1
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Clayton J, Romany A, Matenoglou E, Gavathiotis E, Poulikakos PI, Shen J. Mechanism of Dimer Selectivity and Binding Cooperativity of BRAF Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571293. [PMID: 38168366 PMCID: PMC10760002 DOI: 10.1101/2023.12.12.571293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.
Collapse
Affiliation(s)
- Joseph Clayton
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Aarion Romany
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Evangelia Matenoglou
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
3
|
Imani S, Roozitalab G, Emadi M, Moradi A, Behzadi P, Jabbarzadeh Kaboli P. The evolution of BRAF-targeted therapies in melanoma: overcoming hurdles and unleashing novel strategies. Front Oncol 2024; 14:1504142. [PMID: 39582535 PMCID: PMC11582033 DOI: 10.3389/fonc.2024.1504142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a significant global health burden, with 331,647 new cases and 58,645 deaths reported in 2022. The development of melanoma is influenced by various factors, including sunlight exposure and BRAFV600 mutations that activate the MAPK/ERK pathway. The introduction of BRAF and MEK inhibitors has revolutionized the treatment landscape for melanoma patients. However, innate and acquired therapeutic resistance remains a significant challenge. This review provides a comprehensive overview of the current state of BRAF-targeted therapies in melanoma, highlighting the efficacy and limitations of FDA-approved combinations of BRAF and MEK inhibitors such as vemurafenib, dabrafenib, trametinib, and cobimetinib. The review also explores the off-target effects of BRAF inhibitors on endothelial cells, emphasizing the need for more selective therapies to minimize vascular complications and metastatic potential. The article also discusses potential druggable targets, including ERK5, CD73, ALDH1A1, PLA1A, and DMKN, which are promising in addressing diagnostic hurdles and guiding personalized therapeutic decisions. Recent studies on regorafenib, ERK5 signaling, and CD73 inhibition are highlighted as novel strategies to overcome resistance and improve treatment outcomes. The review also delves into the role of advanced therapeutic tools, such as mRNA vaccines and CRISPR-Cas9, in revolutionizing personalized oncology by targeting specific genetic mutations and enhancing immune responses against melanoma. The ongoing synergy between advancing research, targeted interventions, strategic treatment combinations, and cost-effectiveness evaluations offers a promising pathway to elevate patient outcomes in the persistent battle against melanoma significantly.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdieh Emadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atefeh Moradi
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
4
|
He H, Chen Z, Fan R, Zhang J, Zhu S, Wang J, Zhang Q, Gao A, Gong S, Zhang L, Li Y, Zhao Y, Krattinger SG, Shen QH, Li H, Wang Y. A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew. Nat Commun 2024; 15:6512. [PMID: 39095395 PMCID: PMC11297308 DOI: 10.1038/s41467-024-50909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Many disease resistance genes have been introgressed into wheat from its wild relatives. However, reduced recombination within the introgressed segments hinders the cloning of the introgressed genes. Here, we have cloned the powdery mildew resistance gene Pm13, which is introgressed into wheat from Aegilops longissima, using a method that combines physical mapping with radiation-induced chromosomal aberrations and transcriptome sequencing analysis of ethyl methanesulfonate (EMS)-induced loss-of-function mutants. Pm13 encodes a kinase fusion protein, designated MLKL-K, with an N-terminal domain of mixed lineage kinase domain-like protein (MLKL_NTD domain) and a C-terminal serine/threonine kinase domain bridged by a brace. The resistance function of Pm13 is validated through transient and stable transgenic complementation assays. Transient over-expression analyses in Nicotiana benthamiana leaves and wheat protoplasts reveal that the fragment Brace-Kinase122-476 of MLKL-K is capable of inducing cell death, which is dependent on a functional kinase domain and the three α-helices in the brace region close to the N-terminus of the kinase domain.
Collapse
Affiliation(s)
- Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, China.
| | - Zhaozhao Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shanying Zhu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiale Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qianyuan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Anli Gao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lu Zhang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yitong Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajun Wang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Plant Science Program, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Bialves TS, Bastos LL, Parra JAA, Moysés MN, Marques E, de Castro Pimenta AM, Quintela FM, Mariano DCB, Carvalho FC, de Melo-Minardi RC, Boyle RT. Interaction of DisBa01 peptide from Bothrops alternatus venom with BRAF melanoma receptors: Modeling and molecular docking. Int J Biol Macromol 2024; 274:133283. [PMID: 38909731 DOI: 10.1016/j.ijbiomac.2024.133283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Metastatic melanoma is highly aggressive and challenging, often leading to a grim prognosis. Its progression is swift, especially when mutations like BRAFV600E continuously activate pathways vital for cell growth and survival. Although several treatments target this mutation, resistance typically emerges over time. In recent decades, research has underscored the potential of snake venoms and peptides as bioactive substances for innovative drugs, including anti-coagulants, anti-microbial, and anti-cancer agents. Leveraging this knowledge, we propose employing a bioinformatics simulation approach to: a) Predict how well a peptide (DisBa01) from Bothrops alternatus snake venom binds to the melanoma receptor BRAFV600E via Molecular Docking. b) Identify the specific peptide binding sites on receptors and analyze their proximity to active receptor sites. c) Evaluate the behavior of resulting complexes through molecular dynamics simulations. d) Assess whether this peptide qualifies as a candidate for anti-melanoma therapy. Our findings reveal that DisBa01 enhances stability in the BRAFV600E melanoma receptor structure by binding to its RGD motif, an interaction absent in the BRAF WT model. Consequently, both docking and molecular dynamics simulations suggest that DisBa01 shows promise as a BRAFV600E inhibitor.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Luana Luiza Bastos
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - John Alexanders Amaya Parra
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maurício Nogueira Moysés
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edleusa Marques
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Marques Quintela
- Instituto Nacional de Pesquisas do Pantanal- Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, Pará, Brazil
| | - Diego César Batista Mariano
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Chaves Carvalho
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel C de Melo-Minardi
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Tew Boyle
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem 2024; 93:289-316. [PMID: 38316136 DOI: 10.1146/annurev-biochem-052521-040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Steffen CL, Manoharan GB, Pavic K, Yeste-Vázquez A, Knuuttila M, Arora N, Zhou Y, Härmä H, Gaigneaux A, Grossmann TN, Abankwa DK. Identification of an H-Ras nanocluster disrupting peptide. Commun Biol 2024; 7:837. [PMID: 38982284 PMCID: PMC11233548 DOI: 10.1038/s42003-024-06523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Hyperactive Ras signalling is found in most cancers. Ras proteins are only active in membrane nanoclusters, which are therefore potential drug targets. We previously showed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering via direct interaction with the Ras binding domain (RBD) of Raf. Here, we establish that the B-Raf preference of Gal1 emerges from the divergence of the Raf RBDs at their proposed Gal1-binding interface. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B- and C-Raf-RBDs. Its 23-mer core fragment is sufficient to interfere with H-Ras nanoclustering, modulate Ras-signalling and moderately reduce cell viability. These latter two phenotypic effects may also emerge from the ability of L5UR to broadly engage with several RBD- and RA-domain containing Ras interactors. The L5UR-peptide core fragment is a starting point for the development of more specific reagents against Ras-nanoclustering and -interactors.
Collapse
Affiliation(s)
- Candy Laura Steffen
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matias Knuuttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500, Turku, Finland
| | - Anthoula Gaigneaux
- Bioinformatics Core, Department of Life Sciences and Medicine, University of Luxembourg, 4367, Esch-sur-Alzette, Luxembourg
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
8
|
Maisonneuve P, Sahmi M, Bergeron-Labrecque F, Ma XI, Queguiner J, Arseneault G, Lefrançois M, Kurinov I, Fronzes R, Sicheri F, Therrien M. The CNK-HYP scaffolding complex promotes RAF activation by enhancing KSR-MEK interaction. Nat Struct Mol Biol 2024; 31:1028-1038. [PMID: 38388830 PMCID: PMC11257983 DOI: 10.1038/s41594-024-01233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
The RAS-MAPK pathway regulates cell proliferation, differentiation and survival, and its dysregulation is associated with cancer development. The pathway minimally comprises the small GTPase RAS and the kinases RAF, MEK and ERK. Activation of RAF by RAS is notoriously intricate and remains only partially understood. There are three RAF isoforms in mammals (ARAF, BRAF and CRAF) and two related pseudokinases (KSR1 and KSR2). RAS-mediated activation of RAF depends on an allosteric mechanism driven by the dimerization of its kinase domain. Recent work on human RAFs showed that MEK binding to KSR1 promotes KSR1-BRAF heterodimerization, which leads to the phosphorylation of free MEK molecules by BRAF. Similar findings were made with the single Drosophila RAF homolog. Here we show that the fly scaffold proteins CNK and HYP stabilize the KSR-MEK interaction, which in turn enhances RAF-KSR heterodimerization and RAF activation. The cryogenic electron microscopy structure of the minimal KSR-MEK-CNK-HYP complex reveals a ring-like arrangement of the CNK-HYP complex allowing CNK to simultaneously engage KSR and MEK, thus stabilizing the binary interaction. Together, these results illuminate how CNK contributes to RAF activation by stimulating the allosteric function of KSR and highlight the diversity of mechanisms impacting RAF dimerization as well as the regulatory potential of the KSR-MEK interaction.
Collapse
Affiliation(s)
- Pierre Maisonneuve
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France.
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Fanny Bergeron-Labrecque
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Xianjie Iris Ma
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Juliette Queguiner
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Geneviève Arseneault
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, IL, USA
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, Université de Bordeaux-CNRS (UMR 5234), Pessac, France
| | - Frank Sicheri
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada.
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
9
|
Spencer-Smith R, Morrison DK. Regulation of RAF family kinases: new insights from recent structural and biochemical studies. Biochem Soc Trans 2024; 52:1061-1069. [PMID: 38695730 PMCID: PMC11346419 DOI: 10.1042/bst20230552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U.S.A
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U.S.A
| |
Collapse
|
10
|
Dorighi KM, Zhu A, Fortin JP, Hung-Hao Lo J, Sudhamsu J, Wendorff TJ, Durinck S, Callow M, Foster SA, Haley B. Accelerated drug-resistant variant discovery with an enhanced, scalable mutagenic base editor platform. Cell Rep 2024; 43:114313. [PMID: 38838224 DOI: 10.1016/j.celrep.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anqi Zhu
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jean-Philippe Fortin
- Department of Data Science and Statistical Computing, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jerry Hung-Hao Lo
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Marinella Callow
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Scott A Foster
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
11
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
12
|
Rasmussen DM, Semonis MM, Greene JT, Muretta JM, Thompson AR, Toledo Ramos S, Thomas DD, Pomerantz WCK, Freedman TS, Levinson NM. Allosteric coupling asymmetry mediates paradoxical activation of BRAF by type II inhibitors. eLife 2024; 13:RP95481. [PMID: 38742856 PMCID: PMC11093583 DOI: 10.7554/elife.95481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.
Collapse
Affiliation(s)
- Damien M Rasmussen
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Manny M Semonis
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
| | - Joseph T Greene
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
| | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | | | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | | | - Tanya S Freedman
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
- Center for Immunology, University of MinnesotaMinneapolisUnited States
- Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
| | - Nicholas M Levinson
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
- Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
13
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Watanabe H, Inoue Y, Karayama M, Yazawa S, Mochizuka Y, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Enomoto N, Fujisawa T, Shinmura K, Inui N, Suda T. Characterization of BRAFThr599dup Mutation as a Targetable Driver Mutation Identified in Lung Adenocarcinoma by Comprehensive Genomic Profiling. JCO Precis Oncol 2024; 8:e2300538. [PMID: 38662982 DOI: 10.1200/po.23.00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 04/30/2024] Open
Abstract
PURPOSE Understanding the function of BRAF mutants is crucial for determining the best treatment strategy. This study aimed to characterize a rare BRAF variant, BRAFThr599dup, which was identified in a patient with lung adenocarcinoma (LUAD) by comprehensive genomic profiling. MATERIALS AND METHODS We report a case of LUAD with BRAFThr599dup treated with dabrafenib and trametinib. We conditionally expressed wild-type BRAF, BRAFV600E, or BRAFThr599dup in Ba/F3 cells and BEAS-2B cells. Ba/F3 cells carrying double-mutant BRAF (BRAFThr599dup/R509H, BRAFV600E/R509H, or BRAFK601E/R509H) that lacked the dimerizing ability were also established. Knockout of endogenous BRAF or CRAF in Ba/F3-BRAFThr599dup cells and Ba/F3-BRAFV600E cells was performed using the CRISPR/Cas9 system. Cell viability, mitogen-activated protein kinase (MAPK) signaling activity, and sensitivity to dabrafenib and trametinib were evaluated. RESULTS The patient was revealed to have BRAFThr599dup-positive tumor cells as a predominant clone, and dabrafenib and trametinib treatment showed modest efficacy. In Ba/F3 cells, both BRAFThr599dup and BRAFV600E similarly caused interleukin-3-independent proliferation and activated the MAPK pathway. Moreover, BRAFThr599dup and BRAFV600E similarly caused a significant increase in the anchorage-independent growth ability of BEAS-2B cells. Along with Ba/F3-BRAFV600E cells, Ba/F3-BRAFThr599dup cells were highly sensitive to a monomer-specific BRAF inhibitor, dabrafenib, with a half-maximal inhibitory concentration value of 29.7 nM. In the absence of wild-type BRAF, wild-type CRAF, or an intact dimer interface, the ability to induce oncogenic addiction and MAPK pathway activation in Ba/F3-BRAFThr599dup cells was not affected, which was in contrast to the findings in the BRAFK601E/R509H double-mutant model. CONCLUSION BRAFThr599dup is a potent driver oncogene that activates the MAPK pathway without the requirement for dimerization in vitro. Because BRAFThr599dup has been recurrently reported across various cancer types, our findings should be further investigated both mechanistically and clinically.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shusuke Yazawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasutaka Mochizuka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
15
|
Marsiglia WM, Chow A, Khan ZM, He L, Dar AC. Live-cell target engagement of allosteric MEKi on MEK-RAF/KSR-14-3-3 complexes. Nat Chem Biol 2024; 20:373-381. [PMID: 37919548 PMCID: PMC10948974 DOI: 10.1038/s41589-023-01454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
The RAS-mitogen-activated protein kinase (MAPK) pathway includes KSR, RAF, MEK and the phospho-regulatory sensor 14-3-3. Specific assemblies among these components drive various diseases and likely dictate efficacy for numerous targeted therapies, including allosteric MEK inhibitors (MEKi). However, directly measuring drug interactions on physiological RAS-MAPK complexes in live cells has been inherently challenging to query and therefore remains poorly understood. Here we present a series of NanoBRET-based assays to quantify direct target engagement of MEKi on MEK1 and higher-order MEK1-bound complexes with ARAF, BRAF, CRAF, KSR1 and KSR2 in the presence and absence of 14-3-3 in living cells. We find distinct MEKi preferences among these complexes that can be compiled to generate inhibitor binding profiles. Further, these assays can report on the influence of the pathogenic BRAF-V600E mutant on MEKi binding. Taken together, these approaches can be used as a platform to screen for compounds intended to target specific complexes in the RAS-MAPK cascade.
Collapse
Affiliation(s)
- William M Marsiglia
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Arthur Chow
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaigham M Khan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liu He
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arvin C Dar
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Khan A, Bealy MA, Alharbi B, Khan S, Alharethi SH, Al-Soud WA, Mohammad T, Hassan MI, Alshammari N, Ahmed Al-Keridis L. Discovering potential inhibitors of Raf proto-oncogene serine/threonine kinase 1: a virtual screening approach towards anticancer drug development. J Biomol Struct Dyn 2024; 42:1846-1857. [PMID: 37104027 DOI: 10.1080/07391102.2023.2204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Raf proto-oncogene serine/threonine kinase 1 (RAF1 or c-Raf) is a serine/threonine protein kinase crucial in regulating cell growth, differentiation, and survival. Any disruption or overexpression of RAF1 can result in neoplastic transformation and other disorders such as cardiomyopathy, Noonan syndrome, leopard syndrome, etc. RAF1 has been identified as a potential therapeutic target in drug development against various complex diseases, including cancer, due to its remarkable role in disease progression. Here, we carried out a multitier virtual screening study involving different in-silico approaches to discover potential inhibitors of RAF1. After applying the Lipinski rule of five, we retrieved all phytocompounds from the IMPPAT database based on their physicochemical properties. We performed a molecular docking-based virtual screening and got top hits with the best binding affinity and ligand efficiency. Then we screened out the selected hits using the PAINS filter, ADMET properties, and other druglike features. Eventually, PASS evaluation identifies two phytocompounds, Moracin C and Tectochrysin, with appreciable anti-cancerous properties. Finally, all-atom molecular dynamics simulation (MDS) followed by interaction analysis was performed on the elucidated compounds in complex with RAF1 for 200 ns to investigate their time-evolution dynamics and interaction mechanism. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and Dynamical Cross-Correlation Matrix (DCCM) analyses then followed these results from the simulated trajectories. According to the results, the elucidated compounds stabilize the RAF1 structure and lead to fewer conformational alterations. The results of the current study indicated that Moracin C and Tectochrysin could serve as potential inhibitors of RAF1 after required validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afsha Khan
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohamed Ahmed Bealy
- Department of Pathology, College of Medicine, University of Ha'il, Hail, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Shama Khan
- Faculty of Health Science, South Africa Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
17
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
18
|
Trebino TE, Markusic B, Nan H, Banerjee S, Wang Z. Unveiling the domain-specific and RAS isoform-specific details of BRAF kinase regulation. eLife 2023; 12:RP88836. [PMID: 38150000 PMCID: PMC10752582 DOI: 10.7554/elife.88836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
BRAF is a key member in the MAPK signaling pathway essential for cell growth, proliferation, and differentiation. Mutant BRAF is often the underlying cause of various types of cancer and mutant RAS, the upstream regulator of BRAF, is a driver of up to one-third of all cancers. BRAF interacts with RAS and undergoes a conformational change from an inactive, autoinhibited monomer to an active dimer, which propagates downstream signaling. Because of BRAF's complex regulation mechanism, the exact order and magnitude of its activation steps have yet to be confirmed experimentally. By studying the inter- and intramolecular interactions of BRAF, we unveil the domain-specific and isoform-specific details of BRAF regulation through pulldown assays, open surface plasmon resonance (OpenSPR), and hydrogen-deuterium exchange mass spectrometry (HDX-MS). We demonstrate that the BRAF specific region (BSR) and cysteine rich domain (CRD) play a crucial role in regulating the activation of BRAF in a RAS isoform-specific manner. Moreover, we quantified the binding affinities between BRAF N-terminal and kinase domains (KD) to reveal their individual roles in autoinhibition. Our findings also indicate that oncogenic BRAF-KDD594G mutant has a lower affinity for the N-terminal domains, implicating that pathogenic BRAF acts through decreased propensity for autoinhibition. Collectively, our study provides valuable insight into the activation mechanism of BRAF kinase to guide the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Borna Markusic
- Rowan UniversityGlassboroUnited States
- Max Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Haihan Nan
- Rowan UniversityGlassboroUnited States
- School of Laboratory Medicine and Life Science, Wenzhou Medical UniversityWenzhouChina
| | | | | |
Collapse
|
19
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
20
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
21
|
Rasmussen DM, Semonis MM, Greene JT, Muretta JM, Thompson AR, Ramos ST, Thomas DD, Pomerantz WC, Freedman TS, Levinson NM. Allosteric coupling asymmetry mediates paradoxical activation of BRAF by type II inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.536450. [PMID: 37131649 PMCID: PMC10153139 DOI: 10.1101/2023.04.18.536450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.
Collapse
Affiliation(s)
- Damien M. Rasmussen
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Manny M. Semonis
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Andrew R. Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | | | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | | | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455
| | - Nicholas M. Levinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
22
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
23
|
Trebino T, Markusic B, Nan H, Banerjee S, Wang Z. Unveiling the Domain-Specific and RAS Isoform-Specific Details of BRAF Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538112. [PMID: 37163002 PMCID: PMC10168249 DOI: 10.1101/2023.04.24.538112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BRAF is a key member in the MAPK signaling pathway essential for cell growth, proliferation, and differentiation. Dysregulation or mutation of BRAF is often the underlying cause of various types of cancer. RAS, a small GTPase protein that acts upstream of BRAF, has been identified as a driver of up to one-third of all cancers. When BRAF interacts with RAS via the RAS binding domain (RBD) and membrane recruitment, BRAF undergoes a conformational change from an inactive, autoinhibited monomer to an active dimer and subsequently phosphorylates MEK to propagate the signal. Despite the central role of BRAF in cellular signaling, the exact order and magnitude of its activation steps has yet to be confirmed experimentally. By studying the inter- and intramolecular interactions of BRAF, we unveil the domain-specific and isoform-specific details of BRAF regulation. We employed pulldown assays, open surface plasmon resonance (OpenSPR), and hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate the roles of the regulatory regions in BRAF activation and autoinhibition. Our results demonstrate that the BRAF specific region (BSR) and cysteine rich domain (CRD) play a crucial role in regulating the activity of BRAF. Moreover, we quantified the autoinhibitory binding affinities between the N-terminal domains and the kinase domain (KD) of BRAF and revealed the individual roles of the BRAF regulatory domains. Additionally, our findings provide evidence that the BSR negatively regulates BRAF activation in a RAS isoform-specific manner. Our findings also indicate that oncogenic BRAF-KDD594G mutant has a lower affinity for the regulatory domains, implicating that pathogenic BRAF acts through decreased propensity for autoinhibition. Collectively, our study provides valuable insights into the activation mechanism of BRAF kinase and may help to guide the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Tarah Trebino
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Borna Markusic
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Haihan Nan
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shrhea Banerjee
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Zhihong Wang
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
24
|
Lauinger M, Christen D, Klar RFU, Roubaty C, Heilig CE, Stumpe M, Knox JJ, Radulovich N, Tamblyn L, Xie IY, Horak P, Forschner A, Bitzer M, Wittel UA, Boerries M, Ball CR, Heining C, Glimm H, Fröhlich M, Hübschmann D, Gallinger S, Fritsch R, Fröhling S, O'Kane GM, Dengjel J, Brummer T. BRAF Δβ3-αC in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability. SCIENCE ADVANCES 2023; 9:eade7486. [PMID: 37656784 DOI: 10.1126/sciadv.ade7486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔβ3-αC oncoproteins usually lack five amino acids in the β3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔβ3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔβ3-αC oncoproteins. We show that BRAFΔβ3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔβ3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔβ3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.
Collapse
Affiliation(s)
- Manuel Lauinger
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rhena F U Klar
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carole Roubaty
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christoph E Heilig
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jennifer J Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Tamblyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Irene Y Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Michael Bitzer
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
- Center for Personalized Medicine Tübingen, Eberhard Karls University, Tübingen, Germany
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Uwe A Wittel
- Department of General and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, 79106 Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Heining
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Fröhlich
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ralph Fritsch
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Department of Medical Oncology and Haematology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
25
|
Park E, Rawson S, Schmoker A, Kim BW, Oh S, Song K, Jeon H, Eck MJ. Cryo-EM structure of a RAS/RAF recruitment complex. Nat Commun 2023; 14:4580. [PMID: 37516774 PMCID: PMC10387098 DOI: 10.1038/s41467-023-40299-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
RAF-family kinases are activated by recruitment to the plasma membrane by GTP-bound RAS, whereupon they initiate signaling through the MAP kinase cascade. Prior structural studies of KRAS with RAF have focused on the isolated RAS-binding and cysteine-rich domains of RAF (RBD and CRD, respectively), which interact directly with RAS. Here we describe cryo-EM structures of a KRAS bound to intact BRAF in an autoinhibited state with MEK1 and a 14-3-3 dimer. Analysis of this KRAS/BRAF/MEK1/14-3-3 complex reveals KRAS bound to the RAS-binding domain of BRAF, captured in two orientations. Core autoinhibitory interactions in the complex are unperturbed by binding of KRAS and in vitro activation studies confirm that KRAS binding is insufficient to activate BRAF, absent membrane recruitment. These structures illustrate the separability of binding and activation of BRAF by RAS and suggest stabilization of this pre-activation intermediate as an alternative therapeutic strategy to blocking binding of KRAS.
Collapse
Affiliation(s)
- Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Pfizer R&D Center, 3200 Walnut St, Boulder, CO, 80301, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Byeong-Won Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sehee Oh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA, 01605, USA
| | - Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Reinhardt R, Leonard TA. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023; 12:e88210. [PMID: 37470698 PMCID: PMC10359097 DOI: 10.7554/elife.88210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Phosphorylation of proteins is a ubiquitous mechanism of regulating their function, localization, or activity. Protein kinases, enzymes that use ATP to phosphorylate protein substrates are, therefore, powerful signal transducers in eukaryotic cells. The mechanism of phosphoryl-transfer is universally conserved among protein kinases, which necessitates the tight regulation of kinase activity for the orchestration of cellular processes with high spatial and temporal fidelity. In response to a stimulus, many kinases enhance their own activity by autophosphorylating a conserved amino acid in their activation loop, but precisely how this reaction is performed is controversial. Classically, kinases that autophosphorylate their activation loop are thought to perform the reaction in trans, mediated by transient dimerization of their kinase domains. However, motivated by the recently discovered regulation mechanism of activation loop cis-autophosphorylation by a kinase that is autoinhibited in trans, we here review the various mechanisms of autoregulation that have been proposed. We provide a framework for critically evaluating biochemical, kinetic, and structural evidence for protein kinase dimerization and autophosphorylation, and share some thoughts on the implications of these mechanisms within physiological signaling networks.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| |
Collapse
|
27
|
Chessel A, De Crozé N, Molina MD, Taberner L, Dru P, Martin L, Lepage T. RAS-independent ERK activation by constitutively active KSR3 in non-chordate metazoa. Nat Commun 2023; 14:3970. [PMID: 37407549 DOI: 10.1038/s41467-023-39606-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
During early development of the sea urchin embryo, activation of ERK signalling in mesodermal precursors is not triggered by extracellular RTK ligands but by a cell-autonomous, RAS-independent mechanism that was not understood. We discovered that in these cells, ERK signalling is activated through the transcriptional activation of a gene encoding a protein related to Kinase Suppressor of Ras, that we named KSR3. KSR3 belongs to a family of catalytically inactive allosteric activators of RAF. Phylogenetic analysis revealed that genes encoding kinase defective KSR3 proteins are present in most non-chordate metazoa but have been lost in flies and nematodes. We show that the structure of KSR3 factors resembles that of several oncogenic human RAF mutants and that KSR3 from echinoderms, cnidarians and hemichordates activate ERK signalling independently of RAS when overexpressed in cultured cells. Finally, we used the sequence of KSR3 factors to identify activating mutations of human B-RAF. These findings reveal key functions for this family of factors as activators of RAF in RAS-independent ERK signalling in invertebrates. They have implications on the evolution of the ERK signalling pathway and suggest a mechanism for its co-option in the course of evolution.
Collapse
Affiliation(s)
- Aline Chessel
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Noémie De Crozé
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Maria Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Laura Taberner
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Philippe Dru
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Luc Martin
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Thierry Lepage
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France.
| |
Collapse
|
28
|
Rohrer L, Spohr C, Beha C, Griffin R, Braun S, Halbach S, Brummer T. Analysis of RAS and drug induced homo- and heterodimerization of RAF and KSR1 proteins in living cells using split Nanoluc luciferase. Cell Commun Signal 2023; 21:136. [PMID: 37316874 DOI: 10.1186/s12964-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The dimerization of RAF kinases represents a key event in their activation cycle and in RAS/ERK pathway activation. Genetic, biochemical and structural approaches provided key insights into this process defining RAF signaling output and the clinical efficacy of RAF inhibitors (RAFi). However, methods reporting the dynamics of RAF dimerization in living cells and in real time are still in their infancy. Recently, split luciferase systems have been developed for the detection of protein-protein-interactions (PPIs), incl. proof-of-concept studies demonstrating the heterodimerization of the BRAF and RAF1 isoforms. Due to their small size, the Nanoluc luciferase moieties LgBiT and SmBiT, which reconstitute a light emitting holoenzyme upon fusion partner promoted interaction, appear as well-suited to study RAF dimerization. Here, we provide an extensive analysis of the suitability of the Nanoluc system to study the homo- and heterodimerization of BRAF, RAF1 and the related KSR1 pseudokinase. We show that KRASG12V promotes the homo- and heterodimerization of BRAF, while considerable KSR1 homo- and KSR1/BRAF heterodimerization already occurs in the absence of this active GTPase and requires a salt bridge between the CC-SAM domain of KSR1 and the BRAF-specific region. We demonstrate that loss-of-function mutations impairing key steps of the RAF activation cycle can be used as calibrators to gauge the dynamics of heterodimerization. This approach identified the RAS-binding domains and the C-terminal 14-3-3 binding motifs as particularly critical for the reconstitution of RAF mediated LgBiT/SmBiT reconstitution, while the dimer interface was less important for dimerization but essential for downstream signaling. We show for the first time that BRAFV600E, the most common BRAF oncoprotein whose dimerization status is controversially portrayed in the literature, forms homodimers in living cells more efficiently than its wildtype counterpart. Of note, Nanoluc activity reconstituted by BRAFV600E homodimers is highly sensitive to the paradox-breaking RAFi PLX8394, indicating a dynamic and specific PPI. We report the effects of eleven ERK pathway inhibitors on RAF dimerization, incl. third-generation compounds that are less-defined in terms of their dimer promoting abilities. We identify Naporafenib as a potent and long-lasting dimerizer and show that the split Nanoluc approach discriminates between type I, I1/2 and II RAFi. Video Abstract.
Collapse
Affiliation(s)
- Lino Rohrer
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Corinna Spohr
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Carina Beha
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Ricarda Griffin
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, 79104, Germany.
| |
Collapse
|
29
|
Piovesana M, Wood AKM, Smith DP, Deery MJ, Bayliss R, Carrera E, Wellner N, Kosik O, Napier JA, Kurup S, Matthes MC. A point mutation in the kinase domain of CRK10 leads to xylem vessel collapse and activation of defence responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3104-3121. [PMID: 36869735 DOI: 10.1093/jxb/erad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 05/21/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) are a large family of plasma membrane-bound receptors ubiquitous in higher plants. However, despite their prominence, their biological roles have remained largely elusive so far. In this study we report the characterization of an Arabidopsis mutant named crk10-A397T in which alanine 397 has been replaced by a threonine in the αC helix of the kinase domain of CRK10, known to be a crucial regulatory module in mammalian kinases. The crk10-A397T mutant is a dwarf that displays collapsed xylem vessels in the root and hypocotyl, whereas the vasculature of the inflorescence develops normally. In situ phosphorylation assays with His-tagged wild type and crk10-A397T versions of the CRK10 kinase domain revealed that both alleles are active kinases capable of autophosphorylation, with the newly introduced threonine acting as an additional phosphorylation site in crk10-A397T. Transcriptomic analysis of wild type and crk10-A397T mutant hypocotyls revealed that biotic and abiotic stress-responsive genes are constitutively up-regulated in the mutant, and a root-infection assay with the vascular pathogen Fusarium oxysporum demonstrated that the mutant has enhanced resistance to this pathogen compared with wild type plants. Taken together our results suggest that crk10-A397T is a gain-of-function allele of CRK10, the first such mutant to have been identified for a CRK in Arabidopsis.
Collapse
Affiliation(s)
- Maiara Piovesana
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
- College of Life and Environmental Sciences, Streatham Campus, Exeter EX4 4PY, UK
| | - Ana K M Wood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Daniel P Smith
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QR, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politècnica de València, Valencia 46022, Spain
| | | | - Ondrej Kosik
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Smita Kurup
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michaela C Matthes
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
30
|
Tkacik E, Li K, Gonzalez-Del Pino G, Ha BH, Vinals J, Park E, Beyett TS, Eck MJ. Structure and RAF family kinase isoform selectivity of type II RAF inhibitors tovorafenib and naporafenib. J Biol Chem 2023; 299:104634. [PMID: 36963492 PMCID: PMC10149214 DOI: 10.1016/j.jbc.2023.104634] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
Upon activation by RAS, RAF family kinases initiate signaling through the MAP kinase cascade to control cell growth, proliferation, and differentiation. Among RAF isoforms (ARAF, BRAF, and CRAF), oncogenic mutations are by far most frequent in BRAF. The BRAFV600E mutation drives more than half of all malignant melanoma and is also found in many other cancers. Selective inhibitors of BRAFV600E (vemurafenib, dabrafenib, encorafenib) are used clinically for these indications, but they are not effective inhibitors in the context of oncogenic RAS, which drives dimerization and activation of RAF, nor for malignancies driven by aberrantly dimerized truncation/fusion variants of BRAF. By contrast, a number of "type II" RAF inhibitors have been developed as potent inhibitors of RAF dimers. Here, we compare potency of type II inhibitors tovorafenib (TAK-580) and naporafenib (LHX254) in biochemical assays against the three RAF isoforms and describe crystal structures of both compounds in complex with BRAF. We find that tovorafenib and naporafenib are most potent against CRAF but markedly less potent against ARAF. Crystal structures of both compounds with BRAFV600E or WT BRAF reveal the details of their molecular interactions, including the expected type II-binding mode, with full occupancy of both subunits of the BRAF dimer. Our findings have important clinical ramifications. Type II RAF inhibitors are generally regarded as pan-RAF inhibitors, but our studies of these two agents, together with recent work with type II inhibitors belvarafenib and naporafenib, indicate that relative sparing of ARAF may be a property of multiple drugs of this class.
Collapse
Affiliation(s)
- Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kunhua Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gonzalo Gonzalez-Del Pino
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Byung Hak Ha
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Javier Vinals
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
31
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
32
|
Iglesias-Martinez LF, Rauch N, Wynne K, McCann B, Kolch W, Rauch J. Interactome dynamics of RAF1-BRAF kinase monomers and dimers. Sci Data 2023; 10:203. [PMID: 37045861 PMCID: PMC10097620 DOI: 10.1038/s41597-023-02115-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
RAF kinases play major roles in cancer. BRAFV600E mutants drive ~6% of human cancers. Potent kinase inhibitors exist but show variable effects in different cancer types, sometimes even inducing paradoxical RAF kinase activation. Both paradoxical activation and drug resistance are frequently due to enhanced dimerization between RAF1 and BRAF, which maintains or restores the activity of the downstream MEK-ERK pathway. Here, using quantitative proteomics we mapped the interactomes of RAF1 monomers, RAF1-BRAF and RAF1-BRAFV600E dimers identifying and quantifying >1,000 proteins. In addition, we examined the effects of vemurafenib and sorafenib, two different types of clinically used RAF inhibitors. Using regression analysis to compare different conditions we found a large overlapping core interactome but also distinct condition specific differences. Given that RAF proteins have kinase independent functions such dynamic interactome changes could contribute to their functional diversification. Analysing this dataset may provide a deeper understanding of RAF signalling and mechanisms of resistance to RAF inhibitors.
Collapse
Affiliation(s)
| | - Nora Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Brendan McCann
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Voscuris Ltd., Jefferson House 42 Queen Street, Belfast, BT1 6HL, United Kingdom
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | - Jens Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
33
|
Okamoto K, Sako Y. Two Closed Conformations of CRAF Require the 14-3-3 Binding Motifs and Cysteine-Rich Domain to be Intact in Live Cells. J Mol Biol 2023; 435:167989. [PMID: 36736888 DOI: 10.1016/j.jmb.2023.167989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
The protein rapidly accelerated fibrosarcoma (RAF) is a kinase downstream of the membrane protein RAS in the cellular signal transduction system. In the structure of RAF, the N- and C-terminus domains are connected with a flexible linker. The open/close dynamics and dimerization of RAF are thought to regulate its activity, although the details of these conformations are unknown, especially in live cells. In this work, we used alternating laser excitation to measure cytosolic CRAF in live HeLa cells and obtained single-molecule Förster resonance energy transfer (smFRET) distributions of the structural states. We compared the results for wild-type (WT)-CRAF before and after epidermal growth factor (EGF) stimulation, with mutations of the 14-3-3 binding sites and cysteine-rich domain, and an N-terminus truncation. The smFRET distributions of full-length CRAFs were analyzed by global fitting with three beta distributions. Our results suggested that a 14-3-3 dimer bound to two sites on a single CRAF molecule and induced the formation of the autoinhibitory closed conformation. There were two closed conformations, which the majority of WT-CRAF adopted. These two conformations showed different responsiveness to EGF stimulation.
Collapse
Affiliation(s)
- Kenji Okamoto
- Cellular Informatics Laboratory, Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
34
|
Arora R, Linders JTM, Aci-Sèche S, Verheyen T, Van Heerde E, Brehmer D, Chaikuad A, Knapp S, Bonnet P. Design, synthesis and characterisation of a novel type II B-RAF paradox breaker inhibitor. Eur J Med Chem 2023; 250:115231. [PMID: 36878151 DOI: 10.1016/j.ejmech.2023.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The mutation V600E in B-Raf leads to mitogen activated protein kinase (MAPK) pathway activation, uncontrolled cell proliferation, and tumorigenesis. ATP competitive type I B-Raf inhibitors, such as vemurafenib (1) and PLX4720 (4) efficiently block the MAPK pathways in B-Raf mutant cells, however these inhibitors induce conformational changes in the wild type B-Raf (wtB-Raf) kinase domain leading to heterodimerization with C-Raf, causing paradoxical hyperactivation of the MAPK pathway. This unwanted activation may be avoided by another class of inhibitors (type II) which bind the kinase in the DFG-out conformation, such as AZ628 (3) preventing heterodimerization. Here we present a new B-Raf kinase domain inhibitor, based on a phenyl(1H-pyrrolo [2,3-b]pyridin-3-yl)methanone template, that represents a hybrid between 4 and 3. This novel inhibitor borrows the hinge binding region from 4 and the back pocket binding moiety from 3. We determined its binding mode, performed activity/selectivity studies, and molecular dynamics simulations in order to study the conformational effects induced by this inhibitor on wt and V600E mutant B-Raf kinase. We discovered that the inhibitor was active and selective for B-Raf, binds in a DFG-out/αC-helix-in conformation, and did not induce the aforementioned paradoxical hyperactivation in the MAPK pathway. We propose that this merging approach can be used to design a novel class of B-Raf inhibitors for translational studies.
Collapse
Affiliation(s)
- Rohit Arora
- Institut de Chimie Organique et Analytique, UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| | - Joannes T M Linders
- Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique, UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| | - Thomas Verheyen
- Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Erika Van Heerde
- Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Dirk Brehmer
- Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Apirat Chaikuad
- Structural Genomics Consortium, Buchmann Institute for Life Science (BMLS), Max von Lauestrasse 15, 60438, Frankfurt am Main, Germany; Goethe-University, Institute for Pharmaceutical Chemistry, Max-von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Life Science (BMLS), Max von Lauestrasse 15, 60438, Frankfurt am Main, Germany; Goethe-University, Institute for Pharmaceutical Chemistry, Max-von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique, UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
35
|
Martín-Vega A, Ruiz-Peinado L, García-Gómez R, Herrero A, de la Fuente-Vivas D, Parvathaneni S, Caloto R, Morante M, von Kriegsheim A, Bustelo XR, Sacks DB, Casar B, Crespo P. Scaffold coupling: ERK activation by trans-phosphorylation across different scaffold protein species. SCIENCE ADVANCES 2023; 9:eadd7969. [PMID: 36791195 PMCID: PMC9931222 DOI: 10.1126/sciadv.add7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
RAS-ERK (extracellular signal-regulated kinase) pathway signals are modulated by scaffold proteins that assemble the components of different kinase tiers into a sequential phosphorylation cascade. In the prevailing model scaffold proteins function as isolated entities, where the flux of phosphorylation events progresses downstream linearly, to achieve ERK phosphorylation. We show that different types of scaffold proteins, specifically KSR1 (kinase suppressor of Ras 1) and IQGAP1 (IQ motif-containing guanosine triphosphatase activating protein 1), can bind to each other, forming a complex whereby phosphorylation reactions occur across both species. MEK (mitogen-activated protein kinase kinase) bound to IQGAP1 can phosphorylate ERK docked at KSR1, a process that we have named "trans-phosphorylation." We also reveal that ERK trans-phosphorylation participates in KSR1-regulated adipogenesis, and it also underlies the modest cytotoxicity exhibited by KSR-directed inhibitors. Overall, we identify interactions between scaffold proteins and trans-phosphorylation as an additional level of regulation in the ERK cascade, with broad implications in signaling and the design of scaffold protein-aimed therapeutics.
Collapse
Affiliation(s)
- Ana Martín-Vega
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Laura Ruiz-Peinado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Dalia de la Fuente-Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rubén Caloto
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Xosé R. Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medicine, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Department of Pathology, George Washington University, 2121 I St NW, Washington, DC 20052, USA
- University of Cape Town, UCT Faculty of Health Sciences, Barnard Fuller Building, Anzio Rd, Observatory, Cape Town, 7935 South Africa
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
36
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Computational analysis of natural product B-Raf inhibitors. J Mol Graph Model 2023; 118:108340. [PMID: 36208592 DOI: 10.1016/j.jmgm.2022.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
B-Raf protein is a serine-threonine kinase and an important signal transduction molecule of the MAPK signaling pathway that mediates signals from RAS to MEK, ultimately promoting various essential cellular functions. The B-Raf kinase domain is divided into two subdomains: a small N-terminal lobe and a large C-terminal lobe, with a deep catalytic cleft between them. The N-terminal lobe contains a phosphate-binding loop (P-loop) and nucleotide-binding pocket, while the C-terminal lobe binds the protein substrates and contains the catalytic loop. The ligand pharmacophore was generated by using 17 different natural products and the receptor pharmacophore was generated by using protein structures. The reported natural product B-Raf inhibitors were analyzed according to the pharmacophore analysis (HipHop fit), virtual screening tools by Lipinski's rule of five. Thirteen out of seventeen molecules share the best ligand based pharmacophoric model (HipHop_5). The best receptor based pharmacophoric model came as AADHR. The compounds were docked against the B-Raf receptors (PDB ID: 3OG7, 4XV2, 5C9C). The compound DHSilB with cDOCKER interaction energy of -62.7 kcal/mol, -83.3 kcal/mol, -73.6 kcal/mol as well as the compound DHSilA with cDOCKER interaction energy of -63.9 kcal/mol, -63.2 kcal/mol, -74.7 kcal/mol showed satisfactory interaction with the respective receptors. Finally, the MD simulation was run for 100 ns for the top docked compounds DHSilA and DHSilB with the B-Raf proteins (PDB ID: 3OG7, 4XV2 and 5C9C). After the MD simulation run for 100 ns, the ligand 2,3-dehydrosilybin A (DHSilA) was found to be more stable in terms of the trajectories of RMSD, RMSF, Rg and H-bonds.
Collapse
|
38
|
Singh G, Thakur N, Kumar U. RAS: Circuitry and therapeutic targeting. Cell Signal 2023; 101:110505. [PMID: 36341985 DOI: 10.1016/j.cellsig.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer has affected the lives of millions worldwide and is truly regarded as a devastating disease process. Despite advanced understanding of the genomic underpinning of cancer development and progression, therapeutic challenges are still persistent. Among all the human cancers, around 33% are attributed to mutations in RAS oncogene, a crucial component of the signaling pathways. With time, our understanding of RAS circuitry has improved and now the fact that it activates several downstream effectors, depending on the type and grades of cancer has been established. The circuitry is controlled via post-transcriptional mechanisms and frequent distortions in these mechanisms lead to important metabolic as well as immunological states that favor cancer cells' growth, survival, plasticity and metastasis. Therefore, understanding RAS circuitry can help researchers/clinicians to develop novel and potent therapeutics that, in turn, can save the lives of patients suffering from RAS-mutant cancers. There are many challenges presented by resistance and the potential strategies with a particular focus on novel combinations for overcoming these, that could move beyond transitory responses in the direction of treatment. Here in this review, we will look at how understanding the circuitry of RAS can be put to use in making strategies for developing therapeutics against RAS- driven malignancies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India
| | - Neelam Thakur
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India; Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh 175001, India.
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
39
|
Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS-RAF-MEK-ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis 2023; 10:76-88. [PMID: 37013062 PMCID: PMC10066287 DOI: 10.1016/j.gendis.2022.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Molecular target inhibitors have been regularly approved by Food and Drug Administration (FDA) for tumor treatment, and most of them intervene in tumor cell proliferation and metabolism. The RAS-RAF-MEK-ERK pathway is a conserved signaling pathway that plays vital roles in cell proliferation, survival, and differentiation. The aberrant activation of the RAS-RAF-MEK-ERK signaling pathway induces tumors. About 33% of tumors harbor RAS mutations, while 8% of tumors are driven by RAF mutations. Great efforts have been dedicated to targeting the signaling pathway for cancer treatment in the past decades. In this review, we summarized the development of inhibitors targeting the RAS-RAF-MEK-ERK pathway with an emphasis on those used in clinical treatment. Moreover, we discussed the potential combinations of inhibitors that target the RAS-RAF-MEK-ERK signaling pathway and other signaling pathways. The inhibitors targeting the RAS-RAF-MEK-ERK pathway have essentially modified the therapeutic strategy against various cancers and deserve more attention in the current cancer research and treatment.
Collapse
Affiliation(s)
| | | | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
40
|
Gunderwala A, Cope N, Wang Z. Mechanism and inhibition of BRAF kinase. Curr Opin Chem Biol 2022; 71:102205. [PMID: 36067564 PMCID: PMC10396080 DOI: 10.1016/j.cbpa.2022.102205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023]
Abstract
The role of BRAF in tumor initiation has been established, however, the precise mechanism of autoinhibition has only been illustrated recently by several structural studies. These structures uncovered the basis by which the regulatory domains engage in regulating the activity of BRAF kinase domain, which lead to a more complete picture of the regulation cycle of RAF kinases. Small molecule BRAF inhibitors developed specifically to target BRAFV600E have proven effective at inhibiting the most dominant BRAF mutant in melanomas, but are less potent against other BRAF mutants in RAS-driven diseases due to paradoxical activation of the MAPK pathway. A variety of new generation inhibitors that do not show paradoxical activation have been developed. Alternatively, efforts have begun to develop inhibitors targeting the dimer interface of BRAF. A deeper understanding of BRAF regulation together with more diverse BRAF inhibitors will be beneficial for drug development in RAF or RASdriven cancers.
Collapse
Affiliation(s)
- Amber Gunderwala
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Nicholas Cope
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
41
|
Whaby M, Wallon L, Mazzei M, Khan I, Teng KW, Koide S, O’Bryan JP. Mutations in the α4-α5 allosteric lobe of RAS do not significantly impair RAS signaling or self-association. J Biol Chem 2022; 298:102661. [PMID: 36334633 PMCID: PMC9763690 DOI: 10.1016/j.jbc.2022.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors. The α4-α5 allosteric lobe of RAS has been proposed as a RAS dimerization interface. Indeed, the NS1 monobody, which binds the α4-α5 region within the RAS G domain, inhibits RAS-dependent signaling and transformation as well as RAS nanoclustering at the plasma membrane. Although these results are consistent with a model in which the G domain dimerizes through the α4-α5 region, the isolated G domain of RAS lacks intrinsic dimerization capacity. Furthermore, prior studies analyzing α4-α5 point mutations have reported mixed effects on RAS function. Here, we evaluated the activity of a panel of single amino acid substitutions in the α4-α5 region implicated in RAS dimerization. We found that these proposed "dimerization-disrupting" mutations do not significantly impair self-association, signaling, or transformation of oncogenic RAS. These results are consistent with a model in which activated RAS protomers cluster in close proximity to promote the dimerization of their associated effector proteins (e.g., RAF) without physically associating into dimers mediated by specific molecular interactions. Our findings suggest the need for a nonconventional approach to developing therapeutics targeting the α4-α5 region.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren Wallon
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Megan Mazzei
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Imran Khan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA,Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA,For correspondence: John P. O’Bryan; Shohei Koide
| | - John P. O’Bryan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA,For correspondence: John P. O’Bryan; Shohei Koide
| |
Collapse
|
42
|
Poulikakos PI, Sullivan RJ, Yaeger R. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clin Cancer Res 2022; 28:4618-4628. [PMID: 35486097 PMCID: PMC9616966 DOI: 10.1158/1078-0432.ccr-21-2138] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
With the identification of activating mutations in BRAF across a wide variety of malignancies, substantial effort was placed in designing safe and effective therapeutic strategies to target BRAF. These efforts have led to the development and regulatory approval of three BRAF inhibitors as well as five combinations of a BRAF inhibitor plus an additional agent(s) to manage cancer such as melanoma, non-small cell lung cancer, anaplastic thyroid cancer, and colorectal cancer. To date, each regimen is effective only in patients with tumors harboring BRAFV600 mutations and the duration of benefit is often short-lived. Further limitations preventing optimal management of BRAF-mutant malignancies are that treatments of non-V600 BRAF mutations have been less profound and combination therapy is likely necessary to overcome resistance mechanisms, but multi-drug regimens are often too toxic. With the emergence of a deeper understanding of how BRAF mutations signal through the RAS/MAPK pathway, newer RAF inhibitors are being developed that may be more effective and potentially safer and more rational combination therapies are being tested in the clinic. In this review, we identify the mechanics of RAF signaling through the RAS/MAPK pathway, present existing data on single-agent and combination RAF targeting efforts, describe emerging combinations, summarize the toxicity of the various agents in clinical testing, and speculate as to where the field may be headed.
Collapse
Affiliation(s)
- Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
43
|
Nguyen K, López CA, Neale C, Van QN, Carpenter TS, Di Natale F, Travers T, Tran TH, Chan AH, Bhatia H, Frank PH, Tonelli M, Zhang X, Gulten G, Reddy T, Burns V, Oppelstrup T, Hengartner N, Simanshu DK, Bremer PT, Chen D, Glosli JN, Shrestha R, Turbyville T, Streitz FH, Nissley DV, Ingólfsson HI, Stephen AG, Lightstone FC, Gnanakaran S. Exploring CRD mobility during RAS/RAF engagement at the membrane. Biophys J 2022; 121:3630-3650. [PMID: 35778842 PMCID: PMC9617161 DOI: 10.1016/j.bpj.2022.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.
Collapse
Affiliation(s)
- Kien Nguyen
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Francesco Di Natale
- Applications, Simulations, and Quality, Lawrence Livermore National Laboratory, Livermore, California
| | | | - Timothy H Tran
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Albert H Chan
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Harsh Bhatia
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
| | - Peter H Frank
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Gulcin Gulten
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tyler Reddy
- CCS-7, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Violetta Burns
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Tomas Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Nick Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Dhirendra K Simanshu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
| | - De Chen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - James N Glosli
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Rebika Shrestha
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas Turbyville
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Dwight V Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
44
|
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci 2022; 9:1016071. [PMID: 36188227 PMCID: PMC9523730 DOI: 10.3389/fmolb.2022.1016071] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| |
Collapse
|
45
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
46
|
Liau NPD, Johnson MC, Izadi S, Gerosa L, Hammel M, Bruning JM, Wendorff TJ, Phung W, Hymowitz SG, Sudhamsu J. Structural basis for SHOC2 modulation of RAS signalling. Nature 2022; 609:400-407. [PMID: 35768504 PMCID: PMC9452301 DOI: 10.1038/s41586-022-04838-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Matthew C Johnson
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Saeed Izadi
- Pharmaceutical Development, Genentech, South San Francisco, CA, USA
| | - Luca Gerosa
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Michal Hammel
- Physical Bioscience Division, Lawrence Berkeley National Labs, Berkeley, CA, USA
| | - John M Bruning
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Wilson Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Sarah G Hymowitz
- Department of Structural Biology, Genentech, South San Francisco, CA, USA.
- The Column Group, San Francisco, CA, USA.
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA.
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
47
|
Riegel K, Vijayarangakannan P, Kechagioglou P, Bogucka K, Rajalingam K. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Front Cell Dev Biol 2022; 10:942500. [PMID: 35938171 PMCID: PMC9354965 DOI: 10.3389/fcell.2022.942500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Kinases still remain the most favorable members of the druggable genome, and there are an increasing number of kinase inhibitors approved by the FDA to treat a variety of cancers. Here, we summarize recent developments in targeting kinases and pseudokinases with some examples. Targeting the cell cycle machinery garnered significant clinical success, however, a large section of the kinome remains understudied. We also review recent developments in the understanding of pseudokinases and discuss approaches on how to effectively target in cancer.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Petros Kechagioglou
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Katarzyna Bogucka
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- *Correspondence: Krishnaraj Rajalingam,
| |
Collapse
|
48
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
49
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
50
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|