1
|
Wang M, Chul Kim Y, Meng Y, Chatterjee S, Bakharev P, Luo D, Gong Y, Abadie T, Hyeok Kim M, Sitek J, Kyung Seong W, Lee G, Ruoff RS. Growth Kinetics of Graphene on Cu(111) Foils from Methane, Ethyne, Ethylene, and Ethane. Angew Chem Int Ed Engl 2024:e202412131. [PMID: 39466964 DOI: 10.1002/anie.202412131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 10/30/2024]
Abstract
Chemical vapor deposition of carbon precursors on Cu-based substrates at temperatures exceeding 1000 °C is currently a typical route for the scalable synthesis of large-area high-quality single-layer graphene (SLG) films. Using molecules with higher activities than CH4 may afford lower growth temperatures that might yield fold- and wrinkle-free graphene. The kinetics of growth of graphene using hydrocarbons other than CH4 are of interest to the scientific and industrial communities. We measured the growth rates of graphene islands on Cu(111) foils by using C2H2, C2H4, C2H6 and CH4, respectively (each mixed with H2). From such kinetics data we obtain the activation enthalpy (ΔH≠) of graphene growth as shown in parentheses (C2H2 (0.93±0.09 eV); C2H4 (2.05±0.19 eV); C2H6 (2.50±0.11 eV); CH4 (4.59±0.26 eV)); C2Hy (y=2, 4, 6) show similar growth behavior but CH4 is different. Computational fluid dynamics and density functional theory simulations suggest that C2Hy differs from CH4 due to different values of adsorption energy and the lifetime of relevant carbon precursors on the Cu(111) surface. Combining experimental and simulation results, we find that the rate determining step (RDS) is the dissociation of the first C-H bond of CH4 molecules in the gas phase, while the RDS using C2Hy is the first dehydrogenation of adsorbed C2Hy that happens with assistance of H atoms adsorbed on the Cu(111) surface. By using C2H2 as the carbon precursor, high-quality single-crystal adlayer-free SLG films are achieved on Cu(111) foils at 900 °C.
Collapse
Affiliation(s)
- Meihui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yong Chul Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| | - Yongqiang Meng
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Shahana Chatterjee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Make Materials, M5B, Toronto, Canada
| | - Pavel Bakharev
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| | - Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| | - Yan Gong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Thomas Abadie
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, United Kingdom
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| | - Min Hyeok Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Jakub Sitek
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Won Kyung Seong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Zeng J, Wang Y, Zhang C, Wang Q, Gao L, Sun D, Jiang X, Hu M, Yang L, Xie D, Hao Y, Hu Z, Wang X. Biomass-Derived Carbon With Large Interlayer Spacing for Anode of Potassium Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410132. [PMID: 39428856 DOI: 10.1002/adma.202410132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/12/2024] [Indexed: 10/22/2024]
Abstract
Potassium-ion batteries (PIBs) are emerging as powerful candidate for grid-oriented energy storage owing to their potentially low cost. Carbon is considered the promising anode for PIBs on the basis of its high conductivity and abundant sources. The biggest challenge confronted by carbon anodes lies in insufficient cycle life as well as rate capability, resulting from the limited interlayer spacing of the sp2-hybrid carbon incompatible with the large-radius potassium. Herein, a biomass-derived carbon with a large interlayer spacing of 0.44 nm is fabricated via a zinc-assisted pyrolysis synthesis. The unique structure endows the carbon with superior capacity, rate capability, and cycle durability. The large interlayer spacing of carbons can promote fast potassium diffusion and alleviate the volume expansion during potassiation, conferring those rate capabilities and cycleability. The interconnected network structure is also able to shorten both the transport distances of electrons and ions. The demonstration exemplifies an advanced carbon for anodes of PIBs for energy storage applications.
Collapse
Affiliation(s)
- Yue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Jinjue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Yanjun Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Chen Zhang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Qi Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Lei Gao
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Dandan Sun
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiangfen Jiang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Ming Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai, 200241, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Daiqian Xie
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yufeng Hao
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Sharme RK, Quijada M, Terrones M, Rana MM. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4559. [PMID: 39336302 PMCID: PMC11432801 DOI: 10.3390/ma17184559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.
Collapse
Affiliation(s)
- Razia Khan Sharme
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| | - Manuel Quijada
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA;
| | - Mukti M. Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|
4
|
Usman A, Qin M, Xiong F, Aftab W, Shen Z, Bashir A, Han H, Han S, Zou R. MXene-Integrated Solid-Solid Phase Change Composites for Accelerating Solar-Thermal Energy Storage and Electric Conversion. SMALL METHODS 2024; 8:e2301458. [PMID: 38326035 DOI: 10.1002/smtd.202301458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Indexed: 02/09/2024]
Abstract
The high thermal storage density of phase change materials (PCMs) has attracted considerable attention in solar energy applications. However, the practicality of PCMs is often limited by the problems of leakage, poor solar-thermal conversion capability, and low thermal conductivity, resulting in low-efficiency solar energy storage. In this work, a new system of MXene-integrated solid-solid PCMs is presented as a promising solution for a solar-thermal energy storage and electric conversion system with high efficiency and energy density. The composite system's performance is enhanced by the intrinsic photo-thermal behavior of MXene and the heterogeneous phase transformation properties of PCM molecular chains. The optimal composites system has an impressive solar thermal energy storage efficiency of up to 94.5%, with an improved energy storage capacity of 149.5 J g-1, even at a low MXene doping level of 5 wt.%. Additionally, the composite structure shows improved thermal conductivity and high thermal cycling stability. Furthermore, a proof-of-concept solar-thermal-electric conversion device is designed based on the optimized M-SSPCMs and commercial thermoelectric generators, which exhibit excellent energy conversion efficiency. The results of this study highlight the potential of the developed PCM composites in high-efficiency solar energy utilization for advanced photo-thermal systems.
Collapse
Affiliation(s)
- Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mulin Qin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhenghui Shen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Akbar Bashir
- HEDPS/Center for Applied Physics and Technology, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haiwei Han
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shenghui Han
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Institute of Clean Energy, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Chen Y, Shi Z, Lv B, Zhang W, Zhang S, Zang H, Yue Y, Jiang K, Ben J, Jia Y, Liu M, Lu S, Sun R, Wu T, Li S, Sun X, Li D. In Situ Growth of Wafer-Scale Patterned Graphene and Fabrication of Optoelectronic Artificial Synaptic Device Array Based on Graphene/n-AlGaN Heterojunction for Visual Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401150. [PMID: 38506563 DOI: 10.1002/smll.202401150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/10/2024] [Indexed: 03/21/2024]
Abstract
The unique optical and electrical properties of graphene-based heterojunctions make them significant for artificial synaptic devices, promoting the advancement of biomimetic vision systems. However, mass production and integration of device arrays are necessary for visual imaging, which is still challenging due to the difficulty in direct growth of wafer-scale graphene patterns. Here, a novel strategy is proposed using photosensitive polymer as a solid carbon source for in situ growth of patterned graphene on diverse substrates. The growth mechanism during high-temperature annealing is elucidated, leading to wafer-scale graphene patterns with exceptional uniformity, ideal crystalline quality, and precise control over layer number by eliminating the release of volatile from oxygen-containing resin. The growth strategy enables the fabrication of two-inch optoelectronic artificial synaptic device array based on graphene/n-AlGaN heterojunction, which emulates key functionalities of biological synapses, including short-term plasticity, long-term plasticity, and spike-rate-dependent plasticity. Moreover, the mimicry of visual learning in the human brain is attributed to the regulation of excitatory and inhibitory post-synapse currents, following a learning rule that prioritizes initial recognition before memory formation. The duration of long-term memory reaches 10 min. The in situ growth strategy for patterned graphene represents the novelty for fabricating fundamental hardware of an artificial neuromorphic system.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Zhiming Shi
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Bingchen Lv
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Wei Zhang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Shanli Zhang
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Hang Zang
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Yuanyuan Yue
- School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun, 130117, P. R. China
| | - Ke Jiang
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Jianwei Ben
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Yuping Jia
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Mingrui Liu
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Shunpeng Lu
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Rui Sun
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Tong Wu
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Shaojuan Li
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Dabing Li
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| |
Collapse
|
6
|
Liu C, Liu T, Zhang Z, Sun Z, Zhang G, Wang E, Liu K. Understanding epitaxial growth of two-dimensional materials and their homostructures. NATURE NANOTECHNOLOGY 2024; 19:907-918. [PMID: 38987649 DOI: 10.1038/s41565-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The exceptional physical properties of two-dimensional (2D) van der Waals (vdW) materials have been extensively researched, driving advances in material synthesis. Epitaxial growth, a prominent synthesis strategy, enables the production of large-area, high-quality 2D films compatible with advanced integrated circuits. Typical 2D single crystals, such as graphene, transition metal dichalcogenides and hexagonal boron nitride, have been epitaxially grown at a wafer scale. A systematic summary is required to offer strategic guidance for the epitaxy of emerging 2D materials. Here we focus on the epitaxy methodologies for 2D vdW materials in two directions: the growth of in-plane single-crystal monolayers and the fabrication of out-of-plane homostructures. We first discuss nucleation control of a single domain and orientation control over multiple domains to achieve large-scale single-crystal monolayers. We analyse the defect levels and measures of crystalline quality of typical 2D vdW materials with various epitaxial growth techniques. We then outline technical routes for the growth of homogeneous multilayers and twisted homostructures. We further summarize the current strategies to guide future efforts in optimizing on-demand fabrication of 2D vdW materials, as well as subsequent device manufacturing for their industrial applications.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing, China
| | - Tianyao Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Espoo, Finland
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Enge Wang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| |
Collapse
|
7
|
Gao Y, Pham VH, Weidman J, Kim KJ, Spaulding RE, Wang C, Matranga CS. High-performance cementitious composites containing nanostructured carbon additives made from charred coal fines. Sci Rep 2024; 14:8912. [PMID: 38632297 PMCID: PMC11024156 DOI: 10.1038/s41598-024-59046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Carbon-based nanomaterials, such as carbon nanoplatelets, graphene oxide, and carbon quantum dots, have many possible end-use applications due to their ability to impart unique mechanical, electrical, thermal, and optical properties to cement composites. Despite this potential, these materials are rarely used in the construction industry due to high material costs and limited data on performance and durability. In this study, domestic coal is used to fabricate low-cost carbon nanomaterials that can be used economically in cement formulations. A range of chemical and physical processing approaches are employed to control the size, morphology, and chemical functionalization of the carbon nanomaterial, which improves its miscibility with cement formulations and its impact on mechanical properties and durability. At loadings of 0.01 to 0.07 wt.% of coal-derived carbon nanomaterial, the compressive and flexural strength of cement samples are enhanced by 24% and 23%, respectively, in comparison to neat cement. At loadings of 0.02 to 0.06 wt.%, the compressive and flexural strength of concrete composites increases by 28% and 21%, respectively, in comparison to neat samples. Additionally, the carbon nanomaterial additives studied in this work reduce cement porosity by 36%, permeability by 86%, and chloride penetration depth by 60%. These results illustrate that low-loadings of coal-derived carbon nanomaterial additives can improve the mechanical properties, durability, and corrosion resistance of cement composites.
Collapse
Affiliation(s)
- Yuan Gao
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA.
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA.
| | - Viet Hung Pham
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Jennifer Weidman
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Ki-Joong Kim
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Richard E Spaulding
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Congjun Wang
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Christopher S Matranga
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| |
Collapse
|
8
|
Gautam C, Thakurta B, Pal M, Ghosh AK, Giri A. Wafer scale growth of single crystal two-dimensional van der Waals materials. NANOSCALE 2024; 16:5941-5959. [PMID: 38445855 DOI: 10.1039/d3nr06678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two-dimensional (2D) van der Waals (vdW) materials, including graphene, hexagonal boron nitride (hBN), and metal dichalcogenides (MCs), form the basis of modern electronics and optoelectronics due to their unique electronic structure, chemical activity, and mechanical strength. Despite many proof-of-concept demonstrations so far, to fully realize their large-scale practical applications, especially in devices, wafer-scale single crystal atomically thin highly uniform films are indispensable. In this minireview, we present an overview on the strategies and highlight recent significant advances toward the synthesis of wafer-scale single crystal graphene, hBN, and MC 2D thin films. Currently, there are five distinct routes to synthesize wafer-scale single crystal 2D vdW thin films: (i) nucleation-controlled growth by suppressing the nucleation density, (ii) unidirectional alignment of multiple epitaxial nuclei and their seamless coalescence, (iii) self-collimation of randomly oriented grains on a molten metal, (iv) surface diffusion and epitaxial self-planarization and (v) seed-mediated 2D vertical epitaxy. Finally, the challenges that need to be addressed in future studies have also been described.
Collapse
Affiliation(s)
- Chetna Gautam
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India.
| | - Baishali Thakurta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India
| | - Monalisa Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India
| | - Anup Kumar Ghosh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India.
| | - Anupam Giri
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, UP-211002, India
| |
Collapse
|
9
|
Singh AK, Thakurta B, Giri A, Pal M. Wafer-scale synthesis of two-dimensional ultrathin films. Chem Commun (Camb) 2024; 60:265-279. [PMID: 38087984 DOI: 10.1039/d3cc04610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Two-dimensional (2D) materials, consisting of atomically thin layered crystals, have attracted tremendous interest due to their outstanding intrinsic properties and diverse applications in electronics, optoelectronics, and catalysis. The large-scale growth of high-quality ultrathin 2D films and their utilization in the facile fabrication of devices, easily adoptable in industrial applications, have been extensively sought after during the last decade; however, it remains a challenge to achieve these goals. Herein, we introduce three key concepts: (i) the microwave assisted quick (∼1 min) synthesis of wafer-scale (6-inch) anisotropic conducting ultrathin (∼1 nm) amorphous carbon and 2D semiconducting metal chalcogenide atomically thin films, (ii) a polymer-assisted deposition process for the synthesis of wafer-scale (6-inch) 2D metal chalcogenide and pyrolyzed carbon thin films, and (iii) the surface diffusion and epitaxial self-planarization induced synthesis of wafer-scale (2-inch) single crystal 2D binary and large-grain 2D ferromagnetic ternary metal chalcogenide thin films. The proposed synthesis concepts can pave a new way for the manufacture of wafer-scale high quality 2D ultrathin films and their utilization in the facile fabrication of devices.
Collapse
Affiliation(s)
- Amresh Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005, India.
| | - Baishali Thakurta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005, India.
| | - Anupam Giri
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, UP 211002, India.
| | - Monalisa Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005, India.
| |
Collapse
|
10
|
Li Y, Zhou K, Ci H, Sun J. Recent Advances in Transfer-Free Synthesis of High-Quality Graphene. CHEMSUSCHEM 2023; 16:e202300865. [PMID: 37491687 DOI: 10.1002/cssc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
High-quality graphene obtained by chemical vapor deposition (CVD) technique holds significant importance in constructing innovative electronic and optoelectronic devices. Direct growth of graphene over target substrates readily eliminates cumbersome transfer processes, offering compatibility with practical application scenarios. Recent years have witnessed growing strategic endeavors in the preparation of transfer-free graphene with favorable quality. Nevertheless, timely review articles on this topic are still scarce. In this contribution, a systematic summary of recent advances in transfer-free synthesis of high-quality graphene on insulating substrates, with a focus on discussing synthetic strategies designed by elevating reaction temperature, confining gas flow, introducing growth promotor and regulating substrate surface is presented.
Collapse
Affiliation(s)
- Yinghan Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaixuan Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Haina Ci
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
11
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Hao L, Zhang J, Liu J, Min Y, Chen C. Applications of Carbon-Based Materials in Activated Peroxymonosulfate for the Degradation of Organic Pollutants: A Review. CHEM REC 2023:e202300203. [PMID: 37639150 DOI: 10.1002/tcr.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Indexed: 08/29/2023]
Abstract
In recent years, water pollution has posed a serious threat to aquatic organisms and humans. Advanced oxidation processes (AOPs) based on activated peroxymonosulfate (PMS) show high oxidation, good selectivity, wide pH range and no secondary pollution in the removal of organic pollutants in water. Carbon-based materials are emerging green catalysts that can effectively activate persulfates to generate radical and non-radical active species to degrade organic pollutants. Compared with transition metal catalysts, carbon-based materials are widely used in SR-AOPs because of their low cost, non-toxicity, acid and alkali resistance, large specific surface area, and scalable surface charge, which can be used for selective control of specific water pollutants. This paper mainly presents several carbon-based materials used to activate PMS, including raw carbon materials and modified carbon materials (heteroatom-doped and metal-doped), analyzes and summarizes the mechanism of activating PMS by carbon-based catalysts, and discusses the influencing factors (temperature, pH, PMS concentration, catalyst concentration, inorganic anions, inorganic cations and dissolved oxygen) in the activation process. Finally, the future challenges and prospects of carbon-based materials in water pollution control are also presented.
Collapse
Affiliation(s)
- Liangyun Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junkai Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jia Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuting Min
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chunguang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
13
|
Huang Y, Ni J, Shi X, Wang Y, Yao S, Liu Y, Fan T. Two-Step Thermal Transformation of Multilayer Graphene Using Polymeric Carbon Source Assisted by Physical Vapor Deposited Copper. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5603. [PMID: 37629894 PMCID: PMC10456611 DOI: 10.3390/ma16165603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Direct in situ growth of graphene on dielectric substrates is a reliable method for overcoming the challenges of complex physical transfer operations, graphene performance degradation, and compatibility with graphene-based semiconductor devices. A transfer-free graphene synthesis based on a controllable and low-cost polymeric carbon source is a promising approach for achieving this process. In this paper, we report a two-step thermal transformation method for the copper-assisted synthesis of transfer-free multilayer graphene. Firstly, we obtained high-quality polymethyl methacrylate (PMMA) film on a 300 nm SiO2/Si substrate using a well-established spin-coating process. The complete thermal decomposition loss of PMMA film was effectively avoided by introducing a copper clad layer. After the first thermal transformation process, flat, clean, and high-quality amorphous carbon films were obtained. Next, the in situ obtained amorphous carbon layer underwent a second copper sputtering and thermal transformation process, which resulted in the formation of a final, large-sized, and highly uniform transfer-free multilayer graphene film on the surface of the dielectric substrate. Multi-scale characterization results show that the specimens underwent different microstructural evolution processes based on different mechanisms during the two thermal transformations. The two-step thermal transformation method is compatible with the current semiconductor process and introduces a low-cost and structurally controllable polymeric carbon source into the production of transfer-free graphene. The catalytic protection of the copper layer provides a new direction for accelerating the application of graphene in the field of direct integration of semiconductor devices.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.)
| | - Tongxiang Fan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.)
| |
Collapse
|
14
|
Melethil K, Kumar MS, Wu CM, Shen HH, Vedhanarayanan B, Lin TW. Recent Progress of 2D Layered Materials in Water-in-Salt/Deep Eutectic Solvent-Based Liquid Electrolytes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1257. [PMID: 37049350 PMCID: PMC10097202 DOI: 10.3390/nano13071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Supercapacitors are candidates with the greatest potential for use in sustainable energy resources. Extensive research is being carried out to improve the performances of state-of-art supercapacitors to meet our increased energy demands because of huge technological innovations in various fields. The development of high-performing materials for supercapacitor components such as electrodes, electrolytes, current collectors, and separators is inevitable. To boost research in materials design and production toward supercapacitors, the up-to-date collection of recent advancements is necessary for the benefit of active researchers. This review summarizes the most recent developments of water-in-salt (WIS) and deep eutectic solvents (DES), which are considered significant electrolyte systems to advance the energy density of supercapacitors, with a focus on two-dimensional layered nanomaterials. It provides a comprehensive survey of 2D materials (graphene, MXenes, and transition-metal oxides/dichalcogenides/sulfides) employed in supercapacitors using WIS/DES electrolytes. The synthesis and characterization of various 2D materials along with their electrochemical performances in WIS and DES electrolyte systems are described. In addition, the challenges and opportunities for the next-generation supercapacitor devices are summarily discussed.
Collapse
Affiliation(s)
- Krishnakumar Melethil
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan
| | - Munusamy Sathish Kumar
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Balaraman Vedhanarayanan
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan
| |
Collapse
|
15
|
Mei J, Qiu Z, Gao T, Wu Q, Zheng F, Jiang J, Liu K, Huang Y, Wang H, Li Q. Insights into the Conductive Network of Electrochemical Exfoliation with Graphite Powder as Starting Raw Material for Graphene Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4413-4426. [PMID: 36922738 DOI: 10.1021/acs.langmuir.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrochemical exfoliation starting with graphite powder as the raw material for graphene production shows superiority in cost effectiveness over the popular bulk graphite. However, the crucial conductive network inside the graphite powder electrode along with its formation and influence mechanisms remains blank. Here, an adjustable-pressure graphite powder electrode with a sandwich structure was designed for this. Appropriate encapsulation pressure is necessary and conducive to constructing a continuous and stable conductive network, but overloaded encapsulation pressure is detrimental to the exfoliation and graphene quality. With an initial encapsulation pressure (IEP) of 4 kPa, the graphite powders expand rapidly to a final stable expansion pressure of 49 kPa with a final graphene yield of 46.3%, where 84% of the graphene sheets are less than 4 layers with ID/IG values between 0.22 and 1.24. Increasing the IEP to 52 kPa, the expansion pressure increases to 73 kPa, but the graphene yield decreases to 39.3% with a worse graphene quality including higher layers and ID/IG values of 1.68-2.13. In addition, small-size graphite powders are not suitable for the electrochemical exfoliation. With the particle size decreasing from 50 to 325 mesh, the graphene yield decreases almost linearly from 46.3% to 5.5%. Conductive network and electrolyte migration synergize and constrain each other, codetermining the electrochemical exfoliation. Within an encapsulated structure, the electrochemical exfoliation of the graphite powder electrode proceeds from the outside to the inside. The insights revealed here will provide direction for further development of electrochemical exfoliation of graphite powder to produce graphene.
Collapse
Affiliation(s)
- Jing Mei
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Zhian Qiu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Teng Gao
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Qiang Wu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Fenghua Zheng
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Juantao Jiang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Kui Liu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Youguo Huang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Hongqiang Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Qingyu Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
16
|
Pandey S, Karakoti M, Bhardwaj D, Tatrari G, Sharma R, Pandey L, Lee MJ, Sahoo NG. Recent advances in carbon-based materials for high-performance perovskite solar cells: gaps, challenges and fulfillment. NANOSCALE ADVANCES 2023; 5:1492-1526. [PMID: 36926580 PMCID: PMC10012878 DOI: 10.1039/d3na00005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Presently, carbon-based nanomaterials have shown tremendous potential for energy conversion applications. Especially, carbon-based materials have emerged as excellent candidates for the fabrication of halide perovskite-based solar cells, which may lead to their commercialization. In the last decade, PSCs have rapidly developed, and these hybrid devices demonstrate a comparable performance to silicon-based solar cells in terms of power conversion efficiency (PCE). However, PSCs lag behind silicon-based solar cells due to their poor stability and durability. Generally, noble metals such gold and silver are employed as back electrode materials during the fabrication of PSCs. However, the use of these expensive rare metals is associated with some issues, urgently necessitating the search for cost-effective materials, which can realize the commercial applications of PSCs due to their interesting properties. Thus, the present review shows how carbon-based materials can become the main candidates for the development of highly efficient and stable PSCs. Carbon-based materials such as carbon black, graphite, graphene nanosheets (2D/3D), carbon nanotubes (CNTs), carbon dots, graphene quantum dots (GQDs) and carbon nanosheets show potential for the laboratory and large-scale fabrication of solar cells and modules. Carbon-based PSCs can achieve efficient and long-term stability for both rigid and flexible substrates because of their high conductivity and excellent hydrophobicity, thus showing good results in comparison to metal electrode-based PSCs. Thus, the present review also demonstrates and discusses the latest state-of-the-art and recent advances for carbon-based PSCs. Furthermore, we present perspectives on the cost-effective synthesis of carbon-based materials for the broader view of the future sustainability of carbon-based PSCs.
Collapse
Affiliation(s)
- Sandeep Pandey
- Department of Chemistry, Konkuk University Seoul 05029 Republic of Korea
- Liquid Crystals Research Center, Konkuk University Seoul 05029 Republic of Korea
| | - Manoj Karakoti
- PRS Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University D.S.B. Campus Nainital-263001 Uttarakhand India
- Research Institute for Green Energy Convergence Technology, Gyeongsang National University Jinju 52828 Republic of Korea
| | - Dinesh Bhardwaj
- Vikas Ecotech Limited 34/1 East Punjabi Bagh New Delhi-110026 India
| | - Gaurav Tatrari
- PRS Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University D.S.B. Campus Nainital-263001 Uttarakhand India
- Chemistry of Interface, Lulea Technology University Lulea Sweden
| | - Richa Sharma
- Maharaja Agrasen Institute of Technology GGSIPU, Rohini New Delhi 110086 India
| | - Lata Pandey
- PRS Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University D.S.B. Campus Nainital-263001 Uttarakhand India
| | - Man-Jong Lee
- Department of Chemistry, Konkuk University Seoul 05029 Republic of Korea
- Liquid Crystals Research Center, Konkuk University Seoul 05029 Republic of Korea
| | - Nanda Gopal Sahoo
- PRS Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University D.S.B. Campus Nainital-263001 Uttarakhand India
| |
Collapse
|
17
|
Tian H, Ma Y, Li Z, Cheng M, Ning S, Han E, Xu M, Zhang PF, Zhao K, Li R, Zou Y, Liao P, Yu S, Li X, Wang J, Liu S, Li Y, Huang X, Yao Z, Ding D, Guo J, Huang Y, Lu J, Han Y, Wang Z, Cheng ZG, Liu J, Xu Z, Liu K, Gao P, Jiang Y, Lin L, Zhao X, Wang L, Bai X, Fu W, Wang JY, Li M, Lei T, Zhang Y, Hou Y, Pei J, Pennycook SJ, Wang E, Chen J, Zhou W, Liu L. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 2023; 615:56-61. [PMID: 36859579 DOI: 10.1038/s41586-022-05617-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 12/01/2022] [Indexed: 03/03/2023]
Abstract
Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.
Collapse
Affiliation(s)
- Huifeng Tian
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yinhang Ma
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenjiang Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Mouyang Cheng
- School of Physics, Peking University, Beijing, China
| | - Shoucong Ning
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Erxun Han
- School of Physics, Peking University, Beijing, China
| | - Mingquan Xu
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kexiang Zhao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ruijie Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yuting Zou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - PeiChi Liao
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Shulei Yu
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiaomei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jianlin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shizhuo Liu
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yifei Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xinyu Huang
- School of Materials Science and Engineering, Peking University, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Zhixin Yao
- School of Materials Science and Engineering, Peking University, Beijing, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Dongdong Ding
- School of Physics, Peking University, Beijing, China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jianming Lu
- School of Physics, Peking University, Beijing, China
| | - Yuyan Han
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Zhaosheng Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Zhi Gang Cheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Junjiang Liu
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Zhi Xu
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Peng Gao
- Songshan Lake Materials Laboratory, Dongguan, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Ying Jiang
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lifen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Wangyang Fu
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Maozhi Li
- Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing, China
| | - Ting Lei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Stephen J Pennycook
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Enge Wang
- Songshan Lake Materials Laboratory, Dongguan, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
- School of Physics, Liaoning University, Shenyang, China
| | - Ji Chen
- School of Physics, Peking University, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing, China.
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China.
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| |
Collapse
|
18
|
Gosling JH, Morozov SV, Vdovin EE, Greenaway MT, Khanin YN, Kudrynskyi Z, Patanè A, Eaves L, Turyanska L, Fromhold TM, Makarovsky O. Graphene FETs with high and low mobilities have universal temperature-dependent properties. NANOTECHNOLOGY 2023; 34:125702. [PMID: 36595273 DOI: 10.1088/1361-6528/aca981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,ρ, on gate voltage,Vg, for a series of monolayer graphene field effect transistors with mobilities,μ, ranging between 5000 and 250 000 cm2V-1s-1at low-temperature. Our measurements over a wide range of temperatures from 4 to 400 K can be fitted by the universal relationμ=4/eδnmaxfor all devices, whereρmaxis the resistivity maximum at the neutrality point andδnis an 'uncertainty' in the bipolar carrier density, given by the full width at half maximum of the resistivity peak expressed in terms of carrier density,n. This relation is consistent with thermal broadening of the carrier distribution and the presence of the disordered potential landscape consisting of so-called electron-hole puddles near the Dirac point. To demonstrate its utility, we combine this relation with temperature-dependent linearised Boltzmann transport calculations that include the effect of optical phonon scattering. This approach demonstrates the similarity in the temperature-dependent behaviour of carriers in different types of single layer graphene transistors with widely differing carrier mobilities. It can also account for the relative stability, over a wide temperature range, of the measured carrier mobility of each device.
Collapse
Affiliation(s)
- Jonathan H Gosling
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sergey V Morozov
- Institute of Microelectronics Technology RAS, Chernogolovka 142432, Russia
| | - Evgenii E Vdovin
- Institute of Microelectronics Technology RAS, Chernogolovka 142432, Russia
| | - Mark T Greenaway
- Department of Physics, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Yurii N Khanin
- Institute of Microelectronics Technology RAS, Chernogolovka 142432, Russia
| | - Zakhar Kudrynskyi
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Amalia Patanè
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Laurence Eaves
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Lyudmila Turyanska
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - T Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Oleg Makarovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
19
|
Zhang Z, Ding M, Cheng T, Qiao R, Zhao M, Luo M, Wang E, Sun Y, Zhang S, Li X, Zhang Z, Mao H, Liu F, Fu Y, Liu K, Zou D, Liu C, Wu M, Fan C, Zhu Q, Wang X, Gao P, Li Q, Liu K, Zhang Y, Bai X, Yu D, Ding F, Wang E, Liu K. Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. NATURE NANOTECHNOLOGY 2022; 17:1258-1264. [PMID: 36302961 DOI: 10.1038/s41565-022-01230-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Multilayer van der Waals (vdW) film materials have attracted extensive interest from the perspective of both fundamental research1-3 and technology4-7. However, the synthesis of large, thick, single-crystal vdW materials remains a great challenge because the lack of out-of-plane chemical bonds weakens the epitaxial relationship between neighbouring layers8-31. Here we report the continuous epitaxial growth of single-crystal graphite films with thickness up to 100,000 layers on high-index, single-crystal nickel (Ni) foils. Our epitaxial graphite films demonstrate high single crystallinity, including an ultra-flat surface, centimetre-size single-crystal domains and a perfect AB-stacking structure. The exfoliated graphene shows excellent physical properties, such as a high thermal conductivity of ~2,880 W m-1 K-1, intrinsic Young's modulus of ~1.0 TPa and low doping density of ~2.2 × 1010 cm-2. The growth of each single-crystal graphene layer is realized by step edge-guided epitaxy on a high-index Ni surface, and continuous growth is enabled by the isothermal dissolution-diffusion-precipitation of carbon atoms driven by a chemical potential gradient between the two Ni surfaces. The isothermal growth enables the layers to grow at optimal conditions, without stacking disorders or stress gradients in the final graphite. Our findings provide a facile and scalable avenue for the synthesis of high-quality, thick vdW films for various applications.
Collapse
Affiliation(s)
- Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Mingchao Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ting Cheng
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan, Korea
- College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ruixi Qiao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Mengze Zhao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Mingyan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yufei Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Shuai Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Applied Mechanics Laboratory, Tsinghua University, Beijing, China
| | - Xingguang Li
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhihong Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Hancheng Mao
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Ying Fu
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Kehai Liu
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Dingxin Zou
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Can Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Muhong Wu
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Chuanlin Fan
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qingshan Zhu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xinqiang Wang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Peng Gao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Qunyang Li
- State Key Laboratory of Tribology in Advanced Equipment, Applied Mechanics Laboratory, Tsinghua University, Beijing, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yuanbo Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan, Korea.
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| | - Enge Wang
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
- School of Physics, Liaoning University, Shenyang, China.
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| |
Collapse
|
20
|
Abstract
The accumulation of waste plastics has caused serious environmental issues due to their unbiodegradable nature and hazardous additives. Converting waste plastics to different carbon nanomaterials (CNMs) is a promising approach to minimize plastic pollution and realize advanced manufacturing of CNMs. The reported plastic-derived carbons include carbon filaments (i.e. carbon nanotubes and carbon nanofibers), graphene, carbon nanosheets, carbon sphere, and porous carbon. In this review, we present the influences of different intrinsic structures of plastics on the pyrolysis intermediates. We also reveal that non-charring plastics are prone to being pyrolyzed into light hydrocarbons while charring plastics are prone to being pyrolyzed into aromatics. Subsequently, light hydrocarbons favor to form graphite while aromatics are inclined to form amorphous carbon during the carbon formation process. In addition, the conversion tendency of different plastics into various morphologies of carbon is concluded. We also discuss other impact factors during the transformation process, including catalysts, temperature, processing duration and templates, and reveal how to obtain different morphological CNMs from plastics. Finally, current technology limitations and perspectives are presented to provide future research directions in effective plastic conversion and advanced CNM synthesis. The impact factors in transforming plastics into carbon nanomaterials are reviewed. The carbon morphology tendency from different plastics is revealed. Directions for future research on plastic carbonization are presented.
Collapse
|
21
|
Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224002. [PMID: 36432288 PMCID: PMC9694244 DOI: 10.3390/nano12224002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.e., a large surface area, pH sensitivity, and significant biocompatibility with the biological system. In recent years, GN has found applications in tissue engineering owing to its impressive stiffness, mechanical strength, electrical conductivity, and the ability to innovate in two-dimensional (2D) and three-dimensional (3D) design. It also offers a photothermic effect that potentiates the targeted killing of cells via physicochemical interactions. It is generally synthesized by physical and chemical methods and is characterized by modern and sophisticated analytical techniques such as NMR, Raman spectroscopy, electron microscopy, etc. A lot of reports show the successful conjugation of GN with existing repurposed drugs, which improves their therapeutic efficacy against many microbial infections and also its potential application in drug delivery. Thus, in this review, the antimicrobial potentialities of GN-based nanomaterials, their synthesis, and their toxicities in biological systems are discussed.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | | |
Collapse
|
22
|
Huang M, Cao X, Zhang J, Liu H, Lu J, Yi D, Ma Y. Mesosphere of Carbon-Shelled Copper Nanoparticles with High Conductivity and Thermal Stability via Direct Carbonization of Polymer Soft Templates. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7536. [PMID: 36363127 PMCID: PMC9654284 DOI: 10.3390/ma15217536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Copper nanoparticle (Cu NP) is a promising replacement for noble metal nanoparticles due to its high electrical conductivity and low cost. However, Cu NPs are relatively active compared to noble metals, and current ways of protecting Cu NPs from oxidation by encapsulation have severe drawbacks, such as a long reaction time and complicated processes. Here, a facial and effective method to prepare the mesosphere of carbon-shelled copper nanoparticles (Cu@MC) was demonstrated, and the resulting Cu@MC was both highly electrically conductive and thermally stable. Cu@organic (100 nm) was first synthesized by the reduction of Cu ions with poly (vinyl pyrrolidone) (PVP) and sodium poly ((naphthalene-formaldehyde) sulfonate) (Na-PNFS) as soft templates. Then, the carbon shells were obtained by in situ carbonization of the polymer soft templates. The Cu@organic and Cu@MC showed an anti-oxidation ability up to 175 and 250 °C in the air atmosphere, respectively. Furthermore, the Cu@MC exhibited excellent volume resistivity of 7.2 × 10-3 Ω·cm under 20 MPa, and showed promising application potential in electric sensors and devices.
Collapse
Affiliation(s)
- Min Huang
- School of Material Science and Engineering, Central South University, Changsha 410083, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyu Cao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingnan Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiqun Liu
- School of Material Science and Engineering, Central South University, Changsha 410083, China
| | - Jiaxin Lu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Danqing Yi
- School of Material Science and Engineering, Central South University, Changsha 410083, China
| | - Yongmei Ma
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Kim KW, Kim J, Choi C, Yoon HK, Go MC, Lee J, Kim JK, Seok H, Kim T, Wu K, Kim SH, Kim YM, Kwon JH, Moon HC. Soft Template-Assisted Fabrication of Mesoporous Graphenes for High-Performance Energy Storage Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46994-47002. [PMID: 36201256 DOI: 10.1021/acsami.2c12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graphene is a promising active material for electric double layer supercapacitors (EDLCs) due to its high electric conductivity and lightweight nature. However, for practical uses as a power source of electronic devices, a porous structure is advantageous to maximize specific energy density. Here, we propose a facile fabrication approach of mesoporous graphene (m-G), in which self-assembled mesoporous structures of poly(styrene)-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) are exploited as both mesostructured catalytic template and a carbon source. Notably, the mesostructured catalytic template is sufficient to act as a rigid support without structural collapse, while PS-b-P2VP converts to graphene, generating m-G with a pore diameter of ca. 3.5 nm and high specific surface area of 186 m2/g. When the EDLCs were prepared using the obtained m-G and ionic liquids, excellent electrochemical behaviors were achieved even at high operation voltages (0 ∼ 3.5 V), including a large specific capacitance (130.2 F/g at 0.2 A/g), high-energy density of 55.4 W h/kg at power density of 350 W/kg, and excellent cycle stability (>10,000 cycles). This study demonstrates that m-G is a promising material for high-performance energy storage devices.
Collapse
Affiliation(s)
- Keon-Woo Kim
- National Creative Research Initiative Center for Hybrid Nano Materials By High-level Architectural Design of Block Copolymer Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk790-784, Republic of Korea
| | - Jun Kim
- National Creative Research Initiative Center for Hybrid Nano Materials By High-level Architectural Design of Block Copolymer Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk790-784, Republic of Korea
| | - Chungryong Choi
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk39177, Republic of Korea
| | - Hyeong Keon Yoon
- National Creative Research Initiative Center for Hybrid Nano Materials By High-level Architectural Design of Block Copolymer Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk790-784, Republic of Korea
| | - Myeong Cheol Go
- National Creative Research Initiative Center for Hybrid Nano Materials By High-level Architectural Design of Block Copolymer Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk790-784, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Hybrid Nano Materials By High-level Architectural Design of Block Copolymer Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk790-784, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials By High-level Architectural Design of Block Copolymer Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk790-784, Republic of Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do16419, Republic of Korea
| | - Kaibin Wu
- School of Chemical Engineering, Yeungnam University, Gyeongsan38541, Republic of Korea
| | - Se Hyun Kim
- Division of Chemical Engineering, Konkuk University, Seoul05029, Republic of Korea
| | - Yong Min Kim
- Department of Chemical Engineering, University of Seoul, Seoul02504, Republic of Korea
| | - Jin Han Kwon
- Department of Chemical Engineering, University of Seoul, Seoul02504, Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul02504, Republic of Korea
| |
Collapse
|
24
|
Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. INORGANICS 2022. [DOI: 10.3390/inorganics10100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Providing safe drinking water and clean water is becoming a more challenging task all around the world. Although some critical issues and limits remain unsolved, implementing ecologically sustainable nanomaterials (NMs) with unique features, e.g., highly efficient and selective, earth-abundance, renewability, low-cost manufacturing procedures, and stability, has become a priority. Carbon nanoparticles (NPs) offer tremendous promise in the sectors of energy and the environment. However, a series of far more ecologically friendly synthesis techniques based on natural, renewable, and less expensive waste resources must be explored. This will reduce greenhouse gas emissions and harmful material extraction and assist the development of green technologies. The progress achieved in the previous 10 years in the fabrication of novel carbon-based NMs utilizing waste materials as well as natural precursors is reviewed in this article. Research on carbon-based NPs and their production using naturally occurring precursors and waste materials focuses on this review research. Water treatment and purification using carbon NMs, notably for industrial and pharmaceutical wastes, has shown significant potential. Research in this area focuses on enhanced carbonaceous NMs, methods, and novel nano-sorbents for wastewater, drinking water, groundwater treatment, as well as ionic metal removal from aqueous environments. Discussed are the latest developments and challenges in environmentally friendly carbon and graphene quantum dot NMs.
Collapse
|
25
|
Yin M, Wu L, Chen H, Zhang X, Wang W, Liu Z. Transparent UHF RFID tags based on CVD-grown graphene films. NANOTECHNOLOGY 2022; 33:505501. [PMID: 36049467 DOI: 10.1088/1361-6528/ac8e74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Ultra-high frequency (UHF) radio frequency identification (RFID) tags need to be attached or embedded to objects in various environments to achieve non-contact automatic identification. Graphene shows unique electrical and optical properties, which makes it become a promising material for radio frequency devices. In this paper, the transparent UHF RFID tags were fabricated based on graphene films with different number of stacked layers prepared by chemical vapor deposition (CVD). Through structural design, parameter optimization and experimental measurements, the reading distance of the transparent RFID tags was tested and compared. As the graphene film stacked layers increased, the reading distance of graphene-based RFID tags was farther. The UHF RFID tag based on the CVD-grown graphene with the light transmittance of 88% reached the maximum reading distance of 2.78 m in the frequency range of 860-960 MHz. In addition, the reading distance of graphene-based RFID tags at different bending angles and cycles was measured. The results reveal transparent graphene-based RFID tags have good flexibility and stability and can be used in flexible transparent devices.
Collapse
Affiliation(s)
- Mengqing Yin
- School of Information Science and Engineering, Ningbo University, 315201, People's Republic of China
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, CAS Engineering Laboratory for Graphene, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang 315201, People's Republic of China
| | - Liqiong Wu
- Zhejiang Graphene Manufacturing Innovation Center, Ningbo 315201, People's Republic of China
| | - Hua Chen
- School of Information Science and Engineering, Ningbo University, 315201, People's Republic of China
| | - Xiaohui Zhang
- CRRC Industrial Academy Co., Ltd, Beijing 100039, People's Republic of China
| | - Wei Wang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, CAS Engineering Laboratory for Graphene, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang 315201, People's Republic of China
| | - Zhaoping Liu
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, CAS Engineering Laboratory for Graphene, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang 315201, People's Republic of China
| |
Collapse
|
26
|
Zhao Y, Li B, Li Y, Fan X, Zhang F, Zhang G, Xia Q, Peng W. Synergistic activation of peroxymonosulfate between Co and MnO for bisphenol A degradation with enhanced activity and stability. J Colloid Interface Sci 2022; 623:775-786. [DOI: 10.1016/j.jcis.2022.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
|
27
|
Goyat R, Saharan Y, Singh J, Umar A, Akbar S. Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review. Molecules 2022; 27:6433. [PMID: 36234970 PMCID: PMC9571129 DOI: 10.3390/molecules27196433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
The term graphene was coined using the prefix "graph" taken from graphite and the suffix "-ene" for the C=C bond, by Boehm et al. in 1986. The synthesis of graphene can be done using various methods. The synthesized graphene was further oxidized to graphene oxide (GO) using different methods, to enhance its multitude of applications. Graphene oxide (GO) is the oxidized analogy of graphene, familiar as the only intermediate or precursor for obtaining the latter at a large scale. Graphene oxide has recently obtained enormous popularity in the energy, environment, sensor, and biomedical fields and has been handsomely exploited for water purification membranes. GO is a unique class of mechanically robust, ultrathin, high flux, high-selectivity, and fouling-resistant separation membranes that provide opportunities to advance water desalination technologies. The facile synthesis of GO membranes opens the doors for ideal next-generation membranes as cost-effective and sustainable alternative to long existing thin-film composite membranes for water purification applications. Many types of GO-metal oxide nanocomposites have been used to eradicate the problem of metal ions, halomethanes, other organic pollutants, and different colors from water bodies, making water fit for further use. Furthermore, to enhance the applications of GO/metal oxide nanocomposites, they were deposited on polymeric membranes for water purification due to their relatively low-cost, clear pore-forming mechanism and higher flexibility compared to inorganic membranes. Along with other applications, using these nanocomposites in the preparation of membranes not only resulted in excellent fouling resistance but also could be a possible solution to overcome the trade-off between water permeability and solute selectivity. Hence, a GO/metal oxide nanocomposite could improve overall performance, including antibacterial properties, strength, roughness, pore size, and the surface hydrophilicity of the membrane. In this review, we highlight the structure and synthesis of graphene, as well as graphene oxide, and its decoration with a polymeric membrane for further applications.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Zhao Q, Yamamoto M, Yamazaki K, Nishihara H, Crespo-Otero R, Di Tommaso D. The carbon chain growth during the onset of CVD graphene formation on γ-Al 2O 3 is promoted by unsaturated CH 2 ends. Phys Chem Chem Phys 2022; 24:23357-23366. [PMID: 36165844 DOI: 10.1039/d2cp01554d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical vapor deposition of methane onto a template of alumina (Al2O3) nanoparticles is a prominent synthetic strategy of graphene meso-sponge, a new class of nano porous carbon materials consisting of single-layer graphene walls. However, the elementary steps controlling the early stages of graphene growth on Al2O3 surfaces are still not well understood. In this study, density functional theory calculations provide insights into the initial stages of graphene growth. We have modelled the mechanism of CH4 dissociation on the (111), (110), (100), and (001) γ-Al2O3 surfaces. Subsequently, we have considered the reaction pathway leading to the formation of a C6 ring. The γ-Al2O3(110) and γ-Al2O3(100) are both active for CH4 dissociation, but the (100) surface has higher catalytic activity towards the carbon growth reaction. The overall mechanism involves the formation of the reactive intermediate CH2* that then can couple to form CnH2n* (n = 2-6) intermediates with unsaturated CH2 ends. The formation of these species, which are not bound to the surface-active sites, promotes the sustained carbon growth in a nearly barrierless process. Also, the short distance between terminal carbon atoms leads to strong interactions, which might lead to the high activity between unsaturated CH2* of the hydrocarbon chain. Analysis of the electron localization and geometries of the carbon chains reveals the formation of C-Al-σ bonds with the chain growing towards the vacuum rather than C-Al-π bonds covering the γ-Al2O3(100) surface. This growth behaviour prevents catalyst poisoning during the initial stage of graphene nucleation.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Masanori Yamamoto
- Advanced Institute for Materials Research (WPI-AIMR)/Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Kaoru Yamazaki
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research (WPI-AIMR)/Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Rachel Crespo-Otero
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
29
|
Polai B, Satpathy BK, Jena BK, Nayak SK. An Overview of Coating Processes on Metal Substrates Based on Graphene-Related Materials for Multifarious Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Balaram Polai
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar−752050, India
| | - Bijoy Kumar Satpathy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar−752050, India
| | - Bikash Kumar Jena
- CSIR−Institute of Minerals and Materials Technology Bhubaneswar−751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saroj Kumar Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar−752050, India
| |
Collapse
|
30
|
Printing Polymeric Convex Lenses to Boost the Sensitivity of a Graphene-Based UV Sensor. Polymers (Basel) 2022; 14:polym14153204. [PMID: 35956718 PMCID: PMC9370982 DOI: 10.3390/polym14153204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) is widely used in daily life as well as in industrial manufacturing. In this study, a single-step postprocess to improve the sensitivity of a graphene-based UV sensor is studied. We leverage the advantage of electric-field-assisted on-demand printing, which is simply applicable for mounting functional polymers onto various structures. Here, the facile printing process creates optical plano-convex geometry by accelerating and colliding a highly viscous droplet on a micropatterned graphene channel. The printed transparent lens refracts UV rays. The concentrated UV photon energy from a wide field of view enhances the photodesorption of electron-hole pairs between the lens and the graphene sensor channel, which is coupled with a large change in resistance. As a result, the one-step post-treatment has about a 4× higher sensitivity compared to bare sensors without the lenses. We verify the applicability of printing and the boosting mechanism by variation of lens dimensions, a series of UV exposure tests, and optical simulation. Moreover, the method contributes to UV sensing in acute angle or low irradiation. In addition, the catalytic lens provides about a 9× higher recovery rate, where water molecules inside the PEI lens deliver fast reassembly of the electron-hole pairs. The presented method with an ultimately simple fabrication step is expected to be applied to academic research and prototyping, including optoelectronic sensors, energy devices, and advanced manufacturing processes.
Collapse
|
31
|
Su C, Wang W, Jiang B, Zhang M, Wang Y, Wang H, SONG H. Fabrication of multi‐pore structure Cu, N‐codoped porous carbon‐based catalyst and its oxygen reduction reaction catalytic performance for microbial fuel cell. ELECTROANAL 2022. [DOI: 10.1002/elan.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chang Su
- Northeast Petroleum University CHINA
| | | | | | | | | | - Huan Wang
- Northeast Petroleum University CHINA
| | - Hua SONG
- Northeast Petroleum University CHINA
| |
Collapse
|
32
|
Fan Y, Xu H, Liu Z, Sun S, Huang W, Qu Z, Yan N. Tunable Redox Cycle and Enhanced π-Complexation in Acetylene Hydrochlorination over RuCu Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Songyuan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
33
|
Fu H, Gao B, Liu Z, Liu W, Wang Z, Wang M, Li J, Feng Z, Reza Kamali A. Electrochemical Performance of Honeycomb Graphene Prepared from Acidic Graphene Oxide Via a Chemical Expansion method. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Low-Temperature CVD-Grown Graphene Thin Films as Transparent Electrode for Organic Photovoltaics. COATINGS 2022. [DOI: 10.3390/coatings12050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Good conductivity, suitable transparency and uniform layers of graphene thin film can be produced by chemical vapour deposition (CVD) at low temperature and utilised as a transparent electrode in organic photovoltaics. Using chlorobenzene trapped in poly(methyl methacrylate) (PMMA) polymer as the carbon source, growth temperature (Tgrowth) of 600 °C at hydrogen (H2) flow of 75 standard cubic centimetres per minute (sccm) was used to prepare graphene by CVD catalytically on copper (Cu) foil substrates. Through the Tgrowth of 600 °C, we observed and identified the quality of the graphene films, as characterised by Raman spectroscopy. Finally, P3HT (poly (3-hexylthiophene-2, 5-diyl)): PCBM (phenyl-C61-butyric acid methyl ester) bulk heterojunction solar cells were fabricated on graphene-based window electrodes and compared with indium tin oxide (ITO)-based devices. It is interesting to observe that the OPV performance is improved more than 5 fold with increasing illuminated areas, hinting that high resistance between graphene domains can be alleviated by photo generated charges.
Collapse
|
35
|
Lu M, Ge Y, Wang J, Chen Z, Song Z, Xu J, Zhao Y. Ultrafast Growth of Highly Conductive Graphene Films by a Single Subsecond Pulse of Microwave. ACS NANO 2022; 16:6676-6686. [PMID: 35293217 DOI: 10.1021/acsnano.2c01183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Currently, graphene films are expected to achieve real applications in various fields. However, the conventional synthesis methods still have intrinsic limitations, especially not being applicable on a surface with high curvature. Herein, an ultrafast synthesis method was developed for graphene and turbostratic graphite growth by a single subsecond pulse of microwaves generated by a household magnetron. We succeeded in growing high-quality around 10-layered turbostratic graphite in 0.16 s directly on the surface of an atomic force microscope probe and maintaining a tip curvature radius of less than 30 nm. The thus-produced probes showed high conductivity and tip durability. Moreover, turbostratic graphite film was also demonstrated to grow on the surface of dielectric Si flat substrates in a full coverage. Graphene can also grow on metallic Ni tips by this method. Our microwave ultrafast method can be used to grow high-quality graphene in a facile, efficient, and economical way.
Collapse
Affiliation(s)
- Mingming Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yifei Ge
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zixuan Chen
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510535, China
| | - Zhiwei Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianxun Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510535, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510535, China
| |
Collapse
|
36
|
Yang H, Wang G, Guo Y, Wang L, Tan B, Zhang S, Zhang X, Zhang J, Shuai Y, Lin J, Jia D, Hu P. Growth of wafer-scale graphene-hexagonal boron nitride vertical heterostructures with clear interfaces for obtaining atomically thin electrical analogs. NANOSCALE 2022; 14:4204-4215. [PMID: 35234771 DOI: 10.1039/d1nr06004j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) integrated circuits based on graphene (Gr) heterostructures have emerged as next-generation electronic devices. However, it is still challenging to produce high-quality and large-area Gr/hexagonal boron nitride (h-BN) vertical heterostructures with clear interfaces and precise layer control. In this work, a two-step metallic alloy-assisted epitaxial growth approach has been demonstrated for producing wafer-scale vertical hexagonal boron nitride/graphene (h-BN/Gr) heterostructures with clear interfaces. The heterostructures maintain high uniformity while scaling up and thickening. The layer number of both h-BN and graphene can be independently controlled by tuning the growth process. Furthermore, conductance measurements confirm that electrical hysteresis disappears on h-BN/Gr field-effect transistors, which is attributed to the h-BN dielectric surface. Our work blazes a trail toward next-generation graphene-based analog devices.
Collapse
Affiliation(s)
- Huihui Yang
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150080, P. R. China.
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yanming Guo
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Lifeng Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Australia
| | - Biying Tan
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Shichao Zhang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xin Zhang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jia Zhang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Dechang Jia
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150080, P. R. China.
| | - PingAn Hu
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150080, P. R. China.
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
37
|
Ahmad H, Mansor NH, Reduan SA, Ramli R. Generation of mode-locked pulses based on D-shaped fiber with CdTe as a saturable absorber in the C-band region. RSC Adv 2022; 12:8637-8646. [PMID: 35424811 PMCID: PMC8984908 DOI: 10.1039/d1ra09069k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/01/2022] [Indexed: 11/22/2022] Open
Abstract
This study demonstrates the potential of cadmium telluride (CdTe), a part of the quantum dot (QD) family, as a saturable absorber (SA) to generate ultrashort pulses at the C-band region. The SA was fabricated by drop-casting the CdTe material onto the exposed core of the D-shaped fiber. The nonlinear property of the fabricated SA has a modulation depth of 1.87% and saturation intensity of 6.0 kW cm−2. The mode-locked laser was generated after the SA was integrated into the erbium-doped fiber laser (EDFL) cavity at a threshold pump power of 192.1 mW giving a center wavelength of 1559 nm and a pulse duration of 770 fs. The maximum average output and peak power were measured to be 2.8 mW and 0.208 kW, respectively. The mode-locked fiber laser generated a signal-to-noise ratio (SNR) of 67.7 dB, proving that the generated mode-locked pulses were very stable. The current work indicates that the novel CdTe device can provide stable mode-locked lasers in the C-band region. This study demonstrates the potential of cadmium telluride (CdTe), a part of the quantum dot (QD) family, as a saturable absorber (SA) to generate ultrashort pulses at the C-band region.![]()
Collapse
Affiliation(s)
- Harith Ahmad
- Photonics Research Center, University of Malaya 50603 Kuala Lumpur Malaysia .,Department of Physics, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Nur Hidayah Mansor
- Photonics Research Center, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Siti Aiyah Reduan
- Photonics Research Center, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Rizal Ramli
- Photonics Research Center, University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
38
|
Tribological Properties of Polyamide 46/Graphene Nanocomposites. Polymers (Basel) 2022; 14:polym14061139. [PMID: 35335470 PMCID: PMC8954587 DOI: 10.3390/polym14061139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Polyamide 46 (PA46) is used in various automotive parts because of its excellent heat resistance and mechanical properties. This study aims to improve the frictional properties of PA46 using the lubricating ability of graphene. Nanocomposites are prepared via two mixing methods: Graphene powder is compounded directly with PA46 pellets through a twin-screw extruder, or PA46 powder is added to graphene dispersion for self-adsorption, and subsequently, it is dried and compounded with PA46 through the twin-screw extruder. Application of the nanocomposite in the friction field is evaluated via the pin-on-disk method. The coefficient of friction of the nanocomposite prepared by self-adsorption is lower than that of the nanocomposite prepared by direct compounding. The mechanical properties of the nanocomposite fabricated by self-adsorption are superior to those of other materials. This can be attributed to the uniform dispersion of graphene and the strong attractive force between the PA46 matrix and graphene.
Collapse
|
39
|
Gao Y, Wang J, Feng Y, Cao N, Li H, de Rooij NF, Umar A, French PJ, Wang Y, Zhou G. CarbonIron Electron Transport Channels in Porphyrin-Graphene Complex for ppb-Level Room Temperature NO Gas Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103259. [PMID: 35297184 DOI: 10.1002/smll.202103259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
It is a great challenge to develop efficient room-temperature sensing materials and sensors for nitric oxide (NO) gas, which is a biomarker molecule used in the monitoring of inflammatory respiratory diseases. Herein, Hemin (Fe (III)-protoporphyrin IX) is introduced into the nitrogen-doped reduced graphene oxide (N-rGO) to obtain a novel sensing material HNG-ethanol. Detailed XPS spectra and DFT calculations confirm the formation of carbon-iron bonds in HNG-ethanol during synthesis process, which act as electron transport channels from graphene to Hemin. Owing to this unique chemical structure, HNG-ethanol exhibits superior gas sensing properties toward NO gas (Ra /Rg = 3.05, 20 ppm) with a practical limit of detection (LOD) of 500 ppb and reliable repeatability (over 5 cycles). The HNG-ethanol sensor also possesses high selectivity against other exhaled gases, high humidity resistance, and stability (less than 3% decrease over 30 days). In addition, a deep understanding of the gas sensing mechanisms is proposed for the first time in this work, which is instructive to the community for fabricating sensing materials based on graphene-iron derivatives in the future.
Collapse
Affiliation(s)
- Yixun Gao
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jianqiang Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yancong Feng
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Nengjie Cao
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Hao Li
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Nicolaas Frans de Rooij
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ahmad Umar
- Promising Centre for Sensors and Electronic Devices, Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Paddy J French
- BE Laboratory, EWI, Delft University of Technology, Delft, 2628CD, The Netherlands
| | - Yao Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
40
|
Blessy Rebecca PN, Durgalakshmi D, Balakumar S, Rakkesh RA. Biomass‐Derived Graphene‐Based Nanocomposites: A Futuristic Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202104013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P. N. Blessy Rebecca
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| | - D. Durgalakshmi
- Department of Medical Physics Anna University Chennai 600025 TN India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology University of Madras Chennai 600025 TN India
| | - R. Ajay Rakkesh
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| |
Collapse
|
41
|
Wang Y, Gu Y, Cui A, Li Q, He T, Zhang K, Wang Z, Li Z, Zhang Z, Wu P, Xie R, Wang F, Wang P, Shan C, Li H, Ye Z, Zhou P, Hu W. Fast Uncooled Mid-Wavelength Infrared Photodetectors with Heterostructures of van der Waals on Epitaxial HgCdTe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107772. [PMID: 34812559 DOI: 10.1002/adma.202107772] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Indexed: 05/06/2023]
Abstract
Uncooled infrared photodetectors have evoked widespread interest in basic research and military manufacturing because of their low-cost, compact detection systems. However, existing uncooled infrared photodetectors utilize the photothermoelectric effect of infrared radiation operating at 8-12 µm, with a slow response time in the millisecond range. Hence, the exploration of new uncooled mid-wavelength infrared (MWIR) heterostructures is conducive to the development of ultrafast and high-performance nano-optoelectronics. This study explores a van der Waals heterojunction on epitaxial HgCdTe (vdWs-on-MCT) as an uncooled MWIR photodetector, which achieves fast response as well as high detectivity for spectral blackbody detection. Specifically, the vdWs-on-MCT photodetector has a fast response time of 13 ns (77 MHz), which is approximately an order of magnitude faster than commercial uncooled MCT photovoltaic photodetectors. Importantly, the device exhibits a photoresponsivity of 2.5 A W-1 , quantum efficiency as high as 85%, peak detectivity of 2 × 1010 cm Hz1/2 W-1 under blackbody radiation at room temperature, and peak detectivity of up to 1011 cm Hz1/2 W-1 at 77 K. Thereby, this work facilitates the effective design of high-speed and high-performance heterojunction uncooled MWIR photodetectors.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yue Gu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ailiang Cui
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Qing Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Ting He
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Kun Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Ziping Li
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhan Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peisong Wu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runzhang Xie
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Peng Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Li
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhua Ye
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Fontecha D, Mahn C, Bochinski JR, Clarke LI. Tracking the complete degradation lifecycle of poly(ethyl cyanoacrylate): From induced photoluminescence to nitrogen-doped nano-graphene precursor residue. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Berman D, Erdemir A. Achieving Ultralow Friction and Wear by Tribocatalysis: Enabled by In-Operando Formation of Nanocarbon Films. ACS NANO 2021; 15:18865-18879. [PMID: 34914361 DOI: 10.1021/acsnano.1c08170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Under the high-contact-pressure and shear conditions of tribological interfaces lubricated by gaseous, liquid, and solid forms of carbon precursors, a variety of highly favorable tribocatalytic processes may take place and result in the in situ formation of nanocarbon-based tribofilms providing ultralow friction and wear even under extreme test conditions. Structurally, these tribofilms are rather complex and may consist of all known forms of nanocarbon including amorphous or disordered carbon, graphite, graphene, nano-onion, nanotube, etc. Tribologically, they shear readily to provide ultralow friction and protection against wear. In this paper, we review some of the latest developments in catalyst-enabled tribochemical films resulting from gaseous, liquid, and solid sources of carbon. Particular focus is given to the nature and lubrication mechanisms of such in situ derived tribofilms with the hope that future tribological surfaces can be designed in such a way to exploit the beneficial impact of catalysis in friction and wear control.
Collapse
Affiliation(s)
- Diana Berman
- Department of Materials Science & Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Ali Erdemir
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
44
|
Shi X, Li S, Li J, Ouyang T, Zhang C, Tang C, He C, Zhong J. High-Throughput Screening of Two-Dimensional Planar sp 2 Carbon Space Associated with a Labeled Quotient Graph. J Phys Chem Lett 2021; 12:11511-11519. [PMID: 34797680 DOI: 10.1021/acs.jpclett.1c03193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The configurational space of two-dimensional planar sp2 carbon has been systematically scanned by a random strategy combined with group and graph theory, and 1114 new carbon allotropes have been identified. These allotropes are energetically more favorable than most of the previously predicted 120 carbon allotropes. By fitting the HSE06 band structures of six old structures, we optimize the parameters for a general and transferable tight-binding model for high-throughput band structure calculations. We identified that there are 190 Dirac semimetals, 241 semiconductors, and 683 normal metals among the new allotropes. Interestingly, several stable low-energy carbon systems with exotic electronic properties are proposed, such as type III, type I/II mixed, and type I/III mixed semimetals, which are very rare in planar carbon systems. In particular, one nodal-line semimetal has been discovered among these thousands of allotropes, which is the first nodal-line semimetal in sp2 carbon systems. Our discoveries greatly enrich our knowledge of the structures and electronic properties of the two-dimensional carbon family.
Collapse
Affiliation(s)
- Xizhi Shi
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, Hunan411105, P. R. China
- Laboratory for Quantum Engineering and Micro-Nano Energy Technology and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Shifang Li
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, Hunan411105, P. R. China
- Laboratory for Quantum Engineering and Micro-Nano Energy Technology and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Jin Li
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, Hunan411105, P. R. China
- Laboratory for Quantum Engineering and Micro-Nano Energy Technology and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Tao Ouyang
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, Hunan411105, P. R. China
- Laboratory for Quantum Engineering and Micro-Nano Energy Technology and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Chunxiao Zhang
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, Hunan411105, P. R. China
- Laboratory for Quantum Engineering and Micro-Nano Energy Technology and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Chao Tang
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, Hunan411105, P. R. China
- Laboratory for Quantum Engineering and Micro-Nano Energy Technology and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Chaoyu He
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, Hunan411105, P. R. China
- Laboratory for Quantum Engineering and Micro-Nano Energy Technology and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Jianxin Zhong
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan, Hunan411105, P. R. China
- Laboratory for Quantum Engineering and Micro-Nano Energy Technology and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| |
Collapse
|
45
|
Li G, Li Z, Xu C, Hou Z, Hu Z. Thermal Annealing‐Enhanced Bioelectrocatalysis in Membraneless Glucose/Oxygen Biofuel Cell based on Hydrophilic Carbon Fibers. ChemElectroChem 2021. [DOI: 10.1002/celc.202101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gangyong Li
- State Key Laboratory of Advanced Metallurgy University of Science and Technology Beijing Beijing 100083 China
- Beijing Institute of Radiation Medicine Beijing 100850 China
| | - Zhi Li
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials Hunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Cuixing Xu
- Beijing Institute of Radiation Medicine Beijing 100850 China
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education National & Local United Engineering Laboratory for Power Batteries Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Analysis and Testing Center Department of Chemistry Northeast Normal University Changchun Jilin 130024 China
| | - Zhaohui Hou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials Hunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine Beijing 100850 China
| |
Collapse
|
46
|
Saha JK, Dutta A. A Review of Graphene: Material Synthesis from Biomass Sources. WASTE AND BIOMASS VALORIZATION 2021; 13:1385-1429. [PMID: 34548888 PMCID: PMC8446731 DOI: 10.1007/s12649-021-01577-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/08/2021] [Indexed: 05/30/2023]
Abstract
Single-atom-thick graphene is a particularly interesting material in basic research and applications owing to its remarkable electronic, mechanical, chemical, thermal, and optical properties. This leads to its potential use in a multitude of applications for improved energy storage (capacitors, batteries, and fuel cells), energy generation, biomedical, sensors or even as an advanced membrane material for separations. This paper provided an overview of research in graphene, in the area of synthesis from various sources specially from biomass, advanced characterization techniques, properties, and application. Finally, some challenges and future perspectives of graphene are also discussed.
Collapse
Affiliation(s)
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Canada
| |
Collapse
|
47
|
Zhao S, Yang J, Duan F, Zhang B, Liu Y, Zhang B, Chen C, Qin Y. Rational construction of porous N-doped Fe 2O 3 films on porous graphene foams by molecular layer deposition for tunable microwave absorption. J Colloid Interface Sci 2021; 598:45-55. [PMID: 33894616 DOI: 10.1016/j.jcis.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Graphene-based materials with porous microstructure have attracted immense attentions due to their wide application in microwave absorption. However, constructing magnetic film with both porous microstructure and uniform pore size by using traditional methods still remains a challenge. To overcome this problem, we reported a facile strategy of molecular layer deposition (MLD) for successfully fabrication of the hybrid-architecture of porous graphene foams and nitrogen-doped porous Fe2O3 films. The surfaces of porous graphene foams are uniformly covered by porous Fe2O3 films without aggregation and the pore structures are widely distributed. The porous graphene-based composites exhibit remarkably enhanced microwave absorption performance compared to the pristine graphene foams. The minimum reflection loss value is increased by approximately 8 times, reaching -64.36 dB with a thickness of only 2.18 mm. More importantly, the absorption property can be precisely modulated by tuning the MLD cycle numbers and effective absorption bandwidth covers 3.04-18.0 GHz by adjusting the thickness from 1.0 to 5.0 mm. This work provides new insights for exploring novel and high-performance graphene-based microwave absorbents and offers a new idea to rationally design three-dimensional composites with porous magnetic films.
Collapse
Affiliation(s)
- Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jie Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Duan
- Shanxi Institute of Energy, Taiyuan 030001, China
| | - Baiyan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yequn Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqiu Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Abdolkarimi-Mahabadi M, Bayat A, Mohammadi A. Use of UV-Vis Spectrophotometry for Characterization of Carbon Nanostructures: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09687-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Yin P, Liu Y, Xiao L, Zhang C. Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers (Basel) 2021; 13:2834. [PMID: 34451372 PMCID: PMC8401399 DOI: 10.3390/polym13162834] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neural electrodes are essential for nerve signal recording, neurostimulation, neuroprosthetics and neuroregeneration, which are critical for the advancement of brain science and the establishment of the next-generation brain-electronic interface, central nerve system therapeutics and artificial intelligence. However, the existing neural electrodes suffer from drawbacks such as foreign body responses, low sensitivity and limited functionalities. In order to overcome the drawbacks, efforts have been made to create new constructions and configurations of neural electrodes from soft materials, but it is also more practical and economic to improve the functionalities of the existing neural electrodes via surface coatings. In this article, recently reported surface coatings for neural electrodes are carefully categorized and analyzed. The coatings are classified into different categories based on their chemical compositions, i.e., metals, metal oxides, carbons, conducting polymers and hydrogels. The characteristic microstructures, electrochemical properties and fabrication methods of the coatings are comprehensively presented, and their structure-property correlations are discussed. Special focus is given to the biocompatibilities of the coatings, including their foreign-body response, cell affinity, and long-term stability during implantation. This review article can provide useful and sophisticated insights into the functional design, material selection and structural configuration for the next-generation multifunctional coatings of neural electrodes.
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (P.Y.); (L.X.)
| | | | - Chao Zhang
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (P.Y.); (L.X.)
| |
Collapse
|
50
|
Zhang B, Jiang L, Rane K, Goual L, Piri M. Low-Temperature Graphene Growth and Shrinkage Dynamics from Petroleum Asphaltene on CuO Nanoparticle. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bingjun Zhang
- Department of Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82071, United States
| | - Lin Jiang
- Materials & Structural Analysis, Thermo Fisher Scientific, 5350 Northeast Dawson Creek Drive, Hillsboro, Oregon 97124, United States
| | - Kaustubh Rane
- Department of Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82071, United States
| | - Lamia Goual
- Department of Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82071, United States
| | - Mohammad Piri
- Department of Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82071, United States
| |
Collapse
|