimer with a plane wave. Then, we demonstrated the realization of strong dipole-quadrupole-exciton coupling by placing a T-shaped GNR on a tungsten disulfide (WS2) monolayer, which leads to a Rabi splitting as large as ~299 meV. It was confirmed that the simulation results can be well fitted by using a Hamiltonian based on the coupled harmonic oscillator model and the coupling strengths for dipole-quadrupole, dipole-exciton and quadrupole-exciton can be extracted from the fitting results. Our findings open new horizons for realizing strong plasmon-exciton coupling in simple systems and pave the way for constructing novel plasmonic devices for practical applications.
Collapse
Affiliation(s)
- Huajian Pang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| | - Hongxin Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| | - Lidan Zhou
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| | - Yuheng Mao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| | - Fu Deng
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| |
Collapse
|
10
|
Wang B, Lin T, Li H, Gu S, Chen M, Guo G, Jiang H, Hu X, Cao G, Guo G. Correlated spectrum of distant semiconductor qubits coupled by microwave photons. Sci Bull (Beijing) 2021; 66:332-338. [PMID: 36654412 DOI: 10.1016/j.scib.2020.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 01/20/2023]
Abstract
We develop a new spectroscopic method to quickly and intuitively characterize the coupling of two microwave-photon-coupled semiconductor qubits via a high-impedance resonator. Highly distinctive and unique geometric patterns are revealed as we tune the qubit tunnel couplings relative to the frequency of the mediating photons. These patterns are in excellent agreement with a simulation using the Tavis-Cummings model, and allow us to readily identify different parameter regimes for both qubits in the detuning space. This method could potentially be an important component in the overall spectroscopic toolbox for quickly characterizing certain collective properties of multiple cavity quantum electrodynamics (QED) coupled qubits.
Collapse
Affiliation(s)
- Baochuan Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ting Lin
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Haiou Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Sisi Gu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mingbo Chen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guangcan Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hongwen Jiang
- Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xuedong Hu
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA
| | - Gang Cao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Guoping Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; Origin Quantum Computing Company Limited, Hefei 230026, China.
| |
Collapse
|
11
|
Zhong Y, Chang HS, Bienfait A, Dumur É, Chou MH, Conner CR, Grebel J, Povey RG, Yan H, Schuster DI, Cleland AN. Deterministic multi-qubit entanglement in a quantum network. Nature 2021; 590:571-575. [PMID: 33627810 DOI: 10.1038/s41586-021-03288-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023]
Abstract
The generation of high-fidelity distributed multi-qubit entanglement is a challenging task for large-scale quantum communication and computational networks1-4. The deterministic entanglement of two remote qubits has recently been demonstrated with both photons5-10 and phonons11. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily owing to limited state-transfer fidelities. Here we report a quantum network comprising two superconducting quantum nodes connected by a one-metre-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the cable to one qubit in each node, we transfer quantum states between the nodes with a process fidelity of 0.911 ± 0.008. We also prepare a three-qubit Greenberger-Horne-Zeilinger (GHZ) state12-14 in one node and deterministically transfer this state to the other node, with a transferred-state fidelity of 0.656 ± 0.014. We further use this system to deterministically generate a globally distributed two-node, six-qubit GHZ state with a state fidelity of 0.722 ± 0.021. The GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite entanglement15, showing that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers16,17.
Collapse
Affiliation(s)
- Youpeng Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hung-Shen Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Audrey Bienfait
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France
| | - Étienne Dumur
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Institute for Molecular Engineering and Material Science Division, Argonne National Laboratory, Argonne, IL, USA.,Université Grenoble Alpes, CEA, INAC-Pheliqs, Grenoble, France
| | - Ming-Han Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Christopher R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Joel Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Rhys G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Haoxiong Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - David I Schuster
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Andrew N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA. .,Institute for Molecular Engineering and Material Science Division, Argonne National Laboratory, Argonne, IL, USA.
| |
Collapse
|
12
|
Song C, Yuan X, Huang C, Huang S, Xing Q, Wang C, Zhang C, Xie Y, Lei Y, Wang F, Mu L, Zhang J, Xiu F, Yan H. Plasmons in the van der Waals charge-density-wave material 2H-TaSe 2. Nat Commun 2021; 12:386. [PMID: 33452268 PMCID: PMC7810790 DOI: 10.1038/s41467-020-20720-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022] Open
Abstract
Plasmons in two-dimensional (2D) materials beyond graphene have recently gained much attention. However, the experimental investigation is limited due to the lack of suitable materials. Here, we experimentally demonstrate localized plasmons in a correlated 2D charge-density-wave (CDW) material: 2H-TaSe2. The plasmon resonance can cover a broad spectral range from the terahertz (40 μm) to the telecom (1.55 μm) region, which is further tunable by changing thickness and dielectric environments. The plasmon dispersion flattens at large wave vectors, resulted from the universal screening effect of interband transitions. More interestingly, anomalous temperature dependence of plasmon resonances associated with CDW excitations is observed. In the CDW phase, the plasmon peak close to the CDW excitation frequency becomes wider and asymmetric, mimicking two coupled oscillators. Our study not only reveals the universal role of the intrinsic screening on 2D plasmons, but also opens an avenue for tunable plasmons in 2D correlated materials.
Collapse
Affiliation(s)
- Chaoyu Song
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Xiang Yuan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Ce Huang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Shenyang Huang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Qiaoxia Xing
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Chong Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Cheng Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, 200433, Shanghai, China
| | - Yuangang Xie
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Yuchen Lei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Fanjie Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Lei Mu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Jiasheng Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Faxian Xiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, 200433, Shanghai, China
- Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China
| | - Hugen Yan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 200433, Shanghai, China.
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China.
| |
Collapse
|
13
|
Jiang Y, Wang H, Wen S, Chen H, Deng S. Resonance Coupling in an Individual Gold Nanorod-Monolayer WS 2 Heterostructure: Photoluminescence Enhancement with Spectral Broadening. ACS NANO 2020; 14:13841-13851. [PMID: 32820891 DOI: 10.1021/acsnano.0c06220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, resonance coupling between plasmonic nanocavity and two-dimensional semiconductors has attracted considerable attention. Most of the previous studies have focused on demonstrating this effect with light scattering or reflection spectroscopy, while the photoluminescence (PL) spectrum can help ascertain the underlying physics. Here, we report on the light-emitting characteristics of a monolayer WS2 flake coupled with a plasmonic gold nanorod. We construct a heterostructure by integrating an individual gold nanorod on top of a small piece of monolayer WS2, where the WS2 area is determined by the projected area of the nanorod. In such a heterostructure, the background PL from the uncoupled WS2 can be suppressed, which allows us to characterize the resonance coupling effect using correlated single-particle dark-field (DF) scattering and PL spectroscopies. Distinct mode splitting and anticrossing dispersion are observed in the scattering spectra, which originate from the resonance coupling between the excitons in the WS2 and plasmon resonance in the gold nanorod. In addition, a 1187-fold enhancement is obtained for the light emitted from the heterostructure relative to that of the pristine monolayer WS2. The emission spectra are broadened with mode-splitting features at room temperature, which can be further decomposed into two resonance modes using a coupled mode analysis. Moreover, two PL modes are polarized along the longitudinal axis of the gold nanorod. These findings show the potential of the designed individual gold nanorod-monolayer WS2 heterostructure as a platform for studying the resonance coupling effect between plasmon resonance and two-dimensional excitons.
Collapse
Affiliation(s)
- Yinzhu Jiang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shiya Wen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
McRae CRH, Wang H, Gao J, Vissers MR, Brecht T, Dunsworth A, Pappas DP, Mutus J. Materials loss measurements using superconducting microwave resonators. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:091101. [PMID: 33003823 DOI: 10.1063/5.0017378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The performance of superconducting circuits for quantum computing is limited by materials losses. In particular, coherence times are typically bounded by two-level system (TLS) losses at single photon powers and millikelvin temperatures. The identification of low loss fabrication techniques, materials, and thin film dielectrics is critical to achieving scalable architectures for superconducting quantum computing. Superconducting microwave resonators provide a convenient qubit proxy for assessing performance and studying TLS loss and other mechanisms relevant to superconducting circuits such as non-equilibrium quasiparticles and magnetic flux vortices. In this review article, we provide an overview of considerations for designing accurate resonator experiments to characterize loss, including applicable types of losses, cryogenic setup, device design, and methods for extracting material and interface losses, summarizing techniques that have been evolving for over two decades. Results from measurements of a wide variety of materials and processes are also summarized. Finally, we present recommendations for the reporting of loss data from superconducting microwave resonators to facilitate materials comparisons across the field.
Collapse
Affiliation(s)
- C R H McRae
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - H Wang
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - J Gao
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - M R Vissers
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - T Brecht
- HRL Laboratories, Malibu, California 90265, USA
| | - A Dunsworth
- Google, Inc., Mountain View, California 94043, USA
| | - D P Pappas
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - J Mutus
- Boulder Cryogenic Quantum Testbed, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
15
|
Chang HS, Zhong YP, Bienfait A, Chou MH, Conner CR, Dumur É, Grebel J, Peairs GA, Povey RG, Satzinger KJ, Cleland AN. Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System. PHYSICAL REVIEW LETTERS 2020; 124:240502. [PMID: 32639797 DOI: 10.1103/physrevlett.124.240502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Effective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primarily by loss in the communication channel [P. Kurpiers et al., Nature (London) 558, 264 (2018)NATUAS0028-083610.1038/s41586-018-0195-y; C. J. Axline et al., Nat. Phys. 14, 705 (2018)NPAHAX1745-247310.1038/s41567-018-0115-y; P. Campagne-Ibarcq et al., Phys. Rev. Lett. 120, 200501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.200501; N. Leung et al., npj Quantum Inf. 5, 18 (2019)2056-638710.1038/s41534-019-0128-0; Y. P. Zhong et al., Nat. Phys. 15, 741 (2019)NPAHAX1745-247310.1038/s41567-019-0507-7; A. Bienfait et al., Science 364, 368 (2019)SCIEAS0036-807510.1126/science.aaw8415]. Adiabatic protocols can overcome channel loss by transferring quantum states without populating the lossy communication channel. Here, we present a unique superconducting quantum communication system, comprising two superconducting qubits connected by a 0.73 m-long communication channel. Significantly, we can introduce large tunable loss to the channel, allowing exploration of different entanglement protocols in the presence of dissipation. When set for minimum loss in the channel, we demonstrate an adiabatic quantum state transfer protocol that achieves 99% transfer efficiency as well as the deterministic generation of entangled Bell states with a fidelity of 96%, all without populating the intervening communication channel, and competitive with a qubit-resonant mode-qubit relay method. We also explore the performance of the adiabatic protocol in the presence of significant channel loss, and show that the adiabatic protocol protects against loss in the channel, achieving higher state transfer and entanglement fidelities than the relay method.
Collapse
Affiliation(s)
- H-S Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Y P Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - A Bienfait
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - M-H Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - C R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - É Dumur
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - G A Peairs
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - R G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - K J Satzinger
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - A N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
16
|
Singh R, Sarkar A, Guria C, Nicholl RJT, Chakraborty S, Bolotin KI, Ghosh S. Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator. NANO LETTERS 2020; 20:4659-4666. [PMID: 32437616 DOI: 10.1021/acs.nanolett.0c01586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High quality factor mechanical resonators have shown great promise in the development of classical and quantum technologies. Simultaneously, progress has been made in developing controlled mechanical nonlinearity. Here, we combine these two directions of progress in a single platform consisting of coupled silicon nitride (SiNx) and graphene mechanical resonators. We show that nonlinear response can be induced on a large area SiNx resonator mode and can be efficiently controlled by coupling it to a gate-tunable, freely suspended graphene mode. The induced nonlinear response of the hybrid modes, as measured on the SiNx resonator surface is giant, with one of the highest measured Duffing constants. We observe a novel phononic frequency comb which we use as an alternate validation of the measured values, along with numerical simulations which are in overall agreement with the measurements.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physics, Indian Institute of Technology, Kanpur UP-208016, India
| | - Arnab Sarkar
- Department of Physics, Indian Institute of Technology, Kanpur UP-208016, India
| | - Chitres Guria
- Department of Physics, Indian Institute of Technology, Kanpur UP-208016, India
| | - Ryan J T Nicholl
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology, Kanpur UP-208016, India
| | - Kirill I Bolotin
- Department of Physics, Freie Universitat Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Saikat Ghosh
- Department of Physics, Indian Institute of Technology, Kanpur UP-208016, India
| |
Collapse
|
17
|
Pan F, Smith KC, Nguyen HL, Knapper KA, Masiello DJ, Goldsmith RH. Elucidating Energy Pathways through Simultaneous Measurement of Absorption and Transmission in a Coupled Plasmonic-Photonic Cavity. NANO LETTERS 2020; 20:50-58. [PMID: 31424952 DOI: 10.1021/acs.nanolett.9b02796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Control of light-matter interactions is central to numerous advances in quantum communication, information, and sensing. The relative ease with which interactions can be tailored in coupled plasmonic-photonic systems makes them ideal candidates for investigation. To exert control over the interaction between photons and plasmons, it is essential to identify the underlying energy pathways which influence the system's dynamics and determine the critical system parameters, such as the coupling strength and dissipation rates. However, in coupled systems which dissipate energy through multiple competing pathways, simultaneously resolving all parameters from a single experiment is challenging as typical observables such as absorption and scattering each probe only a particular path. In this work, we simultaneously measure both photothermal absorption and two-sided optical transmission in a coupled plasmonic-photonic resonator consisting of plasmonic gold nanorods deposited on a toroidal whispering-gallery-mode optical microresonator. We then present an analytical model which predicts and explains the distinct line shapes observed and quantifies the contribution of each system parameter. By combining this model with experiment, we extract all system parameters with a dynamic range spanning 9 orders of magnitude. Our combined approach provides a full description of plasmonic-photonic energy dynamics in a weakly coupled optical system, a necessary step for future applications that rely on tunability of dissipation and coupling.
Collapse
Affiliation(s)
- Feng Pan
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1322 , United States
| | - Kevin C Smith
- Department of Physics , University of Washington , Seattle , Washington 98195-1560 , United States
| | - Hoang L Nguyen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1322 , United States
| | - Kassandra A Knapper
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1322 , United States
| | - David J Masiello
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Randall H Goldsmith
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1322 , United States
| |
Collapse
|
18
|
Resonant microwave-mediated interactions between distant electron spins. Nature 2019; 577:195-198. [PMID: 31875849 DOI: 10.1038/s41586-019-1867-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/30/2019] [Indexed: 11/08/2022]
Abstract
Nonlocal qubit interactions are a hallmark of advanced quantum information technologies1-5. The ability to transfer quantum states and generate entanglement over distances much larger than qubit length scales greatly increases connectivity and is an important step towards maximal parallelism and the implementation of two-qubit gates on arbitrary pairs of qubits6. Qubit-coupling schemes based on cavity quantum electrodynamics2,7,8 also offer the possibility of using high-quality-factor resonators as quantum memories3,9. Extending qubit interactions beyond the nearest neighbour is particularly beneficial for spin-based quantum computing architectures, which are limited by short-range exchange interactions10. Despite the rapidly maturing device technology for silicon spin qubits11-16, experimental progress towards achieving long-range spin-spin coupling has so far been restricted to interactions between individual spins and microwave photons17-20. Here we demonstrate resonant microwave-mediated coupling between two electron spins that are physically separated by more than four millimetres. An enhanced vacuum Rabi splitting is observed when both spins are tuned into resonance with the cavity, indicating a coherent interaction between the two spins and a cavity photon. Our results imply that microwave-frequency photons may be used to generate long-range two-qubit gates between spatially separated spins.
Collapse
|
19
|
Enhancing the dipolar coupling of a S-T 0 qubit with a transverse sweet spot. Nat Commun 2019; 10:5641. [PMID: 31822678 PMCID: PMC6904552 DOI: 10.1038/s41467-019-13548-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/12/2019] [Indexed: 11/15/2022] Open
Abstract
A fundamental challenge for quantum dot spin qubits is to extend the strength and range of qubit interactions while suppressing their coupling to the environment, since both effects have electrical origins. Key tools include the ability to take advantage of physical resources in different regimes, and to access optimal working points, sweet spots, where dephasing is minimized. Here, we explore an important resource for singlet-triplet qubits: a transverse sweet spot (TSS) that enables transitions between qubit states, a strong dipolar coupling, and leading-order protection from electrical fluctuations. Of particular interest is the possibility of transitioning between the TSS and symmetric operating points while remaining continuously protected. This arrangement is ideal for coupling qubits to a microwave cavity, because it combines tunability of the coupling with noise insensitivity. We perform simulations with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1/f$$\end{document}1∕f-type electrical noise, demonstrating that two-qubit gates mediated by a resonator can achieve fidelities >99% under realistic conditions. Semiconductor quantum dots are controlled by external fields that are tuned in order to optimise for information storage or inter-qubit interaction. Here the authors identify a working point for long-range interactions that can be reached with continuous protection from environmental noise.
Collapse
|
20
|
Müller C, Cole JH, Lisenfeld J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:124501. [PMID: 31404914 DOI: 10.1088/1361-6633/ab3a7e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amorphous solids show surprisingly universal behaviour at low temperatures. The prevailing wisdom is that this can be explained by the existence of two-state defects within the material. The so-called standard tunneling model has become the established framework to explain these results, yet it still leaves the central question essentially unanswered-what are these two-level defects (TLS)? This question has recently taken on a new urgency with the rise of superconducting circuits in quantum computing, circuit quantum electrodynamics, magnetometry, electrometry and metrology. Superconducting circuits made from aluminium or niobium are fundamentally limited by losses due to TLS within the amorphous oxide layers encasing them. On the other hand, these circuits also provide a novel and effective method for studying the very defects which limit their operation. We can now go beyond ensemble measurements and probe individual defects-observing the quantum nature of their dynamics and studying their formation, their behaviour as a function of applied field, strain, temperature and other properties. This article reviews the plethora of recent experimental results in this area and discusses the various theoretical models which have been used to describe the observations. In doing so, it summarises the current approaches to solving this fundamentally important problem in solid-state physics.
Collapse
Affiliation(s)
- Clemens Müller
- IBM Research Zurich, 8803 Rüschlikon, Switzerland. Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland. ARC Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
21
|
Abstract
Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both qubit types on the same chip over a distance that is several orders of magnitude longer than the physical size of the spin qubit. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We spectroscopically observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons. Different qubit platforms each have their own advantages and disadvantages. By engineering couplings between them it may be possible to create a more capable hybrid device. Here the authors demonstrate coherent coupling between a semiconductor spin qubit and a superconducting transmon.
Collapse
|
22
|
Abdullah NR, Tang CS, Manolescu A, Gudmundsson V. The photocurrent generated by photon replica states of an off-resonantly coupled dot-cavity system. Sci Rep 2019; 9:14703. [PMID: 31604993 PMCID: PMC6789108 DOI: 10.1038/s41598-019-51320-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
Transport properties of a quantum dot coupled to a photon cavity are investigated using a quantum master equation in the steady-state regime. In the off-resonance regime, when the photon energy is smaller than the energy spacing between the lowest electron states of the quantum dot, we calculate the current that is generated by photon replica states as the electronic system is pumped with photons. Tuning the electron-photon coupling strength, the photocurrent can be enhanced by the influences of the photon polarization, and the cavity-photon coupling strength of the environment. We show that the current generated through the photon replicas is very sensitive to the photon polarization, but it is not strongly dependent on the average number of photons in the environment.
Collapse
Affiliation(s)
- Nzar Rauf Abdullah
- Division of Computational Nanoscience, Physics Department, College of Science, University of Sulaimani, Sulaimani, 46001, Kurdistan Region, Iraq. .,Komar Research Center, Komar University of Science and Technology, Sulaimani, 46001, Kurdistan Region, Iraq.
| | - Chi-Shung Tang
- Department of Mechanical Engineering, National United University, 2, Lienda, Miaoli, 36003, Taiwan
| | - Andrei Manolescu
- Reykjavik University, School of Science and Engineering, Menntavegur 1, IS-101, Reykjavik, Iceland
| | - Vidar Gudmundsson
- Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland.
| |
Collapse
|
23
|
Abdullah NR, Tang CS, Manolescu A, Gudmundsson V. Manifestation of the Purcell Effect in Current Transport through a Dot-Cavity-QED System. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1023. [PMID: 31319544 PMCID: PMC6669877 DOI: 10.3390/nano9071023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022]
Abstract
We study the transport properties of a wire-dot system coupled to a cavity and a photon reservoir. The system is considered to be microstructured from a two-dimensional electron gas in a GaAs heterostructure. The 3D photon cavity is active in the far-infrared or the terahertz regime. Tuning the photon energy, Rabi-resonant states emerge and in turn resonant current peaks are observed. We demonstrate the effects of the cavity-photon reservoir coupling, the mean photon number in the reservoir, the electron-photon coupling and the photon polarization on the intraband transitions occurring between the Rabi-resonant states, and on the corresponding resonant current peaks. The Rabi-splitting can be controlled by the photon polarization and the electron-photon coupling strength. In the selected range of the parameters, the electron-photon coupling and the cavity-environment coupling strengths, we observe the results of the Purcell effect enhancing the current peaks through the cavity by increasing the cavity-reservoir coupling, while they decrease with increasing electron-photon coupling. In addition, the resonant current peaks are also sensitive to the mean number of photons in the reservoir.
Collapse
Affiliation(s)
- Nzar Rauf Abdullah
- Physics Department, College of Science, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq.
- Komar Research Center, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Region, Iraq.
| | - Chi-Shung Tang
- Department of Mechanical Engineering, National United University, 2, Lienda, Miaoli 36063, Taiwan
| | - Andrei Manolescu
- School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland
| | - Vidar Gudmundsson
- Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| |
Collapse
|
24
|
Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit. Nat Commun 2019; 10:3011. [PMID: 31285437 PMCID: PMC6614454 DOI: 10.1038/s41467-019-10798-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/28/2019] [Indexed: 12/04/2022] Open
Abstract
Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots. They constitute a promising approach to quantum information processing, complementary to superconducting qubits. Here, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus. The transmon-charge qubit coherent coupling rate (~21 MHz) exceeds the linewidth of both the transmon (~0.8 MHz) and the DQD charge qubit (~2.7 MHz). By tuning the qubits into resonance for a controlled amount of time, we observe coherent oscillations between the constituents of this hybrid quantum system. These results enable a new class of experiments exploring the use of two-qubit interactions mediated by microwave photons to create entangled states between semiconductor and superconducting qubits. Hybrid quantum devices combine different platforms with the prospect of exploiting the advantages of each. Scarlino et al. demonstrate strong, coherent coupling between a semiconductor qubit and a superconducting qubit by using a high-impedance superconducting resonator as a quantum bus.
Collapse
|
25
|
Wang R, Deacon RS, Sun J, Yao J, Lieber CM, Ishibashi K. Gate Tunable Hole Charge Qubit Formed in a Ge/Si Nanowire Double Quantum Dot Coupled to Microwave Photons. NANO LETTERS 2019; 19:1052-1060. [PMID: 30636426 DOI: 10.1021/acs.nanolett.8b04343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A controllable and coherent light-matter interface is an essential element for a scalable quantum information processor. Strong coupling to an on-chip cavity has been accomplished in various electron quantum dot systems, but rarely explored in the hole systems. Here we demonstrate a hybrid architecture comprising a microwave transmission line resonator controllably coupled to a hole charge qubit formed in a Ge/Si core/shell nanowire (NW), which is a natural one-dimensional hole gas with a strong spin-orbit interaction (SOI) and lack of nuclear spin scattering, potentially enabling fast spin manipulation by electric manners and long coherence times. The charge qubit is established in a double quantum dot defined by local electrical gates. Qubit transition energy can be independently tuned by the electrochemical potential difference and the tunnel coupling between the adjacent dots, opening transverse (σ x) and longitudinal (σ z) degrees of freedom for qubit operation and interaction. As the qubit energy is swept across the photon level, the coupling with resonator is thus switched on and off, as detected by resonator transmission spectroscopy. The observed resonance dynamics is replicated by a complete quantum numerical simulation considering an efficient charge dipole-photon coupling with a strength up to 2π × 55 MHz, yielding an estimation of the spin-resonator coupling rate through SOI to be about 10 MHz. The results inspire the future researches on the coherent hole-photon interaction in Ge/Si nanowires.
Collapse
Affiliation(s)
- Rui Wang
- Advanced Device Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Department of Physics , Tokyo University of Science , Kagurazaka, Tokyo 162-8601 , Japan
| | - Russell S Deacon
- Advanced Device Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Center for Emergent Matter Science (CEMS) , RIKEN , Wako , Saitama 351-0198 , Japan
| | - Jian Sun
- Advanced Device Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Hunan Key Laboratory of Super Micro-Structure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , China
| | - Jun Yao
- Department of Electrical and Computer Engineering, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Charles M Lieber
- Deparment of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Koji Ishibashi
- Advanced Device Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Center for Emergent Matter Science (CEMS) , RIKEN , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
26
|
Dynamics of probing a quantum-dot spin qubit with superconducting resonator photons. Sci Rep 2018; 8:15761. [PMID: 30361643 PMCID: PMC6202405 DOI: 10.1038/s41598-018-34108-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 11/30/2022] Open
Abstract
The hybrid system of electron spins and resonator photons is an attractive architecture for quantum computing owing to the long coherence times of spins and the promise of long-distance coupling between arbitrary pairs of qubits via photons. For the device to serve as a building block for a quantum processer, it is also necessary to readout the spin qubit state. Here we analyze in detail the measurement process of an electron spin singlet-triplet qubit in quantum dots using a coupled superconducting resonator. We show that the states of the spin singlet-triplet qubit lead to readily observable features in the spectrum of a microwave field through the resonator. These features provide useful information on the hybrid system. Moreover, we discuss the working points which can be implemented with high performance in the current state-of-the-art devices. These results can be used to construct the high fidelity measurement toolbox in the spin-circuit QED system.
Collapse
|
27
|
Černotík O, Mahmoodian S, Hammerer K. Spatially Adiabatic Frequency Conversion in Optoelectromechanical Arrays. PHYSICAL REVIEW LETTERS 2018; 121:110506. [PMID: 30265088 DOI: 10.1103/physrevlett.121.110506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 06/08/2023]
Abstract
Faithful conversion of quantum signals between microwave and optical frequency domains is crucial for building quantum networks based on superconducting circuits. Optoelectromechanical systems, in which microwave and optical cavity modes are coupled to a common mechanical oscillator, are a promising route towards this goal. In these systems, efficient, low-noise conversion is possible using a mechanically dark mode of the fields, but the conversion bandwidth is limited to a fraction of the cavity linewidth. Here, we show that an array of optoelectromechanical transducers can overcome this limitation and reach a bandwidth that is larger than the cavity linewidth. The coupling rates are varied in space throughout the array so that the mechanically dark mode of the propagating fields adiabatically changes from microwave to optical or vice versa. This strategy also leads to significantly reduced thermal noise with the collective optomechanical cooperativity being the relevant figure of merit. Finally, we demonstrate that the bandwidth enhancement is, surprisingly, largest for small arrays; this feature makes our scheme particularly attractive for state-of-the-art experimental setups.
Collapse
Affiliation(s)
- Ondřej Černotík
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| | - Sahand Mahmoodian
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Klemens Hammerer
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany
| |
Collapse
|
28
|
Stührenberg M, Munkhbat B, Baranov DG, Cuadra J, Yankovich AB, Antosiewicz TJ, Olsson E, Shegai T. Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe 2. NANO LETTERS 2018; 18:5938-5945. [PMID: 30081635 DOI: 10.1021/acs.nanolett.8b02652] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monolayer transition-metal dichalcogenides (TMDCs) have attracted a lot of research attention recently, motivated by their remarkable optical properties and potential for strong light-matter interactions. Realization of strong plasmon-exciton coupling is especially desirable in this context because it holds promise for the enabling of room-temperature quantum and nonlinear optical applications. These efforts naturally require investigations at a single-nanoantenna level, which, in turn, should possess a compact optical mode interacting with a small amount of excitonic material. However, standard plasmonic nanoantenna designs such as nanoparticle dimers or particle-on-film suffer from misalignment of the local electric field in the gap with the in-plane transition dipole moment of monolayer TMDCs. Here, we circumvent this problem by utilizing gold bi-pyramids (BPs) as very efficient plasmonic nanoantennas. We demonstrate strong coupling between individual BPs and tungsten diselenide (WSe2) monolayers at room temperature. We further study the coupling between multilayers of WSe2 and BPs to elucidate the effect of the number of layers on the coupling strength. Importantly, BPs adopt a reduced-symmetry configuration when deposited on WSe2, such that only one sharp antenna tip efficiently interacts with excitons. Despite the small interaction area, we manage to achieve strong coupling, with Rabi splitting exceeding ∼100 meV. Our results suggest a feasible way toward realizing plasmon-exciton polaritons involving nanoscopic areas of TMDCs, thus pointing toward quantum and nonlinear optics applications at ambient conditions.
Collapse
Affiliation(s)
- Michael Stührenberg
- Department of Physics , Chalmers University of Technology , 412 96 Göteborg , Sweden
| | - Battulga Munkhbat
- Department of Physics , Chalmers University of Technology , 412 96 Göteborg , Sweden
| | - Denis G Baranov
- Department of Physics , Chalmers University of Technology , 412 96 Göteborg , Sweden
| | - Jorge Cuadra
- Department of Physics , Chalmers University of Technology , 412 96 Göteborg , Sweden
| | - Andrew B Yankovich
- Department of Physics , Chalmers University of Technology , 412 96 Göteborg , Sweden
| | - Tomasz J Antosiewicz
- Department of Physics , Chalmers University of Technology , 412 96 Göteborg , Sweden
- Faculty of Physics , University of Warsaw , Pasteura 5 , 02-093 Warsaw , Poland
| | - Eva Olsson
- Department of Physics , Chalmers University of Technology , 412 96 Göteborg , Sweden
| | - Timur Shegai
- Department of Physics , Chalmers University of Technology , 412 96 Göteborg , Sweden
| |
Collapse
|
29
|
Yan F, Campbell D, Krantz P, Kjaergaard M, Kim D, Yoder JL, Hover D, Sears A, Kerman AJ, Orlando TP, Gustavsson S, Oliver WD. Distinguishing Coherent and Thermal Photon Noise in a Circuit Quantum Electrodynamical System. PHYSICAL REVIEW LETTERS 2018; 120:260504. [PMID: 30004727 DOI: 10.1103/physrevlett.120.260504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 06/08/2023]
Abstract
In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the ac Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement photons, and cross talk. Using a capacitively shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T_{1}-limited spin-echo decay time. The spin-locking noise-spectroscopy technique allows broad frequency access and readily applies to other qubit modalities for identifying general asymmetric nonclassical noise spectra.
Collapse
Affiliation(s)
- Fei Yan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dan Campbell
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Philip Krantz
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Morten Kjaergaard
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David Kim
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420, USA
| | - Jonilyn L Yoder
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420, USA
| | - David Hover
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420, USA
| | - Adam Sears
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420, USA
| | - Andrew J Kerman
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420, USA
| | - Terry P Orlando
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Simon Gustavsson
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - William D Oliver
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
30
|
Masuda S, Tan KY, Partanen M, Lake RE, Govenius J, Silveri M, Grabert H, Möttönen M. Observation of microwave absorption and emission from incoherent electron tunneling through a normal-metal-insulator-superconductor junction. Sci Rep 2018; 8:3966. [PMID: 29500368 PMCID: PMC5834461 DOI: 10.1038/s41598-018-21772-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/09/2018] [Indexed: 11/09/2022] Open
Abstract
We experimentally study nanoscale normal-metal–insulator–superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.
Collapse
Affiliation(s)
- Shumpei Masuda
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 13500, AALTO, FI-00076, Finland.
| | - Kuan Y Tan
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 13500, AALTO, FI-00076, Finland
| | - Matti Partanen
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 13500, AALTO, FI-00076, Finland
| | - Russell E Lake
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 13500, AALTO, FI-00076, Finland
| | - Joonas Govenius
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 13500, AALTO, FI-00076, Finland
| | - Matti Silveri
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 13500, AALTO, FI-00076, Finland.,Research Unit of Theoretical Physics, University of Oulu, Oulu, FI-90014, Finland
| | - Hermann Grabert
- Department of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Mikko Möttönen
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 13500, AALTO, FI-00076, Finland.
| |
Collapse
|
31
|
A coherent spin-photon interface in silicon. Nature 2018; 555:599-603. [PMID: 29443961 DOI: 10.1038/nature25769] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Electron spins in silicon quantum dots are attractive systems for quantum computing owing to their long coherence times and the promise of rapid scaling of the number of dots in a system using semiconductor fabrication techniques. Although nearest-neighbour exchange coupling of two spins has been demonstrated, the interaction of spins via microwave-frequency photons could enable long-distance spin-spin coupling and connections between arbitrary pairs of qubits ('all-to-all' connectivity) in a spin-based quantum processor. Realizing coherent spin-photon coupling is challenging because of the small magnetic-dipole moment of a single spin, which limits magnetic-dipole coupling rates to less than 1 kilohertz. Here we demonstrate strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin-photon coupling rates of more than 10 megahertz. The mechanism that enables the coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic-field gradient. In addition to spin-photon coupling, we demonstrate coherent control and dispersive readout of a single spin. These results open up a direct path to entangling single spins using microwave-frequency photons.
Collapse
|
32
|
Bonizzoni C, Ghirri A, Atzori M, Sorace L, Sessoli R, Affronte M. Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits. Sci Rep 2017; 7:13096. [PMID: 29026118 PMCID: PMC5638858 DOI: 10.1038/s41598-017-13271-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/21/2017] [Indexed: 11/13/2022] Open
Abstract
Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa2Cu3O7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.
Collapse
Affiliation(s)
- C Bonizzoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, via G. Campi 213/A, 41125, Modena, Italy. .,Istituto Nanoscienze S3, CNR via G. Campi 213/A, 41125, Modena, Italy.
| | - A Ghirri
- Istituto Nanoscienze S3, CNR via G. Campi 213/A, 41125, Modena, Italy
| | - M Atzori
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino (Firenze), Italy
| | - L Sorace
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino (Firenze), Italy
| | - R Sessoli
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino (Firenze), Italy
| | - M Affronte
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, via G. Campi 213/A, 41125, Modena, Italy.,Istituto Nanoscienze S3, CNR via G. Campi 213/A, 41125, Modena, Italy
| |
Collapse
|
33
|
Park K, Marek P, Filip R. Qubit-mediated deterministic nonlinear gates for quantum oscillators. Sci Rep 2017; 7:11536. [PMID: 28912504 PMCID: PMC5599512 DOI: 10.1038/s41598-017-11353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Quantum nonlinear operations for harmonic oscillator systems play a key role in the development of analog quantum simulators and computers. Since strong highly nonlinear operations are often unavailable in the existing physical systems, it is a common practice to approximate them by using conditional measurement-induced methods. The conditional approach has several drawbacks, the most severe of which is the exponentially decreasing success rate of the strong and complex nonlinear operations. We show that by using a suitable two level system sequentially interacting with the oscillator, it is possible to resolve these issues and implement a nonlinear operation both nearly deterministically and nearly perfectly. We explicitly demonstrate the approach by constructing self-Kerr and cross-Kerr couplings in a realistic situation, which require a feasible dispersive coupling between the two-level system and the oscillator.
Collapse
Affiliation(s)
- Kimin Park
- Department of Optics, Palacký University, 17. listopadu 1192/12, 77146, Olomouc, Czech Republic.
| | - Petr Marek
- Department of Optics, Palacký University, 17. listopadu 1192/12, 77146, Olomouc, Czech Republic
| | - Radim Filip
- Department of Optics, Palacký University, 17. listopadu 1192/12, 77146, Olomouc, Czech Republic
| |
Collapse
|
34
|
Wen J, Wang H, Wang W, Deng Z, Zhuang C, Zhang Y, Liu F, She J, Chen J, Chen H, Deng S, Xu N. Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. NANO LETTERS 2017; 17:4689-4697. [PMID: 28665614 DOI: 10.1021/acs.nanolett.7b01344] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Strong light-matter coupling manifested by Rabi splitting has attracted tremendous attention due to its fundamental importance in cavity quantum-electrodynamics research and great potentials in quantum information applications. A prerequisite for practical applications of the strong coupling in future optoelectronic devices is an all-solid-state system exhibiting room-temperature Rabi splitting with active control. Here we realized such a system in heterostructure consisted of monolayer WS2 and an individual plasmonic gold nanorod. By taking advantages of the small mode volume of the nanorod and large transition dipole moment of the WS2 exciton, giant Rabi splitting energies of 91-133 meV can be achieved at ambient conditions, which only involve a small number of excitons. The strong light-matter coupling can be dynamically tuned either by electrostatic gating or temperature scanning. These findings can pave the way toward active nanophotonic devices operating at room temperature.
Collapse
Affiliation(s)
- Jinxiu Wen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Physics, Sun Yat-sen University , Guangzhou 510275, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Physics, Sun Yat-sen University , Guangzhou 510275, China
| | - Weiliang Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Physics, Sun Yat-sen University , Guangzhou 510275, China
| | - Zexiang Deng
- School of Physics, Sun Yat-sen University , Guangzhou 510275, China
| | - Chao Zhuang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006, China
| | - Yu Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006, China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006, China
| | - Juncong She
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006, China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006, China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006, China
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University , Guangzhou 510275, China
- School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006, China
| |
Collapse
|
35
|
Transferring arbitrary d-dimensional quantum states of a superconducting transmon qudit in circuit QED. Sci Rep 2017; 7:7039. [PMID: 28765631 PMCID: PMC5539217 DOI: 10.1038/s41598-017-07225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022] Open
Abstract
A qudit (d-level quantum system) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary d-dimensional quantum states (known or unknown) between two superconducting transmon qudits coupled to a single cavity. The state transfer can be performed by employing resonant interactions only. In addition, quantum states can be deterministically transferred without measurement. Numerical simulations show that high-fidelity transfer of quantum states between two superconducting transmon qudits (d ≤ 5) is feasible with current circuit QED technology. This proposal is quite general and can be applied to accomplish the same task with natural or artificial atoms of a ladder-type level structure coupled to a cavity or resonator.
Collapse
|
36
|
Abstract
We propose a new method for frequency conversion of photons which is both versatile and deterministic. We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to realise both single- and multiphoton frequency-conversion processes. The conversion can be exquisitely controlled by tuning the qubit frequency to bring the desired frequency-conversion transitions on or off resonance. Considering recent experimental advances in ultrastrong coupling for circuit QED and other systems, we believe that our scheme can be implemented using available technology.
Collapse
|
37
|
Zhang Y, Meng QS, Zhang L, Luo Y, Yu YJ, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang JL, Dong ZC, Hou JG. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat Commun 2017; 8:15225. [PMID: 28524881 PMCID: PMC5454454 DOI: 10.1038/ncomms15225] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 01/15/2023] Open
Abstract
The coherent interaction between quantum emitters and photonic modes in cavities underlies many of the current strategies aiming at generating and controlling photonic quantum states. A plasmonic nanocavity provides a powerful solution for reducing the effective mode volumes down to nanometre scale, but spatial control at the atomic scale of the coupling with a single molecular emitter is challenging. Here we demonstrate sub-nanometre spatial control over the coherent coupling between a single molecule and a plasmonic nanocavity in close proximity by monitoring the evolution of Fano lineshapes and photonic Lamb shifts in tunnelling electron-induced luminescence spectra. The evolution of the Fano dips allows the determination of the effective interaction distance of ∼1 nm, coupling strengths reaching ∼15 meV and a giant self-interaction induced photonic Lamb shift of up to ∼3 meV. These results open new pathways to control quantum interference and field–matter interaction at the nanoscale. Assessing the coupling between a plasmonic nanocavity and a single quantum emitter is challenging due to the lack of spatial control at the atomic scale. Here Zhang et al. achieve control with sub-nanometre precision and demonstrate the Fano resonance and Lamb shift at the single-molecule level.
Collapse
Affiliation(s)
- Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China.,Materials Physics Center (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, Donostia-San Sebastián 20018, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián 20018, Spain
| | - Qiu-Shi Meng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Li Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yang Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yun-Jie Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ben Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ruben Esteban
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián 20018, Spain.,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao 48013, Spain
| | - Javier Aizpurua
- Materials Physics Center (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, Donostia-San Sebastián 20018, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián 20018, Spain
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jin-Long Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen-Chao Dong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - J G Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
38
|
Astner T, Nevlacsil S, Peterschofsky N, Angerer A, Rotter S, Putz S, Schmiedmayer J, Majer J. Coherent Coupling of Remote Spin Ensembles via a Cavity Bus. PHYSICAL REVIEW LETTERS 2017; 118:140502. [PMID: 28430485 DOI: 10.1103/physrevlett.118.140502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 06/07/2023]
Abstract
We report coherent coupling between two macroscopically separated nitrogen-vacancy electron spin ensembles in a cavity quantum electrodynamics system. The coherent interaction between the distant ensembles is directly detected in the cavity transmission spectrum by observing bright and dark collective multiensemble states and an increase of the coupling strength to the cavity mode. Additionally, in the dispersive limit we show transverse ensemble-ensemble coupling via virtual photons.
Collapse
Affiliation(s)
- T Astner
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - S Nevlacsil
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - N Peterschofsky
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - A Angerer
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - S Rotter
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - S Putz
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - J Schmiedmayer
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - J Majer
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| |
Collapse
|
39
|
Mi X, Cady JV, Zajac DM, Deelman PW, Petta JR. Strong coupling of a single electron in silicon to a microwave photon. Science 2017; 355:156-158. [DOI: 10.1126/science.aal2469] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 01/25/2023]
Affiliation(s)
- X. Mi
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - J. V. Cady
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - D. M. Zajac
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - P. W. Deelman
- HRL Laboratories LLC, 3011 Malibu Canyon Road, Malibu, CA 90265, USA
| | - J. R. Petta
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
40
|
Baart TA, Fujita T, Reichl C, Wegscheider W, Vandersypen LMK. Coherent spin-exchange via a quantum mediator. NATURE NANOTECHNOLOGY 2017; 12:26-30. [PMID: 27723732 DOI: 10.1038/nnano.2016.188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
Collapse
Affiliation(s)
| | - Takafumi Fujita
- QuTech and Kavli Institute of Nanoscience, TU Delft, 2600 GA Delft, The Netherlands
| | - Christian Reichl
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
41
|
Tangpanitanon J, Bastidas VM, Al-Assam S, Roushan P, Jaksch D, Angelakis DG. Topological Pumping of Photons in Nonlinear Resonator Arrays. PHYSICAL REVIEW LETTERS 2016; 117:213603. [PMID: 27911559 DOI: 10.1103/physrevlett.117.213603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 06/06/2023]
Abstract
We show how to implement topological or Thouless pumping of interacting photons in one-dimensional nonlinear resonator arrays by simply modulating the frequency of the resonators periodically in space and time. The interplay between the interactions and the adiabatic modulations enables robust transport of Fock states with few photons per site. We analyze the transport mechanism via an effective analytic model and study its topological properties and its protection to noise. We conclude by a detailed study of an implementation with existing circuit-QED architectures.
Collapse
Affiliation(s)
- Jirawat Tangpanitanon
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Victor M Bastidas
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Sarah Al-Assam
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | | | - Dieter Jaksch
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dimitris G Angelakis
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
- School of Electrical and Computer Engineering, Technical University of Crete, Chania, Crete 73100, Greece
| |
Collapse
|
42
|
Schleier-Smith M. Editorial: Hybridizing Quantum Physics and Engineering. PHYSICAL REVIEW LETTERS 2016; 117:100001. [PMID: 27636456 DOI: 10.1103/physrevlett.117.100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
43
|
|
44
|
Quantum state transfer and controlled-phase gate on one-dimensional superconducting resonators assisted by a quantum bus. Sci Rep 2016; 6:22037. [PMID: 26907366 PMCID: PMC4764984 DOI: 10.1038/srep22037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/04/2016] [Indexed: 11/25/2022] Open
Abstract
We propose a quantum processor for the scalable quantum computation on microwave photons in distant one-dimensional superconducting resonators. It is composed of a common resonator R acting as a quantum bus and some distant resonators rj coupled to the bus in different positions assisted by superconducting quantum interferometer devices (SQUID), different from previous processors. R is coupled to one transmon qutrit, and the coupling strengths between rj and R can be fully tuned by the external flux through the SQUID. To show the processor can be used to achieve universal quantum computation effectively, we present a scheme to complete the high-fidelity quantum state transfer between two distant microwave-photon resonators and another one for the high-fidelity controlled-phase gate on them. By using the technique for catching and releasing the microwave photons from resonators, our processor may play an important role in quantum communication as well.
Collapse
|
45
|
Averin DV, Xu K, Zhong YP, Song C, Wang H, Han S. Suppression of Dephasing by Qubit Motion in Superconducting Circuits. PHYSICAL REVIEW LETTERS 2016; 116:010501. [PMID: 26799006 DOI: 10.1103/physrevlett.116.010501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 06/05/2023]
Abstract
We suggest and demonstrate a protocol which suppresses the low-frequency dephasing by qubit motion, i.e., transfer of the logical qubit of information in a system of n≥2 physical qubits. The protocol requires only the nearest-neighbor coupling and is applicable to different qubit structures. Our analysis of its effectiveness against noises with arbitrary correlations, together with experiments using up to three superconducting qubits, shows that for the realistic uncorrelated noises, qubit motion increases the dephasing time of the logical qubit as √n. In general, the protocol provides a diagnostic tool for measurements of the noise correlations.
Collapse
Affiliation(s)
- D V Averin
- Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA
| | - K Xu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Y P Zhong
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - C Song
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - H Wang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Siyuan Han
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
46
|
Friis N, Melnikov AA, Kirchmair G, Briegel HJ. Coherent controlization using superconducting qubits. Sci Rep 2015; 5:18036. [PMID: 26667893 PMCID: PMC4678369 DOI: 10.1038/srep18036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/10/2015] [Indexed: 11/08/2022] Open
Abstract
Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.
Collapse
Affiliation(s)
- Nicolai Friis
- Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
| | - Alexey A. Melnikov
- Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Technikerstraße 21a, A-6020 Innsbruck, Austria
| | - Gerhard Kirchmair
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Technikerstraße 21a, A-6020 Innsbruck, Austria
- Institute for Experimental Physics, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Hans J. Briegel
- Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
| |
Collapse
|
47
|
Liu T, Xiong SJ, Cao XZ, Su QP, Yang CP. Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics. OPTICS LETTERS 2015; 40:5602-5605. [PMID: 26625061 DOI: 10.1364/ol.40.005602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators.
Collapse
|
48
|
Cai H, Matsuzaki Y, Kakuyanagi K, Toida H, Zhu X, Mizuochi N, Nemoto K, Semba K, Munro WJ, Saito S, Yamaguchi H. Analysis of the spectroscopy of a hybrid system composed of a superconducting flux qubit and diamond NV(-) centers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:345702. [PMID: 26252646 DOI: 10.1088/0953-8984/27/34/345702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A hybrid system that combines the advantages of a superconductor flux qubit and an electron spin ensemble in diamond is one of the promising devices to realize quantum information processing. Exploring the properties of the superconductor diamond system is essential for the efficient use of this device. When we perform spectroscopy of this system, significant power broadening is observed. However, previous models to describe this system are known to be applicable only when the power broadening is negligible. Here, we construct a new approach to analyze this system with strong driving, and succeed in reproducing the spectrum with the power broadening. Our results provide an efficient way to analyze this hybrid system.
Collapse
Affiliation(s)
- H Cai
- NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan. Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Conditional rotation of two strongly coupled semiconductor charge qubits. Nat Commun 2015; 6:7681. [PMID: 26184756 PMCID: PMC4518268 DOI: 10.1038/ncomms8681] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/01/2015] [Indexed: 11/08/2022] Open
Abstract
Universal multiple-qubit gates can be implemented by a set of universal single-qubit gates and any one kind of entangling two-qubit gate, such as a controlled-NOT gate. For semiconductor quantum dot qubits, two-qubit gate operations have so far only been demonstrated in individual electron spin-based quantum dot systems. Here we demonstrate the conditional rotation of two capacitively coupled charge qubits, each consisting of an electron confined in a GaAs/AlGaAs double quantum dot. Owing to the strong inter-qubit coupling strength, gate operations with a clock speed up to 6 GHz have been realized. A truth table measurement for controlled-NOT operation shows comparable fidelities to that of spin-based two-qubit gates, although phase coherence is not explicitly measured. Our results suggest that semiconductor charge qubits have a considerable potential for scalable quantum computing and may stimulate the use of long-range Coulomb interaction for coherent quantum control in other devices.
Collapse
|
50
|
Counterfactual quantum-information transfer without transmitting any physical particles. Sci Rep 2015; 5:8416. [PMID: 25672936 PMCID: PMC4325340 DOI: 10.1038/srep08416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/19/2015] [Indexed: 11/09/2022] Open
Abstract
We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants.
Collapse
|