1
|
Wang J, Yin J, Imtiaz H, Wang H, Li Y. Enantioselective Total Synthesis of (-)-Cyathin B 2: A Desymmetric Double-Allylboration Approach. J Am Chem Soc 2024; 146:25078-25087. [PMID: 39196853 DOI: 10.1021/jacs.4c08042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A powerful Pt-catalyzed asymmetric diboration/desymmetric double-allylboration cascade reaction has been developed for the construction of synthetically useful, densely functionalized hydrindanes with five stereocenters, including three quaternary ones, in good yields and excellent enantiomeric excess (ee) values within a single synthetic operation. A unified strategy utilizing this key tandem methodology enabled the concise asymmetric total synthesis of cyathane diterpene (-)-Cyathin B2 in 14 steps from commercially available starting materials, thereby demonstrating its remarkable potential in the synthesis of hydrindane-containing natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiacheng Yin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hayatullah Imtiaz
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Wang H, Zhang R, Zi W. Synergistic Palladium/Copper-Catalyzed 1,4-Difunctionalization of 1,3-Dienes for Stereodivergent Construction of 1,5-Nonadjacent Stereocenters. Angew Chem Int Ed Engl 2024; 63:e202402843. [PMID: 38512004 DOI: 10.1002/anie.202402843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
The construction of two distal stereocenters through a single catalytic process is of great interest in organic synthesis. While there are some successful reports regarding stereodivergent preparation of 1,3- or 1,4-stereocenters, the more challenged 1,5-nonadjacent stereocenters have never been achieved in a stereodivergent fashion. Herein we describe a synergistic palladium/copper catalysis for 1,4-difunctionalization reactions of 1,3-dienes, providing access to 1,5-nonadjacent quaternary stereocenters. Because each of the two catalysts separately controlled one of the newly formed stereocenters, stereodivergent synthesis of all four diastereomers of the products could readily be achieved simply by choosing an appropriate combination of chiral catalysts. Experimental and computational studies supported a mechanism involving a Heck/Tsuji-Trost cascade reaction, and the origins of the stereoselectivity were elucidated.
Collapse
Affiliation(s)
- Hongfa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ruiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
3
|
Liu K, Wang Z, Künzel AN, Layh M, Studer A. Regioselective Formal β-Allylation of Carbonyl Compounds Enabled by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2023; 62:e202303473. [PMID: 37141023 DOI: 10.1002/anie.202303473] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
The Tsuji-Trost reaction between carbonyl compounds and allylic precursors has been widely used in the synthesis of natural products and pharmaceutical compounds. As the α-C-H bond is far more acidic than the β-C-H bond, carbonyl compounds undergo highly regioselective allylation at the α-position and their β-allylation is therefore highly challenging. This innate α-reactivity conversely hampers diversity, especially if the corresponding β-allylation product is targeted. Herein, we present a formal intermolecular β-C-C bond formation reaction of a broad range of aldehydes and ketones with different allyl electrophiles through cooperative nickel and photoredox catalysis. β-Selectivity is achieved via initial transformation of the aldehydes and ketones to their corresponding silyl enol ethers. The overall transformation features mild conditions, excellent regioselectivity, wide functional group tolerance and high reaction efficiency. The introduced facile and regioselective β-allylation of carbonyl compounds proceeding through cooperative catalysis allows the preparation of valuable building blocks that are difficult to access from aldehydes and ketones using existing methodology.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Zhe Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Augustinus N Künzel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Marcus Layh
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität, Corrensstraße 28/30, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
4
|
Lv L, Qian H. Developments and applications of allyl-(aza)allyl coupling reactions. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
5
|
Nowak-Król A, Dydio P. The 55 th Bürgenstock Conference under the Banner of Sustainability. Angew Chem Int Ed Engl 2022; 61:e202214722. [PMID: 36477955 DOI: 10.1002/anie.202214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
6
|
Nowak‐Król A, Dydio P. The 55
th
Bürgenstock Conference under the Banner of Sustainability**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Agnieszka Nowak‐Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Paweł Dydio
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
7
|
Xu X, Shi Y, Wang D, Ding Y, Chen S, Zhang X. Cobalt(III)-Catalyzed and DMSO-Involved Allylation of 1,3-Dicarbonyl Compounds with Alkenes. J Org Chem 2022; 87:14352-14363. [PMID: 36263891 DOI: 10.1021/acs.joc.2c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cobalt(III)-catalyzed allylation of 1,3-dicarbonyl compounds has been reported with in situ generated allyl reagents from alkenes and dimethyl sulfoxide (DMSO). This novel protocol enables a high regio- and stereoselective access for a broad range of allyl 1,3-dicarbonyl compounds. In the transformation, DMSO plays the role of a C1 source, and it incorporates with alkenes to form the allyl reagent allylic methyl thioether. Moreover, a multiple-step pathway has been proposed to rationalize the mechanism study, which involves silver-mediated coupling, Co(III)-catalyzed π-allylation, and intermolecular nucleophilic substitution.
Collapse
Affiliation(s)
- Xuefeng Xu
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yue Shi
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Di Wang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yanhua Ding
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuyang Chen
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
8
|
Abstract
Herein, we report the first asymmetric total synthesis of iheyamine B from 2,2'-bisindoloazepinone using the stereoselective construction of the trans-vicinal 2-oxopropyl moiety in the azepine scaffold. The asymmetric decarboxylative allylic alkylation provided the α-allylated 2,2'-bisindoloazepinone intermediate. The subsequent conversion of the lactam moiety into another allyl group in a trans-selective manner followed by Wacker oxidation of each allyl unit to the corresponding 2-oxopropyl group completed the total synthesis of iheyamine B.
Collapse
Affiliation(s)
- Jiye Jeon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. Total Syntheses of Calyciphylline A-Type Alkaloids (-)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and (+)-Calyciphylline R via Late-Stage Divinyl Carbinol Rearrangements. J Am Chem Soc 2022; 144:16042-16051. [PMID: 36007885 DOI: 10.1021/jacs.2c05957] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Among the famous Daphniphyllum alkaloids family, the calyciphylline A-type subfamily has triggered particular interest from the organic synthesis community in recent years. Here, we report divergent total syntheses of three calyciphylline A-type alkaloids, namely, (-)-10-deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent strategy via late-stage divinyl carbinol rearrangements, including an unprecedented oxidative Nazarov electrocyclization using an unfunctionalized tertiary divinyl carbinol and an unusual allylic alcohol rearrangement. A highly efficient "donor-acceptor" platinum catalyst was used for a critical nitrile hydration step. Moreover, the power of selective amide reductions has also been showcased by novel and classic tactics.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Manrong Song
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujia Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Yan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Hu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengqian Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Zhang H, Cai LY, Wang K, Zhao HW. Pd-Catalyzed three-component decarboxylative coupling reactions between alkylidene pyrazolones, allyl carbonates and active methylene compounds. Org Biomol Chem 2022; 20:5115-5124. [PMID: 35703433 DOI: 10.1039/d2ob00791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under the catalysis of Pd2(dba)3·CHCl3/(±)-L5 in THF at room temperature, the three-component decarboxylative coupling reactions among alkylidene pyrazolones, allyl carbonates and active methylene compounds proceeded readily and furnished the desired products in acceptable chemical yields. The chemical architecture of the obtained products was unambiguously confirmed by single crystal X-ray analysis.
Collapse
Affiliation(s)
- Heng Zhang
- College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Lu-Yu Cai
- College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Kuo Wang
- College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Hong-Wu Zhao
- College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
11
|
McClure TJ, Saludares C, Martinez G, Orozco C, Navarro R. Decarboxylative Allylic Alkylation of Phthalides: Stabilized Benzylic Nucleophiles for sp 3-sp 3 Coupling. J Org Chem 2022; 87:7557-7564. [PMID: 35575695 DOI: 10.1021/acs.joc.2c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new family of stabilized benzylic nucleophiles for the palladium-catalyzed decarboxylative allylic alkylation reaction has been developed. Allyl esters derived from 3-carboxyphthalides were found to undergo palladium-catalyzed deallylation and decarboxylation under mild reaction conditions, a process facilitated by the formation of a stabilized aromatic anion. The regioselective allylic coupling of this intermediate afforded a variety of functionalized phthalides in 73-96% yields.
Collapse
Affiliation(s)
- Timothy J McClure
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Connor Saludares
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Gisela Martinez
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Cheyenne Orozco
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Raul Navarro
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| |
Collapse
|
12
|
Khatua A, Shyamal P, Pal S, Mondal A, Bisai A. Concise total syntheses of bis(cyclotryptamine) alkaloids via thio-urea catalyzed one-pot sequential Michael addition. Chem Commun (Camb) 2022; 58:3929-3932. [PMID: 35244129 DOI: 10.1039/d2cc01008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring bis(cyclotryptamine) alkaloids feature vicinal all-carbon quaternary stereocenters with an elongated labile C-3a-C-3a' Sigma bond with impressive biological activities. In this report, we have developed a thio-urea catalyzed one-pot sequential Michael addition of bis-oxindole onto selenone to access enantioenriched dimeric 2-oxindoles with vicinal quaternary stereogenic centers at the pseudobenzylic position (up to 96% ee and >20 : 1 dr). This strategy has been successfully applied for the total syntheses of either enantiomers of chimonanthine, folicanthine, and calycanthine.
Collapse
Affiliation(s)
- Arindam Khatua
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India.
| | - Pranay Shyamal
- Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| | - Souvik Pal
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India.
| | - Ayan Mondal
- Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| | - Alakesh Bisai
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemistry, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia - 741 246, West Bengal, India
| |
Collapse
|
13
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Babu KN, Pal S, Khatua A, Roy A, Bisai A. The catalytic decarboxylative allylation of enol carbonates: the synthesis of enantioenriched 3-allyl-3'-aryl 2-oxindoles and the core structure of azonazine. Org Biomol Chem 2021; 20:127-131. [PMID: 34897364 DOI: 10.1039/d1ob02048j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic asymmetric synthesis of 3-allyl-3'-aryl 2-oxindoles has been shown via the Pd(0)-catalyzed decarboxylative allylation of allylenol carbonates. This methodology provides access to a variety of 2-oxindole substrates (5a-v) with all-carbon quaternary stereocenters (up to 94% ee) at the pseudobenzylic position under additive-free and mild conditions. The synthetic potential of this method was shown by the asymmetric synthesis of the tetracyclic core of the diketopiparazine-based alkaloid azonazine (11).
Collapse
Affiliation(s)
- K Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Souvik Pal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, West Bengal, India
| |
Collapse
|
15
|
Heravi MM, Mohammadi L. Application of Pauson-Khand reaction in the total synthesis of terpenes. RSC Adv 2021; 11:38325-38373. [PMID: 35493249 PMCID: PMC9044263 DOI: 10.1039/d1ra05673e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Pauson-Khand reaction (PKR) is a formal [2 + 2 + 1] cycloaddition involving an alkyne, an alkene and carbon monoxide mediated by a hexacarbonyldicobaltalkyne complex to yield cyclopentenones in a single step. This versatile reaction has become a method of choice for the synthesis of cyclopentenone and its derivatives since its discovery in the early seventies. The aim of this review is to point out the applications of PKR in the total synthesis of terpenes.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Leila Mohammadi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
16
|
Kundu S, Munda M, Nandi R, Bisai A. Pd(0)-Catalyzed Deacylative Allylations (DaA) Strategy and Application in the Total Synthesis of Alkaloids. CHEM REC 2021; 21:3818-3838. [PMID: 34796643 DOI: 10.1002/tcr.202100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/12/2022]
Abstract
Natural product synthesis has been the prime focus for the development of new carbon-carbon bond forming transformations. In particular, the construction of molecules with all-carbon quaternary centers remain one of the most facinating targets. In this regard, transition-metal catalyzed processes have gained imporatnce owing to their mild nature. Towards this, Pd(0)-catalyzed decarboxylative allylations (DcA) is worth mentioning and has emerged as a convenient method for synthesis of molecules even in their enantioenriched form. However, in order to have a flexible approach that facilitate rapid production of derivatives by utilizing commercially available allyl alcohols, the concept of Pd(0)-catalyzed deacylative allylations (DaA) methodology gains popularity. In these reactions, the transfer of an acyl group has a functional role in activating the allylic alcohol (proelectrophile) toward reaction with Pd(0)-catalysts. We present here an Account on newly conceptualized deacylative allylations (DaA) methodology and its applications in the synthesis of various intermediates and building blocks. Further, its potential in the total synthesis of naturally occurring alkaloids have been summarized in this personal account.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Mintu Munda
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Rhituparna Nandi
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Alakesh Bisai
- Department of Chemical Sciences, Indian Institution of Science Education and Research Kolkata Mohanpur Campus, Kalyani, Nadia, 741 246, WB, India
| |
Collapse
|
17
|
Chang Y, Fu J, Li Y, Ding R, Liu Y, Hu J. Pd-Catalyzed Rearrangement Reaction of N-Tosylhydrazones Bearing Allyl Ethers Into Trans-Olefin-Substituted Sulfonylhydrazones. Front Chem 2021; 9:782641. [PMID: 34760873 PMCID: PMC8573317 DOI: 10.3389/fchem.2021.782641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
A novel and efficient rearrangement of N-tosylhydrazones bearing allyl ethers into trans-olefin-substituted sulfonylhydrazones is proposed. The reaction involves breakage of the C-O bond and formation of the C-N bond. The reaction can be extended to a wide range of substrates, and the target products can be synthesized smoothly, regardless of the presence of electron-donating and electron-withdrawing groups. The proposed strategy is a new direction in the field of rearrangement reactions.
Collapse
Affiliation(s)
| | | | - Yingxue Li
- Weifang Medical University, Weifang, China
| | | | - Yue Liu
- Weifang Medical University, Weifang, China
| | - Jinxing Hu
- Weifang Medical University, Weifang, China
| |
Collapse
|
18
|
Kim KE, Kim AN, McCormick CJ, Stoltz BM. Late-Stage Diversification: A Motivating Force in Organic Synthesis. J Am Chem Soc 2021; 143:16890-16901. [PMID: 34614361 PMCID: PMC9285880 DOI: 10.1021/jacs.1c08920] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interest in therapeutic discovery typically drives the preparation of natural product analogs, but these undertakings contribute significant advances for synthetic chemistry as well. The need for a highly efficient and scalable synthetic route to a complex molecular scaffold for diversification frequently inspires new methodological development or unique application of existing methods on structurally intricate systems. Additionally, synthetic planning with an aim toward late-stage diversification can provide access to otherwise unavailable compounds or facilitate preparation of complex molecules with diverse patterns of substitution around a shared carbon framework. For these reasons among others, programs dedicated to the diversification of natural product frameworks and other complex molecular scaffolds have been increasing in popularity, a trend likely to continue given their fruitfulness and breadth of impact. In this Perspective, we discuss our experience using late-stage diversification as a guiding principle for the synthesis of natural product analogs and reflect on the impact such efforts have on the future of complex molecule synthesis.
Collapse
Affiliation(s)
- Kelly E Kim
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Alexia N Kim
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Carter J McCormick
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
19
|
Abstract
Recent advances in the total syntheses of cyclic natural products and related compounds from 2005 to 2021, which employ domino Michael reactions as key steps, have been reviewed, focusing mainly on the domino Michael reactions catalyzed by organocatalysts.
Collapse
Affiliation(s)
- Hisahiro Hagiwara
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Abstract
The asymmetric alkylation of enolates is a particularly versatile method for the construction of α-stereogenic carbonyl motifs, which are ubiquitous in synthetic chemistry. Over the past several decades, the focus has shifted to the development of new catalytic methods that depart from classical stoichiometric stereoinduction strategies (e.g., chiral auxiliaries, chiral alkali metal amide bases, chiral electrophiles, etc.). In this way, the enantioselective alkylation of prochiral enolates greatly improves the step- and redox-economy of this process, in addition to enhancing the scope and selectivity of these reactions. In this review, we summarize the origin and advancement of catalytic enantioselective enolate alkylation methods, with a directed emphasis on the union of prochiral nucleophiles with carbon-centered electrophiles for the construction of α-stereogenic carbonyl derivatives. Hence, the transformative developments for each distinct class of nucleophile (e.g., ketone enolates, ester enolates, amide enolates, etc.) are presented in a modular format to highlight the state-of-the-art methods and current limitations in each area.
Collapse
Affiliation(s)
- Timothy B Wright
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - P Andrew Evans
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. of China
| |
Collapse
|
21
|
Masson-Makdissi J, Prieto L, Abel-Snape X, Lautens M. Enantio- and Diastereodivergent Sequential Catalysis Featuring Two Transition-Metal-Catalyzed Asymmetric Reactions. Angew Chem Int Ed Engl 2021; 60:16932-16936. [PMID: 34046992 DOI: 10.1002/anie.202105800] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/10/2022]
Abstract
This study demonstrates the feasibility and inherent benefits of combining two distinct asymmetric transition-metal-catalyzed reactions in one pot. The reported transformation features a Pd-catalyzed asymmetric allylic alkylation and a Rh-catalyzed enantioselective 1,4-conjugate addition, effectively converting simple allyl enol carbonate precursors into enantioenriched cyclic ketones with two remote stereocenters. Despite the anticipated challenges associated with controlling stereoselectivity in such a complex system, the products are obtained in enantiomeric excesses ranging up to >99 % ee, exceeding those obtained from either of the individual asymmetric reactions. In addition, since the stereoselectivity of both steps is under catalyst control, this one-pot reaction is enantio- and diastereodivergent, enabling facile access to all stereoisomers from the same set of starting materials.
Collapse
Affiliation(s)
- Jeanne Masson-Makdissi
- Department of Chemistry, University of Toronto, 80 St. George Street., Toronto, Ontario, M5S 3H6, Canada
| | - Liher Prieto
- Department of Chemistry, University of Toronto, 80 St. George Street., Toronto, Ontario, M5S 3H6, Canada.,Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Xavier Abel-Snape
- Department of Chemistry, University of Toronto, 80 St. George Street., Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, 80 St. George Street., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
22
|
Masson‐Makdissi J, Prieto L, Abel‐Snape X, Lautens M. Enantio‐ and Diastereodivergent Sequential Catalysis Featuring Two Transition‐Metal‐Catalyzed Asymmetric Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jeanne Masson‐Makdissi
- Department of Chemistry University of Toronto 80 St. George Street. Toronto Ontario M5S 3H6 Canada
| | - Liher Prieto
- Department of Chemistry University of Toronto 80 St. George Street. Toronto Ontario M5S 3H6 Canada
- Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Xavier Abel‐Snape
- Department of Chemistry University of Toronto 80 St. George Street. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Department of Chemistry University of Toronto 80 St. George Street. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
23
|
Radical philicity and its role in selective organic transformations. Nat Rev Chem 2021; 5:486-499. [PMID: 37118440 DOI: 10.1038/s41570-021-00284-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Radical intermediates in organic chemistry lack a full octet of electrons and, thus, are commonly said to be electron deficient. By denotation, such a statement is technically correct; however, in modern literature, the term 'electron deficient' carries a connotation of electrophilicity. This lexical quirk leads one to predict that all radicals should behave as electrophiles, when this is not the case. Indeed, practitioners of radical chemistry have known for decades that many radicals behave as nucleophiles, sometimes strongly so. This Review aims to establish guidelines for understanding radical philicity by highlighting examples from recent literature as a demonstration of general reactivity paradigms across a series of different carbon-based and heteroatom-based radicals. We present strategies for predicting the philicity of a given radical on the basis of qualitative features of the radical's structure. Finally, we discuss the implications of radical philicity to selective hydrogen atom transfer.
Collapse
|
24
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
25
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
26
|
Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sourav Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Tamal Ballav
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Krishna Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Suman Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
27
|
Gou XY, Li Y, Luan YY, Shi WY, Wang CT, An Y, Zhang BS, Liang YM. Ruthenium-Catalyzed Radical Cyclization/meta-Selective C–H Alkylation of Arenes via σ-Activation Strategy. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00359] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Bo-Sheng Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
28
|
Süsse L, Stoltz BM. Enantioselective Formation of Quaternary Centers by Allylic Alkylation with First-Row Transition-Metal Catalysts. Chem Rev 2021; 121:4084-4099. [DOI: 10.1021/acs.chemrev.0c01115] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lars Süsse
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
29
|
|
30
|
Armengol‐Relats H, Mato M, Echavarren AM. Assembly of Complex 1,4‐Cycloheptadienes by (4+3) Cycloaddition of Rhodium(II) and Gold(I) Non‐Acceptor Carbenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Helena Armengol‐Relats
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
31
|
Kim KE, Sakazaki Y, Stoltz BM. Synthesis of non-natural cyanthiwigin–gagunin hybrids through late-stage diversification of the cyanthiwigin natural product core. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Armengol-Relats H, Mato M, Echavarren AM. Assembly of Complex 1,4-Cycloheptadienes by (4+3) Cycloaddition of Rhodium(II) and Gold(I) Non-Acceptor Carbenes. Angew Chem Int Ed Engl 2020; 60:1916-1922. [PMID: 33078893 PMCID: PMC7894532 DOI: 10.1002/anie.202012092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/23/2022]
Abstract
The formal (4+3) cycloaddition of 1,3-dienes with Rh(II) and Au(I) non-acceptor vinyl carbenes, generated from vinylcycloheptatrienes or alkoxyenynes, respectively, leads to 1,4-cycloheptadienes featuring complex and diverse substitution patterns, including natural dyctiopterene C' and a hydroxylated derivative of carota-1,4-diene. A complete mechanistic picture is presented, in which Au(I) and Rh(II) non-acceptor vinyl carbenes were shown to undergo a vinylcyclopropanation/Cope rearrangement or a direct (4+3) cycloaddition that takes place in a non-concerted manner.
Collapse
Affiliation(s)
- Helena Armengol-Relats
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
33
|
Mohammadkhani L, Heravi MM. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. CHEM REC 2020; 21:29-68. [PMID: 33206466 DOI: 10.1002/tcr.202000086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023]
Abstract
Metal-catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon-carbon and carbon-heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN 2'-type allylic substitution, which results in the formation of the above-mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)-catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.
Collapse
Affiliation(s)
- Leyla Mohammadkhani
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| |
Collapse
|
34
|
Junk L, Kazmaier U. The Allylic Alkylation of Ketone Enolates. ChemistryOpen 2020; 9:929-952. [PMID: 32953384 PMCID: PMC7482671 DOI: 10.1002/open.202000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Indexed: 01/14/2023] Open
Abstract
The palladium-catalyzed allylic alkylation of non-stabilized ketone enolates was thought for a long time to be not as efficient as the analogous reactions of stabilized enolates, e. g. of malonates and β-ketoesters. The field has experienced a rapid development during the last two decades, with a range of new, highly efficient protocols evolved. In this review, the early developments as well as current methods and applications of palladium-catalyzed ketone enolate allylations will be discussed.
Collapse
Affiliation(s)
- Lukas Junk
- Organic Chemistry ISaarland UniversityCampus C4.266123SaarbrückenGermany
| | - Uli Kazmaier
- Organic Chemistry ISaarland UniversityCampus C4.266123SaarbrückenGermany
| |
Collapse
|
35
|
Popadynec M, Gibbard H, Clark JS. Bidirectional Synthesis of the IJK Fragment of Ciguatoxin CTX3C by Sequential Double Ring-Closing Metathesis and Tsuji-Trost Allylation. Org Lett 2020; 22:3734-3738. [PMID: 32306737 PMCID: PMC7304930 DOI: 10.1021/acs.orglett.0c01238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
A novel four-step bidirectional strategy
has been used to synthesize
the IJK fragment of the marine polyether natural product CTX3C from
a simple monocyclic precursor in a concise and efficient manner. The
four-step bidirectional sequence involves ring-closing metathesis,
alcohol oxidation, enol carbonate formation, and palladium-mediated
Tsuji–Trost allylation.
Collapse
Affiliation(s)
- Michael Popadynec
- School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Helen Gibbard
- School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - J Stephen Clark
- School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
36
|
Xie L, Yang H, Ma M, Xing D. Rhodium-Catalyzed Branched and Enantioselective Direct α-Allylic Alkylation of Simple Ketones with Alkynes. Org Lett 2020; 22:2007-2011. [PMID: 32065530 DOI: 10.1021/acs.orglett.0c00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, we report the first direct branched-selective α-allylic alkylation of simple ketones with alkynes under rhodium and secondary amine cooperative catalysis. Through a rhodium-hydride-catalyzed allylic substitution pathway, a series of valuable γ,δ-unsaturated ketones are obtained with excellent regioselectivity in an atom-economic and byproduct-free manner. With a chiral BIPHEP ligand, high enantioselectivity has been achieved for this transformation.
Collapse
Affiliation(s)
- Liyu Xie
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Haijian Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
37
|
Feng QY, Zhu J, Wang MX, Tong S. Organocatalytic Double Ugi Reaction with Statistical Amplification of Product Enantiopurity: A Linker Cleavage Approach To Access Highly Enantiopure Ugi Products. Org Lett 2019; 22:483-487. [DOI: 10.1021/acs.orglett.9b04239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qi-Yun Feng
- Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Tsinghua University, 100084 Beijing, P. R. China
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Poltechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Mei-Xiang Wang
- Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Tsinghua University, 100084 Beijing, P. R. China
| | - Shuo Tong
- Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
38
|
Wei Q, Cai J, Hu XD, Zhao J, Cong H, Zheng C, Liu WB. Enantioselective Access to γ-All-Carbon Quaternary Center-Containing Cyclohexanones by Palladium-Catalyzed Desymmetrization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qiang Wei
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Jinhui Cai
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Xu-Dong Hu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Jing Zhao
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Hengjiang Cong
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
39
|
Naikwade A, Jagadale M, Kale D, Gajare S, Bansode P, Rashinkar G. Intramolecular O‐arylation using nano‐magnetite supported
N
‐heterocyclic carbene‐copper complex with wingtip ferrocene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Megha Jagadale
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Dolly Kale
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Shivanand Gajare
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Prakash Bansode
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Gajanan Rashinkar
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| |
Collapse
|
40
|
Harned AM, Stoltz BM. Development of a catalytic enantioselective synthesis of the guanacastepene and heptemerone tricyclic core. Tetrahedron 2019; 75:3166-3177. [PMID: 31937979 PMCID: PMC6959853 DOI: 10.1016/j.tet.2019.02.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For nearly two decades, synthetic chemists have been fascinated by the structural complexity and synthetic challenges afforded by the guanacastepene and heptemerone diterpenoids.Numerous synthetic approaches to these compounds have been reported, but to date the application of enantioselective catalysis to this problem has not been realized. Herein we report an enantioselective synthesis of an advanced intermediate corresponding to the tricyclic core common to the guanacastepenes and heptemerones. Highlights of this work include sequential Pd-catalyzed decarboxylative allylic alkylation reactions to generate the two all carbon quaternary stereocenters, the use of ring-closing metathesis to close the A ring in the presence of a distal allyl sidechain, and a region and diastereoselective oxidation of an trienol ether to introduce oxygenation on the A ring.
Collapse
Affiliation(s)
- Andrew M Harned
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Department of Chemistry & Biochemistry, Texas Tech University, 1204 Boston Ave, Lubbock, Texas 79409, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
41
|
James J, Jackson M, Guiry PJ. Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation: Development, Mechanistic Understanding and Recent Advances. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801575] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinju James
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| | - Mark Jackson
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
42
|
Wu GJ, Zhang YH, Tan DX, He L, Cao BC, He YP, Han FS. Synthetic Studies on Enantioselective Total Synthesis of Cyathane Diterpenoids: Cyrneines A and B, Glaucopine C, and (+)-Allocyathin B2. J Org Chem 2019; 84:3223-3238. [DOI: 10.1021/acs.joc.8b03138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guo-Jie Wu
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Yuan-He Zhang
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong-Xing Tan
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Long He
- Department of Chemical Engineering and Environment, Liaoning Shihua University, Fushun, Liaoning 113001, China
| | - Bao-Chen Cao
- Department of Chemical Engineering and Environment, Liaoning Shihua University, Fushun, Liaoning 113001, China
| | - Yu-Peng He
- Department of Chemical Engineering and Environment, Liaoning Shihua University, Fushun, Liaoning 113001, China
| | - Fu-She Han
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
43
|
|
44
|
Panda N, Sahoo K. Synthesis of 4‐Alkenyl Benzoxazoles via Pd‐catalyzed
ortho
C−H Functionalization of 2‐Amidophenols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Niranjan Panda
- Department of ChemistryNational Institute of Technology Rourkela Odisha- 769008 India
| | - Kanchanbala Sahoo
- Department of ChemistryNational Institute of Technology Rourkela Odisha- 769008 India
| |
Collapse
|
45
|
Shockley SE, Hethcox JC, Stoltz BM. Intermolecular Stereoselective Iridium-Catalyzed Allylic Alkylation: An Evolutionary Account. Synlett 2018; 29:2481-2492. [PMID: 31754289 PMCID: PMC6870865 DOI: 10.1055/s-0037-1610217] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Our lab has long been interested in the development of methods for the creation of enantioenriched all-carbon quaternary stereocenters. Historically, our interest has centered on palladium-catalyzed allylic alkylation, though recent efforts have moved to include the study of iridium catalysts. Whereas palladium catalysts enable the preparation of isolated stereocenters, the use of iridium catalysts allows for the direct construction of vicinal stereocenters via an enantio-, diastereo-, and regioselective allylic alkylation. This account details the evolution of our research program from inception, which focused on the first iridium-catalyzed allylic alkylation to prepare stereodyads containing a single quaternary center, to our most recent discovery that allows for the synthesis of vicinal quaternary centers.
Collapse
Affiliation(s)
| | | | - Brian M. Stoltz
- The Warren and Katherine Schlinger Laboratory for Chemistry and
Chemical Engineering, Division of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125,
USA
| |
Collapse
|
46
|
Zhu D, Lv L, Li CC, Ung S, Gao J, Li CJ. Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018; 57:16520-16524. [DOI: 10.1002/anie.201809112] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/17/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Dianhu Zhu
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chen-Chen Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Sosthene Ung
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Jian Gao
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| |
Collapse
|
47
|
Zhu D, Lv L, Li CC, Ung S, Gao J, Li CJ. Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dianhu Zhu
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chen-Chen Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Sosthene Ung
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Jian Gao
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| |
Collapse
|
48
|
Huynh U, McDonald SL, Lim D, Uddin MN, Wengryniuk SE, Dey S, Coltart DM. Formation, Alkylation, and Hydrolysis of Chiral Nonracemic N-Amino Cyclic Carbamate Hydrazones: An Approach to the Enantioselective α-Alkylation of Ketones. J Org Chem 2018; 83:12951-12964. [PMID: 30200759 DOI: 10.1021/acs.joc.8b00655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The α-alkylation of ketones is a fundamental synthetic transformation. The development of asymmetric variants of this reaction is important given that numerous natural products, drugs, and related compounds exist as α-functionalized ketones or derivatives thereof. We previously reported our preliminary studies on the development of a new enantioselective ketone α-alkylation procedure using N-amino cyclic carbamate (ACC) auxiliaries. In comparison to other auxiliary-based methods, ACC alkylation offers a number of advantages and is both highly enantioselective and high yielding. Herein, we provide a full account of our studies on the enantioselective ACC ketone α-alkylation method.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Stacey L McDonald
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Daniel Lim
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Md Nasir Uddin
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Sarah E Wengryniuk
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Sumit Dey
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Don M Coltart
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| |
Collapse
|
49
|
Kumar N, Gavit VR, Maity A, Bisai A. Pd(0)-Catalyzed Chemoselective Deacylative Alkylations (DaA) of N-Acyl 2-Oxindoles: Total Syntheses of Pyrrolidino[2,3- b]indoline Alkaloids, (±)-Deoxyeseroline, and (±)-Esermethole. J Org Chem 2018; 83:10709-10735. [PMID: 30058340 DOI: 10.1021/acs.joc.8b01101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an efficient Pd(0)-catalyzed deacylative allylation of N-acyl 3-substituted 2-oxindoles via the coupling of in situ generated nucleophiles (3 and 4) with allyl electrophiles for the synthesis of a variety of 2-oxindoles with C3-quaternary centers. Gratifyingly, this alkylation process is found to be highly chemoselective in nature, where a C-C bond formation is completely predominant over a C-N bond formation. A variety of key intermediates were synthesized utilizing an aforementioned methodology.
Collapse
Affiliation(s)
- Nivesh Kumar
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Vipin R Gavit
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Arindam Maity
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Alakesh Bisai
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| |
Collapse
|
50
|
Defieber C, Mohr JT, Grabovyi GA, Stoltz BM. Short Enantioselective Formal Synthesis of (-)-Platencin. SYNTHESIS-STUTTGART 2018; 50:4359-4368. [PMID: 31061542 DOI: 10.1055/s-0037-1610437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A short enantioselective formal synthesis of the antibiotic natural product platencin is reported. Key steps in the synthesis include enantioselective decarboxylation alkylation, aldehyde/olefin radical cyclization, and regioselective aldol cyclization.
Collapse
Affiliation(s)
- Christian Defieber
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
| | - Justin T Mohr
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA.,Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Gennadii A Grabovyi
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
| |
Collapse
|