1
|
Peng S, Chen M, Wu M, Liu Z, Tang D, Zhou X. Elucidating the roles of voltage sensors in Na V1.9 activation and inactivation through a spider toxin. Biochim Biophys Acta Gen Subj 2025; 1869:130762. [PMID: 39800272 DOI: 10.1016/j.bbagen.2025.130762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The gating process of voltage-gated sodium (NaV) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of NaV channel has not been clearly elucidated. NaV1.9 has garnered significant attention due to its slow gating kinetics. Due to the challenges of NaV1.9 heterologous expression, research on its gating mechanism is relatively limited. Whether there are any differences in the functions of the four VSDs in NaV1.9 compared to those in other subtypes remains an open question. Here, we employed the established chimera method to transplant the S3b-S4 motif from the VSDIV of the toxin-sensitive donor channel (NaV1.9) into the receptor channel (NaV1.9/1.8 DIV S3b-S4 chimera). This modification imparted animal toxin sensitivity to the other three VSDs. Our results demonstrate that all four VSDs of NaV1.9 are involved in channel opening, VSDIII and VSDIV are primarily involved in regulating fast inactivation, and VSDII also regulates the steady-state inactivation of channels. These findings provide a new insight into the gating mechanism of NaV1.9.
Collapse
Affiliation(s)
- Shuijiao Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Hunan Provincial Center for Disease Control and Prevention, Hunan Provincial Key Laboratory of Microbial Molecular Biology, Changsha 410000, Hunan, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425199, Hunan, China.
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
2
|
Boutonnet M, Bünemann M, Perroy J. The voltage sensitivity of G-protein coupled receptors: Unraveling molecular mechanisms and physiological implications. Pharmacol Ther 2024; 264:108741. [PMID: 39489434 DOI: 10.1016/j.pharmthera.2024.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
In the landscape of proteins controlled by membrane voltage (Vm), like voltage-gated ionotropic channels, the emergence of the voltage sensitivity within the vast family of G-protein coupled receptors (GPCRs) marked a significant milestone at the onset of the 21st century. Since its discovery, extensive research has been devoted to understanding the intricate relationship between Vm and GPCRs. Approximately 30 GPCRs out of a family comprising more than 800 receptors have been implicated in Vm-dependent positive and negative regulation. GPCRs stand out as the quintessential regulators of synaptic transmission in neurons, where they encounter substantial variations in Vm. However, the molecular mechanism underlying the Vm sensor of GPCRs remains enigmatic, hindered by the scarcity of mutant GPCRs insensitive to Vm yet functionally intact, impeding a comprehensive understanding of this unique property in physiology. Nevertheless, two decades of dedicated research have furnished numerous insights into the molecular aspects of GPCR Vm-sensing, accompanied by recently proposed physiological roles as well as pharmacological potential, which we encapsulate in this review. The Vm sensitivity of GPCRs emerges as a pivotal attribute, shedding light on previously unforeseen roles in synaptic transmission and extending beyond, underscoring its significance in cellular signaling and physiological processes.
Collapse
Affiliation(s)
- Marin Boutonnet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Collaço RDC, Van Petegem F, Bosmans F. ω-Grammotoxin-SIA inhibits voltage-gated Na+ channel currents. J Gen Physiol 2024; 156:e202413563. [PMID: 39042091 PMCID: PMC11270453 DOI: 10.1085/jgp.202413563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
ω-Grammotoxin-SIA (GrTX-SIA) was originally isolated from the venom of the Chilean rose tarantula and demonstrated to function as a gating modifier of voltage-gated Ca2+ (CaV) channels. Later experiments revealed that GrTX-SIA could also inhibit voltage-gated K+ (KV) channel currents via a similar mechanism of action that involved binding to a conserved S3-S4 region in the voltage-sensing domains (VSDs). Since voltage-gated Na+ (NaV) channels contain homologous structural motifs, we hypothesized that GrTX-SIA could inhibit members of this ion channel family as well. Here, we show that GrTX-SIA can indeed impede the gating process of multiple NaV channel subtypes with NaV1.6 being the most susceptible target. Moreover, molecular docking of GrTX-SIA onto NaV1.6, supported by a p.E1607K mutation, revealed the voltage sensor in domain IV (VSDIV) as being a primary site of action. The biphasic manner in which current inhibition appeared to occur suggested a second, possibly lower-sensitivity binding locus, which was identified as VSDII by using KV2.1/NaV1.6 chimeric voltage-sensor constructs. Subsequently, the NaV1.6p.E782K/p.E838K (VSDII), NaV1.6p.E1607K (VSDIV), and particularly the combined VSDII/VSDIV mutant lost virtually all susceptibility to GrTX-SIA. Together with existing literature, our data suggest that GrTX-SIA recognizes modules in NaV channel VSDs that are conserved among ion channel families, thereby allowing it to act as a comprehensive ion channel gating modifier peptide.
Collapse
Affiliation(s)
- Rita de Cássia Collaço
- Department of Basic and Applied Medical Sciences, Molecular Physiology and Neurophysics Group, Ghent University, Ghent, Belgium
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Molecular Physiology and Neurophysics Group, Ghent University, Ghent, Belgium
- Faculty of Medicine and Pharmacy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Zhang S, Ma D, Wang K, Li Y, Yang Z, Li X, Li J, He J, Mei L, Ye Y, Chen Z, Shen J, Hou P, Guo J, Zhang Q, Yang H. A small-molecule activation mechanism that directly opens the KCNQ2 channel. Nat Chem Biol 2024; 20:847-856. [PMID: 38167918 DOI: 10.1038/s41589-023-01515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.
Collapse
Affiliation(s)
- Shaoying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Demin Ma
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ya Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenni Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Li
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junnan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiangnan He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, China
| | - Yangliang Ye
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, China
| | - Zongsheng Chen
- Department of Neurology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Panpan Hou
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
Berezhkovskii AM, Bezrukov SM. Solute translocation probability, lifetime, and "rectification" in membrane channels with localized constriction. Phys Chem Chem Phys 2024; 26:15758-15764. [PMID: 38770832 DOI: 10.1039/d4cp00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We study the translocation probability and lifetime of a solute molecule in a cylindrical membrane channel that contains a localized constriction at an arbitrary location. Using a one-dimensional continuous diffusion description of solute dynamics in the channel, we explore two models. The first one describes a molecule's interaction with the constriction in terms of a narrow rectangular barrier in the potential of mean force. The second novel model proposed here represents this interaction by introducing an infinitely thin permeable partition. It is shown that when the parameters of the two models are chosen to warrant the same translocation probability, both models predict the same mean lifetime of the molecule in the channel. While the translocation probability is independent of the constriction location, the mean lifetime is a function of the location. The benefit of the thin partition model is that it allows one to lump together the height and length of the potential barrier into a single parameter, which is the partition's permeability. It is shown that in the case of an asymmetric location of the localized constriction and strong repulsion between the solutes, the solute flux through the channel is a function of the direction in which it goes, analogous to the phenomenon known in ion channel electrophysiology as rectification.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
6
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
7
|
Das A, Bysack A, Raghuraman H. Cholesterol modulates the structural dynamics of the paddle motif loop of KvAP voltage sensor. Curr Res Struct Biol 2024; 7:100137. [PMID: 38500801 PMCID: PMC10945132 DOI: 10.1016/j.crstbi.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
KvAP is a prokaryotic Kv channel, which has been widely used as a model system to understand voltage- and lipid-dependent gating mechanisms. In phospholipid membranes, the KvAP-VSD adopts the activated/'Up' conformation, whereas the presence of non-phospholipids in membranes favours the structural transition to resting/'Down' state. The S3b-S4 paddle motif loop of KvAP-VSD is functionally important as this participates in protein-protein interactions and is the target for animal toxins. In this study, we have monitored the modulatory role of cholesterol - the physiologically-relevant non-phospholipid - on the organization and dynamics of the S3b-S4 loop of the isolated KvAP-VSD in membranes by site-directed fluorescence approaches using the environmental sensitivity of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-ethylenediamine (NBD) fluorescence. Our results show that cholesterol alters the dynamic nature (rotational and hydration dynamics) of S3b-S4 loop in a segmental fashion, i.e., the residues 110 to 114 and 115 to 117 behave differently in the presence of cholesterol, which is accompanied by considerable change in conformational heterogeneity. Further, quantitative depth measurements using the parallax quenching method reveal that the sensor loop is located at the shallow interfacial region of cholesterol-containing membranes, suggesting that the sensor loop organization is not directly correlated with S4 helix movement. Our results clearly show that cholesterol-induced changes in bilayer properties may not be the predominant factor for the sensor loop's altered structural dynamics, but can be attributed to the conformational change of the KvAP-VSD in cholesterol-containing membranes. Overall, these results are relevant for gating mechanisms, particularly the lipid-dependent gating, of Kv channels in membranes.
Collapse
Affiliation(s)
- Anindita Das
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400 094, India
| | - Arpan Bysack
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400 094, India
| | - H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
8
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2024. [PMID: 38436215 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand ), inwardly rectifying channels (Kir ), and tandem pore domain channels (K2P ). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| |
Collapse
|
9
|
Zhang L, Wu X, Cao X, Rao K, Hong L. Trp207 regulation of voltage-dependent activation of human H v1 proton channel. J Biol Chem 2024; 300:105674. [PMID: 38272234 PMCID: PMC10875263 DOI: 10.1016/j.jbc.2024.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
In voltage-gated Na+ and K+ channels, the hydrophobicity of noncharged residues in the S4 helix has been shown to regulate the S4 movement underlying the process of voltage-sensing domain (VSD) activation. In voltage-gated proton channel Hv1, there is a bulky noncharged tryptophan residue located at the S4 transmembrane segment. This tryptophan remains entirely conserved across all Hv1 members but is not seen in other voltage-gated ion channels, indicating that the tryptophan contributes different roles in VSD activation. The conserved tryptophan of human voltage-gated proton channel Hv1 is Trp207 (W207). Here, we showed that W207 modifies human Hv1 voltage-dependent activation, and small residues replacement at position 207 strongly perturbs Hv1 channel opening and closing, and the size of the side chain instead of the hydrophobic group of W207 regulates the transition between closed and open states of the channel. We conclude that the large side chain of tryptophan controls the energy barrier during the Hv1 VSD transition.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xinyu Cao
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Khushi Rao
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
10
|
Stix R, Tan XF, Bae C, Fernández-Mariño AI, Swartz KJ, Faraldo-Gómez JD. Eukaryotic Kv channel Shaker inactivates through selectivity filter dilation rather than collapse. SCIENCE ADVANCES 2023; 9:eadj5539. [PMID: 38064553 PMCID: PMC10708196 DOI: 10.1126/sciadv.adj5539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Eukaryotic voltage-gated K+ channels have been extensively studied, but the structural bases for some of their most salient functional features remain to be established. C-type inactivation, for example, is an auto-inhibitory mechanism that confers temporal resolution to their signal-firing activity. In a recent breakthrough, studies of a mutant of Shaker that is prone to inactivate indicated that this process entails a dilation of the selectivity filter, the narrowest part of the ion conduction pathway. Here, we report an atomic-resolution cryo-electron microscopy structure that demonstrates that the wild-type channel can also adopt this dilated state. All-atom simulations corroborate this conformation is congruent with the electrophysiological characteristics of the C-type inactivated state, namely, residual K+ conductance and altered ion specificity, and help rationalize why inactivation is accelerated or impeded by certain mutations. In summary, this study establishes the molecular basis for an important self-regulatory mechanism in eukaryotic K+ channels, laying a solid foundation for further studies.
Collapse
Affiliation(s)
- Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Nestorovich EM, Bezrukov SM. Beta-Barrel Channel Response to High Electric Fields: Functional Gating or Reversible Denaturation? Int J Mol Sci 2023; 24:16655. [PMID: 38068977 PMCID: PMC10706840 DOI: 10.3390/ijms242316655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Ion channels exhibit gating behavior, fluctuating between open and closed states, with the transmembrane voltage serving as one of the essential regulators of this process. Voltage gating is a fundamental functional aspect underlying the regulation of ion-selective, mostly α-helical, channels primarily found in excitable cell membranes. In contrast, there exists another group of larger, and less selective, β-barrel channels of a different origin, which are not directly associated with cell excitability. Remarkably, these channels can also undergo closing, or "gating", induced by sufficiently strong electric fields. Once the field is removed, the channels reopen, preserving a memory of the gating process. In this study, we explored the hypothesis that the voltage-induced closure of the β-barrel channels can be seen as a form of reversible protein denaturation by the high electric fields applied in model membranes experiments-typically exceeding twenty million volts per meter-rather than a manifestation of functional gating. Here, we focused on the bacterial outer membrane channel OmpF reconstituted into planar lipid bilayers and analyzed various characteristics of the closing-opening process that support this idea. Specifically, we considered the nearly symmetric response to voltages of both polarities, the presence of multiple closed states, the stabilization of the open conformation in channel clusters, the long-term gating memory, and the Hofmeister effects in closing kinetics. Furthermore, we contemplate the evolutionary aspect of the phenomenon, proposing that the field-induced denaturation of membrane proteins might have served as a starting point for their development into amazing molecular machines such as voltage-gated channels of nerve and muscle cells.
Collapse
Affiliation(s)
- Ekaterina M. Nestorovich
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Sergey M. Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
12
|
Berezhkovskii AM, Bezrukov SM. Counter-Intuitive Features of Particle Dynamics in Nanopores. Int J Mol Sci 2023; 24:15923. [PMID: 37958906 PMCID: PMC10648703 DOI: 10.3390/ijms242115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Using the framework of a continuous diffusion model based on the Smoluchowski equation, we analyze particle dynamics in the confinement of a transmembrane nanopore. We briefly review existing analytical results to highlight consequences of interactions between the channel nanopore and the translocating particles. These interactions are described within a minimalistic approach by lumping together multiple physical forces acting on the particle in the pore into a one-dimensional potential of mean force. Such radical simplification allows us to obtain transparent analytical results, often in a simple algebraic form. While most of our findings are quite intuitive, some of them may seem unexpected and even surprising at first glance. The focus is on five examples: (i) attractive interactions between the particles and the nanopore create a potential well and thus cause the particles to spend more time in the pore but, nevertheless, increase their net flux; (ii) if the potential well-describing particle-pore interaction occupies only a part of the pore length, the mean translocation time is a non-monotonic function of the well length, first increasing and then decreasing with the length; (iii) when a rectangular potential well occupies the entire nanopore, the mean particle residence time in the pore is independent of the particle diffusivity inside the pore and depends only on its diffusivity in the bulk; (iv) although in the presence of a potential bias applied to the nanopore the "downhill" particle flux is higher than the "uphill" one, the mean translocation times and their distributions are identical, i.e., independent of the translocation direction; and (v) fast spontaneous gating affects nanopore selectivity when its characteristic time is comparable to that of the particle transport through the pore.
Collapse
Affiliation(s)
| | - Sergey M. Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
13
|
Dubey NK, Mishra S, Goswami C. Progesterone interacts with the mutational hot-spot of TRPV4 and acts as a ligand relevant for fast Ca 2+-signalling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184178. [PMID: 37225030 DOI: 10.1016/j.bbamem.2023.184178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Steroids are also known to induce immediate physiological and cellular response which occurs within minutes to seconds, or even faster. Such non-genomic actions of steroids are rapid and are proposed to be mediated by different ion channels. Transient receptor potential vanilloid sub-type 4 (TRPV4), is a non-specific polymodal ion channel which is involved in several physiological and cellular processes. In this work, we explored the possibilities of Progesterone (P4) as an endogenous ligand for TRPV4. We demonstrate that P4 docks as well as physically interacts with the TM4-loop-TM5 region of TRPV4, a region which is a mutational hotspot for different diseases. Live cell imaging experiments with a genetically encoded Ca2+-sensor suggests that P4 causes quick influx of Ca2+ specifically in the TRPV4 expressing cells, which can be partially blocked by TRPV4-specific inhibitor, suggesting that P4 can act as a ligand for TRPV4. Such P4-mediated Ca2+-influx is altered in cells expressing disease causing TRPV4 mutants, namely in L596P, R616Q, and also in embryonic lethal mutant L618P. P4 dampens, both in terms of "extent" as well as the "pattern" of the Ca2+-influx by other stimulus too in cells expressing TRPV4-Wt, suggesting that P4 crosstalk with the TRPV4-mediated Ca2+-signalling, both in quick and long-term manner. We propose that P4 crosstalk with TRPV4 might be relevant for both acute and chronic pain as well as for other health-related functions.
Collapse
Affiliation(s)
- Nishant Kumar Dubey
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subham Mishra
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
14
|
Wu X, Gupta K, Swartz KJ. Mutations within the selectivity filter reveal that Kv1 channels have distinct propensities to slow inactivate. J Gen Physiol 2022; 154:e202213222. [PMID: 36197416 PMCID: PMC9539455 DOI: 10.1085/jgp.202213222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023] Open
Abstract
Voltage-activated potassium (Kv) channels open in response to membrane depolarization and subsequently inactivate through distinct mechanisms. For the model Shaker Kv channel from Drosophila, fast N-type inactivation is thought to occur by a mechanism involving blockade of the internal pore by the N-terminus, whereas slow C-type inactivation results from conformational changes in the ion selectivity filter in the external pore. Kv channel inactivation plays critical roles in shaping the action potential and regulating firing frequency, and has been implicated in a range of diseases including episodic ataxia and arrhythmias. Although structures of the closely related Shaker and Kv1.2 channels containing mutations that promote slow inactivation both support a mechanism involving dilation of the outer selectivity filter, mutations in the outer pores of these two Kv channels have been reported to have markedly distinct effects on slow inactivation, raising questions about the extent to which slow inactivation is related in both channels. In this study, we characterized the influence of a series of mutations within the external pore of Shaker and Kv1.2 channels and observed many distinct mutant phenotypes. We find that mutations at four positions near the selectivity filter promote inactivation less dramatically in Kv1.2 when compared to Shaker, and they identify one key variable position (T449 in Shaker and V381 in Kv1.2) underlying the different phenotypes in the two channels. Collectively, our results suggest that Kv1.2 is less prone to inactivate compared to Shaker, yet support a common mechanism of inactivation in the two channels.
Collapse
Affiliation(s)
- Xiaosa Wu
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Kanchan Gupta
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Utesch T, Staffa J, Katz S, Yao G, Kozuch J, Hildebrandt P. Potential Distribution across Model Membranes. J Phys Chem B 2022; 126:7664-7675. [PMID: 36137267 DOI: 10.1021/acs.jpcb.2c05372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane models assembled on electrodes are widely used tools to study potential-dependent molecular processes at or in membranes. However, the relationship between the electrode potential and the potential across the membrane is not known. Here we studied lipid bilayers immobilized on mixed self-assembled monolayers (SAM) on Au electrodes. The mixed SAM was composed of thiol derivatives of different chain lengths such that between the islands of the short one, mercaptobenzonitrile (MBN), and the tethered lipid bilayer an aqueous compartment was formed. The nitrile function of MBN, which served as a reporter group for the vibrational Stark effect (VSE), was probed by surface-enhanced infrared absorption spectroscopy to determine the local electric field as a function of the electrode potential for pure MBN, mixed SAM, and the bilayer system. In parallel, we calculated electric fields at the VSE probe by molecular dynamics (MD) simulations for different charge densities on the metal, thereby mimicking electrode potential changes. The agreement with the experiments was very good for the calculations of the pure MBN SAM and only slightly worse for the mixed SAM. The comparison with the experiments also guided the design of the bilayer system in the MD setups, which were selected to calculate the electrode potential dependence of the transmembrane potential, a quantity that is not directly accessible by the experiments. The results agree very well with estimates in previous studies and thus demonstrate that the present combined experimental-theoretical approach is a promising tool for describing potential-dependent processes at biomimetic interfaces.
Collapse
Affiliation(s)
- Tillmann Utesch
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Jana Staffa
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Guiyang Yao
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jacek Kozuch
- Fachbereich Physik, Experimentelle Molekulare Biophysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.,Forschungsbau SupraFAB, Altensteinstr. 23a, D-14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
16
|
Hussain S, De Waele J, Lammens M, Bosmans F. N-Type Inactivation Variances in Honeybee and Asian Giant Hornet Kv Channels. Bioelectricity 2022; 4:145-152. [PMID: 39376938 PMCID: PMC11457792 DOI: 10.1089/bioe.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background With the emergence of the Asian giant hornet as a threat to honeybee survival, knowledge of potential ion channel targets expressed in the nervous system can propel the development of new insecticides that are safe for pollinators. We therefore examined the biophysical properties of the Shaker-like voltage-gated potassium (Kv) channel of Apis mellifera (AmKv1; Western honeybee) and Vespa mandarinia (VmKv1; Asian giant hornet) and compared these data with isoforms that differ in N-terminal amino acid sequence. Methods We expressed AmKv1 and VmKv1 in Xenopus laevis oocytes and determined their gating characteristics using electrophysiological measurements. Resulting features were compared with those gleaned from N-terminal isoforms. Results AmKv1 generates large potassium currents, but lacks an extended N-terminal region and therefore rapid N-type inactivation, as originally described in Shaker channels. Of its seven isoforms, two have a long N-tail and subsequently display inactivation. Notably, the isoform with the lengthiest N-terminal region only partially inactivates. VmKv1 potassium currents display N-type inactivation, as expected with an extended N-tail. One isoform shows an enhanced inactivation rate, whereas currents from another isoform with a substantially different N-terminal sequence could not be measured. Conclusion AmKv1 and VmKv1 are functional Kv channels with strikingly different gating properties. Due to the presence of an extended N-terminal region, VmKv1 inactivates rapidly, whereas AmKv1 does not possess these residues and N-type inactivation is absent. Remarkably, virtually all isoforms of AmKv1 lack fast inactivation, whereas all studied VmKv1 isoforms inactivate, thereby suggesting a functional divergence that may be exploited for insecticide design.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Jolien De Waele
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Maxime Lammens
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Selvakumar P, Fernández-Mariño AI, Khanra N, He C, Paquette AJ, Wang B, Huang R, Smider VV, Rice WJ, Swartz KJ, Meyerson JR. Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nat Commun 2022; 13:3854. [PMID: 35788586 PMCID: PMC9253088 DOI: 10.1038/s41467-022-31285-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
The Kv1.3 potassium channel is expressed abundantly on activated T cells and mediates the cellular immune response. This role has made the channel a target for therapeutic immunomodulation to block its activity and suppress T cell activation. Here, we report structures of human Kv1.3 alone, with a nanobody inhibitor, and with an antibody-toxin fusion blocker. Rather than block the channel directly, four copies of the nanobody bind the tetramer's voltage sensing domains and the pore domain to induce an inactive pore conformation. In contrast, the antibody-toxin fusion docks its toxin domain at the extracellular mouth of the channel to insert a critical lysine into the pore. The lysine stabilizes an active conformation of the pore yet blocks ion permeation. This study visualizes Kv1.3 pore dynamics, defines two distinct mechanisms to suppress Kv1.3 channel activity with exogenous inhibitors, and provides a framework to aid development of emerging T cell immunotherapies.
Collapse
Affiliation(s)
- Purushotham Selvakumar
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nandish Khanra
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Changhao He
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Alice J Paquette
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA, USA
- Minotaur Therapeutics, San Diego, CA, USA
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA, USA
- Minotaur Therapeutics, San Diego, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William J Rice
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel R Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
18
|
Song Y, Guo T, Jiang Y, Zhu M, Wang H, Lu W, Jiang M, Qi M, Lan F, Cui M. KCNQ1-deficient and KCNQ1-mutant human embryonic stem cell-derived cardiomyocytes for modeling QT prolongation. Stem Cell Res Ther 2022; 13:287. [PMID: 35765105 PMCID: PMC9241307 DOI: 10.1186/s13287-022-02964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The slowly activated delayed rectifier potassium current (IKs) mediated by the KCNQ1 gene is one of the main currents involved in repolarization. KCNQ1 mutation can result in long-QT syndrome type 1 (LQT1). IKs does not participate in repolarization in mice; thus, no good model is currently available for research on the mechanism of and drug screening for LQT1. In this study, we established a KCNQ1-deficient human cardiomyocyte (CM) model and performed a series of microelectrode array (MEA) detection experiments on KCNQ1-mutant CMs constructed in other studies to explore the pathogenic mechanism of KCNQ1 deletion and mutation and perform drug screening. Method KCNQ1 was knocked out in human embryonic stem cell (hESC) H9 line using the CRISPR/cas9 system. KCNQ1-deficient and KCNQ1-mutant hESCs were differentiated into CMs through a chemically defined differentiation protocol. Subsequently, high-throughput MEA analysis and drug intervention were performed to determine the electrophysiological characteristics of KCNQ1-deficient and KCNQ1-mutant CMs. Results During high-throughput MEA analysis, the electric field potential and action potential durations in KCNQ1-deficient CMs were significantly longer than those in wild-type CMs. KCNQ1-deficient CMs also showed an irregular rhythm. Furthermore, KCNQ1-deficient and KCNQ1-mutant CMs showed different responses to different drug treatments, which reflected the differences in their pathogenic mechanisms. Conclusion We established a human CM model with KCNQ1 deficiency showing a prolonged QT interval and an irregular heart rhythm. Further, we used various drugs to treat KCNQ1-deficient and KCNQ1-mutant CMs, and the three models showed different responses to these drugs. These models can be used as important tools for studying the different pathogenic mechanisms of KCNQ1 mutation and the relationship between the genotype and phenotype of KCNQ1, thereby facilitating drug development. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02964-3.
Collapse
Affiliation(s)
- Yuanxiu Song
- Department of Cardiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Tianwei Guo
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Youxu Jiang
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Jingba Road, Zhengzhou, 450053, China
| | - Min Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hongyue Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenjing Lu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China
| | - Mengqi Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Man Qi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Feng Lan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China.
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
19
|
Ong ST, Tyagi A, Chandy KG, Bhushan S. Mechanisms Underlying C-type Inactivation in Kv Channels: Lessons From Structures of Human Kv1.3 and Fly Shaker-IR Channels. Front Pharmacol 2022; 13:924289. [PMID: 35833027 PMCID: PMC9271579 DOI: 10.3389/fphar.2022.924289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated potassium (Kv) channels modulate the function of electrically-excitable and non-excitable cells by using several types of “gates” to regulate ion flow through the channels. An important gating mechanism, C-type inactivation, limits ion flow by transitioning Kv channels into a non-conducting inactivated state. Here, we highlight two recent papers, one on the human Kv1.3 channel and the second on the Drosophila Shaker Kv channel, that combined cryogenic electron microscopy and molecular dynamics simulation to define mechanisms underlying C-type inactivation. In both channels, the transition to the non-conducting inactivated conformation begins with the rupture of an intra-subunit hydrogen bond that fastens the selectivity filter to the pore helix. The freed filter swings outwards and gets tethered to an external residue. As a result, the extracellular end of the selectivity filter dilates and K+ permeation through the pore is impaired. Recovery from inactivation may entail a reversal of this process. Such a reversal, at least partially, is induced by the peptide dalazatide. Binding of dalazatide to external residues in Kv1.3 frees the filter to swing inwards. The extracellular end of the selectivity filter narrows allowing K+ to move in single file through the pore typical of conventional knock-on conduction. Inter-subunit hydrogen bonds that stabilize the outer pore in the dalazatide-bound structure are equivalent to those in open-conducting conformations of Kv channels. However, the intra-subunit bond that fastens the filter to the pore-helix is absent, suggesting an incomplete reversal of the process. These mechanisms define how Kv channels self-regulate the flow of K+ by changing the conformation of the selectivity filter.
Collapse
Affiliation(s)
- Seow Theng Ong
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore and Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- *Correspondence: K. George Chandy, ; Shashi Bhushan,
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore and Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- *Correspondence: K. George Chandy, ; Shashi Bhushan,
| |
Collapse
|
20
|
Tan XF, Bae C, Stix R, Fernández-Mariño AI, Huffer K, Chang TH, Jiang J, Faraldo-Gómez JD, Swartz KJ. Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. SCIENCE ADVANCES 2022; 8:eabm7814. [PMID: 35302848 PMCID: PMC8932672 DOI: 10.1126/sciadv.abm7814] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.
Collapse
Affiliation(s)
- Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
22
|
Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM. Nat Commun 2021; 12:7164. [PMID: 34887422 PMCID: PMC8660915 DOI: 10.1038/s41467-021-27435-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Slowpoke (Slo) potassium channels display extraordinarily high conductance, are synergistically activated by a positive transmembrane potential and high intracellular Ca2+ concentrations and are important targets for insecticides and antiparasitic drugs. However, it is unknown how these compounds modulate ion translocation and whether there are insect-specific binding pockets. Here, we report structures of Drosophila Slo in the Ca2+-bound and Ca2+-free form and in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside. Whereas the architecture and gating mechanism of Slo channels are conserved, potential insect-specific binding pockets exist. Verruculogen inhibits K+ transport by blocking the Ca2+-induced activation signal and precludes K+ from entering the selectivity filter. Emodepside decreases the conductance by suboptimal K+ coordination and uncouples ion gating from Ca2+ and voltage sensing. Our results expand the mechanistic understanding of Slo regulation and lay the foundation for the rational design of regulators of Slo and other voltage-gated ion channels. Slowpoke (Slo) channels are voltage-gated potassium channels that are activated by high intracellular Ca2+ concentrations, and they are targets for insecticides and antiparasitic drugs. Here, the authors present the cryo-EM structures of the Drosophila melanogaster Slo channel in the Ca2+-bound and Ca2+-free conformations, as well as in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside and discuss the mechanisms by which they affect the activity of Slo.
Collapse
|
23
|
Du N, Ye F, Sun J, Liu K. Stimuli-Responsive Natural Proteins and Their Applications. Chembiochem 2021; 23:e202100416. [PMID: 34773331 DOI: 10.1002/cbic.202100416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.
Collapse
Affiliation(s)
- Na Du
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Boonamnaj P, Pandey RB, Sompornpisut P. Interaction fingerprint of transmembrane segments in voltage sensor domains. Biophys Chem 2021; 277:106649. [PMID: 34147849 DOI: 10.1016/j.bpc.2021.106649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Voltage sensor domain (VSD) in channel and non-channel membrane proteins shares a common function in the detection of changes in the transmembrane electric potential. The VSD is made of four helical transmembrane segments (S1-S4) that form a structurally conserved scaffold through inter-transmembrane residue-residue interactions. Details about these interactions are yet to be fully understood in the context of the unique structural and physical characteristics of the voltage sensor unit. In this study, molecular dynamics simulations were carried out to investigate transmembrane helix-helix interactions via residue-based nonbonding energies using the activated and resting state conformations of VSD from Hv1, CiVSP, KvAP and NavAb. Inter-transmembrane interaction energies within the VSD were determined. Analysis of electrostatic and van der Waals components revealed the strengths and weaknesses of the interactions between each pair of transmembrane segments. In all cases the S4 helix had the highest electrostatic contribution to favor the key role as the voltage sensitive segment. Electrostatic interactions for the S1-S2 pair as well as the S1-S3 pair were relatively weak. Van der Waal interaction energies between adjacent segments were on average greater than that between diagonally opposite segments. Salt bridge interactions between S4-arginines and the negatively charged residues in other segments appear to contribute more to stabilizing the energy than the van der Waals interactions between nonpolar residues. The overall behavior of residue-residue contacts is similar among the transmembrane domains, reflecting the common inter- transmembrane interaction pattern in the VSD. In addition, analysis of the residue positions suggested that subtle differences in the orientation of the salt-bridges can be attributed to the difference in the inter-transmembrane interaction strengths inside the VSDs.
Collapse
Affiliation(s)
- Panisak Boonamnaj
- The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - R B Pandey
- School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pornthep Sompornpisut
- The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
25
|
Ge J, Elferich J, Dehghani-Ghahnaviyeh S, Zhao Z, Meadows M, von Gersdorff H, Tajkhorshid E, Gouaux E. Molecular mechanism of prestin electromotive signal amplification. Cell 2021; 184:4669-4679.e13. [PMID: 34390643 PMCID: PMC8674105 DOI: 10.1016/j.cell.2021.07.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022]
Abstract
Hearing involves two fundamental processes: mechano-electrical transduction and signal amplification. Despite decades of studies, the molecular bases for both remain elusive. Here, we show how prestin, the electromotive molecule of outer hair cells (OHCs) that senses both voltage and membrane tension, mediates signal amplification by coupling conformational changes to alterations in membrane surface area. Cryoelectron microscopy (cryo-EM) structures of human prestin bound with chloride or salicylate at a common "anion site" adopt contracted or expanded states, respectively. Prestin is ensconced within a perimeter of well-ordered lipids, through which it induces dramatic deformation in the membrane and couples protein conformational changes to the bulk membrane. Together with computational studies, we illustrate how the anion site is allosterically coupled to changes in the transmembrane domain cross-sectional area and the surrounding membrane. These studies provide insight into OHC electromotility by providing a structure-based mechanism of the membrane motor prestin.
Collapse
Affiliation(s)
- Jingpeng Ge
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Johannes Elferich
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhiyu Zhao
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marc Meadows
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA.
| |
Collapse
|
26
|
Wu X, Perez ME, Noskov SY, Larsson HP. A general mechanism of KCNE1 modulation of KCNQ1 channels involving non-canonical VSD-PD coupling. Commun Biol 2021; 4:887. [PMID: 34285340 PMCID: PMC8292421 DOI: 10.1038/s42003-021-02418-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated KCNQ1 channels contain four separate voltage-sensing domains (VSDs) and a pore domain (PD). KCNQ1 expressed alone opens when the VSDs are in an intermediate state. In cardiomyocytes, KCNQ1 co-expressed with KCNE1 opens mainly when the VSDs are in a fully activated state. KCNE1 also drastically slows the opening of KCNQ1 channels and shifts the voltage dependence of opening by >40 mV. We here show that mutations of conserved residues at the VSD-PD interface alter the VSD-PD coupling so that the mutant KCNQ1/KCNE1 channels open in the intermediate VSD state. Using recent structures of KCNQ1 and KCNE beta subunits in different states, we present a mechanism by which KCNE1 rotates the VSD relative to the PD and affects the VSD-PD coupling of KCNQ1 channels in a non-canonical way, forcing KCNQ1/KCNE1 channels to open in the fully-activated VSD state. This would explain many of the KCNE1-induced effects on KCNQ1 channels.
Collapse
Affiliation(s)
- Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marta E Perez
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - H Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
27
|
Cowgill J, Chanda B. Mapping Electromechanical Coupling Pathways in Voltage-Gated Ion Channels: Challenges and the Way Forward. J Mol Biol 2021; 433:167104. [PMID: 34139217 PMCID: PMC8579740 DOI: 10.1016/j.jmb.2021.167104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023]
Abstract
Inter- and intra-molecular allosteric interactions underpin regulation of activity in a variety of biological macromolecules. In the voltage-gated ion channel superfamily, the conformational state of the voltage-sensing domain regulates the activity of the pore domain via such long-range allosteric interactions. Although the overall structure of these channels is conserved, allosteric interactions between voltage-sensor and pore varies quite dramatically between the members of this superfamily. Despite the progress in identifying key residues and structural interfaces involved in mediating electromechanical coupling, our understanding of the biophysical mechanisms remains limited. Emerging new structures of voltage-gated ion channels in various conformational states will provide a better three-dimensional view of the process but to conclusively establish a mechanism, we will also need to quantitate the energetic contribution of various structural elements to this process. Using rigorous unbiased metrics, we want to compare the efficiency of electromechanical coupling between various sub-families in order to gain a comprehensive understanding. Furthermore, quantitative understanding of the process will enable us to correctly parameterize computational approaches which will ultimately enable us to predict allosteric activation mechanisms from structures. In this review, we will outline the challenges and limitations of various experimental approaches to measure electromechanical coupling and highlight the best practices in the field.
Collapse
Affiliation(s)
- John Cowgill
- Department of Anesthesiology, Washington University, St. Louis, MO 63110, United States; Center for Investigations of Membrane Excitability Disorders (CIMED), Washington University, St. Louis, MO 63110, United States
| | - Baron Chanda
- Department of Anesthesiology, Washington University, St. Louis, MO 63110, United States; Center for Investigations of Membrane Excitability Disorders (CIMED), Washington University, St. Louis, MO 63110, United States.
| |
Collapse
|
28
|
Andriani RT, Kubo Y. Voltage-clamp fluorometry analysis of structural rearrangements of ATP-gated channel P2X2 upon hyperpolarization. eLife 2021; 10:65822. [PMID: 34009126 PMCID: PMC8184218 DOI: 10.7554/elife.65822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Gating of the ATP-activated channel P2X2 has been shown to be dependent not only on [ATP] but also on membrane voltage, despite the absence of a canonical voltage-sensor domain. We aimed to investigate the structural rearrangements of rat P2X2 during ATP- and voltage-dependent gating, using a voltage-clamp fluorometry technique. We observed fast and linearly voltage-dependent fluorescence intensity (F) changes at Ala337 and Ile341 in the TM2 domain, which could be due to the electrochromic effect, reflecting the presence of a converged electric field. We also observed slow and voltage-dependent F changes at Ala337, which reflect structural rearrangements. Furthermore, we determined that the interaction between Ala337 in TM2 and Phe44 in TM1, which are in close proximity in the ATP-bound open state, is critical for activation. Taking these results together, we propose that the voltage dependence of the interaction within the converged electric field underlies the voltage-dependent gating.
Collapse
Affiliation(s)
- Rizki Tsari Andriani
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, School of Life Science, Kanagawa, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, School of Life Science, Kanagawa, Japan
| |
Collapse
|
29
|
Das A, Raghuraman H. Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183568. [PMID: 33529577 DOI: 10.1016/j.bbamem.2021.183568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
KvAP is a tetrameric voltage-gated potassium channel that is composed of a pore domain and a voltage-sensing domain (VSD). The VSD is crucial for sensing transmembrane potential and gating. At 0 mV, the VSD adopts an activated conformation in both n-octylglucoside (OG) micelles and phospholipid membranes. Importantly, gating-modifier toxins that bind at S3b-S4 loop of KvAP-VSD exhibit pronounced differences in binding affinity in these membrane-mimetic systems. However, the conformational heterogeneity of this functionally-important sensor loop in membrane mimetics is poorly understood, and is the focus of this work. In this paper, we establish, using intrinsic fluorescence of the uniquely positioned W70 in KvAP-VSD and environment-sensitive NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl-ethylenediamine) fluorescence of the labelled S3b-S4 loop, that the surface charge of the membrane does not significantly affect the topology and structural dynamics of the sensor loop in membranes. Importantly, the dynamic variability of the sensor loop is preserved in both zwitterionic (POPC) and anionic (POPC/POPG) membranes. Further, the lifetime distribution analysis for the NBD-labelled residues by maximum entropy method (MEM) demonstrates that, in contrast to micelles, the membrane environment not only reduces the relative discrete population of sensor loop conformations, but also broadens the lifetime distribution peaks. Overall, our results strongly suggest that the conformational heterogeneity of the sensor loop is significantly altered in membranes and this correlates well with its environmental heterogeneity. This constitutes the first report demonstrating that MEM-lifetime distribution could be a powerful tool to distinguish changes in conformational heterogeneity in potassium channels with similar architecture and topology.
Collapse
Affiliation(s)
- Anindita Das
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India.
| |
Collapse
|
30
|
Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021; 254:51-64. [PMID: 33409541 PMCID: PMC7936944 DOI: 10.1007/s00232-020-00165-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Abstract Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understanding of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of membrane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
31
|
Mechanism of hERG inhibition by gating-modifier toxin, APETx1, deduced by functional characterization. BMC Mol Cell Biol 2021; 22:3. [PMID: 33413079 PMCID: PMC7791793 DOI: 10.1186/s12860-020-00337-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human ether-à-go-go-related gene potassium channel 1 (hERG) is a voltage-gated potassium channel, the voltage-sensing domain (VSD) of which is targeted by a gating-modifier toxin, APETx1. APETx1 is a 42-residue peptide toxin of sea anemone Anthopleura elegantissima and inhibits hERG by stabilizing the resting state. A previous study that conducted cysteine-scanning analysis of hERG identified two residues in the S3-S4 region of the VSD that play important roles in hERG inhibition by APETx1. However, mutational analysis of APETx1 could not be conducted as only natural resources have been available until now. Therefore, it remains unclear where and how APETx1 interacts with the VSD in the resting state. Results We established a method for preparing recombinant APETx1 and determined the NMR structure of the recombinant APETx1, which is structurally equivalent to the natural product. Electrophysiological analyses using wild type and mutants of APETx1 and hERG revealed that their hydrophobic residues, F15, Y32, F33, and L34, in APETx1, and F508 and I521 in hERG, in addition to a previously reported acidic hERG residue, E518, play key roles in the inhibition of hERG by APETx1. Our hypothetical docking models of the APETx1-VSD complex satisfied the results of mutational analysis. Conclusions The present study identified the key residues of APETx1 and hERG that are involved in hERG inhibition by APETx1. These results would help advance understanding of the inhibitory mechanism of APETx1, which could provide a structural basis for designing novel ligands targeting the VSDs of KV channels.
Collapse
|
32
|
Sekhar Pagadala N. Computational prediction of hERG blockers using homology modelling, molecular docking and QuaSAR studies. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Wu X, Larsson HP. Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation. Int J Mol Sci 2020; 21:ijms21249440. [PMID: 33322401 PMCID: PMC7763278 DOI: 10.3390/ijms21249440] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The delayed rectifier potassium IKs channel is an important regulator of the duration of the ventricular action potential. Hundreds of mutations in the genes (KCNQ1 and KCNE1) encoding the IKs channel cause long QT syndrome (LQTS). LQTS is a heart disorder that can lead to severe cardiac arrhythmias and sudden cardiac death. A better understanding of the IKs channel (here called the KCNQ1/KCNE1 channel) properties and activities is of great importance to find the causes of LQTS and thus potentially treat LQTS. The KCNQ1/KCNE1 channel belongs to the superfamily of voltage-gated potassium channels. The KCNQ1/KCNE1 channel consists of both the pore-forming subunit KCNQ1 and the modulatory subunit KCNE1. KCNE1 regulates the function of the KCNQ1 channel in several ways. This review aims to describe the current structural and functional knowledge about the cardiac KCNQ1/KCNE1 channel. In addition, we focus on the modulation of the KCNQ1/KCNE1 channel and its potential as a target therapeutic of LQTS.
Collapse
|
34
|
Cidad P, Alonso E, Arévalo-Martínez M, Calvo E, de la Fuente MA, Pérez-García MT, López-López JR. Voltage-dependent conformational changes of Kv1.3 channels activate cell proliferation. J Cell Physiol 2020; 236:4330-4347. [PMID: 33230847 DOI: 10.1002/jcp.30170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule-specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3-induced proliferation have been located in the C-terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3-induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage-dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3-induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage-dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3-IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage-dependent conformational changes of Kv1.3 are an essential element in Kv1.3-induced proliferation.
Collapse
Affiliation(s)
- Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| | - Esperanza Alonso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| | - Marycarmen Arévalo-Martínez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares, Unidad de Proteómica, CNIC, Madrid, Spain
| | - Miguel A de la Fuente
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain.,Departamento de Biología Celular, Universidad de Valladolid, Valladolid, Spain
| | - M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| |
Collapse
|
35
|
VDAC Gating Thermodynamics, but Not Gating Kinetics, Are Virtually Temperature Independent. Biophys J 2020; 119:2584-2592. [PMID: 33189678 DOI: 10.1016/j.bpj.2020.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and an archetypical β-barrel channel. Here, we study the effects of temperature on VDAC channels reconstituted in planar lipid membranes at the single- and multichannel levels within the 20°C to 40°C range. The temperature dependence of conductance measured on a single channel in 1 M KCl shows an increase characterized by a 10°C temperature coefficient Q10 = 1.22 ± 0.02, which exceeds that of the bathing electrolyte solution conductivity, Q10 = 1.17 ± 0.01. The rates of voltage-induced channel transition between the open and closed states measured on multichannel membranes also show statistically significant increases, with temperatures that are consistent with activation energy barriers of ∼10 ± 3 kcal/mol. At the same time, the gating thermodynamics, as characterized by the gating charge and voltage of equipartitioning, does not display any measurable temperature dependence. The two parameters stay within 3.2 ± 0.2 elementary charges and 30 ± 2 mV, respectively. Thus, whereas the channel kinetics, specifically its conductance and rates of gating response to voltage steps, demonstrates a clear increase with temperature, the conformational voltage-dependent equilibria are virtually insensitive to temperature. These results, which may be a general feature of β-barrel channel gating, suggest either an entropy-driven gating mechanism or a role for enthalpy-entropy compensation.
Collapse
|
36
|
Pantazis A, Kaneko M, Angelini M, Steccanella F, Westerlund AM, Lindström SH, Nilsson M, Delemotte L, Saitta SC, Olcese R. Tracking the motion of the K V1.2 voltage sensor reveals the molecular perturbations caused by a de novo mutation in a case of epilepsy. J Physiol 2020; 598:5245-5269. [PMID: 32833227 PMCID: PMC8923147 DOI: 10.1113/jp280438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS KV1.2 channels, encoded by the KCNA2 gene, regulate neuronal excitability by conducting K+ upon depolarization. A new KCNA2 missense variant was discovered in a patient with epilepsy, causing amino acid substitution F302L at helix S4, in the KV1.2 voltage-sensing domain. Immunocytochemistry and flow cytometry showed that F302L does not impair KCNA2 subunit surface trafficking. Molecular dynamics simulations indicated that F302L alters the exposure of S4 residues to membrane lipids. Voltage clamp fluorometry revealed that the voltage-sensing domain of KV1.2-F302L channels is more sensitive to depolarization. Accordingly, KV1.2-F302L channels opened faster and at more negative potentials; however, they also exhibited enhanced inactivation: that is, F302L causes both gain- and loss-of-function effects. Coexpression of KCNA2-WT and -F302L did not fully rescue these effects. The proband's symptoms are more characteristic of patients with loss of KCNA2 function. Enhanced KV1.2 inactivation could lead to increased synaptic release in excitatory neurons, steering neuronal circuits towards epilepsy. ABSTRACT An exome-based diagnostic panel in an infant with epilepsy revealed a previously unreported de novo missense variant in KCNA2, which encodes voltage-gated K+ channel KV1.2. This variant causes substitution F302L, in helix S4 of the KV1.2 voltage-sensing domain (VSD). F302L does not affect KCNA2 subunit membrane trafficking. However, it does alter channel functional properties, accelerating channel opening at more hyperpolarized membrane potentials, indicating gain of function. F302L also caused loss of KV1.2 function via accelerated inactivation onset, decelerated recovery and shifted inactivation voltage dependence to more negative potentials. These effects, which are not fully rescued by coexpression of wild-type and mutant KCNA2 subunits, probably result from the enhancement of VSD function, as demonstrated by optically tracking VSD depolarization-evoked conformational rearrangements. In turn, molecular dynamics simulations suggest altered VSD exposure to membrane lipids. Compared to other encephalopathy patients with KCNA2 mutations, the proband exhibits mild neurological impairment, more characteristic of patients with KCNA2 loss of function. Based on this information, we propose a mechanism of epileptogenesis based on enhanced KV1.2 inactivation leading to increased synaptic release preferentially in excitatory neurons, and hence the perturbation of the excitatory/inhibitory balance of neuronal circuits.
Collapse
Affiliation(s)
- Antonios Pantazis
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Division of Neurobiology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Maki Kaneko
- Center for Personalized Medicine, Children's Hospital, Los Angeles, Los Angeles, CA, USA
- Division of Genomic Medicine, Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Marina Angelini
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Federica Steccanella
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Annie M Westerlund
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sarah H Lindström
- Division of Neurobiology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Michelle Nilsson
- Division of Neurobiology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sulagna C Saitta
- Department of Obstetrics and Gynecology and Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Riccardo Olcese
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
37
|
Bignucolo O, Bernèche S. The Voltage-Dependent Deactivation of the KvAP Channel Involves the Breakage of Its S4 Helix. Front Mol Biosci 2020; 7:162. [PMID: 32850956 PMCID: PMC7403406 DOI: 10.3389/fmolb.2020.00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated potassium channels (Kv) allow ion permeation upon changes of the membrane electrostatic potential (Vm). Each subunit of these tetrameric channels is composed of six transmembrane helices, of which the anti-parallel helix bundle S1-S4 constitutes the voltage-sensor domain (VSD) and S5-S6 forms the pore domain. Here, using 82 molecular dynamics (MD) simulations involving 266 replicated VSDs, we report novel responses of the archaebacterial potassium channel KvAP to membrane polarization. We show that the S4 α-helix, which is straight in the experimental crystal structure solved under depolarized conditions (Vm ∼ 0), breaks into two segments when the cell membrane is hyperpolarized (Vm << 0), and reversibly forms a single straight helix following depolarization (Vm = 0). The outermost segment of S4 translates along the normal to the membrane, bringing new perspective to previously paradoxical accessibility experiments that were initially thought to imply the displacement of the whole VSD across the membrane. The novel model is applied through steered and unbiased MD simulations to the recently solved whole structure of KvAP. The simulations show that the resting state involves a re-orientation of the S5 α-helix by ∼ 5-6 degrees in respect to the normal of the bilayer, which could result in the constriction and closure of the selectivity filter. Our findings support the idea that the breakage of S4 under (hyper)polarization is a general feature of Kv channels with a non-swapped topology.
Collapse
Affiliation(s)
- Olivier Bignucolo
- Biozentrum, University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel/Lausanne, Switzerland
| | - Simon Bernèche
- Biozentrum, University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel/Lausanne, Switzerland
| |
Collapse
|
38
|
Barros F, de la Peña P, Domínguez P, Sierra LM, Pardo LA. The EAG Voltage-Dependent K + Channel Subfamily: Similarities and Differences in Structural Organization and Gating. Front Pharmacol 2020; 11:411. [PMID: 32351384 PMCID: PMC7174612 DOI: 10.3389/fphar.2020.00411] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
EAG (ether-à-go-go or KCNH) are a subfamily of the voltage-gated potassium (Kv) channels. Like for all potassium channels, opening of EAG channels drives the membrane potential toward its equilibrium value for potassium, thus setting the resting potential and repolarizing action potentials. As voltage-dependent channels, they switch between open and closed conformations (gating) when changes in membrane potential are sensed by a voltage sensing domain (VSD) which is functionally coupled to a pore domain (PD) containing the permeation pathway, the potassium selectivity filter, and the channel gate. All Kv channels are tetrameric, with four VSDs formed by the S1-S4 transmembrane segments of each subunit, surrounding a central PD with the four S5-S6 sections arranged in a square-shaped structure. Structural information, mutagenesis, and functional experiments, indicated that in "classical/Shaker-type" Kv channels voltage-triggered VSD reorganizations are transmitted to PD gating via the α-helical S4-S5 sequence that links both modules. Importantly, these Shaker-type channels share a domain-swapped VSD/PD organization, with each VSD contacting the PD of the adjacent subunit. In this case, the S4-S5 linker, acting as a rigid mechanical lever (electromechanical lever coupling), would lead to channel gate opening at the cytoplasmic S6 helices bundle. However, new functional data with EAG channels split between the VSD and PD modules indicate that, in some Kv channels, alternative VSD/PD coupling mechanisms do exist. Noticeably, recent elucidation of the architecture of some EAG channels, and other relatives, showed that their VSDs are non-domain swapped. Despite similarities in primary sequence and predicted structural organization for all EAG channels, they show marked kinetic differences whose molecular basis is not completely understood. Thus, while a common general architecture may establish the gating system used by the EAG channels and the physicochemical coupling of voltage sensing to gating, subtle changes in that common structure, and/or allosteric influences of protein domains relatively distant from the central gating machinery, can crucially influence the gating process. We consider here the latest advances on these issues provided by the elucidation of eag1 and erg1 three-dimensional structures, and by both classical and more recent functional studies with different members of the EAG subfamily.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Luisa Maria Sierra
- Departamento de Biología Funcional (Area de Genética), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
39
|
Garcia DCG, Longden TA. Ion channels in capillary endothelium. CURRENT TOPICS IN MEMBRANES 2020; 85:261-300. [PMID: 32402642 DOI: 10.1016/bs.ctm.2020.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular beds are anatomically and functionally compartmentalized into arteries, capillaries, and veins. The bulk of the vasculature consists of the dense, anastomosing capillary network, composed of capillary endothelial cells (cECs) that are intimately associated with the parenchyma. Despite their abundance, the ion channel expression and function and Ca2+ signaling behaviors of capillaries have only recently begun to be explored in detail. Here, we discuss the established and emerging roles of ion channels and Ca2+ signaling in cECs. By mining a publicly available RNA-seq dataset, we outline the wide variety of ion channel genes that are expressed in these cells, which potentially imbue capillaries with a broad range of sensing and signal transduction capabilities. We also underscore subtle but critical differences between cEC and arteriolar EC ion channel expression that likely underlie key functional differences in ECs at these different levels of the vascular tree. We focus our discussion on the cerebral vasculature, but the findings and principles being elucidated in this area likely generalize to other vascular beds.
Collapse
Affiliation(s)
- Daniela C G Garcia
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States.
| |
Collapse
|
40
|
Taylor KC, Kang PW, Hou P, Yang ND, Kuenze G, Smith JA, Shi J, Huang H, White KM, Peng D, George AL, Meiler J, McFeeters RL, Cui J, Sanders CR. Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state. eLife 2020; 9:e53901. [PMID: 32096762 PMCID: PMC7069725 DOI: 10.7554/elife.53901] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated ion channels feature voltage sensor domains (VSDs) that exist in three distinct conformations during activation: resting, intermediate, and activated. Experimental determination of the structure of a potassium channel VSD in the intermediate state has previously proven elusive. Here, we report and validate the experimental three-dimensional structure of the human KCNQ1 voltage-gated potassium channel VSD in the intermediate state. We also used mutagenesis and electrophysiology in Xenopus laevisoocytes to functionally map the determinants of S4 helix motion during voltage-dependent transition from the intermediate to the activated state. Finally, the physiological relevance of the intermediate state KCNQ1 conductance is demonstrated using voltage-clamp fluorometry. This work illuminates the structure of the VSD intermediate state and demonstrates that intermediate state conductivity contributes to the unusual versatility of KCNQ1, which can function either as the slow delayed rectifier current (IKs) of the cardiac action potential or as a constitutively active epithelial leak current.
Collapse
Affiliation(s)
- Keenan C Taylor
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Po Wei Kang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Panpan Hou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Nien-Du Yang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Departments of Chemistry and Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Jarrod A Smith
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Hui Huang
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Kelli McFarland White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Dungeng Peng
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical CenterNashvilleUnited States
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Departments of Chemistry and Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Department of Bioinformatics, Vanderbilt University Medical CenterNashvilleUnited States
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama in HuntsvilleHuntsvilleUnited States
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
41
|
Fleetwood O, Kasimova MA, Westerlund AM, Delemotte L. Molecular Insights from Conformational Ensembles via Machine Learning. Biophys J 2020; 118:765-780. [PMID: 31952811 PMCID: PMC7002924 DOI: 10.1016/j.bpj.2019.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023] Open
Abstract
Biomolecular simulations are intrinsically high dimensional and generate noisy data sets of ever-increasing size. Extracting important features from the data is crucial for understanding the biophysical properties of molecular processes, but remains a big challenge. Machine learning (ML) provides powerful dimensionality reduction tools. However, such methods are often criticized as resembling black boxes with limited human-interpretable insight. We use methods from supervised and unsupervised ML to efficiently create interpretable maps of important features from molecular simulations. We benchmark the performance of several methods, including neural networks, random forests, and principal component analysis, using a toy model with properties reminiscent of macromolecular behavior. We then analyze three diverse biological processes: conformational changes within the soluble protein calmodulin, ligand binding to a G protein-coupled receptor, and activation of an ion channel voltage-sensor domain, unraveling features critical for signal transduction, ligand binding, and voltage sensing. This work demonstrates the usefulness of ML in understanding biomolecular states and demystifying complex simulations.
Collapse
Affiliation(s)
- Oliver Fleetwood
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Marina A Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Annie M Westerlund
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
42
|
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183148. [PMID: 31825788 DOI: 10.1016/j.bbamem.2019.183148] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ion channels play crucial roles in cellular biology, physiology, and communication including sensory perception. Voltage-gated potassium (Kv) channels execute their function by sensor activation, pore-coupling, and pore opening leading to K+ conductance. SCOPE OF REVIEW This review focuses on a voltage-gated K+ ion channel KCNQ1 (Kv 7.1). Firstly, discussing its positioning in the human ion chanome, and the role of KCNQ1 in the multitude of cellular processes. Next, we discuss the overall channel architecture and current structural insights on KCNQ1. Finally, the gating mechanism involving members of the KCNE family and its interaction with non-KCNE partners. MAJOR CONCLUSIONS KCNQ1 executes its important physiological functions via interacting with KCNE1 and non-KCNE1 proteins/molecules: calmodulin, PIP2, PKA. Although, KCNQ1 has been studied in great detail, several aspects of the channel structure and function still remain unexplored. This review emphasizes the structural and biophysical studies of KCNQ1, its interaction with KCNE1 and non-KCNE1 proteins and focuses on several seminal findings showing the role of VSD and the pore domain in the channel activation and gating properties. GENERAL SIGNIFICANCE KCNQ1 mutations can result in channel defects and lead to several diseases including atrial fibrillation and long QT syndrome. Therefore, a thorough structure-function understanding of this channel complex is essential to understand its role in both normal and disease biology. Moreover, unraveling the molecular mechanisms underlying the regulation of this channel complex will help to find therapeutic strategies for several diseases.
Collapse
|
43
|
Kasimova MA, Tewari D, Cowgill JB, Ursuleaz WC, Lin JL, Delemotte L, Chanda B. Helix breaking transition in the S4 of HCN channel is critical for hyperpolarization-dependent gating. eLife 2019; 8:e53400. [PMID: 31774399 PMCID: PMC6904216 DOI: 10.7554/elife.53400] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
In contrast to most voltage-gated ion channels, hyperpolarization- and cAMP gated (HCN) ion channels open on hyperpolarization. Structure-function studies show that the voltage-sensor of HCN channels are unique but the mechanisms that determine gating polarity remain poorly understood. All-atom molecular dynamics simulations (~20 μs) of HCN1 channel under hyperpolarization reveals an initial downward movement of the S4 voltage-sensor but following the transfer of last gating charge, the S4 breaks into two sub-helices with the lower sub-helix becoming parallel to the membrane. Functional studies on bipolar channels show that the gating polarity strongly correlates with helical turn propensity of the substituents at the breakpoint. Remarkably, in a proto-HCN background, the replacement of breakpoint serine with a bulky hydrophobic amino acid is sufficient to completely flip the gating polarity from inward to outward-rectifying. Our studies reveal an unexpected mechanism of inward rectification involving a linker sub-helix emerging from HCN S4 during hyperpolarization.
Collapse
Affiliation(s)
- Marina A Kasimova
- Science for Life Laboratory, Department of Applied PhysicsKTH Royal Institute of TechnologyStockholmSweden
| | - Debanjan Tewari
- Department of NeuroscienceUniversity of Wisconsin-MadisonMadisonUnited States
| | - John B Cowgill
- Department of NeuroscienceUniversity of Wisconsin-MadisonMadisonUnited States
- Graduate program in BiophysicsUniversity of WisconsinMadisonUnited States
| | | | - Jenna L Lin
- Department of NeuroscienceUniversity of Wisconsin-MadisonMadisonUnited States
- Graduate program in BiophysicsUniversity of WisconsinMadisonUnited States
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied PhysicsKTH Royal Institute of TechnologyStockholmSweden
| | - Baron Chanda
- Department of NeuroscienceUniversity of Wisconsin-MadisonMadisonUnited States
- Department of Biomolecular ChemistryUniversity of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
44
|
Tao X, MacKinnon R. Cryo-EM structure of the KvAP channel reveals a non-domain-swapped voltage sensor topology. eLife 2019; 8:e52164. [PMID: 31755864 PMCID: PMC6882556 DOI: 10.7554/elife.52164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Conductance in voltage-gated ion channels is regulated by membrane voltage through structural domains known as voltage sensors. A single structural class of voltage sensor domain exists, but two different modes of voltage sensor attachment to the pore occur in nature: domain-swapped and non-domain-swapped. Since the more thoroughly studied Kv1-7, Nav and Cav channels have domain-swapped voltage sensors, much less is known about non-domain-swapped voltage-gated ion channels. In this paper, using cryo-EM, we show that KvAP from Aeropyrum pernix has non-domain-swapped voltage sensors as well as other unusual features. The new structure, together with previous functional data, suggests that KvAP and the Shaker channel, to which KvAP is most often compared, probably undergo rather different voltage-dependent conformational changes when they open.
Collapse
Affiliation(s)
- Xiao Tao
- Laboratory of Molecular Neurobiology and BiophysicsThe Rockefeller University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and BiophysicsThe Rockefeller University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
45
|
Gupta K, Toombes GE, Swartz KJ. Exploring structural dynamics of a membrane protein by combining bioorthogonal chemistry and cysteine mutagenesis. eLife 2019; 8:50776. [PMID: 31714877 PMCID: PMC6850778 DOI: 10.7554/elife.50776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The functional mechanisms of membrane proteins are extensively investigated with cysteine mutagenesis. To complement cysteine-based approaches, we engineered a membrane protein with thiol-independent crosslinkable groups using azidohomoalanine (AHA), a non-canonical methionine analogue containing an azide group that can selectively react with cycloalkynes through a strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. We demonstrate that AHA can be readily incorporated into the Shaker Kv channel in place of methionine residues and modified with azide-reactive alkyne probes in Xenopus oocytes. Using voltage-clamp fluorometry, we show that AHA incorporation permits site-specific fluorescent labeling to track voltage-dependent conformational changes similar to cysteine-based methods. By combining AHA incorporation and cysteine mutagenesis in an orthogonal manner, we were able to site-specifically label the Shaker Kv channel with two different fluorophores simultaneously. Our results identify a facile and straightforward approach for chemical modification of membrane proteins with bioorthogonal chemistry to explore their structure-function relationships in live cells. Living cells can sense cues from their environment via molecules located at the interface between the inside and the outside of the cell. These molecules are mostly proteins and are made up of building blocks known as amino acids. To understand how these proteins work, fluorescent probes can be attached to amino acids within them – which can then tell when different parts of proteins move in response to a signal. Scientists often target fluorescent probes at the amino acid cysteine, because it has a chemically reactive side group and is rare enough so that unique positions can be labeled in the protein of interest. However, being able to target other amino acids would allow scientists to ask, and potentially solve, more precise questions about these proteins. Methionine is another amino acid that has a low abundance in most proteins. Previous research has shown that the cell’s normal protein-building machinery can incorporate synthetic versions of methionine into proteins. This suggested that the introduction of chemically reactive alternatives to methionine could offer a way to label membrane proteins with fluorescent probes and free up the cysteines to be targeted with other approaches. Gupta et al. set out to develop a straightforward method to achieve this and started with a well-studied membrane protein, called Shaker, and cells from female African clawed frogs, which are widely used to study membrane proteins. Gupta et al. found that the cells could readily take up a chemically reactive methionine alternative called azidohomoalanine (AHA) from their surrounding solution and incorporate it within the Shaker protein. The AHA took the place of the methionines that are normally found in Shaker, and just like in cysteine-based methods, fluorescent probes could be easily attached to the AHAs in this membrane protein. Shaker is a protein that allows potassium ions to flow across the cell membrane by changing shape in response to the membrane voltage. The fluorescence from those probes also changed with the membrane voltage in a way that was comparable to cysteine-mediated approaches. This indicated that the AHA modification could also be used to track structural changes in the Shaker protein. Finally, Gupta et al. showed that AHA- and cysteine-mediated labeling approaches could be combined to attach two different fluorescent probes onto the Shaker protein. This method will expand the toolbox for researchers studying the relationship between the structure and function of membrane proteins in live cells. In future, it could be applied more widely once the properties of the fluorescent probes for AHA-mediated labeling can be optimized.
Collapse
Affiliation(s)
- Kanchan Gupta
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| | - Gilman Es Toombes
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
46
|
Torbeev V. Illuminating Voltage Sensor Paddling in Different Membrane Milieu. Biophys J 2019; 118:781-782. [PMID: 31623888 DOI: 10.1016/j.bpj.2019.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/25/2019] [Indexed: 01/31/2023] Open
Affiliation(s)
- Vladimir Torbeev
- Institut de Science et d'Ingénierie Supramoléculaires, International Center for Frontier Research in Chemistry, University of Strasbourg and CNRS (UMR 7006), Strasbourg, France.
| |
Collapse
|
47
|
Diver MM, Cheng Y, Julius D. Structural insights into TRPM8 inhibition and desensitization. Science 2019; 365:1434-1440. [PMID: 31488702 PMCID: PMC7262954 DOI: 10.1126/science.aax6672] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
The transient receptor potential melastatin 8 (TRPM8) ion channel is the primary detector of environmental cold and an important target for treating pathological cold hypersensitivity. Here, we present cryo-electron microscopy structures of TRPM8 in ligand-free, antagonist-bound, or calcium-bound forms, revealing how robust conformational changes give rise to two nonconducting states, closed and desensitized. We describe a malleable ligand-binding pocket that accommodates drugs of diverse chemical structures, and we delineate the ion permeation pathway, including the contribution of lipids to pore architecture. Furthermore, we show that direct calcium binding mediates stimulus-evoked desensitization, clarifying this important mechanism of sensory adaptation. We observe large rearrangements within the S4-S5 linker that reposition the S1-S4 and pore domains relative to the TRP helix, leading us to propose a distinct model for modulation of TRPM8 and possibly other TRP channels.
Collapse
Affiliation(s)
- Melinda M Diver
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
48
|
Lee E, Kundu A, Jeon J, Cho M. Water hydrogen-bonding structure and dynamics near lipid multibilayer surface: Molecular dynamics simulation study with direct experimental comparison. J Chem Phys 2019; 151:114705. [DOI: 10.1063/1.5120456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Euihyun Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Achintya Kundu
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2a, 12489 Berlin, Germany
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
49
|
Onkal R, Fraser SP, Djamgoz MB. Cationic Modulation of Voltage-Gated Sodium Channel (Nav1.5): Neonatal Versus Adult Splice Variants-1. Monovalent (H +) Ions. Bioelectricity 2019; 1:139-147. [PMID: 34471816 PMCID: PMC8370280 DOI: 10.1089/bioe.2019.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Voltage-gated sodium channels are functionally expressed in human carcinomas. In breast and colon cancers, the neonatal splice variant of Nav1.5 (nNav1.5) is dominant. This differs from the adult (aNav1.5) by several amino acids, including an outer charge reversal (residue-211): negatively charged aspartate (aNav1.5) versus positively charged lysine (nNav1.5). Thus, nNav1.5 and aNav1.5 may respond to extracellular charges differently. Materials and Methods: We used whole-cell patch-clamp recording to compare the electrophysiological effects of the monovalent cation hydrogen (H+) on nNav1.5 and aNav1.5 expressed stably in EBNA cells. Results: Increasing the H+ concentration (acidifying pH) reduced channel conductance and inhibited peak currents. Also, there was a positive shift in the voltage dependence of activation. These changes were significantly smaller for nNav1.5, compared with aNav1.5. Conclusions: nNav1.5 was more resistant to the suppressive effects of acidification compared with aNav1.5. Thus, nNav1.5 may have an advantage in promoting metastasis from the acidified tumor microenvironment.
Collapse
Affiliation(s)
- Rustem Onkal
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Biotechnology Research Centre (BRC), North Cyprus International University, North Cyprus
| | - Scott P. Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Biotechnology Research Centre (BRC), North Cyprus International University, North Cyprus
| |
Collapse
|
50
|
Onkal R, Fraser SP, Djamgoz MB. Cationic Modulation of Voltage-Gated Sodium Channel (Nav1.5): Neonatal Versus Adult Splice Variants-2. Divalent (Cd 2+) and Trivalent (Gd 3+) Ions. Bioelectricity 2019; 1:148-157. [PMID: 34471817 PMCID: PMC8370281 DOI: 10.1089/bioe.2019.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: A "neonatal" splice-form of the voltage-gated sodium channel Nav1.5 is functionally expressed in human cancers and potentiates metastatic cell behaviors. Splicing causes the replacement of 7 amino acids, including a negatively charged aspartate211 in the "adult" Nav1.5 (aNav1.5) to a positively charged lysine in the "neonatal" (nNav1.5). These changes occur in the region surrounding the DI:S3-S4 extracellular linker. The splice variants respond differently to changes in extracellular H+ and this could be of pathophysiological significance. However, how the two differentially charged splice variants would react to cations of higher valency is not known. Materials and Methods: We used patch-clamp recording to compare the electrophysiological effects of Cd2+ and Gd3+ on "adult" and "neonatal" Nav1.5 expressed stably in EBNA-293 cells. Several parameters were determined for the two channels and statistically compared. Results: Both cations inhibited peak I Na through reducing G max and induced a positive shift in the voltage range of activation. However, unlike Gd3+, Cd2+ had only a weak effect on voltage dependence of activation, and no effect on voltage dependence of inactivation, recovery from inactivation, or the kinetics of activation/inactivation. Conclusions: The electrophysiological effects of Cd2+ and Gd3+ studied were essentially the same for "neonatal" and "adult" Nav1.5, although these splice variants possess differences in their external charges. In contrast, the effects of H+ were shown earlier to be significantly differential. Taken together, these results suggest that limited adjustment of the charged structure of pharmacological agents could enable selective targeting of neonatal Nav1.5 associated with several cancers.
Collapse
Affiliation(s)
- Rustem Onkal
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Institute of Biotechnology Research (IBR), Cyprus International University, North Cyprus
| | - Scott P. Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Institute of Biotechnology Research (IBR), Cyprus International University, North Cyprus
| |
Collapse
|