1
|
Bandyopadhyay S, Ghosez P. Latent Electronic (Anti-)Ferroelectricity in BiNiO_{3}. PHYSICAL REVIEW LETTERS 2024; 133:146801. [PMID: 39423382 DOI: 10.1103/physrevlett.133.146801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/20/2024] [Indexed: 10/21/2024]
Abstract
BiNiO_{3} exhibits an unusual metal-insulator transition from Pnma to P1[over ¯] that is related to charge ordering at the Bi sites, which is intriguingly distinct from the charge ordering at Ni sites usually observed in related rare-earth nickelates. Here, using first principles calculations, we first rationalize the phase transition from Pnma to P1[over ¯], revealing an overlooked intermediate P2_{1}/m bridging phase and a complex interplay between distinct degrees of freedom. Going further, we point out that the charge ordering at Bi sites in the P1[over ¯] phase is not unique. We highlight an alternative polar ordering giving rise to a ferroelectric Pmn2_{1} phase nearly degenerated in energy with P1[over ¯] and showing an in-plane electric polarization of 53 μC/cm^{2} directly resulting from the charge ordering. The close energy of Pmn2_{1} and P1[over ¯] phases, together with low energy barrier between them, make BiNiO_{3} a potential electronic antiferroelectric in which the field-induced transition from nonpolar to polar would relate to nonadiabatic intersite electron transfer. We also demonstrate the possibility to stabilize an electronic ferroelectric ground state from strain engineering in thin films, using an appropriate substrate.
Collapse
|
2
|
Steube J, Fritsch L, Kruse A, Bokareva OS, Demeshko S, Elgabarty H, Schoch R, Alaraby M, Egold H, Bracht B, Schmitz L, Hohloch S, Kühne TD, Meyer F, Kühn O, Lochbrunner S, Bauer M. Isostructural Series of a Cyclometalated Iron Complex in Three Oxidation States. Inorg Chem 2024; 63:16964-16980. [PMID: 39222251 DOI: 10.1021/acs.inorgchem.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An isostructural series of FeII, FeIII, and FeIV complexes [Fe(ImP)2]0/+/2+ utilizing the ImP 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazol-2-ylidene) ligand, combining N-heterocyclic carbenes and cyclometalating functions, is presented. The strong donor motif stabilizes the high-valent FeIV oxidation state yet keeps the FeII oxidation state accessible from the parent FeIII compound. Chemical oxidation of [Fe(ImP)2]+ yields stable [FeIV(ImP)2]2+. In contrast, [FeII(ImP)2]0, obtained by reduction, is highly sensitive toward oxygen. Exhaustive ground state characterization by single-crystal X-ray diffraction, 1H NMR, Mössbauer spectroscopy, temperature-dependent magnetic measurements, a combination of X-ray absorption near edge structure and valence-to-core, as well as core-to-core X-ray emission spectroscopy, complemented by detailed density functional theory (DFT) analysis, reveals that the three complexes [Fe(ImP)2]0/+/2+ can be unequivocally attributed to low-spin d6, d5, and d4 complexes. The excited state landscape of the FeII and FeIV complexes is characterized by short-lived 3MLCT and 3LMCT states, with lifetimes of 5.1 and 1.4 ps, respectively. In the FeII-compound, an energetically low-lying MC state leads to fast deactivation of the MLCT state. The distorted square-pyramidal state, where one carbene is dissociated, can not only relax into the ground state, but also into a singlet dissociated state. Its formation was investigated with time-dependent optical spectroscopy, while insights into its structure were gained by NMR spectroscopy.
Collapse
Affiliation(s)
- Jakob Steube
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Lorena Fritsch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Ayla Kruse
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Olga S Bokareva
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Hossam Elgabarty
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Roland Schoch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Mohammad Alaraby
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Hans Egold
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Bastian Bracht
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Lennart Schmitz
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Thomas D Kühne
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Kühn
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Stefan Lochbrunner
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Matthias Bauer
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
3
|
Leach IF, Klein JEMN. Oxidation States: Intrinsically Ambiguous? ACS CENTRAL SCIENCE 2024; 10:1406-1414. [PMID: 39071055 PMCID: PMC11273457 DOI: 10.1021/acscentsci.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
The oxidation state ( OS ) formalism is a much-appreciated good in chemistry, receiving wide application. However, like all formalisms, limitations are inescapable, some of which have been recently explored. Providing a broader context, we discuss the OS and its interpretation from a computational perspective for transition metal (TM) complexes. We define a broadly applicable and easy-to-use procedure to derive OS s based on quantum chemical calculations, via the use of localized orbitals, dubbed the Intrinsic OS . Applying this approach to a cobalt complex in five OS s, isolated by Hunter and co-workers (Inorg. Chem.2021, 60, 17445), we find that the calculated Intrinsic OS matches the formal OS , consistent with the experimental characterization. Through analysis of the delocalized orbitals, the ligand field of the Co(III) complex is found to be "inverted", despite every cobalt-ligand bond being classically dative from the localized perspective-a bonding scenario very similar to that of [Cu(CF3)4]-. This is not atypical but rather a natural consequence of these metals bonding in the high-valent region, and we propose a more restrictive definition of (locally) inverted bonding. Additionally, two bonding descriptors within the Intrinsic Bonding Orbital (IBO) framework (σ-gain and π-loss) are introduced, which enable facile quantification of electron-sharing covalency across a broad range of TM complexes.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747
AG Groningen, The
Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
3, 9747 AG Groningen, The Netherlands
| | - Johannes E. M. N. Klein
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
4
|
Nguyen Q, Kim EM, Ding Y, Janssen A, Wang C, Li KK, Kim J, Fichthorn KA, Xia Y. Elucidating the Role of Reduction Kinetics in the Phase-Controlled Growth on Preformed Nanocrystal Seeds: A Case Study of Ru. J Am Chem Soc 2024; 146:12040-12052. [PMID: 38554283 PMCID: PMC11066843 DOI: 10.1021/jacs.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
This study demonstrates the crucial role of reduction kinetics in phase-controlled synthesis of noble-metal nanocrystals using Ru nanocrystals as a case study. We found that the reduction kinetics played a more important role than the templating effect from the preformed seed in dictating the crystal structure of the deposited overlayers despite their intertwined effects on successful epitaxial growth. By employing two different polyols, a series of Ru nanocrystals with tunable sizes of 3-7 nm and distinct patterns of crystal phase were synthesized by incorporating different types of Ru seeds. Notably, the use of ethylene glycol and triethylene glycol consistently resulted in the formation of Ru shell in natural hexagonal close-packed (hcp) and metastable face-centered cubic (fcc) phases, respectively, regardless of the size and phase of the seed. Quantitative measurements and theoretical calculations suggested that this trend was a manifestation of the different reduction kinetics associated with the precursor and the chosen polyol, which, in turn, affected the reduction pathway (solution versus surface) and packing sequence of the deposited Ru atoms. This work not only underscores the essential role of reduction kinetics in controlling the packing of atoms and thus the phase taken by Ru nanocrystals but also suggests a potential extension to other noble-metal systems.
Collapse
Affiliation(s)
- Quynh
N. Nguyen
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Eun Mi Kim
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Yong Ding
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Annemieke Janssen
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Chenxiao Wang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Kei Kwan Li
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Junseok Kim
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Kristen A. Fichthorn
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Xu H, Wang QY, Jiang M, Li SS. Application of valence-variable transition-metal-oxide-based nanomaterials in electrochemical analysis: A review. Anal Chim Acta 2024; 1295:342270. [PMID: 38355227 DOI: 10.1016/j.aca.2024.342270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The construction of materials with rapid electron transfer is considered an effective method for enhancing electrochemical activity in electroanalysis. It has been widely demonstrated that valence changes in transition metal ions can promote electron transfer and thus increase electrochemical activity. Recently, valence-variable transition metal oxides (TMOs) have shown popular application in electrochemical analysis by using their abundant valence state changes to accelerate electron transfer during electrochemical detection. In this review, we summarize recent research advances in valence changes of TMOs and their application in electrochemical analysis. This includes the definition and mechanism of valence change, the association of valence changes with electronic structure, and their applications in electrochemical detection, along with the use of density functional theory (DFT) to simulate the process of electron transfer during valence changes. Finally, the challenges and opportunities for developing and applying valence changes in electrochemical analysis are also identified.
Collapse
Affiliation(s)
- Huan Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Qiu-Yu Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Min Jiang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shan-Shan Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
6
|
Gao Y, Li S, Zeng XC, Wu M. Exploitation of mixed-valency chemistry for designing a monolayer with double ferroelectricity and triferroic couplings. NANOSCALE 2023; 15:13567-13573. [PMID: 37565465 DOI: 10.1039/d3nr02216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Mixed-valence compounds possess both intriguing chemical and physical properties such as the intervalence charge transfer band and thus have been excellent model systems for the investigation of fundamental electron- and charge-transfer phenomena. Herein, we show that valence stratification can be a source of symmetry breaking and generating ferroelectricity in two-dimensional (2D) materials. We present ab initio computation evidence of the monolayer Cu2Cl3 structure with Cu ions being stratified into two separated layers of Cu(I) and Cu(II). Chemically, this unique monolayer not only entails lower formation energy than the bulk CuCl + CuCl2, but also enables the swapping of two valences through vertical ferroelectric switching, leading to a hitherto unreported chemical valencing phenomenon. Notably, the Jahn-Teller distortion of the Cu(II) layer results in another source of symmetry breaking and thus in-plane ferroelectricity. Apart from the valence swapping and self-contained double ferroelectricity, the monolayer's ferroelasticity is also coupled with in-plane ferroelectricity, while the monolayer's ferromagnetism is coupled with vertical polarization owing to the distinct magnetization of each Cu(I) and Cu(II) layer, thereby evoking the long-sought 2D triferroicity as well as triferroic couplings.
Collapse
Affiliation(s)
- Yaxin Gao
- School of Physics and Mechanical Electrical & Engineering, Institute of Theoretical Physics, Hubei University of Education, Wuhan, Hubei 430205, China.
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sha Li
- School of Physics and Mechanical Electrical & Engineering, Institute of Theoretical Physics, Hubei University of Education, Wuhan, Hubei 430205, China.
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
| | - Menghao Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
7
|
Timrov I, Kotiuga M, Marzari N. Unraveling the effects of inter-site Hubbard interactions in spinel Li-ion cathode materials. Phys Chem Chem Phys 2023; 25:9061-9072. [PMID: 36919455 DOI: 10.1039/d3cp00419h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Accurate first-principles predictions of the structural, electronic, magnetic, and electrochemical properties of cathode materials can be key in the design of novel efficient Li-ion batteries. Spinel-type cathode materials LixMn2O4 and LixMn1.5Ni0.5O4 are promising candidates for Li-ion battery technologies, but they present serious challenges when it comes to their first-principles modeling. Here, we use density-functional theory with extended Hubbard functionals-DFT+U+V with on-site U and inter-site V Hubbard interactions-to study the properties of these transition-metal oxides. The Hubbard parameters are computed from first-principles using density-functional perturbation theory. We show that while U is crucial to obtain the right trends in properties of these materials, V is essential for a quantitative description of the structural and electronic properties, as well as the Li-intercalation voltages. This work paves the way for reliable first-principles studies of other families of cathode materials without relying on empirical fitting or calibration procedures.
Collapse
Affiliation(s)
- Iurii Timrov
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Michele Kotiuga
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
A rigorous theory of valence. Struct Chem 2023. [DOI: 10.1007/s11224-023-02128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
9
|
Wu Q, Liang J, Xiao M, Long C, Li L, Zeng Z, Mavrič A, Zheng X, Zhu J, Liang HW, Liu H, Valant M, Wang W, Lv Z, Li J, Cui C. Non-covalent ligand-oxide interaction promotes oxygen evolution. Nat Commun 2023; 14:997. [PMID: 36813796 PMCID: PMC9947139 DOI: 10.1038/s41467-023-36718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Strategies to generate high-valence metal species capable of oxidizing water often employ composition and coordination tuning of oxide-based catalysts, where strong covalent interactions with metal sites are crucial. However, it remains unexplored whether a relatively weak "non-bonding" interaction between ligands and oxides can mediate the electronic states of metal sites in oxides. Here we present an unusual non-covalent phenanthroline-CoO2 interaction that substantially elevates the population of Co4+ sites for improved water oxidation. We find that phenanthroline only coordinates with Co2+ forming soluble Co(phenanthroline)2(OH)2 complex in alkaline electrolytes, which can be deposited as amorphous CoOxHy film containing non-bonding phenanthroline upon oxidation of Co2+ to Co3+/4+. This in situ deposited catalyst demonstrates a low overpotential of 216 mV at 10 mA cm-2 and sustainable activity over 1600 h with Faradaic efficiency above 97%. Density functional theory calculations reveal that the presence of phenanthroline can stabilize CoO2 through the non-covalent interaction and generate polaron-like electronic states at the Co-Co center.
Collapse
Affiliation(s)
- Qianbao Wu
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Junwu Liang
- grid.440772.20000 0004 1799 411XOptoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin, Guangxi 537000 China
| | - Mengjun Xiao
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Chang Long
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Lei Li
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Andraž Mavrič
- grid.438882.d0000 0001 0212 6916Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Xia Zheng
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jing Zhu
- grid.59053.3a0000000121679639Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 China
| | - Hai-Wei Liang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Hongfei Liu
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Matjaz Valant
- grid.438882.d0000 0001 0212 6916Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Wei Wang
- grid.54549.390000 0004 0369 4060School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Zhengxing Lv
- grid.458506.a0000 0004 0497 0637Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiong Li
- grid.458506.a0000 0004 0497 0637Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
10
|
Trifonova EA, Leach IF, de Haas WB, Havenith RWA, Tromp M, Klein JEMN. Spectroscopic Manifestations and Implications for Catalysis of Quasi-d 10 Configurations in Formal Gold(III) Complexes. Angew Chem Int Ed Engl 2023; 62:e202215523. [PMID: 36508713 PMCID: PMC10107628 DOI: 10.1002/anie.202215523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Several gold +I and +III complexes are investigated computationally and spectroscopically, focusing on the d-configuration and physical oxidation state of the metal center. Density functional theory calculations reveal the non-negligible electron-sharing covalent character of the metal-to-ligand σ-bonding framework. The bonding of gold(III) is shown to be isoelectronic to the formal CuIII complex [Cu(CF3 )4 ]1- , in which the metal center tries to populate its formally unoccupied 3dx2-y2 orbital via σ-bonding, leading to a reduced d10 CuI description. However, Au L3 -edge X-ray absorption spectroscopy reveals excitation into the d-orbital of the AuIII species is still possible, showing that a genuine d10 configuration is not achieved. We also find an increased electron-sharing nature of the σ-bonds in the AuI species, relative to their AgI and CuI analogues, due to the low-lying 6s orbital. We propose that gold +I and +III complexes form similar bonds with substrates, owing primarily to participation of the 5dx2-y2 or 6s orbital, respectively, in bonding, indicating why AuI and AuIII complexes often have similar reactivity.
Collapse
Affiliation(s)
- Evgeniya A. Trifonova
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Isaac F. Leach
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Winfried B. de Haas
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Remco W. A. Havenith
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Ghent Quantum Chemistry GroupDepartment of ChemistryGhent University9000GentBelgium
| | - Moniek Tromp
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| |
Collapse
|
11
|
Leach IF, Sorbelli D, Belpassi L, Belanzoni P, Havenith RWA, Klein JEMN. How reduced are nucleophilic gold complexes? Dalton Trans 2022; 52:11-15. [PMID: 35877065 PMCID: PMC9764324 DOI: 10.1039/d2dt01694j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nucleophilic formal gold(-I) and gold(I) complexes are investigated via Intrinsic Bond Orbital analysis and Energy Decomposition Analysis, based on density functional theory calculations. The results indicate gold(0) centres engaging in electron-sharing bonding with Al- and B- based ligands. Multiconfigurational (CASSCF) calculations corroborate the findings, highlighting the gap between the electonic structures and the oxidation state formalism.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands,Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands
| | - Diego Sorbelli
- Department of Chemistry, Biology and Biotechnology, University of PerugiaVia Elce di Sotto806123 PerugiaItaly,CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC)Via Elce di Sotto806123 PerugiaItaly
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC)Via Elce di Sotto806123 PerugiaItaly
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of PerugiaVia Elce di Sotto806123 PerugiaItaly,CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC)Via Elce di Sotto806123 PerugiaItaly
| | - Remco W. A. Havenith
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands,Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands,Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University9000 GentBelgium
| | - Johannes E. M. N. Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands
| |
Collapse
|
12
|
Leach IF, Havenith RWA, Klein JEMN. Revisiting Formal Copper(III) Complexes: Bridging Perspectives with Quasi- d 10 Configurations. Eur J Inorg Chem 2022; 2022:e202200247. [PMID: 36619312 PMCID: PMC9804752 DOI: 10.1002/ejic.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Indexed: 01/11/2023]
Abstract
The formal Cu(III) complex [Cu(CF3)4]1- has often served as a paradigmatic example of challenging oxidation state assignment - with many reports proposing conflicting descriptions. Here we report a computational analysis of this compound, employing Energy Decomposition Analysis and Intrinsic Bond Orbital Analysis. We present a quasi-d 10 perspective of the metal centre, resulting from ambiguities in d-electron counting. The implications for describing reactions which undergo oxidation state changes, such as the formal reductive elimination from the analogous [Cu(CF3)3(CH2Ph)]1- complex (Paeth et al. J. Am. Chem. Soc. 2019, 141, 3153), are probed. Electron flow analysis finds that the changes in electronic structure may be understood as a quasi-d 10 to d 10 transition at the metal centre, rendering this process essentially redox neutral. This is reminiscent of a previously studied formal Ni(IV) complex (Steen et al., Angew. Chem. Int. Ed. 2019, 58, 13133-13139), and indicates that our description of electronic structure has implications for the understanding of elementary organometallic reaction steps.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Remco W. A. Havenith
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Ghent Quantum Chemistry GroupDepartment of ChemistryGhent UniversityKrijgslaan 281 (S3)Ghent9000 GentBelgium
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
13
|
Wang T, Huang TQ, Li XL, Ma L, Wang YK, Qiao Y, Gao SP, Shadike Z, Fu ZW. Anomalous Redox Features Induced by Strong Covalency in Layered NaTi 1-y V y S 2 Cathodes for Na-Ion Batteries. Angew Chem Int Ed Engl 2022; 61:e202205444. [PMID: 35468263 DOI: 10.1002/anie.202205444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/05/2022]
Abstract
The rising demand for energy density of cathodes means the need to raise the voltage or capacity of cathodes. Transition metal (TM) doping has been employed to enhance the electrochemical properties in multiple aspects. The redox voltage of doped cathodes usually falls in between the voltage of undoped layered cathodes. However, we found anomalous redox features in NaTi1-y Vy S2 . The first discharge platform potential (2.4 V) is significantly higher than that of undoped NaTiS2 and NaVS2 (both around 2.2 V), and the energy density is raised by 15 %. We speculate that the anomalous voltage is mainly attributed to the strong hybridization in the Ti-V-S system. Ti3+ and V3+ undergo charge transfer and form a more stable Ti (t2g 0 eg 0 ) and V (t2g 3 eg 0 ) electronic configuration. Our results indicate that higher voltage of cathode materials could be achieved by strong TM-ligand covalency, and this conclusion provides possible opportunities to explore high voltage materials for future layered cathodes.
Collapse
Affiliation(s)
- Tian Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Tao-Qing Huang
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Xun-Lu Li
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yu-Ke Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yan Qiao
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Shang-Peng Gao
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Zulipiya Shadike
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng-Wen Fu
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
Wang T, Huang T, Li X, Ma L, Wang Y, Qiao Y, Gao S, Shadike Z, Fu Z. Anomalous Redox Features Induced by Strong Covalency in Layered NaTi
1−
y
V
y
S
2
Cathodes for Na‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 China
| | - Tao‐Qing Huang
- Department of Materials Science Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Xun‐Lu Li
- Department of Materials Science Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Lu Ma
- National Synchrotron Light Source II Brookhaven National Laboratory Upton NY 11973 USA
| | - Yu‐Ke Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 China
| | - Yan Qiao
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 China
| | - Shang‐Peng Gao
- Department of Materials Science Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Zulipiya Shadike
- Institute of Fuel Cells School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zheng‐Wen Fu
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
15
|
Crago C, Zhong S, Rajupet S, Zhang H, Lacks DJ. ab initio study of Mn-based systems for oxidative degradation. CHEMOSPHERE 2022; 291:132706. [PMID: 34728222 DOI: 10.1016/j.chemosphere.2021.132706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Organic contaminants can be removed from water/wastewater by oxidative degradation using oxidants such as manganese oxides and/or aqueous manganese ions. The Mn species show a wide range of activity, which is related to the oxidation state of Mn. Here, we use ab initio molecular dynamics simulations to address Mn oxidation states in these systems. We first develop a correlation between Mn partial atomic charge and the oxidation state based on results of 31 simulations on known Mn aqueous complexes. The results collapse to a master curve; the dependence of partial atomic charge on oxidation state weakens with increasing oxidation state, which concurs with a previously proposed feedback effect. This correlation is then used to address oxidation states in Mn systems used as oxidants. Simulations of MnO2 polymorphs immersed in water give average oxidation states (AOS) in excellent agreement with experimental results, in that β-MnO2 has the highest AOS, α-MnO2 has an intermediate AOS, and δ-MnO2 has the lowest AOS. Furthermore, the oxidation state varies substantially with the atom's environment, and these structures include Mn(III) and Mn(V) species that are expected to be active. In regard to the MnO4-/HSO3-/O2 system that has been shown to be a highly effective oxidant, we propose a novel Mn complex that could give rise to the oxidative activity, where Mn(III) is stabilized by sulfite and dissolved O2 ligands. Our simulations also show that the O2 would be activated to O22- in this complex under acidic conditions, and could lead to the formation of OH radicals that serve as oxidants.
Collapse
Affiliation(s)
- Colin Crago
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shifa Zhong
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Siddharth Rajupet
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniel J Lacks
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
Wang T, Ren GX, Xia HY, Shadike Z, Huang TQ, Li XL, Yang SY, Chen MW, Liu P, Gao SP, Liu XS, Fu ZW. Anionic Redox Regulated via Metal-Ligand Combinations in Layered Sulfides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107353. [PMID: 34738266 DOI: 10.1002/adma.202107353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for energy storage is calling for improvements in cathode performance. In traditional layered cathodes, the higher energy of the metal 3d over the O 2p orbital results in one-band cationic redox; capacity solely from cations cannot meet the needs for higher energy density. Emerging anionic redox chemistry is promising to access higher capacity. In recent studies, the low-lying O nonbonding 2p orbital was designed to activate one-band oxygen redox, but they are still accompanied by reversibility problems like oxygen loss, irreversible cation migration, and voltage decay. Herein, by regulating the metal-ligand energy level, both extra capacities provided by anionic redox and highly reversible anionic redox process are realized in NaCr1- y Vy S2 system. The simultaneous cationic and anionic redox of Cr/V and S is observed by in situ X-ray absorption near edge structure (XANES). Under high d-p hybridization, the strong covalent interaction stabilizes the holes on the anions, prevents irreversible dimerization and cation migration, and restrains voltage hysteresis and voltage decay. The work provides a fundamental understanding of highly reversible anionic redox in layered compounds, and demonstrates the feasibility of anionic redox chemistry based on hybridized bands with d-p covalence.
Collapse
Affiliation(s)
- Tian Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, 200433, China
| | - Guo-Xi Ren
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 200050, China
| | - He-Yi Xia
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, 200433, China
| | - Zulipiya Shadike
- Institute of Fuel Cells, Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao-Qing Huang
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Xun-Lu Li
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Si-Yu Yang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, 200433, China
| | - Ming-Wei Chen
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Liu
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shang-Peng Gao
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Xiao-Song Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 200050, China
| | - Zheng-Wen Fu
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, 200433, China
| |
Collapse
|
17
|
Gimferrer M, Aldossary A, Salvador P, Head-Gordon M. Oxidation State Localized Orbitals: A Method for Assigning Oxidation States Using Optimally Fragment-Localized Orbitals and a Fragment Orbital Localization Index. J Chem Theory Comput 2021; 18:309-322. [PMID: 34929084 DOI: 10.1021/acs.jctc.1c01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation states represent the ionic distribution of charge in a molecule and are significant in tracking redox reactions and understanding chemical bonding. While effective algorithms already exist based on formal Lewis structures as well as using localized orbitals, they exhibit differences in challenging cases where effects such as redox noninnocence are at play. Given a density functional theory (DFT) calculation with chosen total charge and spin multiplicity, this work reports a new approach to obtaining fragment-localized orbitals that is termed oxidation state localized orbitals (OSLO), together with an algorithm for assigning the oxidation state using the OSLOs and an associated fragment orbital localization index (FOLI). Evaluating the FOLI requires fragment populations, and for this purpose a new version of the intrinsic atomic orbital (IAO) scheme is introduced in which the IAOs are evaluated using a reference minimal basis formed from on-the-fly superposition of atomic density (IAO-AutoSAD) calculations in the target basis set and at the target level of theory. The OSLO algorithm is applied to a range of challenging cases including high valent metal oxide complexes, redox noninnocent NO and dithiolate transition metal complexes, a range of carbene-containing TM complexes, and other examples including the potentially inverted ligand field in [Cu(CF3)4]-. Across this range of cases, OSLO produces generally satisfactory results. Furthermore, in borderline cases, the OSLOs and associated FOLI values provide direct evidence of the emergence of covalent interactions between fragments that nicely complements existing approaches.
Collapse
Affiliation(s)
- Martí Gimferrer
- Institut de Química Computacional i Catàlsi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Abdulrahman Aldossary
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Pedro Salvador
- Institut de Química Computacional i Catàlsi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Martin Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Huang W, Li W, Wang L, Zhu H, Gao M, Zhao H, Zhao J, Shen X, Wang X, Wang Z, Qi C, Xiao W, Yao L, Wang J, Zhuang W, Sun X. Structure and Charge Regulation Strategy Enabling Superior Cyclability for Ni-Rich Layered Cathode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104282. [PMID: 34623019 DOI: 10.1002/smll.202104282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Ni-rich layered oxides are significantly promising cathode materials for commercial high-energy-density lithium-ion batteries. However, their major bottlenecks limiting their widespread applications are capacity fading and safety concerns caused by their inherently unstable crystal structure and highly reactive surface. Herein, surface structure and bulk charge regulation are concurrently achieved by introducing high-valence Ta5+ ions in Ni-rich cathodes, which exhibit superior electrochemical properties and thermal stability, especially a remarkable cyclic stability with a capacity retention of 80% for up to 768 cycles at a 1C rate versus Li/Li+ . Due to the partial Ta enrichment on surface, the regulated surface enables high reversibility of Li+ insertion/extraction by preventing surface Ni reduction in deep charging. Moreover, bulk charge regulation that boosts charge density and its localization on oxygen remarkably suppresses microcracks and oxygen loss, which in turn prevents the fragmentation of the regulated surface and structural degradation associated with oxygen skeleton. This study highlights the significance of an integrated optimization strategy for Ni-rich cathodes and, as a case study, provides a novel and deep insights into the underlying mechanisms of high-valence ions substitution of Ni-rich layered cathodes.
Collapse
Affiliation(s)
- Wei Huang
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- China Automotive Battery Research Institute Co. Ltd, Beijing, 101407, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Wenjin Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lve Wang
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, China
| | - Min Gao
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huan Zhao
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
| | - Jinling Zhao
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xueling Shen
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaodan Wang
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ze Wang
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanlei Qi
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Xiao
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
| | - Lei Yao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiantao Wang
- National Power Battery Innovation Center, Grinm Group Corporation Limited, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Weidong Zhuang
- China Automotive Battery Research Institute Co. Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
- Beijing Key Laboratory of Green Recovery and Extraction of Rare and Precious Metals, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
19
|
Abstract
In this Perspective, some of the criticisms which have been made concerning the use of oxidation states are addressed, particularly in the context of the teaching of inorganic chemistry. The Oxidation State method and the Covalent Bond Classification method are compared and contrasted, and it is concluded that while each method has its strengths and weaknesses, both are important in teaching and it should be recognized that no single model or method is appropriate in all circumstances.
Collapse
Affiliation(s)
| | - Paul G Pringle
- University of Bristol, School of Chemistry, Bristol, BS8 1TS, UK.
| |
Collapse
|
20
|
Devonport J, Sully L, Boudalis AK, Hassell-Hart S, Leech MC, Lam K, Abdul-Sada A, Tizzard GJ, Coles SJ, Spencer J, Vargas A, Kostakis GE. Room-Temperature Cu(II) Radical-Triggered Alkyne C-H Activation. JACS AU 2021; 1:1937-1948. [PMID: 34841411 PMCID: PMC8611675 DOI: 10.1021/jacsau.1c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
A dimeric Cu(II) complex [Cu(II)2L2(μ2-Cl)Cl] (1) built from an asymmetric tridentate ligand (2-(((2-aminocyclohexyl)imino)methyl)-4,6-di-tert-butylphenol) and weakly coordinating anions has been synthesized and structurally characterized. In dichloromethane solution, 1 exists in a monomeric [Cu(II)LCl] (1') (85%)-dimeric (1) (15%) equilibrium, and cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) studies indicate structural stability and redox retention. Addition of phenylacetylene to the CH2Cl2 solution populates 1' and leads to the formation of a transient radical species. Theoretical studies support this notion and show that the radical initiates an alkyne C-H bond activation process via a four-membered ring (Cu(II)-O···H-Calkyne) intermediate. This unusual C-H activation method is applicable for the efficient synthesis of propargylamines, without additives, within 16 h, at low loadings and in noncoordinating solvents including late-stage functionalization of important bioactive molecules. Single-crystal X-ray diffraction studies, postcatalysis, confirmed the framework's stability and showed that the metal center preserves its oxidation state. The scope and limitations of this unconventional protocol are discussed.
Collapse
Affiliation(s)
- Jack Devonport
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Lauren Sully
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Athanassios K. Boudalis
- Institut
de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université
de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
- Université
de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux
de Strasbourg (IPCMS), UMR 7504, F-67000 Strasbourg, France
| | - Storm Hassell-Hart
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Matthew C. Leech
- School
of Science, Department of Pharmaceutical Chemical and Environmental
Sciences, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, U.K.
| | - Kevin Lam
- School
of Science, Department of Pharmaceutical Chemical and Environmental
Sciences, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, U.K.
| | - Alaa Abdul-Sada
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K.
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Alfredo Vargas
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
21
|
Scivetti I, Teobaldi G. Combined Role of Biaxial Strain and Nonstoichiometry for the Electronic, Magnetic, and Redox Properties of Lithiated Metal-Oxide Films: The LiMn 2O 4 Case. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54610-54619. [PMID: 34730930 DOI: 10.1021/acsami.1c18326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the interplay between strain and nonstoichiometry for the electronic, magnetic, and redox properties of LiMn2O4 films is essential for their development as Li-ion battery (LIB) cathodes, photoelectrodes, and systems for sustainable spintronics applications as well as for emerging applications that combine these technologies. Here, density functional theory (DFT) simulations suggest that compressive strain increases the reduction drive of (111) LiMn2O4 films by inducing >1 eV upshift of the valence band edge. The DFT results indicate that, regardless of the crystallographic orientation for the LiMn2O4 film, biaxial expansion increases the magnetic moments of the Mn atoms. Conversely, biaxial compression reduces them. For ferromagnetic films, these changes can be substantial and as large as over 4 Bohr magnetons per unit cell over the simulated range of strain (from -6 to +3%). The DFT simulations also uncover a compensation mechanism whereby strain induces opposite changes in the magnetic moment of the Mn and O atoms, leading to an overall constant magnetic moment for the ferromagnetic films. The calculated strain-induced changes in atomic magnetic moments reflect modifications in the local electronic hybridization of both the Mn and O atoms, which in turn suggests strain-tunable, local chemical, and electrochemical reactivity. Several energy-favored (110) and (111) ferromagnetic surfaces turn out to be half-metallic with minority-spin band gaps as large as 3.2 eV and compatible with spin-dependent electron-transport and possible spin-dependent electrochemical and electrocatalytic properties. The resilience of the ferromagnetic, half-metallic states to surface nonstoichiometry and compositional changes invites exploration of the potential of LiMn2O4 thin films for sustainable spintronic applications beyond state-of-the-art, rare-earth metal-based, ferromagnetic half-metallic oxides.
Collapse
Affiliation(s)
- Ivan Scivetti
- Scientific Computing Department, STFC UKRI, Daresbury Laboratory, Warrington WA4 4FS, United Kingdom
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Gilberto Teobaldi
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, United Kingdom
- Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
22
|
Irham MA, Muttaqien F, Bisri SZ, Iskandar F. Role of Intrinsic Points Defects on the Electronic Structure of Metal-Insulator Transition h-FeS. J Phys Chem Lett 2021; 12:10777-10782. [PMID: 34723515 DOI: 10.1021/acs.jpclett.1c02360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hexagonal iron sulfide (h-FeS) offers huge potential in the development of metal-insulator transition devices. A stoichiometric h-FeS is hard to obtain from its natural iron deficiency. The effect of this iron deficiency on the electronic properties is still obscure. Here, we performed a charged point defect calculation in h-FeS. We found that the most favorable point defect in h-FeS can be tuned with a proper synthesis environment. The single iron vacancy could induce a midgap state with 0.05 eV energy gap, which explains the h-FeS low experimental band gap value. Furthermore, a semiconductor-to-metal transition is observed in h-FeS with higher iron vacancy concentration showing better conductivity from the excess charges. We also observe that iron vacancies will induce a magnetic moment on the antiferromagnetic h-FeS. The findings that the induced MIT behavior and magnetic moment can be tuned by defect concentration may benefit the development of spintronics devices.
Collapse
Affiliation(s)
- Muhammad Alief Irham
- Electronic Material Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Fahdzi Muttaqien
- Instrumentation and Computational Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Master Program in Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
| | | | - Ferry Iskandar
- Electronic Material Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
| |
Collapse
|
23
|
Ahn EG, Yang JH, Lee JH. Mg 3Si 3(MoO 6) 2 as a High-Performance Cathode Active Material for Magnesium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47749-47755. [PMID: 34582182 DOI: 10.1021/acsami.1c16896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.
Collapse
Affiliation(s)
- Eun Gong Ahn
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin-Hoon Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Joo-Hyoung Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
24
|
Koch D, Chaker M, Ihara M, Manzhos S. Density-Based Descriptors of Redox Reactions Involving Transition Metal Compounds as a Reality-Anchored Framework: A Perspective. Molecules 2021; 26:molecules26185541. [PMID: 34577012 PMCID: PMC8465483 DOI: 10.3390/molecules26185541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Description of redox reactions is critically important for understanding and rational design of materials for electrochemical technologies, including metal-ion batteries, catalytic surfaces, or redox-flow cells. Most of these technologies utilize redox-active transition metal compounds due to their rich chemistry and their beneficial physical and chemical properties for these types of applications. A century since its introduction, the concept of formal oxidation states (FOS) is still widely used for rationalization of the mechanisms of redox reactions, but there exists a well-documented discrepancy between FOS and the electron density-derived charge states of transition metal ions in their bulk and molecular compounds. We summarize our findings and those of others which suggest that density-driven descriptors are, in certain cases, better suited to characterize the mechanism of redox reactions, especially when anion redox is involved, which is the blind spot of the FOS ansatz.
Collapse
Affiliation(s)
- Daniel Koch
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada;
- Correspondence: (D.K.); (S.M.); Tel.: +81-3-5734-3918 (S.M.)
| | - Mohamed Chaker
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada;
| | - Manabu Ihara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan;
| | - Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan;
- Correspondence: (D.K.); (S.M.); Tel.: +81-3-5734-3918 (S.M.)
| |
Collapse
|
25
|
Jablonka KM, Ongari D, Moosavi SM, Smit B. Using collective knowledge to assign oxidation states of metal cations in metal-organic frameworks. Nat Chem 2021; 13:771-777. [PMID: 34226703 DOI: 10.1038/s41557-021-00717-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can fail to describe oxidation states in extended crystalline systems such as metal-organic frameworks. Here we propose the use of a machine-learning model, trained on assignments by chemists encoded in the chemical names in the Cambridge Structural Database, to automatically assign oxidation states to the metal ions in metal-organic frameworks. In our approach, only the immediate local environment around a metal centre is considered. We show that the strategy is robust to experimental uncertainties such as incorrect protonation, unbound solvents or changes in bond length. This method gives good accuracy and we show that it can be used to detect incorrect assignments in the Cambridge Structural Database, illustrating how collective knowledge can be captured by machine learning and converted into a useful tool.
Collapse
Affiliation(s)
- Kevin Maik Jablonka
- Laboratory of Molecular Simulation, Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Daniele Ongari
- Laboratory of Molecular Simulation, Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Seyed Mohamad Moosavi
- Laboratory of Molecular Simulation, Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Berend Smit
- Laboratory of Molecular Simulation, Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
| |
Collapse
|
26
|
Sopiha KV, Malyi OI, Persson C, Wu P. Chemistry of Oxygen Ionosorption on SnO 2 Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33664-33676. [PMID: 34251174 PMCID: PMC8397246 DOI: 10.1021/acsami.1c08236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 06/02/2023]
Abstract
Ionosorbed oxygen is the key player in reactions on metal-oxide surfaces. This is particularly evident for chemiresistive gas sensors, which operate by modulating the conductivity of active materials through the formation/removal of surface O-related acceptors. Strikingly though, the exact type of species behind the sensing response remains obscure even for the most common material systems. The paradigm for ab initio modeling to date has been centered around charge-neutral surface species, ignoring the fact that molecular adsorbates are required to ionize to induce the sensing response. Herein, we resolve this inconsistency by carrying out a careful analysis of all charged O-related species on three naturally occurring surfaces of SnO2. We reveal that two types of surface acceptors can form spontaneously upon the adsorption of atmospheric oxygen: (i) superoxide O2- on the (110) and the (101) surfaces and (ii) doubly ionized O2- on the (100) facet, with the previous experimental evidence pointing to the latter as the source of sensing response. This species has a unique geometry involving a large displacement of surface Sn, forcing it to attain the coordination resembling that of Sn2+ in SnO, which seems necessary to stabilize O2- and activate metal-oxide surfaces for gas sensing.
Collapse
Affiliation(s)
- Kostiantyn V. Sopiha
- Solar
Cell Technology, Department of Materials Science and Engineering, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | - Oleksandr I. Malyi
- Renewable
and Sustainable Energy Institute, University
of Colorado, Boulder, Colorado 80309, United States
| | - Clas Persson
- Centre
for Materials Science and Nanotechnology/Department of Physics, University of Oslo, P.O.
Box 1048, Blindern, NO-0316 Oslo, Norway
- Division
of Applied Materials Physics, Department of Materials Science and
Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Ping Wu
- Entropic
Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
27
|
Sopiha KV, Malyi OI, Persson C, Wu P. Chemistry of Oxygen Ionosorption on SnO 2 Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021. [PMID: 34251174 DOI: 10.24435/materialscloud:zv-bg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ionosorbed oxygen is the key player in reactions on metal-oxide surfaces. This is particularly evident for chemiresistive gas sensors, which operate by modulating the conductivity of active materials through the formation/removal of surface O-related acceptors. Strikingly though, the exact type of species behind the sensing response remains obscure even for the most common material systems. The paradigm for ab initio modeling to date has been centered around charge-neutral surface species, ignoring the fact that molecular adsorbates are required to ionize to induce the sensing response. Herein, we resolve this inconsistency by carrying out a careful analysis of all charged O-related species on three naturally occurring surfaces of SnO2. We reveal that two types of surface acceptors can form spontaneously upon the adsorption of atmospheric oxygen: (i) superoxide O2- on the (110) and the (101) surfaces and (ii) doubly ionized O2- on the (100) facet, with the previous experimental evidence pointing to the latter as the source of sensing response. This species has a unique geometry involving a large displacement of surface Sn, forcing it to attain the coordination resembling that of Sn2+ in SnO, which seems necessary to stabilize O2- and activate metal-oxide surfaces for gas sensing.
Collapse
Affiliation(s)
- Kostiantyn V Sopiha
- Solar Cell Technology, Department of Materials Science and Engineering, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | - Oleksandr I Malyi
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Clas Persson
- Centre for Materials Science and Nanotechnology/Department of Physics, University of Oslo, P.O. Box 1048, Blindern, NO-0316 Oslo, Norway
- Division of Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Ping Wu
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
28
|
Jiang XL, Xu CQ, Lu JB, Cao CS, Schmidbaur H, Schwarz WHE, Li J. Electronic Structure and Spectroscopic Properties of Group-7 Tri-Oxo-Halides MO 3X (M = Mn-Bh, X = F-Ts). Inorg Chem 2021; 60:9504-9515. [PMID: 34152757 DOI: 10.1021/acs.inorgchem.1c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 24 trioxide halide molecules MO3X of the manganese group (M = Mn-Bh; X = F-Ts), which are iso-valence-electronic with the famous MnO4- ion, have been quantum-chemically investigated by quasi-relativistic density-functional and ab initio correlated approaches. Geometric and electronic structures, valence and oxidation numbers, vibrational and electronic spectral properties, energetic stabilities of the monomers in the gas phase, and the decay mode of MnO3F have been investigated. The light Mn-3d species are most strongly electron-correlated, indicating that the concept of a closed-shell Lewis-type single-configurational structure [Mn+7(d0) O-2(p6)3 F-(p6)] reaches its limits. The concept of real-valued spin orbitals φ(r)·α and φ(r)·β breaks down for the heavy Bh-6d, At-6p and Ts-7p elements because of the dominating spin-orbit coupling. The vigorous decomposition of MnO3F at ambient conditions starts by the autocatalyzed release of n O2 and the formation of MnmO3m-2nFm clusters, triggered by the electron-depleted "oxylic" character of the oxide ligands in MnO3X.
Collapse
Affiliation(s)
- Xue-Lian Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Bo Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chang-Su Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hubert Schmidbaur
- Department Chemie, Technische Universität München, Garching 85747, Germany
| | - W H Eugen Schwarz
- Department of Chemistry, Tsinghua University, Beijing 100084, China.,Department Chemie, Universität Siegen, Siegen 57068, Germany
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Bauers SR, Tellekamp MB, Roberts DM, Hammett B, Lany S, Ferguson AJ, Zakutayev A, Nanayakkara SU. Metal chalcogenides for neuromorphic computing: emerging materials and mechanisms. NANOTECHNOLOGY 2021; 32:372001. [PMID: 33882467 DOI: 10.1088/1361-6528/abfa51] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The approaching end of Moore's law scaling has significantly accelerated multiple fields of research including neuromorphic-, quantum-, and photonic computing, each of which possesses unique benefits unobtained through conventional binary computers. One of the most compelling arguments for neuromorphic computing systems is power consumption, noting that computations made in the human brain are approximately 106times more efficient than conventional CMOS logic. This review article focuses on the materials science and physical mechanisms found in metal chalcogenides that are currently being explored for use in neuromorphic applications. We begin by reviewing the key biological signal generation and transduction mechanisms within neuronal components of mammalian brains and subsequently compare with observed experimental measurements in chalcogenides. With robustness and energy efficiency in mind, we will focus on short-range mechanisms such as structural phase changes and correlated electron systems that can be driven by low-energy stimuli, such as temperature or electric field. We aim to highlight fundamental materials research and existing gaps that need to be overcome to enable further integration or advancement of metal chalcogenides for neuromorphic systems.
Collapse
Affiliation(s)
- Sage R Bauers
- Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, United States of America
| | - M Brooks Tellekamp
- Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, United States of America
| | - Dennice M Roberts
- Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, United States of America
| | - Breanne Hammett
- Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, United States of America
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Avenue, Golden, CO 80401, United States of America
| | - Stephan Lany
- Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, United States of America
| | - Andrew J Ferguson
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, United States of America
| | - Andriy Zakutayev
- Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, United States of America
| | - Sanjini U Nanayakkara
- Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, United States of America
| |
Collapse
|
30
|
Desmarais JK, Bi W, Zhao J, Hu MH, Alp E, Tse JS. 57Fe Mössbauer isomer shift of pure iron and iron oxides at high pressure-An experimental and theoretical study. J Chem Phys 2021; 154:214104. [PMID: 34240999 DOI: 10.1063/5.0048141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The 57Fe isomer shift (IS) of pure iron has been measured up to 100 GPa using synchrotron Mössbauer spectroscopy in the time domain. Apart from the expected discontinuity due to the α → ε structural and spin transitions, the IS decreases monotonically with increasing pressure. The absolute shifts were reproduced without semi-empirical calibrations by periodic density functional calculations employing extensive localized basis sets with several common density functionals. However, the best numerical agreement is obtained with the B1WC hybrid functional. Extension of the calculations to 350 GPa, a pressure corresponding to the Earth's inner core, predicted the IS range of 0.00 to -0.85 mm/s, covering the span from Fe(0) to Fe(VI) compounds measured at ambient pressure. The calculations also reproduced the pressure trend from polymorphs of prototypical iron oxide minerals, FeO and Fe2O3. Analysis of the electronic structure shows a strong donation of electrons from oxygen to iron at high pressure. The assignment of formal oxidation to the Fe atom becomes ambiguous under this condition.
Collapse
Affiliation(s)
- Jacques K Desmarais
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Wenli Bi
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | - Michael H Hu
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | - Esen Alp
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | - John S Tse
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
31
|
Štekláč M, Breza M. On the relation between oxidation states and d-electron populations of the 1st row transition metal complexes I. Tetrachloro complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Ran N, Sun B, Qiu W, Song E, Chen T, Liu J. Identifying Metallic Transition-Metal Dichalcogenides for Hydrogen Evolution through Multilevel High-Throughput Calculations and Machine Learning. J Phys Chem Lett 2021; 12:2102-2111. [PMID: 33625239 DOI: 10.1021/acs.jpclett.0c03839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-performance electrocatalysts not only exhibit high catalytic activity but also have sufficient thermodynamic stability and electronic conductivity. Although metallic 1T-phase MoS2 and WS2 have been successfully identified to have high activity for hydrogen evolution reaction, designing more extensive metallic transition-metal dichalcogenides (TMDs) faces a large challenge because of the lack of a full understanding of electronic and composition attributes related to catalytic activity. In this work, we carried out systematic high-throughput calculation screening for all possible existing two-dimensional TMD (2D-TMD) materials to obtain high-performance hydrogen evolution reaction (HER) electrocatalysts by using a few important criteria, such as zero band gap, highest thermodynamic stability among available phases, low vacancy formation energy, and approximately zero hydrogen adsorption energy. A series of materials-perfect monolayer VS2 and NiS2, transition-metal ion vacancy (TM-vacancy) ZrTe2 and PdTe2, chalcogenide ion vacancy (X-vacancy) MnS2, CrSe2, TiTe2, and VSe2-have been identified to have catalytic activity comparable with that of Pt(111). More importantly, electronic structural analysis indicates active electrons induced by defects are mostly delocalized in the nearest-neighbor and next-nearest neighbor range, rather than a single-atom active site. Combined with the machine learning method, the HER-catalytic activity of metallic phase 2D-TMD materials can be described quantitatively with local electronegativity (0.195·LEf + 0.205·LEs) and valence electron number (Vtmx), where the descriptor is ΔGH* = 0.093 - (0.195·LEf + 0.205·LEs) - 0.15·Vtmx.
Collapse
Affiliation(s)
- Nian Ran
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- College of Information, Liaoning University, Shengyang110036, China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erhong Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingwei Chen
- College of Information, Liaoning University, Shengyang110036, China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Schwab T, Niedermaier M, Zickler GA, Ončák M, Diwald O. Isolated Cobalt Ions Embedded in Magnesium Oxide Nanostructures: Spectroscopic Properties and Redox Activity. Chemistry 2020; 26:16049-16056. [PMID: 32677720 PMCID: PMC7756418 DOI: 10.1002/chem.202002817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Indexed: 11/12/2022]
Abstract
Atomic dispersion of dopants and control over their defect chemistry are central goals in the development of oxide nanoparticles for functional materials with dedicated electronic, optical or magnetic properties. We produced highly dispersed oxide nanocubes with atomic distribution of cobalt ions in substitutional sites of the MgO host lattice via metal organic chemical vapor synthesis. Vacuum annealing of the nanoparticle powders up to 1173 K has no effect on the shape of the individual particles and only leads to moderate particle coarsening. Such materials processing, however, gives rise to the electronic reduction of particle surfaces, which-upon O2 admission-stabilize anionic oxygen radicals that are accessible to UV/Vis diffuse reflectance and electron paramagnetic resonance (EPR) spectroscopy. Multi-reference quantum chemical calculations show that the optical bands observed mainly originate from transitions into 4 A2g (4 F), 4 T1g (4 P) states with a contribution of transitions into 2 T1g , 2 T2g (2 G) states through spin-orbit coupling and gain intensity through vibrational motion of the MgO lattice or the asymmetric ion field. Related nanostructures are a promising material system for single atomic site catalysis. At the same time, it represents an extremely valuable model system for the study of interfacial electron transfer processes that are key to nanoparticle chemistry and photochemistry at room temperature, and in heterogeneous catalysis.
Collapse
Affiliation(s)
- Thomas Schwab
- Department of Chemistry and Physics of MaterialsParis-Lodron University SalzburgJakob-Haringer-Straße 2a5020SalzburgAustria
| | - Matthias Niedermaier
- Department of Chemistry and Physics of MaterialsParis-Lodron University SalzburgJakob-Haringer-Straße 2a5020SalzburgAustria
| | - Gregor A. Zickler
- Department of Chemistry and Physics of MaterialsParis-Lodron University SalzburgJakob-Haringer-Straße 2a5020SalzburgAustria
| | - Milan Ončák
- Institute for Ion Physics and Applied PhysicsUniversity InnsbruckTechnikerstraße 25A-6020InnsbruckAustria
| | - Oliver Diwald
- Department of Chemistry and Physics of MaterialsParis-Lodron University SalzburgJakob-Haringer-Straße 2a5020SalzburgAustria
| |
Collapse
|
34
|
Wang L, Yang Z, Bowden ME, Freeland JW, Sushko PV, Spurgeon SR, Matthews B, Samarakoon WS, Zhou H, Feng Z, Engelhard MH, Du Y, Chambers SA. Hole-Trapping-Induced Stabilization of Ni 4 + in SrNiO 3 /LaFeO 3 Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005003. [PMID: 33006412 DOI: 10.1002/adma.202005003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Creating new functionality in materials containing transition metals is predicated on the ability to control the associated charge states. For a given transition metal, there is an upper limit on valence that is not exceeded under normal conditions. Here, it is demonstrated that this limit of 3+ for Ni and Fe can be exceeded via synthesis of (SrNiO3 )m /(LaFeO3 )n superlattices by tuning n and m. The Goldschmidt tolerance constraints are lifted, and SrNi4+ O3 with holes on adjacent O anions is stabilized as a perovskite at the single-unit-cell level (m = 1). Holding m = 1, spectroscopy reveals that the n = 1 superlattice contains Ni3+ and Fe4+ , whereas Ni4+ and Fe3+ are observed in the n = 5 superlattice. It is revealed that the B-site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which, in turn, determine the energy balance between Ni3+ /Fe4+ and Ni4+ /Fe3+ , thus controlling emergent electrical properties such as the band alignment and resulting hole confinement. This approach can be extended to other systems for synthesizing novel, metastable layered structures with new functionalities.
Collapse
Affiliation(s)
- Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhenzhong Yang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Steven R Spurgeon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bethany Matthews
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Widitha S Samarakoon
- School of Chemical, Biological and Environment Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Zhenxing Feng
- School of Chemical, Biological and Environment Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
35
|
Gimferrer M, Van der Mynsbrugge J, Bell AT, Salvador P, Head-Gordon M. Facing the Challenges of Borderline Oxidation State Assignments Using State-of-the-Art Computational Methods. Inorg Chem 2020; 59:15410-15420. [DOI: 10.1021/acs.inorgchem.0c02405] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martí Gimferrer
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jeroen Van der Mynsbrugge
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexis T. Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Huang LZ, Zhou C, Shen M, Gao E, Zhang C, Hu XM, Chen Y, Xue Y, Liu Z. Persulfate activation by two-dimensional MoS 2 confining single Fe atoms: Performance, mechanism and DFT calculations. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122137. [PMID: 32004841 DOI: 10.1016/j.jhazmat.2020.122137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Developing efficient catalysts for persulfate (PS) activation is important for the potential application of sulfate-radical-based advanced oxidation process. Herein, we demonstrate single iron atoms confined in MoS2 nanosheets with dual catalytic sites and synergistic catalysis as highly reactive and stable catalysts for efficient catalytic oxidation of recalcitrant organic pollutants via activation of PS. The dual reaction sites and the interaction between Fe and Mo greatly enhance the catalytic performance for PS activation. The radical scavenger experiments and electron paramagnetic resonance results confirm and SO4- rather than HO is responsible for aniline degradation. The high catalytic performance of Fe0.36Mo0.64S2 was interpreted by density functional theory (DFT) calculations via strong metal-support interactions and the low formal oxidation state of Fe in FexMo1-xS2. FexMo1-xS2/PS system can effectively remove various persistent organic pollutants and works well in a real water environment. Also, FexMo1-xS2 can efficiently activate peroxymonosulfate, sulfite and H2O2, suggesting its potential practical applications under various circumstances.
Collapse
Affiliation(s)
- Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Chu Zhou
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Miaolong Shen
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Enlai Gao
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Chunbo Zhang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Xin-Ming Hu
- Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China.
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China.
| |
Collapse
|
37
|
Can We Safely Obtain Formal Oxidation States from Centroids of Localized Orbitals? MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25010234. [PMID: 31935971 PMCID: PMC6983110 DOI: 10.3390/molecules25010234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 11/17/2022]
Abstract
The use of centroids of localized orbitals as a method to derive oxidation states (OS) from first-principles is critically analyzed. We explore the performance of the closest-atom distance criterion to assign electrons for a number of challenging systems, including high-valent transition metal compounds, π-adducts, and transition metal (TM) carbenes. Here, we also introduce a mixed approach that combines the position of the centroids with Bader's atomic basins as an alternative criterion for electron assignment. The closest-atom criterion performs reasonably well for the challenging systems, but wrongly considers O-H and N-H bonds as hydrides. The new criterion fixes this problem, but underperforms in the case of TM carbenes. Moreover, the OS assignment in dubious cases exhibit undesirable dependence on the particular choice for orbital localization.
Collapse
|
38
|
Koch D, Chen Y, Golub P, Manzhos S. Reply to the ‘Comment on “Revisiting π backbonding: the influence of d orbitals on metal–CO bonds and ligand red shifts”’ by G. Frenking and S. Pan, Phys. Chem. Chem. Phys., 2019, 22, DOI: 10.1039/C9CP05951B. Phys Chem Chem Phys 2020; 22:5380-5382. [DOI: 10.1039/c9cp06927e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We respond to the comment by Pan and Frenking with regard to our investigation on transition and alkaline earth metal d orbital influence on their bonding to carbonyl ligands to clarify misconceptions.
Collapse
Affiliation(s)
- Daniel Koch
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yingqian Chen
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Pavlo Golub
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, boulevard Lionel-Boulet, Varennes, QC J3X1S2, Canada
| |
Collapse
|
39
|
Ku C, Sit PHL. Oxidation-State Constrained Density Functional Theory for the Study of Electron-Transfer Reactions. J Chem Theory Comput 2019; 15:4781-4789. [PMID: 31339717 DOI: 10.1021/acs.jctc.9b00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose a new constrained density functional theory (CDFT) approach which directly controls the oxidation state of the target atoms. In this new approach called oxidation-state constrained density functional theory (OS-CDFT), the eigenvalues of the occupation matrix obtained from projecting the Kohn-Sham wave functions onto the valence orbitals are constrained to obtain the desired oxidation states. This approach is particularly useful to study electron transfer problems in transition metal-containing systems due to the multivalent nature of the transition metal ions. The calculation of the forces on the ions and of the coupling constant was implemented under the OS-CDFT scheme to allow efficient and accurate study of electron transfer reactions. We demonstrated the application of this method in the study of different electron transfer reactions including the aqueous ferrous-ferric self-exchange reaction, polaron hopping in the TiO2 anatase and bismuth vanadate, and photoexcited electron transfer in the sapphire.
Collapse
Affiliation(s)
- Calvin Ku
- School of Energy and Environment , City University of Hong Kong , Hong Kong Special Administrative Region , People's Republic of China
| | - Patrick H-L Sit
- School of Energy and Environment , City University of Hong Kong , Hong Kong Special Administrative Region , People's Republic of China
| |
Collapse
|
40
|
Zhang S, Gu S, Wang Y, Liang C, Yu Y, Han L, Zheng S, Zhang N, Liu X, Zhou J, Li J. Spontaneous Delithiation under Operando Condition Triggers Formation of an Amorphous Active Layer in Spinel Cobalt Oxides Electrocatalyst toward Oxygen Evolution. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00928] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuo Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Songqi Gu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Chao Liang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
| | - Yi Yu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
| | - Ling Han
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Shun Zheng
- Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Nian Zhang
- Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xiaosong Liu
- Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jing Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| |
Collapse
|
41
|
Abstract
With their broad range of properties, ABO3 transition metal perovskite oxides have long served as a platform for device applications and as a testing bed for different condensed matter theories. Their insulating character and structural distortions are often ascribed to dynamical electronic correlations within a universal, symmetry-conserving paradigm. This view restricts predictive theory to complex computational schemes, going beyond density functional theory (DFT). Here, we show that, if one allows symmetry-breaking energy-lowering crystal symmetry reductions and electronic instabilities within DFT, one successfully and systematically recovers the trends in the observed band gaps, magnetic moments, type of magnetic and crystallographic ground state, bond disproportionation and ligand hole effects, Mott vs. charge transfer insulator behaviors, and the amplitude of structural deformation modes including Jahn-Teller in low temperature spin-ordered and high temperature disordered paramagnetic phases. We then provide a classification of the four mechanisms of gap formation and establish DFT as a reliable base platform to study the ground state properties in complex oxides. It is often stated that first principles studies of transition metal oxides require dynamically correlated methods to correctly produce gap formation, magnetism and structural distortions. Varignon et al. show instead that static correlations are sufficient to capture these features in the ABO3 oxide series.
Collapse
|
42
|
Liu Q, Dalpian GM, Zunger A. Antidoping in Insulators and Semiconductors Having Intermediate Bands with Trapped Carriers. PHYSICAL REVIEW LETTERS 2019; 122:106403. [PMID: 30932675 DOI: 10.1103/physrevlett.122.106403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 06/09/2023]
Abstract
Ordinary doping by electrons (holes) generally means that the Fermi level shifts towards the conduction band (valence band) and that the conductivity of free carriers increases. Recently, however, some peculiar doping characteristics were sporadically recorded in different materials without noting the mechanism: electron doping was observed to cause a portion of the lowest unoccupied band to merge into the valance band, leading to a decrease in conductivity. This behavior, that we dub as "antidoping," was seen in rare-earth nickel oxides SmNiO_{3}, cobalt oxides SrCoO_{2.5}, Li-ion battery materials, and even MgO with metal vacancies. We describe the physical origin of antidoping as well as its inverse problem-the "design principles" that would enable an intelligent search of materials. We find that electron antidoping is expected in materials having preexisting trapped holes and is caused by the annihilation of such "hole polarons" via electron doping. This may offer an unconventional way of controlling conductivity.
Collapse
Affiliation(s)
- Qihang Liu
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, USA
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gustavo M Dalpian
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, USA
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Alex Zunger
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
43
|
Kim BJ, Fabbri E, Abbott DF, Cheng X, Clark AH, Nachtegaal M, Borlaf M, Castelli IE, Graule T, Schmidt TJ. Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. J Am Chem Soc 2019; 141:5231-5240. [DOI: 10.1021/jacs.8b12101] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bae-Jung Kim
- Energy & Environment Division, Paul Scherrer Institut, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Emiliana Fabbri
- Energy & Environment Division, Paul Scherrer Institut, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Daniel F. Abbott
- Energy & Environment Division, Paul Scherrer Institut, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Xi Cheng
- Energy & Environment Division, Paul Scherrer Institut, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Adam H. Clark
- Energy & Environment Division, Paul Scherrer Institut, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Maarten Nachtegaal
- Energy & Environment Division, Paul Scherrer Institut, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Mario Borlaf
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Testing and Research, 8600 Dübendorf, Switzerland
| | - Ivano E. Castelli
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 309, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas Graule
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Testing and Research, 8600 Dübendorf, Switzerland
| | - Thomas J. Schmidt
- Energy & Environment Division, Paul Scherrer Institut, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
44
|
Wei H, Wu H, Huang K, Ge B, Ma J, Lang J, Zu D, Lei M, Yao Y, Guo W, Wu H. Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. Chem Sci 2019; 10:2830-2836. [PMID: 30997004 PMCID: PMC6431957 DOI: 10.1039/c8sc04986f] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/12/2019] [Indexed: 11/21/2022] Open
Abstract
Efficient control of nucleation is a prerequisite for the solution-phase synthesis of nanocrystals. Although the thermodynamics and kinetics of the formation of metal nanoparticles have been largely investigated, fully suppressing the nucleation in solution synthesis remains a major challenge due to the high surface free energy of isolated atoms. In this article, we largely decreased the reaction temperature for ultraviolet (UV) photochemical reduction of H2PtCl6 solution to -60 °C and demonstrated such a method as a fast and convenient process for the synthesis of atomically dispersed Pt. We showed that the ultralow-temperature reaction efficiently inhibited the nucleation process by controlling its thermodynamics and kinetics. Compared with commercial platinum/carbon, the synthesized atomically dispersed Pt catalyst, as a superior HER catalyst, exhibited a lower overpotential of approximately 55 mV at a current density of 100 mA cm-2 and a lower Tafel slope of 26 mV dec-1 and had higher stability in 0.5 M H2SO4.
Collapse
Affiliation(s)
- Hehe Wei
- State Key Laboratory of New Ceramics and Fine Processing , School of Materials Science and Engineering , Tsinghua University , Beijing , 100084 , China .
| | - Hongbo Wu
- School of Physics , Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District , Beijing , 100081 , China .
| | - Kai Huang
- State Key Laboratory of New Ceramics and Fine Processing , School of Materials Science and Engineering , Tsinghua University , Beijing , 100084 , China .
- State Key Laboratory of Information Photonics and Optical Communications & School of Science , Beijing University of Posts and Telecommunications , Beijing 100876 , China
| | - Binghui Ge
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China .
- Institute of Physical Science and Information Technology , Anhui University , 230601 , Hefei , Anhui , China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201204 , China
| | - Jialiang Lang
- State Key Laboratory of New Ceramics and Fine Processing , School of Materials Science and Engineering , Tsinghua University , Beijing , 100084 , China .
| | - Di Zu
- State Key Laboratory of New Ceramics and Fine Processing , School of Materials Science and Engineering , Tsinghua University , Beijing , 100084 , China .
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications & School of Science , Beijing University of Posts and Telecommunications , Beijing 100876 , China
| | - Yugui Yao
- School of Physics , Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District , Beijing , 100081 , China .
| | - Wei Guo
- School of Physics , Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District , Beijing , 100081 , China .
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing , School of Materials Science and Engineering , Tsinghua University , Beijing , 100084 , China .
| |
Collapse
|
45
|
Young MJ, Kiryutina T, Bedford NM, Woehl TJ, Segre CU. Discovery of Anion Insertion Electrochemistry in Layered Hydroxide Nanomaterials. Sci Rep 2019; 9:2462. [PMID: 30792465 PMCID: PMC6384940 DOI: 10.1038/s41598-019-39052-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022] Open
Abstract
Electrode materials which undergo anion insertion are a void in the materials innovation landscape and a missing link to energy efficient electrochemical desalination. In recent years layered hydroxides (LHs) have been studied for a range of electrochemical applications, but to date have not been considered as electrode materials for anion insertion electrochemistry. Here, we show reversible anion insertion in a LH for the first time using Co and Co-V layer hydroxides. By pairing in situ synchrotron and quartz crystal microbalance measurements with a computational unified electrochemical band-diagram description, we reveal a previously undescribed anion-insertion mechanism occurring in Co and Co-V LHs. This proof of concept study demonstrates reversible electrochemical anion insertion in LHs without significant material optimization. These results coupled with our foundational understanding of anion insertion electrochemistry establishes LHs as a materials platform for anion insertion electrochemistry with the potential for future application to electrochemical desalination.
Collapse
Affiliation(s)
- Matthias J Young
- Applied Materials Division, Argonne National Laboratory, Argonne, Illinois, 60439, USA.
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado, 80305, USA.
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA.
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
| | - Tatyana Kiryutina
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado, 80305, USA
| | - Nicholas M Bedford
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado, 80305, USA.
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Taylor J Woehl
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado, 80305, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, 20742, USA
| | - Carlo U Segre
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, 60616, USA
| |
Collapse
|
46
|
Mäkelä J, Lahti A, Tuominen M, Yasir M, Kuzmin M, Laukkanen P, Kokko K, Punkkinen MPJ, Dong H, Brennan B, Wallace RM. Unusual oxidation-induced core-level shifts at the HfO 2/InP interface. Sci Rep 2019; 9:1462. [PMID: 30728385 PMCID: PMC6365577 DOI: 10.1038/s41598-018-37518-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/05/2018] [Indexed: 11/22/2022] Open
Abstract
X-ray photoelectron spectroscopy (XPS) is one of the most used methods in a diverse field of materials science and engineering. The elemental core-level binding energies (BE) and core-level shifts (CLS) are determined and interpreted in the XPS. Oxidation is commonly considered to increase the BE of the core electrons of metal and semiconductor elements (i.e., positive BE shift due to O bonds), because valence electron charge density moves toward electronegative O atoms in the intuitive charge-transfer model. Here we demonstrate that this BE hypothesis is not generally valid by presenting XPS spectra and a consistent model of atomic processes occurring at HfO2/InP interface including negative In CLSs. It is shown theoretically for abrupt HfO2/InP model structures that there is no correlation between the In CLSs and the number of oxygen neighbors. However, the P CLSs can be estimated using the number of close O neighbors. First native oxide model interfaces for III-V semiconductors are introduced. The results obtained from ab initio calculations and synchrotron XPS measurements emphasize the importance of complementary analyses in various academic and industrial investigations where CLSs are at the heart of advancing knowledge.
Collapse
Affiliation(s)
- Jaakko Mäkelä
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland.
| | - Antti Lahti
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Marjukka Tuominen
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Muhammad Yasir
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Mikhail Kuzmin
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland.,Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, 194021, Russian Federation
| | - Pekka Laukkanen
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Kalevi Kokko
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Marko P J Punkkinen
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland.
| | - Hong Dong
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA.,Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin, 300071, China
| | - Barry Brennan
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA.,National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Robert M Wallace
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| |
Collapse
|
47
|
Koch D, Chen Y, Golub P, Manzhos S. Revisiting π backbonding: the influence of d orbitals on metal–CO bonds and ligand red shifts. Phys Chem Chem Phys 2019; 21:20814-20821. [DOI: 10.1039/c9cp04624k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stronger C–O bonds are found if metal d-functions are present in carbonyl complexes, contrary to the common understanding of π-backbonding.
Collapse
Affiliation(s)
- Daniel Koch
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Yingqian Chen
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Pavlo Golub
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, boulevard Lionel-Boulet, Varennes, QC J3X1S2, Canada
| |
Collapse
|
48
|
Walsh A, Sokol AA, Buckeridge J, Scanlon DO, Catlow CRA. Oxidation states and ionicity. NATURE MATERIALS 2018; 17:958-964. [PMID: 30275565 DOI: 10.1038/s41563-018-0165-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/09/2018] [Indexed: 05/28/2023]
Abstract
The concepts of oxidation state and atomic charge are entangled in modern materials science. We distinguish between these quantities and consider their fundamental limitations and utility for understanding material properties. We discuss the nature of bonding between atoms and the techniques that have been developed for partitioning electron density. While formal oxidation states help us count electrons (in ions, bonds, lone pairs), variously defined atomic charges are usefully employed in the description of physical processes including dielectric response and electronic spectroscopies. Such partial charges are introduced as quantitative measures in simple mechanistic models of a more complex reality, and therefore may not be comparable or transferable. In contrast, oxidation states are defined to be universal, with deviations constituting exciting challenges as evidenced in mixed-valence compounds, electrides and highly correlated systems. This Perspective covers how these concepts have evolved in recent years, our current understanding and their significance.
Collapse
Affiliation(s)
- Aron Walsh
- Department of Materials, Imperial College London, London, UK.
- Department of Materials Science and Engineering, Yonsei University, Seoul, Korea.
| | - Alexey A Sokol
- Department of Chemistry, University College London, London, UK
| | - John Buckeridge
- Department of Chemistry, University College London, London, UK
| | - David O Scanlon
- Department of Chemistry, University College London, London, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - C Richard A Catlow
- Department of Chemistry, University College London, London, UK.
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
49
|
Zheng J, Teng G, Yang J, Xu M, Yao Q, Zhuo Z, Yang W, Liu Q, Pan F. Mechanism of Exact Transition between Cationic and Anionic Redox Activities in Cathode Material Li 2FeSiO 4. J Phys Chem Lett 2018; 9:6262-6268. [PMID: 30336046 DOI: 10.1021/acs.jpclett.8b02725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The discovery of anion redox activity is promising for boosting the capacity of lithium ion battery (LIB) cathodes. However, fundamental understanding of the mechanisms that trigger the anionic redox is still lacking. Here, using hybrid density functional study combined with experimental soft X-ray absorption spectroscopy (sXAS) measurements, we unambiguously proved that Li(2- x)FeSiO4 performs sequent cationic and anionic redox activity through delithiation. Specifically, Fe2+ is oxidized to Fe3+ during the first Li ion extraction per formula unit (f.u.), while the second Li ion extraction triggered the oxygen redox exclusively. Cationic and anionic redox result in electron and hole polaron states, respectively, explaining the poor conductivity of Li(2- x)FeSiO4 noted by previous experiments. In contrast, other cathode materials in this family exhibit diversity of the redox process. Li2MnSiO4 shows double cationic redox (Mn2+-Mn4+) during the whole delithiation, while Li2CoSiO4 shows simultaneous cationic and anionic redox. The present finding not only provides new insights into the oxygen redox activity in polyanionic compounds for rechargeable batteries but also sheds light on the future design of high-capacity rechargeable batteries.
Collapse
Affiliation(s)
- Jiaxin Zheng
- School of Advanced Materials , Peking University, Shenzhen Graduate School , Shenzhen 518055 , China
| | - Gaofeng Teng
- School of Advanced Materials , Peking University, Shenzhen Graduate School , Shenzhen 518055 , China
| | - Jinlong Yang
- School of Advanced Materials , Peking University, Shenzhen Graduate School , Shenzhen 518055 , China
| | - Ming Xu
- School of Advanced Materials , Peking University, Shenzhen Graduate School , Shenzhen 518055 , China
| | - Qiushi Yao
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Zengqing Zhuo
- School of Advanced Materials , Peking University, Shenzhen Graduate School , Shenzhen 518055 , China
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Wanli Yang
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Feng Pan
- School of Advanced Materials , Peking University, Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
50
|
Klein JEMN, Havenith RWA, Knizia G. The Pentagonal-Pyramidal Hexamethylbenzene Dication: Many Shades of Coordination Chemistry at Carbon. Chemistry 2018; 24:12340-12345. [PMID: 29341342 PMCID: PMC6120489 DOI: 10.1002/chem.201705812] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/15/2022]
Abstract
A recent report on the crystal structure of the pentagonal-pyramidal hexamethylbenzene dication C6 (CH3 )62+ by Malischewski and Seppelt [Angew. Chem. Int. Ed. 2017, 56, 368] confirmed the structural proposal made in the first report of this compound in 1973 by Hogeveen and Kwant [Tetrahedron Lett. 1973, 14, 1665]. The widespread attention that this compound quickly gained led us to reinvestigate its electronic structure. On the basis of intrinsic bond orbital analysis, effective oxidation state analysis, ring current analysis, and comparison with well-established coordination complexes, it is demonstrated that the central carbon atom behaves like a transition metal. The central (apical) carbon atom, although best described as a highly Lewis-acidic carbon atom coordinated with an anionic cyclopentadienyl ligand, is also capable of acting as an electron-pair donor to a formal CH3+ group. The different roles of coordination chemistry are discussed.
Collapse
Affiliation(s)
- Johannes E. M. N. Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Remco W. A. Havenith
- Zernike Institute for Advanced Materials and Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Ghent Quantum Chemistry Group, Department of Inorganic and Physical ChemistryGhent UniversityKrijgslaan 281 (S3)9000GentBelgium
| | - Gerald Knizia
- Department of ChemistryPennsylvania State University401A Chemistry Bldg; University ParkPA16802USA
| |
Collapse
|