1
|
Swanepoel CM, Mueller JL. Out with the old, in with the new: Meiotic driving of sex chromosome evolution. Semin Cell Dev Biol 2024; 163:14-21. [PMID: 38664120 PMCID: PMC11351068 DOI: 10.1016/j.semcdb.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024]
Abstract
Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.
Collapse
Affiliation(s)
- Callie M Swanepoel
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Toma GA, Sember A, Goes CAG, Kretschmer R, Porto-Foresti F, Bertollo LAC, Liehr T, Utsunomia R, de Bello Cioffi M. Satellite DNAs and the evolution of the multiple X 1X 2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes). Sci Rep 2024; 14:20402. [PMID: 39223262 PMCID: PMC11369246 DOI: 10.1038/s41598-024-70920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic
| | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | | | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, 07747, Jena, Germany.
| | | | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
3
|
Wang J, Tao W, Kocher TD, Wang D. Sex chromosome turnover and biodiversity in fishes. J Genet Genomics 2024:S1673-8527(24)00222-4. [PMID: 39233051 DOI: 10.1016/j.jgg.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The impact of sex chromosomes and their turnover in speciation remains a subject of ongoing debate in the field of evolutionary biology. Fishes are the largest group of vertebrates, and they exhibit unparalleled sexual plasticity, as well as diverse sex-determining (SD) genes, sex chromosomes, and sex-determination mechanisms. This diversity is hypothesized to be associated with the frequent turnover of sex chromosomes in fishes. Although it is evident that amh and amhr2 are repeatedly and independently recruited as SD genes, their relationship with the rapid turnover of sex chromosomes and the biodiversity of fishes remains unknown. We summarize the canonical models of sex chromosome turnover and highlight the vital roles of gene mutation and hybridization with empirical evidence. We revisit Haldane's rule and the large X-effect and propose the hypothesis that sex chromosomes accelerate speciation by multiplying genotypes via hybridization. By integrating recent findings on the turnover of SD genes, sex chromosomes, and sex-determination systems in fish species, this review provides insights into the relationship between sex chromosome evolution and biodiversity in fishes.
Collapse
Affiliation(s)
- Jingrong Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Shogren EH, Sardell JM, Muirhead CA, Martí E, Cooper EA, Moyle RG, Presgraves DC, Uy JAC. Recent secondary contact, genome-wide admixture, and asymmetric introgression of neo-sex chromosomes between two Pacific island bird species. PLoS Genet 2024; 20:e1011360. [PMID: 39172766 PMCID: PMC11340901 DOI: 10.1371/journal.pgen.1011360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/28/2024] [Indexed: 08/24/2024] Open
Abstract
Secondary contact between closely related taxa represents a "moment of truth" for speciation-an opportunity to test the efficacy of reproductive isolation that evolved in allopatry and to identify the genetic, behavioral, and/or ecological barriers that separate species in sympatry. Sex chromosomes are known to rapidly accumulate differences between species, an effect that may be exacerbated for neo-sex chromosomes that are transitioning from autosomal to sex-specific inheritance. Here we report that, in the Solomon Islands, two closely related bird species in the honeyeater family-Myzomela cardinalis and Myzomela tristrami-carry neo-sex chromosomes and have come into recent secondary contact after ~1.1 my of geographic isolation. Hybrids of the two species were first observed in sympatry ~100 years ago. To determine the genetic consequences of hybridization, we use population genomic analyses of individuals sampled in allopatry and in sympatry to characterize gene flow in the contact zone. Using genome-wide estimates of diversity, differentiation, and divergence, we find that the degree and direction of introgression varies dramatically across the genome. For sympatric birds, autosomal introgression is bidirectional, with phenotypic hybrids and phenotypic parentals of both species showing admixed ancestry. In other regions of the genome, however, the story is different. While introgression on the Z/neo-Z-linked sequence is limited, introgression of W/neo-W regions and mitochondrial sequence (mtDNA) is highly asymmetric, moving only from the invading M. cardinalis to the resident M. tristrami. The recent hybridization between these species has thus enabled gene flow in some genomic regions but the interaction of admixture, asymmetric mate choice, and/or natural selection has led to the variation in the amount and direction of gene flow at sex-linked regions of the genome.
Collapse
Affiliation(s)
- Elsie H. Shogren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Jason M. Sardell
- PrecisionLife Ltd, Hanborough Business Park, Long Hanborough, Witney, Oxon, United Kingdom
| | - Christina A. Muirhead
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- The Ronin Institute, Montclair, New Jersey, United States of America
| | - Emiliano Martí
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elizabeth A. Cooper
- Department of Bioinformatics & Genomics, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Robert G. Moyle
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - J. Albert C. Uy
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
5
|
Wilhoit KT, Alexander EP, Blackmon H. Worse than nothing at all: the inequality of fusions joining autosomes to the PAR and non-PAR portions of sex chromosomes. PeerJ 2024; 12:e17740. [PMID: 39071118 PMCID: PMC11276758 DOI: 10.7717/peerj.17740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Chromosomal fusions play an integral role in genome remodeling and karyotype evolution. Fusions that join a sex chromosome to an autosome are particularly abundant across the tree of life. However, previous models on the establishment of such fusions have not accounted for the physical structure of the chromosomes. We predict a fusion joining an autosome to the pseudoautosomal region (PAR) of a sex chromosome will not remain stable, and the fusion will switch from the X to the Y chromosome each generation due to recombination. We have produced a forward-time population genetic simulation to explore the outcomes of fusions to both the PAR and non-PAR of sex chromosomes. The model can simulate the fusion of an autosome containing a sexually antagonistic locus to either the PAR or non-PAR end of a sex chromosome. Our model is diploid, two-locus, and biallelic. Our results show a clear pattern where fusions to the non-PAR are favored in the presence of sexual antagonism, whereas fusions to the PAR are disfavored in the presence of sexual antagonism.
Collapse
Affiliation(s)
- Kayla T. Wilhoit
- Biomedical Sciences Program, Texas A&M University, College Station, TX, United States of America
- Department of Biology, Texas A&M University, College Station, TX, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, NC, United States of America
| | - Emmarie P. Alexander
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States of America
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States of America
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
6
|
Okude G, Yamasaki YY, Toyoda A, Mori S, Kitano J. Genome-wide analysis of histone modifications can contribute to the identification of candidate cis-regulatory regions in the threespine stickleback fish. BMC Genomics 2024; 25:685. [PMID: 38992624 PMCID: PMC11241946 DOI: 10.1186/s12864-024-10602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cis-regulatory mutations often underlie phenotypic evolution. However, because identifying the locations of promoters and enhancers in non-coding regions is challenging, we have fewer examples of identified causative cis-regulatory mutations that underlie naturally occurring phenotypic variations than of causative amino acid-altering mutations. Because cis-regulatory elements have epigenetic marks of specific histone modifications, we can detect cis-regulatory elements by mapping and analyzing them. Here, we investigated histone modifications and chromatin accessibility with cleavage under targets and tagmentation (CUT&Tag) and assay for transposase-accessible chromatin-sequencing (ATAC-seq). RESULTS Using the threespine stickleback (Gasterosteus aculeatus) as a model, we confirmed that the genes for which nearby regions showed active marks, such as H3K4me1, H3K4me3, and high chromatin accessibility, were highly expressed. In contrast, the expression levels of genes for which nearby regions showed repressive marks, such as H3K27me3, were reduced, suggesting that our chromatin analysis protocols overall worked well. Genomic regions with peaks of histone modifications showed higher nucleotide diversity within and between populations. By comparing gene expression in the gills of the marine and stream ecotypes, we identified several insertions and deletions (indels) with transposable element fragments in the candidate cis-regulatory regions. CONCLUSIONS Thus, mapping and analyzing histone modifications can help identify cis-regulatory elements and accelerate the identification of causative mutations in the non-coding regions underlying naturally occurring phenotypic variations.
Collapse
Affiliation(s)
- Genta Okude
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Seiichi Mori
- Faculty of Economics, Gifu-Kyoritsu University, Ogaki, Gifu, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
7
|
Rueda-M N, Pardo-Diaz C, Montejo-Kovacevich G, McMillan WO, Kozak KM, Arias CF, Ready J, McCarthy S, Durbin R, Jiggins CD, Meier JI, Salazar C. Genomic evidence reveals three W-autosome fusions in Heliconius butterflies. PLoS Genet 2024; 20:e1011318. [PMID: 39024186 PMCID: PMC11257349 DOI: 10.1371/journal.pgen.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Sex chromosomes are evolutionarily labile in many animals and sometimes fuse with autosomes, creating so-called neo-sex chromosomes. Fusions between sex chromosomes and autosomes have been proposed to reduce sexual conflict and to promote adaptation and reproductive isolation among species. Recently, advances in genomics have fuelled the discovery of such fusions across the tree of life. Here, we discovered multiple fusions leading to neo-sex chromosomes in the sapho subclade of the classical adaptive radiation of Heliconius butterflies. Heliconius butterflies generally have 21 chromosomes with very high synteny. However, the five Heliconius species in the sapho subclade show large variation in chromosome number ranging from 21 to 60. We find that the W chromosome is fused with chromosome 4 in all of them. Two sister species pairs show subsequent fusions between the W and chromosomes 9 or 14, respectively. These fusions between autosomes and sex chromosomes make Heliconius butterflies an ideal system for studying the role of neo-sex chromosomes in adaptive radiations and the degeneration of sex chromosomes over time. Our findings emphasize the capability of short-read resequencing to detect genomic signatures of fusion events between sex chromosomes and autosomes even when sex chromosomes are not explicitly assembled.
Collapse
Affiliation(s)
- Nicol Rueda-M
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | | | - Krzysztof M. Kozak
- Smithsonian Tropical Research Institute, Panama City, Panama
- Museum of Vertebrate Zoology, Berkeley, California, United States of America
| | - Carlos F. Arias
- Smithsonian Tropical Research Institute, Panama City, Panama
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, Washington DC, United States of America
| | - Jonathan Ready
- Institute for Biological Sciences, Federal University of Pará - UFPA, Belém, Brazil
- Centre for Advanced Studies of Biodiversity - CEABIO, Belém, Brazil
| | - Shane McCarthy
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Richard Durbin
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Joana I. Meier
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
8
|
Blackmon H, Jonika MM, Alfieri JM, Fardoun L, Demuth JP. Drift drives the evolution of chromosome number I: The impact of trait transitions on genome evolution in Coleoptera. J Hered 2024; 115:173-182. [PMID: 38181226 PMCID: PMC10936555 DOI: 10.1093/jhered/esae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024] Open
Abstract
Chromosomal mutations such as fusions and fissions are often thought to be deleterious, especially in heterozygotes (underdominant), and consequently are unlikely to become fixed. Yet, many models of chromosomal speciation ascribe an important role to chromosomal mutations. When the effective population size (Ne) is small, the efficacy of selection is weakened, and the likelihood of fixing underdominant mutations by genetic drift is greater. Thus, it is possible that ecological and phenotypic transitions that modulate Ne facilitate the fixation of chromosome changes, increasing the rate of karyotype evolution. We synthesize all available chromosome number data in Coleoptera and estimate the impact of traits expected to change Ne on the rate of karyotype evolution in the family Carabidae and 12 disparate clades from across Coleoptera. Our analysis indicates that in Carabidae, wingless clades have faster rates of chromosome number increase. Additionally, our analysis indicates clades exhibiting multiple traits expected to reduce Ne, including strict inbreeding, oligophagy, winglessness, and island endemism, have high rates of karyotype evolution. Our results suggest that chromosome number changes are likely fixed by genetic drift despite an initial fitness cost and that chromosomal speciation models may be important to consider in clades with very small Ne.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States
| | - Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
| | - James M Alfieri
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States
| | - Leen Fardoun
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
9
|
Miura I, Shams F, Ohki J, Tagami M, Fujita H, Kuwana C, Nanba C, Matsuo T, Ogata M, Mawaribuchi S, Shimizu N, Ezaz T. Multiple Transitions between Y Chromosome and Autosome in Tago's Brown Frog Species Complex. Genes (Basel) 2024; 15:300. [PMID: 38540359 PMCID: PMC10969965 DOI: 10.3390/genes15030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Sex chromosome turnover is the transition between sex chromosomes and autosomes. Although many cases have been reported in poikilothermic vertebrates, their evolutionary causes and genetic mechanisms remain unclear. In this study, we report multiple transitions between the Y chromosome and autosome in the Japanese Tago's brown frog complex. Using chromosome banding and molecular analyses (sex-linked and autosomal single nucleotide polymorphisms, SNPs, from the nuclear genome), we investigated the frogs of geographic populations ranging from northern to southern Japan of two species, Rana tagoi and Rana sakuraii (2n = 26). Particularly, the Chiba populations of East Japan and Akita populations of North Japan in R. tagoi have been, for the first time, investigated here. As a result, we identified three different sex chromosomes, namely chromosomes 3, 7, and 13, in the populations of the two species. Furthermore, we found that the transition between the Y chromosome (chromosome 7) and autosome was repeated through hybridization between two or three different populations belonging to the two species, followed by restricted chromosome introgression. These dynamic sex chromosome turnovers represent the first such findings in vertebrates and imply that speciation associated with inter- or intraspecific hybridization plays an important role in sex chromosome turnover in frogs.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Foyez Shams
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Jun’ichi Ohki
- Natural History Museum and Institute, Chiba 260-8682, Japan;
| | - Masataka Tagami
- Gifu World Freshwater Aquarium, Kakamigahara, Gifu 501-6021, Japan;
| | - Hiroyuki Fujita
- Saitama Museum of Rivers, Yorii-Machi, Oosato-Gun, Saitama 369-1217, Japan;
| | - Chiao Kuwana
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Chiyo Nanba
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Takanori Matsuo
- Department of Preschool Education, Nagasaki Women’s Junior College, Nagasaki 850-0823, Japan;
| | - Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, Yokohama 241-0804, Japan;
| | - Shuuji Mawaribuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan;
| | - Norio Shimizu
- Hiroshima University Museum, Higashi-Hiroshima 739-8524, Japan;
| | - Tariq Ezaz
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| |
Collapse
|
10
|
Xu L, Ren Y, Wu J, Cui T, Dong R, Huang C, Feng Z, Zhang T, Yang P, Yuan J, Xu X, Liu J, Wang J, Chen W, Mi D, Irwin DM, Yan Y, Xu L, Yu X, Li G. Evolution and expression patterns of the neo-sex chromosomes of the crested ibis. Nat Commun 2024; 15:1670. [PMID: 38395916 PMCID: PMC10891136 DOI: 10.1038/s41467-024-46052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Bird sex chromosomes play a unique role in sex-determination, and affect the sexual morphology and behavior of bird species. Core waterbirds, a major clade of birds, share the common characteristics of being sexually monomorphic and having lower levels of inter-sexual conflict, yet their sex chromosome evolution remains poorly understood. Here, by we analyse of a chromosome-level assembly of a female crested ibis (Nipponia nippon), a typical core waterbird. We identify neo-sex chromosomes resulting from fusion of microchromosomes with ancient sex chromosomes. These fusion events likely occurred following the divergence of Threskiornithidae and Ardeidae. The neo-W chromosome of the crested ibis exhibits the characteristics of slow degradation, which is reflected in its retention of abundant gametologous genes. Neo-W chromosome genes display an apparent ovary-biased gene expression, which is largely driven by genes that are retained on the crested ibis W chromosome but lost in other bird species. These results provide new insights into the evolutionary history and expression patterns for the sex chromosomes of bird species.
Collapse
Affiliation(s)
- Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China
| | - Tingting Cui
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rong Dong
- Research Center for Qinling Giant Panda, Shaanxi Academy of Forestry, Xi'an, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiao Liu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Wildlife Research Center, Guangzhou Zoo, Guangzhou, China
| | - Da Mi
- Xi'an Haorui Genomics Technology Co., LTD, Xi'an, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yaping Yan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China.
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
- Guangzhou Wildlife Research Center, Guangzhou Zoo, Guangzhou, China.
| |
Collapse
|
11
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
12
|
Delmore K, Justen H, Kay KM, Kitano J, Moyle LC, Stelkens R, Streisfeld MA, Yamasaki YY, Ross J. Genomic Approaches Are Improving Taxonomic Representation in Genetic Studies of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041438. [PMID: 37848243 PMCID: PMC10835617 DOI: 10.1101/cshperspect.a041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Until recently, our understanding of the genetics of speciation was limited to a narrow group of model species with a specific set of characteristics that made genetic analysis feasible. Rapidly advancing genomic technologies are eliminating many of the distinctions between laboratory and natural systems. In light of these genomic developments, we review the history of speciation genetics, advances that have been gleaned from model and non-model organisms, the current state of the field, and prospects for broadening the diversity of taxa included in future studies. Responses to a survey of speciation scientists across the world reveal the ongoing division between the types of questions that are addressed in model and non-model organisms. To bridge this gap, we suggest integrating genetic studies from model systems that can be reared in the laboratory or greenhouse with genomic studies in related non-models where extensive ecological knowledge exists.
Collapse
Affiliation(s)
- Kira Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California 93740, USA
| |
Collapse
|
13
|
Mora P, Hospodářská M, Voleníková AC, Koutecký P, Štundlová J, Dalíková M, Walters JR, Nguyen P. Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol Ecol 2024:e17256. [PMID: 38180347 DOI: 10.1111/mec.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.
Collapse
Affiliation(s)
- Pablo Mora
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Monika Hospodářská
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Petr Koutecký
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Štundlová
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - James R Walters
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Scarparo G, Palanchon M, Brelsford A, Purcell J. Social antagonism facilitates supergene expansion in ants. Curr Biol 2023; 33:5085-5095.e4. [PMID: 37979579 DOI: 10.1016/j.cub.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Abstract
Antagonistic selection has long been considered a major driver of the formation and expansion of sex chromosomes. For example, sexually antagonistic variation on an autosome can select for suppressed recombination between that autosome and the sex chromosome, leading to a neo-sex chromosome. Autosomal supergenes, chromosomal regions containing tightly linked variants affecting the same complex trait, share similarities with sex chromosomes, raising the possibility that sex chromosome evolution models can explain the evolution of genome structure and recombination in other contexts. We tested this premise in a Formica ant species, wherein we identified four supergene haplotypes on chromosome 3 underlying colony social organization and sex ratio. We discovered a novel rearranged supergene variant (9r) on chromosome 9 underlying queen miniaturization. The 9r is in strong linkage disequilibrium with one chromosome 3 haplotype (P2) found in multi-queen (polygyne) colonies. We suggest that queen miniaturization is strongly disfavored in the single-queen (monogyne) background and is thus socially antagonistic. As such, divergent selection experienced by ants living in alternative social "environments" (monogyne and polygyne) may have contributed to the emergence of a genetic polymorphism on chromosome 9 and associated queen-size dimorphism. Consequently, an ancestral polygyne-associated haplotype may have expanded to include the polymorphism on chromosome 9, resulting in a larger region of suppressed recombination spanning two chromosomes. This process is analogous to the formation of neo-sex chromosomes and consistent with models of expanding regions of suppressed recombination. We propose that miniaturized queens, 16%-20% smaller than queens without 9r, could be incipient intraspecific social parasites.
Collapse
Affiliation(s)
- Giulia Scarparo
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg. Citrus Drive, Riverside, CA 92521, USA.
| | - Marie Palanchon
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 2710 Life Science Bldg., Riverside, CA 92521, USA
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 2710 Life Science Bldg., Riverside, CA 92521, USA
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg. Citrus Drive, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Xiong T, Tarikere S, Rosser N, Li X, Yago M, Mallet J. A polygenic explanation for Haldane's rule in butterflies. Proc Natl Acad Sci U S A 2023; 120:e2300959120. [PMID: 37856563 PMCID: PMC10622916 DOI: 10.1073/pnas.2300959120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Two robust rules have been discovered about animal hybrids: Heterogametic hybrids are more unfit (Haldane's rule), and sex chromosomes are disproportionately involved in hybrid incompatibility (the large-X/Z effect). The exact mechanisms causing these rules in female heterogametic taxa such as butterflies are unknown but are suggested by theory to involve dominance on the sex chromosome. We investigate hybrid incompatibilities adhering to both rules in Papilio and Heliconius butterflies and show that dominance theory cannot explain our data. Instead, many defects coincide with unbalanced multilocus introgression between the Z chromosome and all autosomes. Our polygenic explanation predicts both rules because the imbalance is likely greater in heterogametic females, and the proportion of introgressed ancestry is more variable on the Z chromosome. We also show that mapping traits polygenic on a single chromosome in backcrosses can generate spurious large-effect QTLs. This mirage is caused by statistical linkage among polygenes that inflates estimated effect sizes. By controlling for statistical linkage, most incompatibility QTLs in our hybrid crosses are consistent with a polygenic basis. Since the two genera are very distantly related, polygenic hybrid incompatibilities are likely common in butterflies.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Shreeharsha Tarikere
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Masaya Yago
- The University Museum, The University of Tokyo, Bunkyo-ku113-0033, Japan
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
16
|
de Menezes Cavalcante Sassi F, Sember A, Deon GA, Liehr T, Padutsch N, Oyakawa OT, Vicari MR, Bertollo LAC, Moreira-Filho O, de Bello Cioffi M. Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X 1X 2Y sex chromosome system origin. Sci Rep 2023; 13:15756. [PMID: 37735233 PMCID: PMC10514344 DOI: 10.1038/s41598-023-42617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.
Collapse
Affiliation(s)
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská, 89, Liběchov, Czech Republic
| | - Geize Aparecida Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany.
| | - Niklas Padutsch
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany
| | | | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
17
|
Uji K, Ishikawa A, Shin K, Tayasu I, Kitano J. Strontium isotope analysis of otoliths reveals differences in the habitat salinity among three sympatric stickleback species of the genus Pungitius. Ecol Evol 2023; 13:e10463. [PMID: 37670821 PMCID: PMC10475353 DOI: 10.1002/ece3.10463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The analysis of otolith Sr isotope ratios (87Sr/86Sr) is a powerful method to study fish migration in freshwater areas. However, few studies have applied this method to study fish movement in brackish-water environments. Furthermore, despite the fact that habitat differentiation has been shown to drive genetic differentiation and reproductive isolation among stickleback fish, no studies have used the otolith 87Sr/86Sr ratios to analyze habitat differentiation between stickleback ecotypes and species. In this study, we analyzed the otolith 87Sr/86Sr ratios of three sympatric stickleback species of the genus Pungitius in the Shiomi River on Hokkaido Island, Japan: P. tymensis, the brackish-water type of the P. pungitius-P. sinensis complex, and the freshwater type of the P. pungitius-P. sinensis complex. First, we created a mixing equation to depict the relationship between habitat salinity and the 87Sr/86Sr ratios of river water. We found that the otolith 87Sr/86Sr ratios differed significantly among the three species, indicating that the three species utilize habitats with different salinities: P. tymensis and the brackish-water type inhabit freshwater and brackish-water environments, respectively, with the freshwater type using intermediate habitats. In addition, we found that some freshwater individuals moved to habitats with higher salinities as they grew. Our study demonstrates that the analysis of otolith 87Sr/86Sr ratios is a useful method for studying the habitat use of fish in brackish-water environments and habitat differentiation among closely related sympatric and parapatric species.
Collapse
Affiliation(s)
- Konomi Uji
- Center for Ecological ResearchKyoto UniversityOtsuJapan
| | - Asano Ishikawa
- Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
- Present address:
Department of Integrated BiosciencesGraduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | - Ki‐Cheol Shin
- Research Institute for Humanity and NatureKyotoJapan
| | - Ichiro Tayasu
- Research Institute for Humanity and NatureKyotoJapan
| | - Jun Kitano
- Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
| |
Collapse
|
18
|
Kitano J, Ansai S, Fujimoto S, Kakioka R, Sato M, Mandagi IF, Sumarto BKA, Yamahira K. A Cryptic Sex-Linked Locus Revealed by the Elimination of a Master Sex-Determining Locus in Medaka Fish. Am Nat 2023; 202:231-240. [PMID: 37531272 DOI: 10.1086/724840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractSex chromosomes rapidly turn over in several taxonomic groups. Sex chromosome turnover is generally thought to start with the appearance of a new sex-determining gene on an autosome while an old sex-determining gene still exists, followed by the fixation of the new one. However, we do not know how prevalent the transient state is, where multiple sex-determining loci coexist within natural populations. Here, we removed a Y chromosome with a master male-determining gene DMY from medaka fish using high temperature-induced sex-reversed males. After four generations, the genomic characteristics of a sex chromosome were found on one chromosome, which was an autosome in the original population. Thus, the elimination of a master sex-determining locus can reveal a cryptic locus with a possible sex-determining effect, which can be the seed for sex chromosome turnover. Our results suggest that populations that seem to have a single-locus XY system may have other chromosomal regions with sex-determining effects. In conclusion, the coexistence of multiple sex-determining genes in a natural population may be more prevalent than previously thought. Experimental elimination of a master sex-determining locus may serve as a promising method for finding a locus that can be a protosex chromosome.
Collapse
|
19
|
Zhou Y, Zhan X, Jin J, Zhou L, Bergman J, Li X, Rousselle MMC, Belles MR, Zhao L, Fang M, Chen J, Fang Q, Kuderna L, Marques-Bonet T, Kitayama H, Hayakawa T, Yao YG, Yang H, Cooper DN, Qi X, Wu DD, Schierup MH, Zhang G. Eighty million years of rapid evolution of the primate Y chromosome. Nat Ecol Evol 2023; 7:1114-1130. [PMID: 37268856 DOI: 10.1038/s41559-022-01974-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/15/2022] [Indexed: 06/04/2023]
Abstract
The Y chromosome usually plays a critical role in determining male sex and comprises sequence classes that have experienced unique evolutionary trajectories. Here we generated 19 new primate sex chromosome assemblies, analysed them with 10 existing assemblies and report rapid evolution of the Y chromosome across primates. The pseudoautosomal boundary has shifted at least six times during primate evolution, leading to the formation of a Simiiformes-specific evolutionary stratum and to the independent start of young strata in Catarrhini and Platyrrhini. Different primate lineages experienced different rates of gene loss and structural and chromatin change on their Y chromosomes. Selection on several Y-linked genes has contributed to the evolution of male developmental traits across the primates. Additionally, lineage-specific expansions of ampliconic regions have further increased the diversification of the structure and gene composition of the Y chromosome. Overall, our comprehensive analysis has broadened our knowledge of the evolution of the primate Y chromosome.
Collapse
Affiliation(s)
| | | | | | - Long Zhou
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Juraj Bergman
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus C., Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus C., Denmark
| | - Xuemei Li
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Lan Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | | | | | - Qi Fang
- BGI-Shenzhen, Shenzhen, China
| | - Lukas Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Haruka Kitayama
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Xiaoguang Qi
- College of Life Sciences, Northwest University, Xi'an, China
| | - Dong-Dong Wu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Guojie Zhang
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Lichilín N, Salzburger W, Böhne A. No evidence for sex chromosomes in natural populations of the cichlid fish Astatotilapia burtoni. G3 (BETHESDA, MD.) 2023; 13:6989787. [PMID: 36649174 PMCID: PMC9997565 DOI: 10.1093/g3journal/jkad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023]
Abstract
Sex determination (SD) is not conserved among teleost fishes and can even differ between populations of the same species. Across the outstandingly species-rich fish family Cichlidae, more and more SD systems are being discovered. Still, the picture of SD evolution in this group is far from being complete. Lake Tanganyika and its affluent rivers are home to Astatotilapia burtoni, which belongs to the extremely successful East African cichlid lineage Haplochromini. Previously, in different families of an A. burtoni laboratory strain, an XYW system and an XY system have been described. The latter was also found in a second laboratory strain. In a laboratory-reared family descending from a population of the species' southern distribution, a second XY system was discovered. Yet, an analysis of sex chromosomes for the whole species distribution is missing. Here, we examined the genomes of 11 natural populations of A. burtoni, encompassing a wide range of its distribution, for sex-linked regions. We did not detect signs of differentiated sex chromosomes and also not the previously described sex chromosomal systems present in laboratory lines, suggesting different SD systems in the same species under natural and (long-term) artificial conditions. We suggest that SD in A. burtoni is more labile than previously assumed and consists of a combination of non-genetic, polygenic, or poorly differentiated sex chromosomes.
Collapse
Affiliation(s)
- Nicolás Lichilín
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.,Department of Neuroscience and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.,Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany
| |
Collapse
|
21
|
Yoshida K, Rödelsperger C, Röseler W, Riebesell M, Sun S, Kikuchi T, Sommer RJ. Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nat Ecol Evol 2023; 7:424-439. [PMID: 36717742 PMCID: PMC9998273 DOI: 10.1038/s41559-022-01980-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
Large-scale genome-structural evolution is common in various organisms. Recent developments in speciation genomics revealed the importance of inversions, whereas the role of other genome-structural rearrangements, including chromosome fusions, have not been well characterized. We study genomic divergence and reproductive isolation of closely related nematodes: the androdioecious (hermaphroditic) model Pristionchus pacificus and its dioecious sister species Pristionchus exspectatus. A chromosome-level genome assembly of P. exspectatus using single-molecule and Hi-C sequencing revealed a chromosome-wide rearrangement relative to P. pacificus. Strikingly, genomic characterization and cytogenetic studies including outgroup species Pristionchus occultus indicated two independent fusions involving the same chromosome, ChrIR, between these related species. Genetic linkage analysis indicated that these fusions altered the chromosome-wide pattern of recombination, resulting in large low-recombination regions that probably facilitated the coevolution between some of the ~14.8% of genes across the entire genomes. Quantitative trait locus analyses for hybrid sterility in all three sexes revealed that major quantitative trait loci mapped to the fused chromosome ChrIR. While abnormal chromosome segregations of the fused chromosome partially explain hybrid female sterility, hybrid-specific recombination that breaks linkage of genes in the low-recombination region was associated with hybrid male sterility. Thus, recent chromosome fusions repatterned recombination rate and drove reproductive isolation during Pristionchus speciation.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Simo Sun
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Taisei Kikuchi
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
22
|
Burley JT, Orzechowski SCM, Sin SYW, Edwards SV. Whole-genome phylogeography of the blue-faced honeyeater (Entomyzon cyanotis) and discovery and characterization of a neo-Z chromosome. Mol Ecol 2023; 32:1248-1270. [PMID: 35797346 DOI: 10.1111/mec.16604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Whole-genome surveys of genetic diversity and geographic variation often yield unexpected discoveries of novel structural variation, which long-read DNA sequencing can help clarify. Here, we report on whole-genome phylogeography of a bird exhibiting classic vicariant geographies across Australia and New Guinea, the blue-faced honeyeater (Entomyzon cyanotis), and the discovery and characterization of a novel neo-Z chromosome by long-read sequencing. Using short-read genome-wide SNPs, we inferred population divergence events within E. cyanotis across the Carpentarian and other biogeographic barriers during the Pleistocene (~0.3-1.7 Ma). Evidence for introgression between nonsister populations supports a hypothesis of reticulate evolution around a triad of dynamic barriers around Pleistocene Lake Carpentaria between Australia and New Guinea. During this phylogeographic survey, we discovered a large (134 Mbp) neo-Z chromosome and we explored its diversity, divergence and introgression landscape. We show that, as in some sylvioid passerine birds, a fusion occurred between chromosome 5 and the Z chromosome to form a neo-Z chromosome; and in E. cyanotis, the ancestral pseudoautosomal region (PAR) appears nonrecombinant between Z and W, along with most of the fused chromosome 5. The added recombination-suppressed portion of the neo-Z (~37.2 Mbp) displays reduced diversity and faster population genetic differentiation compared with the ancestral-Z. Yet, the new PAR (~17.4 Mbp) shows elevated diversity and reduced differentiation compared to autosomes, potentially resulting from introgression. In our case, long-read sequencing helped clarify the genomic landscape of population divergence on autosomes and sex chromosomes in a species where prior knowledge of genome structure was still incomplete.
Collapse
Affiliation(s)
- John T Burley
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.,Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden.,Department of Ecology Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA.,Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | | | - Simon Yung Wa Sin
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.,School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Scott V Edwards
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Marajó L, Viana PF, Ferreira AMV, Py-Daniel LHR, Cioffi MDB, Sember A, Feldberg E. Chromosomal rearrangements and the first indication of an ♀X 1 X 1 X 2 X 2 /♂X 1 X 2 Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). JOURNAL OF FISH BIOLOGY 2023; 102:443-454. [PMID: 36427042 DOI: 10.1111/jfb.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Rineloricaria is the most diverse genus within the freshwater fish subfamily Loricariinae, and it is widely distributed in the Neotropical region. Despite limited cytogenetic data, records from southern and south-eastern Brazil suggest a high rate of chromosomal rearrangements in this genus, mirrored in remarkable inter- and intraspecific karyotype variability. In the present work, we investigated the karyotype features of Rineloricaria teffeana, an endemic representative from northern Brazil, using both conventional and molecular cytogenetic techniques. We revealed different diploid chromosome numbers (2n) between sexes (33♂/34♀), which suggests the presence of an ♀X1 X1 X2 X2 /♂X1 X2 Y multiple sex chromosome system. The male-limited Y chromosome was the largest and the only biarmed element in the karyotype, implying Y-autosome fusion as the most probable mechanism behind its origination. C-banding revealed low amounts of constitutive heterochromatin, mostly confined to the (peri)centromeric regions of most chromosomes (including the X2 and the Y) but also occupying the distal regions of a few chromosomal pairs. The chromosomal localization of the 18S ribosomal DNA (rDNA) clusters revealed a single site on chromosome pair 4, which was adjacent to the 5S rDNA cluster. Additional 5S rDNA loci were present on the autosome pair 8, X1 chromosome, and in the presumed fusion point on the Y chromosome. The probe for telomeric repeat motif (TTAGGG)n revealed signals of variable intensities at the ends of all chromosomes except for the Y chromosome, where no detectable signals were evidenced. Male-to-female comparative genomic hybridization revealed no sex-specific or sex-biased repetitive DNA accumulations, suggesting a presumably low level of neo-Y chromosome differentiation. We provide evidence that rDNA sites might have played a role in the formation of this putative multiple sex chromosome system and that chromosome fusions originate through different mechanisms among different Rineloricaria species.
Collapse
Affiliation(s)
- Leandro Marajó
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Ferreira Viana
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Alex Matheus Viana Ferreira
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Lúcia Helena Rapp Py-Daniel
- Coleção de Peixes, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Eliana Feldberg
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
24
|
Singh P, Taborsky M, Peichel CL, Sturmbauer C. Genomic basis of Y-linked dwarfism in cichlids pursuing alternative reproductive tactics. Mol Ecol 2023; 32:1592-1607. [PMID: 36588349 DOI: 10.1111/mec.16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
Sexually antagonistic selection, which favours different optima in males and females, is predicted to play an important role in the evolution of sex chromosomes. Body size is a sexually antagonistic trait in the shell-brooding cichlid fish Lamprologous callipterus, as "bourgeois" males must be large enough to carry empty snail shells to build nests whereas females must be small enough to fit into shells for breeding. In this species, there is also a second male morph: smaller "dwarf" males employ an alternative reproductive strategy by wriggling past spawning females into shells to fertilize eggs. L. callipterus male morphology is passed strictly from father to son, suggesting Y-linkage. However, sex chromosomes had not been previously identified in this species, and the genomic basis of size dimorphism was unknown. Here we used whole-genome sequencing to identify a 2.4-Mb sex-linked region on scaffold_23 with reduced coverage and single nucleotide polymorphism density in both male morphs compared to females. Within this sex region, distinct Y-haplotypes delineate the two male morphs, and candidate genes for body size (GHRHR, a known dwarfism gene) and sex determination (ADCYAP1R1) are in high linkage disequilibrium. Because differences in body size between females and males are under strong selection in L. callipterus, we hypothesize that sexual antagonism over body size initiated early events in sex chromosome evolution, followed by Y divergence to give rise to bourgeois and dwarf male reproductive strategies. Our results are consistent with the hypothesis that sexually antagonistic traits should be linked to young sex chromosomes.
Collapse
Affiliation(s)
- Pooja Singh
- Institute of Biology, University of Graz, Graz, Austria.,Aquatic Ecology Division, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Michael Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Switzerland.,Max Planck Institute of Animal Behavior, Constance, Germany.,Institute for Advanced Study (Wissenschaftskolleg) Berlin, Berlin, Germany
| | - Catherine L Peichel
- Evolutionary Ecology Division, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | |
Collapse
|
25
|
Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res 2022; 30:309-333. [PMID: 36208359 DOI: 10.1007/s10577-022-09707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.
Collapse
|
26
|
Král J, Ávila Herrera IM, Šťáhlavský F, Sadílek D, Pavelka J, Chatzaki M, Huber BA. Karyotype differentiation and male meiosis in European clades of the spider genus Pholcus (Araneae, Pholcidae). COMPARATIVE CYTOGENETICS 2022; 16:185-209. [PMID: 36760487 PMCID: PMC9836407 DOI: 10.3897/compcytogen.v16i4.85059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/28/2022] [Indexed: 06/18/2023]
Abstract
Haplogyne araneomorphs are a diverse spider clade. Their karyotypes are usually predominated by biarmed (i.e., metacentric and submetacentric) chromosomes and have a specific sex chromosome system, X1X2Y. These features are probably ancestral for haplogynes. Nucleolus organizer regions (NORs) spread frequently from autosomes to sex chromosomes in these spiders. This study focuses on pholcids (Pholcidae), a highly diverse haplogyne family. Despite considerable recent progress in pholcid cytogenetics, knowledge on many clades remains insufficient including the most species-rich pholcid genus, Pholcus Walckenaer, 1805. To characterize the karyotype differentiation of Pholcus in Europe, we compared karyotypes, sex chromosomes, NORs, and male meiosis of seven species [P.alticeps Spassky, 1932; P.creticus Senglet, 1971; P.dentatus Wunderlich, 1995; P.fuerteventurensis Wunderlich, 1992; P.phalangioides (Fuesslin, 1775); P.opilionoides (Schrank, 1781); P.silvai Wunderlich, 1995] representing the dominant species groups in this region. The species studied show several features ancestral for Pholcus, namely the 2n♂ = 25, the X1X2Y system, and a karyotype predominated by biarmed chromosomes. Most taxa have a large acrocentric NOR-bearing pair, which evolved from a biarmed pair by a pericentric inversion. In some lineages, the acrocentric pair reverted to biarmed. Closely related species often differ in the morphology of some chromosome pairs, probably resulting from pericentric inversions and/or translocations. Such rearrangements have been implicated in the formation of reproductive barriers. While the X1 and Y chromosomes retain their ancestral metacentric morphology, the X2 chromosome shows a derived (acrocentric or subtelocentric) morphology. Pairing of this element is usually modified during male meiosis. NOR patterns are very diverse. The ancestral karyotype of Pholcus contained five or six terminal NORs including three X chromosome-linked loci. The number of NORs has been frequently reduced during evolution. In the Macaronesian clade, there is only a single NOR-bearing pair. Sex chromosome-linked NORs are lost in Madeiran species and in P.creticus. Our study revealed two cytotypes in the synanthropic species P.phalangioides (Madeiran and Czech), which differ by their NOR pattern and chromosome morphology. In the Czech cytotype, the large acrocentric pair was transformed into a biarmed pair by pericentric inversion.
Collapse
Affiliation(s)
- Jiří Král
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech RepublicCharles UniversityPragueCzech Republic
| | - Ivalú M. Ávila Herrera
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech RepublicCharles UniversityPragueCzech Republic
| | - František Šťáhlavský
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech RepublicCharles UniversityPragueCzech Republic
| | - David Sadílek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech RepublicCharles UniversityPrague 2Czech Republic
| | - Jaroslav Pavelka
- Centre of Biology, Geosciences and Environmental Education, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech RepublicUniversity of West BohemiaPlzeňCzech Republic
| | - Maria Chatzaki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, GreeceDemocritus University of ThraceAlexandroupolisGreece
| | - Bernhard A. Huber
- Alexander Koenig Zoological Research Museum, Adenauerallee 127, 53113 Bonn, GermanyAlexander Koenig Zoological Research MuseumBonnGermany
| |
Collapse
|
27
|
vonHoldt BM, Brzeski KE, Aardema ML, Schell CJ, Rutledge LY, Fain SR, Shutt AC, Linderholm A, Murphy WJ. Persistence and expansion of cryptic endangered red wolf genomic ancestry along the American Gulf coast. Mol Ecol 2022; 31:5440-5454. [PMID: 34585803 DOI: 10.1111/mec.16200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Admixture and introgression play a critical role in adaptation and genetic rescue that has only recently gained a deeper appreciation. Here, we explored the geographical and genomic landscape of cryptic ancestry of the endangered red wolf that persists within the genome of a ubiquitous sister taxon, the coyote, all while the red wolf has been extinct in the wild since the early 1980s. We assessed admixture across 120,621 single nucleotiode polymorphism (SNP) loci genotyped in 293 canid genomes. We found support for increased red wolf ancestry along a west-to-east gradient across the southern United States associated with historical admixture in the past 100 years. Southwestern Louisiana and southeastern Texas, the geographical zone where the last red wolves were known prior to extinction in the wild, contained the highest and oldest levels of red wolf ancestry. Further, given the paucity of inferences based on chromosome types, we compared patterns of ancestry on the X chromosome and autosomes. We additionally aimed to explore the relationship between admixture timing and recombination rate variation to investigate gene flow events. We found that X-linked regions of low recombination rates were depleted of introgression, relative to the autosomes, consistent with the large X effect and enrichment with loci involved in maintaining reproductive isolation. Recombination rate was positively correlated with red wolf ancestry across coyote genomes, consistent with theoretical predictions. The geographical and genomic extent of cryptic red wolf ancestry can provide novel genomic resources for recovery plans targeting the conservation of the endangered red wolf.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Kristin E Brzeski
- College of Forest Resources and Environment Science, Michigan Technological University, Houghton, Michigan, USA
| | - Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, New Jersey, USA.,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Christopher J Schell
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
| | - Linda Y Rutledge
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Steven R Fain
- USFWS, Clark R. Bavin National Forensics Laboratory, Ashland, Oregon, USA
| | | | - Anna Linderholm
- Department of Anthropology, Texas A&M University, College Station, Texas, USA
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
28
|
Gong G, Xiong Y, Xiao S, Li XY, Huang P, Liao Q, Han Q, Lin Q, Dan C, Zhou L, Ren F, Zhou Q, Gui JF, Mei J. Origin and chromatin remodeling of young X/Y sex chromosomes in catfish with sexual plasticity. Natl Sci Rev 2022; 10:nwac239. [PMID: 36846302 PMCID: PMC9945428 DOI: 10.1093/nsr/nwac239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022] Open
Abstract
Assembly of a complete Y chromosome is a significant challenge in animals with an XX/XY sex-determination system. Recently, we created YY-supermale yellow catfish by crossing XY males with sex-reversed XY females, providing a valuable model for Y-chromosome assembly and evolution. Here, we assembled highly homomorphic Y and X chromosomes by sequencing genomes of the YY supermale and XX female in yellow catfish, revealing their nucleotide divergences with only less than 1% and with the same gene compositions. The sex-determining region (SDR) was identified to locate within a physical distance of 0.3 Mb by FST scanning. Strikingly, the incipient sex chromosomes were revealed to originate via autosome-autosome fusion and were characterized by a highly rearranged region with an SDR downstream of the fusion site. We found that the Y chromosome was at a very early stage of differentiation, as no clear evidence of evolutionary strata and classical structure features of recombination suppression for a rather late stage of Y-chromosome evolution were observed. Significantly, a number of sex-antagonistic mutations and the accumulation of repetitive elements were discovered in the SDR, which might be the main driver of the initial establishment of recombination suppression between young X and Y chromosomes. Moreover, distinct three-dimensional chromatin organizations of the Y and X chromosomes were identified in the YY supermales and XX females, as the X chromosome exhibited denser chromatin structure than the Y chromosome, while they respectively have significantly spatial interactions with female- and male-related genes compared with other autosomes. The chromatin configuration of the sex chromosomes as well as the nucleus spatial organization of the XX neomale were remodeled after sex reversal and similar to those in YY supermales, and a male-specific loop containing the SDR was found in the open chromatin region. Our results elucidate the origin of young sex chromosomes and the chromatin remodeling configuration in the catfish sexual plasticity.
Collapse
Affiliation(s)
- Gaorui Gong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Xiong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shijun Xiao
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing 314000, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Peipei Huang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Liao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Han
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaohong Lin
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Ren
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Jie Mei
- Corresponding author. E-mail:
| |
Collapse
|
29
|
Sigeman H, Zhang H, Ali Abed S, Hansson B. A novel neo-sex chromosome in Sylvietta brachyura (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds. J Evol Biol 2022; 35:1797-1805. [PMID: 36156325 PMCID: PMC10087220 DOI: 10.1111/jeb.14096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
We report the discovery of a novel neo-sex chromosome in an African warbler, Sylvietta brachyura (northern crombec; Macrosphenidae). This species is part of the Sylvioidea superfamily, where four separate autosome-sex chromosome translocation events have previously been discovered via comparative genomics of 11 of the 22 families in this clade. Our discovery here resulted from analyses of genomic data of single species-representatives from three additional Sylvioidea families (Macrosphenidae, Pycnonotidae and Leiothrichidae). In all three species, we confirmed the translocation of a part of chromosome 4A to the sex chromosomes, which originated basally in Sylvioidea. In S. brachyura, we found that a part of chromosome 8 has been translocated to the sex chromosomes, forming a unique neo-sex chromosome in this lineage. Furthermore, the non-recombining part of 4A in S. brachyura is smaller than in other Sylvioidea species, which suggests that recombination continued along this region after the fusion event in the Sylvioidea ancestor. These findings reveal additional sex chromosome diversity among the Sylvioidea, where five separate translocation events are now confirmed.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Lund, Sweden.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Kvistad L, Falk S, Austin L. Widespread genomic signatures of reproductive isolation and sex-specific selection in the Eastern Yellow Robin, Eopsaltria australis. G3 GENES|GENOMES|GENETICS 2022; 12:6605223. [PMID: 35686912 PMCID: PMC9438485 DOI: 10.1093/g3journal/jkac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
How new species evolve is one of the most fundamental questions in biology. Population divergence, which may lead to speciation, may be occurring in the Eastern Yellow Robin, a common passerine that lives along the eastern coast of Australia. This species is composed of 2 parapatric lineages that have highly divergent mitochondrial DNA; however, similar levels of divergence have not been observed in the nuclear genome. Here we re-examine the nuclear genomes of these mitolineages to test potential mechanisms underlying the discordance between nuclear and mitochondrial divergence. We find that nuclear admixture occurs in a narrow hybrid zone, although the majority of markers across the genome show evidence of reproductive isolation between populations of opposing mitolineages. There is an 8 MB section of a previously identified putative neo-sex chromosome that is highly diverged between allopatric but not parapatric populations, which may be the result of a chromosomal inversion. The neo-sex chromosomal nature of this region, as well as the geographic patterns in which it exhibits divergence, suggest it is unlikely to be contributing to reproductive isolation through mitonuclear incompatibilities as reported in earlier studies. In addition, there are sex differences in the number of markers that are differentiated between populations of opposite mitolineages, with greater differentiation occurring in females, which are heterozygous, than males. These results suggest that, despite the absence of previously observed assortative mating, mitolineages of Eastern Yellow Robin experience at least some postzygotic isolation from each other, in a pattern consistent with Haldane’s Rule.
Collapse
Affiliation(s)
- Lynna Kvistad
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
| | - Stephanie Falk
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
- Deep Sequencing Facility, Max Planck Institute of Immunobiology and Epigenetics , Freiburg D-79108, Germany
| | - Lana Austin
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
| |
Collapse
|
31
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Berdan EL, Flatt T, Kozak GM, Lotterhos KE, Wielstra B. Genomic architecture of supergenes: connecting form and function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210192. [PMID: 35694757 PMCID: PMC9189501 DOI: 10.1098/rstb.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Emma L Berdan
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, MA 02747, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
33
|
Dagilis AJ, Sardell JM, Josephson MP, Su Y, Kirkpatrick M, Peichel CL. Searching for signatures of sexually antagonistic selection on stickleback sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210205. [PMID: 35694749 PMCID: PMC9189504 DOI: 10.1098/rstb.2021.0205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intralocus sexually antagonistic selection occurs when an allele is beneficial to one sex but detrimental to the other. This form of selection is thought to be key to the evolution of sex chromosomes but is hard to detect. Here we perform an analysis of phased young sex chromosomes to look for signals of sexually antagonistic selection in the Japan Sea stickleback (Gasterosteus nipponicus). Phasing allows us to date the suppression of recombination on the sex chromosome and provides unprecedented resolution to identify sexually antagonistic selection in the recombining region of the chromosome. We identify four windows with elevated divergence between the X and Y in the recombining region, all in or very near genes associated with phenotypes potentially under sexually antagonistic selection in humans. We are unable, however, to rule out the alternative hypothesis that the peaks of divergence result from demographic effects. Thus, although sexually antagonistic selection is a key hypothesis for the formation of supergenes on sex chromosomes, it remains challenging to detect. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Andrius J Dagilis
- Department of Integrative Biology, University of Texas, Austin TX 78712, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jason M Sardell
- Department of Integrative Biology, University of Texas, Austin TX 78712, USA
| | - Matthew P Josephson
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Yiheng Su
- Department of Computer Science, University of Texas, Austin TX 78712, USA
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin TX 78712, USA
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
34
|
Jonika MM, Alfieri JM, Sylvester T, Buhrow AR, Blackmon H. Why not Y naught. Heredity (Edinb) 2022; 129:75-78. [PMID: 35581478 PMCID: PMC9338309 DOI: 10.1038/s41437-022-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - James M Alfieri
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
| | | | | | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
35
|
Dufresnes C, Crochet PA. Sex chromosomes as supergenes of speciation: why amphibians defy the rules? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210202. [PMID: 35694748 PMCID: PMC9189495 DOI: 10.1098/rstb.2021.0202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As reflected by the two rules of speciation (Haldane's rule and the large X-/Z-effect), sex chromosomes are expected to behave like supergenes of speciation: they recombine only in one sex (XX females or ZZ males), supposedly recruit sexually antagonistic genes and evolve faster than autosomes, which can all contribute to pre-zygotic and post-zygotic isolation. While this has been mainly studied in organisms with conserved sex-determining systems and highly differentiated (heteromorphic) sex chromosomes like mammals, birds and some insects, these expectations are less clear in organismal groups where sex chromosomes repeatedly change and remain mostly homomorphic, like amphibians. In this article, we review the proposed roles of sex-linked genes in isolating nascent lineages throughout the speciation continuum and discuss their support in amphibians given current knowledge of sex chromosome evolution and speciation modes. Given their frequent recombination and lack of differentiation, we argue that amphibian sex chromosomes are not expected to become supergenes of speciation, which is reflected by the rarity of empirical studies consistent with a 'large sex chromosome effect' in frogs and toads. The diversity of sex chromosome systems in amphibians has a high potential to disentangle the evolutionary mechanisms responsible for the emergence of sex-linked speciation genes in other organisms. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | | |
Collapse
|
36
|
Jeffries DL, Mee JA, Peichel CL. Identification of a candidate sex determination gene in Culaea inconstans suggests convergent recruitment of an Amh duplicate in two lineages of stickleback. J Evol Biol 2022; 35:1683-1695. [PMID: 35816592 PMCID: PMC10083969 DOI: 10.1111/jeb.14034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes vary greatly in their age and levels of differentiation across the tree of life. This variation is largely due to the rates of sex chromosome turnover in different lineages; however, we still lack an explanation for why sex chromosomes are so conserved in some lineages (e.g. mammals, birds) but so labile in others (e.g. teleosts, amphibians). To identify general mechanisms driving transitions in sex determination systems or forces which favour their conservation, we first require empirical data on sex chromosome systems from multiple lineages. Stickleback fishes are a valuable model lineage for the study of sex chromosome evolution due to variation in sex chromosome systems between closely-related species. Here, we identify the sex chromosome and a strong candidate for the master sex determination gene in the brook stickleback, Culaea inconstans. Using whole-genome sequencing of wild-caught samples and a lab cross, we identify AmhY, a male specific duplication of the gene Amh, as the candidate master sex determination gene. AmhY resides on Chromosome 20 in C. inconstans and is likely a recent duplication, as both AmhY and the sex-linked region of Chromosome 20 show little sequence divergence. Importantly, this duplicate AmhY represents the second independent duplication and recruitment of Amh as the sex determination gene in stickleback and the eighth example known across teleosts. We discuss this convergence in the context of sex chromosome turnovers and the role that the Amh/AmhrII pathway, which is crucial for sex determination, may play in the evolution of sex chromosomes in teleosts.
Collapse
Affiliation(s)
- Daniel L Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Jonathan A Mee
- Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Steinberg ER, Bressa MJ, Mudry MD. Sex chromosome systems in Neotropical Primates: What have we learnt so far from cytogenetics and genomics? J Evol Biol 2022; 35:1589-1600. [PMID: 35731796 DOI: 10.1111/jeb.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Neotropical Primates (Platyrrhini) show great diversity in their life histories, ecology, behaviour and genetics. This diversity extends to their chromosome complements, both to autosomes and to sex chromosomes. In this contribution, we will review what is currently known about sex chromosomes in this group, both from cytogenetic and from genomic evidence. The X and Y chromosomes in Neotropical Primates, also known as New World Monkeys, have striking structural differences compared with Old World Monkeys when Catarrhini sex chromosomes are considered. The XY bivalent displays a different meiotic behaviour in prophase I, and their Y chromosome shows extensive genomic differences. Even though the most widespread sex chromosome system is the XX/XY and thus considered the ancestral one for Platyrrhini, modifications of this sexual system are observed within this group. Multiple sex chromosome systems originated from Y-autosome translocations were described in several genera (Aotus, Callimico and Alouatta). In the howler monkeys, genus Alouatta, an independent origin of the sexual systems in South American and Mesoamerican species was postulated. All the above-mentioned evidence suggests that the Y chromosome of Platyrrhini has a different evolutionary history compared with the Catarrhini Y. There is still much to understand regarding their sex chromosome systems.
Collapse
Affiliation(s)
- Eliana Ruth Steinberg
- Grupo de Investigación en Biología Evolutiva (GIBE). Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - María José Bressa
- Grupo de Citogenética de Insectos. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marta Dolores Mudry
- Grupo de Investigación en Biología Evolutiva (GIBE). Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
38
|
Hill P, While GM, Burridge CP, Ezaz T, Munch KL, McVarish M, Wapstra E. Sex reversal explains some, but not all, climate-mediated sex ratio variation within a viviparous reptile. Proc Biol Sci 2022; 289:20220689. [PMID: 35642367 PMCID: PMC9156933 DOI: 10.1098/rspb.2022.0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Evolutionary transitions in sex-determining systems have occurred frequently yet understanding how they occur remains a major challenge. In reptiles, transitions from genetic to temperature-dependent sex determination can occur if the gene products that determine sex evolve thermal sensitivity, resulting in sex-reversed individuals. However, evidence of sex reversal is limited to oviparous reptiles. Here we used thermal experiments to test whether sex reversal is responsible for differences in sex determination in a viviparous reptile, Carinascincus ocellatus, a species with XY sex chromosomes and population-specific sex ratio response to temperature. We show that sex reversal is occurring and that its frequency is related to temperature. Sex reversal was unidirectional (phenotypic males with XX genotype) and observed in both high- and low-elevation populations. We propose that XX-biased genotypic sex ratios could produce either male- or female-biased phenotypic sex ratios as observed in low-elevation C. ocellatus under variable rates of XX sex reversal. We discuss reasons why sex reversal may not influence sex ratios at high elevation. Our results suggest that the mechanism responsible for evolutionary transitions from genotypic to temperature-dependent sex determination is more complex than can be explained by a single process such as sex reversal.
Collapse
Affiliation(s)
- Peta Hill
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Geoffrey M While
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory 2601, Australia
| | - Kirke L Munch
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Mary McVarish
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Erik Wapstra
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| |
Collapse
|
39
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
40
|
Oliveira da Silva W, Rosa CC, Ferguson-Smith MA, O'Brien PCM, Saldanha J, Rossi RV, Pieczarka JC, Nagamachi CY. The emergence of a new sex-system (XX/XY 1Y 2) suggests a species complex in the "monotypic" rodent Oecomys auyantepui (Rodentia, Sigmodontinae). Sci Rep 2022; 12:8690. [PMID: 35610291 PMCID: PMC9130129 DOI: 10.1038/s41598-022-12706-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
X-autosome translocation (XY1Y2) has been reported in distinct groups of vertebrates suggesting that the rise of a multiple sex system within a species may act as a reproductive barrier and lead to speciation. The viability of this system has been linked with repetitive sequences located between sex and autosomal portions of the translocation. Herein, we investigate Oecomys auyantepui, using chromosome banding and Fluorescence In Situ Hybridization with telomeric and Hylaeamys megacephalus whole-chromosome probes, and phylogenetic reconstruction using mtDNA and nuDNA sequences. We describe an amended karyotype for O. auyantepui (2n = 64♀65♂/FNa = 84) and report for the first time a multiple sex system (XX/XY1Y2) in Oryzomyini rodents. Molecular data recovered O. auyantepui as a monophyletic taxon with high support and cytogenetic data indicate that O. auyantepui may exist in two lineages recognized by distinct sex systems. The Neo-X exhibits repetitive sequences located between sex and autosomal portions, which would act as a boundary between these two segments. The G-banding comparisons of the Neo-X chromosomes of other Sigmodontinae taxa revealed a similar banding pattern, suggesting that the autosomal segment in the Neo-X can be shared among the Sigmodontinae lineages with a XY1Y2 sex system.
Collapse
Affiliation(s)
- Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Celina Coelho Rosa
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Patricia Caroline Mary O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Juliane Saldanha
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Rogério Vieira Rossi
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil.
| |
Collapse
|
41
|
Beaudry FEG, Rifkin JL, Peake AL, Kim D, Jarvis-Cross M, Barrett SCH, Wright SI. Effects of the neo-X chromosome on genomic signatures of hybridization in Rumex hastatulus. Mol Ecol 2022; 31:3708-3721. [PMID: 35569016 DOI: 10.1111/mec.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Natural hybrid zones provide opportunities for studies of the evolution of reproductive isolation in wild populations. Although recent investigations have found that the formation of neo-sex chromosomes is associated with reproductive isolation, the mechanisms remain unclear in most cases. Here, we assess the contemporary structure of gene flow in the contact zone between largely allopatric cytotypes of the dioecious plant Rumex hastatulus, a species with evidence of sex chromosome turn-over. Males to the west of the Mississippi river, USA, have an X and a single Y chromosome, whereas populations to the east of the river have undergone a chromosomal rearrangement giving rise to a larger X and two Y chromosomes. Using reduced-representation sequencing, we provide evidence that hybrids form readily and survive multiple backcross generations in the field, demonstrating the potential for ongoing gene flow between the cytotypes. Cline analysis of each chromosome separately captured no signals of difference in cline shape between chromosomes. However, principal component regression revealed a significant increase in the contribution of individual SNPs to inter-cytotype differentiation on the neo-X chromosome, but no correlation with recombination rate. Cline analysis revealed that the only SNPs with significantly steeper clines than the genome average were located on the neo-X. Our data are consistent with a role for neo-sex chromosomes in reproductive isolation between R. hastatulus cytotypes. Our investigation highlights the importance of studying plant hybrid zones for understanding the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Felix E G Beaudry
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Joanna L Rifkin
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Amanda L Peake
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Deanna Kim
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Madeline Jarvis-Cross
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Spencer C H Barrett
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| | - Stephen I Wright
- The University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada
| |
Collapse
|
42
|
Neo-sex chromosome evolution shapes sex-dependent asymmetrical introgression barrier. Proc Natl Acad Sci U S A 2022; 119:e2119382119. [PMID: 35512091 PMCID: PMC9171612 DOI: 10.1073/pnas.2119382119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It is increasingly recognized that sex chromosomes are not only the battlegrounds between sexes but also the Great Walls fencing off introgression between diverging lineages. Here we dissect the multifaceted roles of sex chromosomes using experimental evolution, whole-genome resequencing, and theoretical modeling, taking advantage of hybrid populations between a Drosophila sister species pair in the early stage of speciation that have different sex chromosome systems. Our work sheds light onto the complex roles of neo-sex chromosome evolution in creating a sex-dependent asymmetrical introgression barrier at a species boundary, and we show how diverse population genetic forces act in concert to explain observed patterns of introgression across the genome. Sex chromosomes play a special role in the evolution of reproductive barriers between species. Here we describe conflicting roles of nascent sex chromosomes on patterns of introgression in an experimental hybrid swarm. Drosophila nasuta and Drosophila albomicans are recently diverged, fully fertile sister species that have different sex chromosome systems. The fusion between an autosome (Muller CD) with the ancestral X and Y gave rise to neo-sex chromosomes in D. albomicans, while Muller CD remains unfused in D. nasuta. We found that a large block containing overlapping inversions on the neo-sex chromosome stood out as the strongest barrier to introgression. Intriguingly, the neo-sex chromosome introgression barrier is asymmetrical and sex-dependent. Female hybrids showed significant D. albomicans–biased introgression on Muller CD (neo-X excess), while males showed heterosis with excessive (neo-X, D. nasuta Muller CD) genotypes. We used a population genetic model to dissect the interplay of sex chromosome drive, heterospecific pairing incompatibility between the neo-sex chromosomes and unfused Muller CD, neo-Y disadvantage, and neo-X advantage in generating the observed sex chromosome genotypes in females and males. We show that moderate neo-Y disadvantage and D. albomicans specific meiotic drive are required to observe female-specific D. albomicans–biased introgression in this system, together with pairing incompatibility and neo-X advantage. In conclusion, this hybrid swarm between a young species pair sheds light onto the multifaceted roles of neo-sex chromosomes in a sex-dependent asymmetrical introgression barrier at a species boundary.
Collapse
|
43
|
Ferreira PHN, Souza FHS, de Moraes RL, Perez MF, Sassi FDMC, Viana PF, Feldberg E, Ezaz T, Liehr T, Bertollo LAC, Cioffi MDB. The Genetic Differentiation of Pyrrhulina (Teleostei, Characiformes) Species is Likely Influenced by Both Geographical Distribution and Chromosomal Rearrangements. Front Genet 2022; 13:869073. [PMID: 35601496 PMCID: PMC9114635 DOI: 10.3389/fgene.2022.869073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Allopatry is generally considered to be one of the main contributors to the remarkable Neotropical biodiversity. However, the role of chromosomal rearrangements including neo-sex chromosomes for genetic diversity is still poorly investigated and understood. Here, we assess the genetic divergence in five Pyrrhulina species using population genomics and combined the results with previously obtained cytogenetic data, highlighting that molecular genetic diversity is consistent with their chromosomal features. The results of a principal coordinate analysis (PCoA) indicated a clear difference among all species while showing a closer relationship of the ones located in the same geographical region. This was also observed in genetic structure analyses that only grouped P. australis and P. marilynae, which were also recovered as sister species in a species tree analysis. We observed a contradictory result for the relationships among the three species from the Amazon basin, as the phylogenetic tree suggested P. obermulleri and P. semifasciata as sister species, while the PCoA showed a high genetic difference between P. semifasciata and all other species. These results suggest a potential role of sex-related chromosomal rearrangements as reproductive barriers between these species.
Collapse
Affiliation(s)
- Pedro H. N. Ferreira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fernando H. S. Souza
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Renata L. de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Manolo F. Perez
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Francisco de M. C. Sassi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, NSW, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Friedrich Schiller University, University Hospital Jena, Jena, Germany
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo de B. Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
44
|
Yoshitake K, Ishikawa A, Yonezawa R, Kinoshita S, Kitano J, Asakawa S. Construction of a chromosome-level Japanese stickleback species genome using ultra-dense linkage analysis with single-cell sperm sequencing. NAR Genom Bioinform 2022; 4:lqac026. [PMID: 35372836 PMCID: PMC8969643 DOI: 10.1093/nargab/lqac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
It is still difficult to construct the genomes of higher organisms as their genome sequences must be extended to the length of the chromosome by linkage analysis. In this study, we attempted to provide an innovative alternative to conventional linkage analysis by devising a method to genotype sperm using 10× Genomics single-cell genome sequencing libraries to generate a linkage map without interbreeding individuals. A genome was assembled using sperm from the Japanese stickleback Gasterosteus nipponicus, with single-cell genotyping yielding 1 864 430 very dense hetero-SNPs and an average coverage per sperm cell of 0.13×. In total, 1665 sperm were used, which is an order of magnitude higher than the number of recombinations used for conventional linkage analysis. We then improved the linkage analysis tool scaffold extender with low depth linkage analysis (SELDLA) to analyze the data according to the characteristics of the single-cell genotyping data. Finally, we were able to determine the chromosomal location (97.1%) and orientation (64.4%) of the contigs in the 456 Mb genome of G. nipponicus, sequenced using nanopores. This method promises to be a useful tool for determining the genomes of non-model organisms for which breeding systems have not yet been established by linkage analysis.
Collapse
Affiliation(s)
- Kazutoshi Yoshitake
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Ryo Yonezawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| |
Collapse
|
45
|
Huang Z, De O Furo I, Liu J, Peona V, Gomes AJB, Cen W, Huang H, Zhang Y, Chen D, Xue T, Zhang Q, Yue Z, Wang Q, Yu L, Chen Y, Suh A, de Oliveira EHC, Xu L. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat Commun 2022; 13:944. [PMID: 35177601 PMCID: PMC8854603 DOI: 10.1038/s41467-022-28585-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The karyotype of most birds has remained considerably stable during more than 100 million years' evolution, except for some groups, such as parrots. The evolutionary processes and underlying genetic mechanism of chromosomal rearrangements in parrots, however, are poorly understood. Here, using chromosome-level assemblies of four parrot genomes, we uncover frequent chromosome fusions and fissions, with most of them occurring independently among lineages. The increased activities of chromosomal rearrangements in parrots are likely associated with parrot-specific loss of two genes, ALC1 and PARP3, that have known functions in the repair of double-strand breaks and maintenance of genome stability. We further find that the fusion of the ZW sex chromosomes and chromosome 11 has created a pair of neo-sex chromosomes in the ancestor of parrots, and the chromosome 25 has been further added to the sex chromosomes in monk parakeet. Together, the combination of our genomic and cytogenetic analyses characterizes the complex evolutionary history of chromosomal rearrangements and sex chromosomes in parrots.
Collapse
Affiliation(s)
- Zhen Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Ivanete De O Furo
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, PA, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Jing Liu
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Valentina Peona
- Department of Organismal Biology, Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | | | - Wan Cen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Hao Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Ting Xue
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Qiujin Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics; International Cancer Center; and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, China
| | - Quanxi Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
| | - Lingyu Yu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| | - Alexander Suh
- Department of Organismal Biology, Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Edivaldo H C de Oliveira
- Programa de Pós-graduação em Genética e Biologia Molecular, PPGBM, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luohao Xu
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
46
|
Integrating Cytogenetics and Population Genomics: Allopatry and Neo-Sex Chromosomes May Have Shaped the Genetic Divergence in the Erythrinus erythrinus Species Complex (Teleostei, Characiformes). BIOLOGY 2022; 11:biology11020315. [PMID: 35205181 PMCID: PMC8869172 DOI: 10.3390/biology11020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Fish present astonishing diversity, comprising more species than the combined total of all other vertebrates. Here, we integrated cytogenetic and genomic data to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation in the fish species Erythrinus erythrinus. We hypothesized that the presence of multiple sex chromosomes has contributed to the genetic differentiation of populations, which could have potentially accelerated speciation. Abstract Diversity found in Neotropical freshwater fish is remarkable. It can even hinder a proper delimitation of many species, with the wolf fish Erythrinus erythrinus (Teleostei, Characiformes) being a notable example. This nominal species shows remarkable intra-specific variation, with extensive karyotype diversity found among populations in terms of different diploid chromosome numbers (2n), karyotype compositions and sex chromosome systems. Here, we analyzed three distinct populations (one of them cytogenetically investigated for the first time) that differed in terms of their chromosomal features (termed karyomorphs) and by the presence or absence of heteromorphic sex chromosomes. We combined cytogenetics with genomic approaches to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation. The results indicated the presence of high genetic differentiation among populations both from cytogenetic and genomic aspects, with long-distance allopatry potentially being the main agent of genetic divergence. One population showed a neo-X1X2Y sexual chromosome system and we hypothesize that this system is associated with enhanced inter-population genetic differentiation which could have potentially accelerated speciation compared to the effect of allopatry alone.
Collapse
|
47
|
Edvardsen RB, Wallerman O, Furmanek T, Kleppe L, Jern P, Wallberg A, Kjærner-Semb E, Mæhle S, Olausson SK, Sundström E, Harboe T, Mangor-Jensen R, Møgster M, Perrichon P, Norberg B, Rubin CJ. Heterochiasmy and the establishment of gsdf as a novel sex determining gene in Atlantic halibut. PLoS Genet 2022; 18:e1010011. [PMID: 35134055 PMCID: PMC8824383 DOI: 10.1371/journal.pgen.1010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/22/2021] [Indexed: 01/29/2023] Open
Abstract
Atlantic Halibut (Hippoglossus hippoglossus) has a X/Y genetic sex determination system, but the sex determining factor is not known. We produced a high-quality genome assembly from a male and identified parts of chromosome 13 as the Y chromosome due to sequence divergence between sexes and segregation of sex genotypes in pedigrees. Linkage analysis revealed that all chromosomes exhibit heterochiasmy, i.e. male-only and female-only meiotic recombination regions (MRR/FRR). We show that FRR/MRR intervals differ in nucleotide diversity and repeat class content and that this is true also for other Pleuronectidae species. We further show that remnants of a Gypsy-like transposable element insertion on chr13 promotes early male specific expression of gonadal somatic cell derived factor (gsdf). Less than 4.5 MYA, this male-determining element evolved on an autosomal FRR segment featuring pre-existing male meiotic recombination barriers, thereby creating a Y chromosome. Our findings indicate that heterochiasmy may facilitate the evolution of genetic sex determination systems relying on linkage of sexually antagonistic loci to a sex-determining factor. Even closely related fish species can have different sex chromosomes, but this turn-over of sex determination systems is poorly understood. Here, we used large-scale genome sequencing to determine the DNA sequence of the Atlantic halibut chromosomes and compared sequencing data from males and females to identify the sex chromosomes. We show that males have much higher gene activity of the gene gonadal somatic cell derived factor (gsdf), which is located on the sex chromosomes and has a role in testicular development. The genome contains many mobile DNA sequences, transposable elements (TEs), one placed in front of gsdf, enhancing its activity. This made gsdf the sex determining factor, thereby creating a new Y-chromosome. We further describe how all Atlantic halibut chromosomes behave similar to sex chromosomes in that most regions only recombine in one sex. This phenomenon may contribute to the rapid turn-over of genetic sex determination systems in fish. Our results highlight the molecular events creating a new Y-chromosome and show that the new Atlantic halibut Y was formed less than 4.5 million years ago. Future studies in Atlantic halibut and closely related species can shed light on mechanisms contributing to sex chromosome evolution in fish.
Collapse
Affiliation(s)
| | | | | | - Lene Kleppe
- Institute of Marine Research, Bergen, Norway
| | | | | | | | - Stig Mæhle
- Institute of Marine Research, Bergen, Norway
| | | | | | | | | | | | | | | | - Carl-Johan Rubin
- Institute of Marine Research, Bergen, Norway
- Uppsala University, Uppsala, Sweden
- * E-mail: (RBE); (C-JR)
| |
Collapse
|
48
|
Go AC, Civetta A. Divergence of X-linked trans regulatory proteins and the misexpression of gene targets in sterile Drosophila pseudoobscura hybrids. BMC Genomics 2022; 23:30. [PMID: 34991488 PMCID: PMC8740060 DOI: 10.1186/s12864-021-08267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetic basis of hybrid incompatibilities is characterized by pervasive cases of gene interactions. Sex chromosomes play a major role in speciation and X-linked hybrid male sterility (HMS) genes have been identified. Interestingly, some of these genes code for proteins with DNA binding domains, suggesting a capability to act as trans-regulatory elements and disturb the expression of a large number of gene targets. To understand how interactions between trans- and cis-regulatory elements contribute to speciation, we aimed to map putative X-linked trans-regulatory elements and to identify gene targets with disrupted gene expression in sterile hybrids between the subspecies Drosophila pseudoobscura pseudoobscura and D. p. bogotana. RESULTS We find six putative trans-regulatory proteins within previously mapped X chromosome HMS loci with sequence changes that differentiate the two subspecies. Among them, the previously characterized HMS gene Overdrive (Ovd) had the largest number of amino acid changes between subspecies, with some substitutions localized within the protein's DNA binding domain. Using an introgression approach, we detected transcriptional responses associated with a sterility/fertility Ovd allele swap. We found a network of 52 targets of Ovd and identified cis-regulatory effects among target genes with disrupted expression in sterile hybrids. However, a combined analysis of polymorphism and divergence in non-coding sequences immediately upstream of target genes found no evidence of changes in candidate regulatory proximal cis-elements. Finally, peptidases were over-represented among target genes. CONCLUSIONS We provide evidence of divergence between subspecies within the DNA binding domain of the HMS protein Ovd and identify trans effects on the expression of 52 gene targets. Our results identify a network of trans-cis interactions with possible effects on HMS. This network provides molecular evidence of gene × gene incompatibilities as contributors to hybrid dysfunction.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
49
|
Liu Z, Roesti M, Marques D, Hiltbrunner M, Saladin V, Peichel CL. Chromosomal fusions facilitate adaptation to divergent environments in threespine stickleback. Mol Biol Evol 2021; 39:6462204. [PMID: 34908155 PMCID: PMC8826639 DOI: 10.1093/molbev/msab358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromosomal fusions are hypothesized to facilitate adaptation to divergent environments, both by bringing together previously unlinked adaptive alleles and by creating regions of low recombination that facilitate the linkage of adaptive alleles; but, there is little empirical evidence to support this hypothesis. Here, we address this knowledge gap by studying threespine stickleback (Gasterosteus aculeatus), in which ancestral marine fish have repeatedly adapted to freshwater across the northern hemisphere. By comparing the threespine and ninespine stickleback (Pungitius pungitius) genomes to a de novo assembly of the fourspine stickleback (Apeltes quadracus) and an outgroup species, we find two chromosomal fusion events involving the same chromosomes have occurred independently in the threespine and ninespine stickleback lineages. On the fused chromosomes in threespine stickleback, we find an enrichment of quantitative trait loci underlying traits that contribute to marine versus freshwater adaptation. By comparing whole-genome sequences of freshwater and marine threespine stickleback populations, we also find an enrichment of regions under divergent selection on these two fused chromosomes. There is elevated genetic diversity within regions under selection in the freshwater population, consistent with a simulation study showing that gene flow can increase diversity in genomic regions associated with local adaptation and our demographic models showing gene flow between the marine and freshwater populations. Integrating our results with previous studies, we propose that these fusions created regions of low recombination that enabled the formation of adaptative clusters, thereby facilitating freshwater adaptation in the face of recurrent gene flow between marine and freshwater threespine sticklebacks.
Collapse
Affiliation(s)
- Zuyao Liu
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marius Roesti
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - David Marques
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland.,Natural History Museum Basel, Basel, Switzerland
| | - Melanie Hiltbrunner
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Verena Saladin
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Dahms C, Kemppainen P, Zanella LN, Zanella D, Carosi A, Merilä J, Momigliano P. Cast away in the Adriatic: Low degree of parallel genetic differentiation in three-spined sticklebacks. Mol Ecol 2021; 31:1234-1253. [PMID: 34843145 DOI: 10.1111/mec.16295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
The three-spined stickleback (Gasterosteus aculeatus) has repeatedly and independently adapted to freshwater habitats from standing genetic variation (SGV) following colonization from the sea. However, in the Mediterranean Sea G. aculeatus is believed to have gone extinct, and thus the spread of locally adapted alleles between different freshwater populations via the sea since then has been highly unlikely. This is expected to limit parallel evolution, that is the extent to which phylogenetically related alleles can be shared among independently colonized freshwater populations. Using whole genome and 2b-RAD sequencing data, we compared levels of genetic differentiation and genetic parallelism of 15 Adriatic stickleback populations to 19 Pacific, Atlantic and Caspian populations, where gene flow between freshwater populations across extant marine populations is still possible. Our findings support previous studies suggesting that Adriatic populations are highly differentiated (average FST ≈ 0.45), of low genetic diversity and connectivity, and likely to stem from multiple independent colonizations during the Pleistocene. Linkage disequilibrium network analyses in combination with linear mixed models nevertheless revealed several parallel marine-freshwater differentiated genomic regions, although still not to the extent observed elsewhere in the world. We hypothesize that current levels of genetic parallelism in the Adriatic lineages are a relic of freshwater adaptation from SGV prior to the extinction of marine sticklebacks in the Mediterranean that has persisted despite substantial genetic drift experienced by the Adriatic stickleback isolates.
Collapse
Affiliation(s)
- Carolin Dahms
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Linda N Zanella
- Department of Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Davor Zanella
- Department of Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Division for Ecology and Biodiversity, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|