1
|
Wang F, Song L, Xu Q, Jia A, Meng X, Jiang H, Zhang R. Hypoxia-selective prodrug restrains tumor cells through triggering mitophagy and inducing apoptosis. Eur J Med Chem 2025; 283:117155. [PMID: 39657461 DOI: 10.1016/j.ejmech.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Hypoxia is a common feature of various solid tumors, which reduces the sensitivity of tumor cells to both radiotherapy and chemotherapy. However, hypoxia also presents an opportunity for tumor-selective therapy. The prodrug strategy, leveraging the hypoxic nature of the tumor microenvironment, shows significant potential for clinical application. Here we present CHD-1, a hypoxia-activated antitumor prodrug that activates in hypoxic environments, effectively inhibiting hypoxic tumor cells while exhibiting no toxicity to normoxic cells. CHD-1 impairs mitochondrial morphology and membrane potential of hypoxic tumor cells, further triggers excessive mitophagy and induces apoptosis. Moreover, prodrug CHD-1 significantly inhibits HeLa xenograft growth in vivo, and shows lower toxicity than parent molecule in an acute toxicity assessment in animal models. This study introduces a promising hypoxia-activated antitumor prodrug with strong potential for further development in hypoxic tumor therapy.
Collapse
Affiliation(s)
- Fangjie Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, 450018, China
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Qianqian Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiangwei Meng
- Department of Drug Clinical Trials, Zibo Central Hospital, Zibo, 255036, China.
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Khalil RG, Mohammed DA, Hamdalla HM, Ahmed OM. The possible anti-tumor effects of regulatory T cells plasticity / IL-35 in the tumor microenvironment of the major three cancer types. Cytokine 2025; 186:156834. [PMID: 39693872 DOI: 10.1016/j.cyto.2024.156834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
T lymphocytes are among the immunological cells that make up the tumor microenvironment (TME), and they are essential in the growth of tumors and anti-tumor reactions. Regulatory T cells (Treg cells) are a subset of CD4+ T cells in the immune system that suppress the immune system. They are distinguished by their expression of the master transcription factor forkhead box protein P3 (FOXP3). Furthermore, Treg cells are essential for maintaining immunological homeostasis, inhibiting inflammation, and maintaining self-tolerance. In a variety of malignancies within the TME, Treg cells demonstrate notable flexibility and functional diversity. Highly plastic Treg cells can change into Th-like Treg cells in specific circumstances, which allow them to secrete particular pro-inflammatory cytokines. Interleukin 35 (IL-35) is a part of the immunosuppressive cytokines that belong to the IL-12 family. Treg cells release IL-35, which was elevated in the peripheral blood and TME of numerous cancer patients, implying that IL-35 in the TME may be an intriguing target for cancer therapy. In cancer, IL-35 is a two-edged sword; it promotes tumorigenicity in cancer cells while shielding them from apoptosis. Nonetheless, other investigations have mentioned its conflicting effects on cancer prevention. Herein, we provide an updated understanding of the critical mechanisms behind the anticancer immunity mediated by Treg cells plasticity, the role of IL-35, and tactics to strengthen the immune response against malignancies, outlining major clinical trials that used Treg cells/IL-35 therapies in the three main cancer types (lung, breast, and colorectal cancers).
Collapse
Affiliation(s)
- Rehab G Khalil
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| | - Dina A Mohammed
- Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hadeer M Hamdalla
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
3
|
To A, Yu Z, Sugimura R. Recent advancement in the spatial immuno-oncology. Semin Cell Dev Biol 2025; 166:22-28. [PMID: 39705969 DOI: 10.1016/j.semcdb.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Recent advancements in spatial transcriptomics and spatial proteomics enabled the high-throughput profiling of single or multi-cell types and cell states with spatial information. They transformed our understanding of the higher-order architectures and paired cell-cell interactions within a tumor microenvironment (TME). Within less than a decade, this rapidly emerging field has discovered much crucial fundamental knowledge and significantly improved clinical diagnosis in the field of immuno-oncology. This review summarizes the conceptual frameworks to understand spatial omics data and highlights the updated knowledge of spatial immuno-oncology.
Collapse
Affiliation(s)
- Alex To
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Zou Yu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, University of Hong Kong, Hong Kong; Centre for Translational Stem Cell Biology, Hong Kong.
| |
Collapse
|
4
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025:10.1038/s41568-024-00781-9. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Zhang S, Wang X, Chen X, Shu D, Lin Q, Zou H, Dong J, Wang B, Tang Q, Li H, Chen X, Pu J, Gu B, Liu P. An on-Demand Oxygen Nano-vehicle Sensitizing Protein and Nucleic Acid Drug Augment Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2409378. [PMID: 39840472 DOI: 10.1002/adma.202409378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Indexed: 01/23/2025]
Abstract
Hypoxia severely limits the antitumor immunotherapy for breast cancer. Although efforts to alleviate tumor hypoxia and drug delivery using diverse nanostructures achieve promising results, the creation of a versatile controllable oxygen-releasing nano-platform for co-delivery with immunostimulatory molecules remains a persistent challenge. To address this problem, a versatile oxygen controllable releasing vehicle PFOB@F127@PDA (PFPNPs) is developed, which effectively co-delivered either protein drug lactate oxidase (LOX) or nucleic acids drug unmethylated cytosine-phosphate-guanine oligonucleotide (CpG ODNs). Upon photothermal heating, this platform triggered oxygen release, thereby augmenting LOX-mediated lactate detection rates, and improving T cells infiltrating and cytokine expression. Moreover, under an oxygenated tumor microenvironment (TME), PFPNPs co-delivered with CpG ODNs effectively reprogrammed the immunosuppressive TME by repolarizing macrophages to an M1-like phenotype, promoting dendritic cells maturation, and increasing tumor-infiltrating T cells while decreasing the ratio of regulatory T cells (Tregs). Our study demonstrated that this controlled oxygen-releasing platform possessed adaptive drug-loading capabilities to meet varied immunotherapeutic demands in clinical settings.
Collapse
Affiliation(s)
- Sidi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
| | - Xinghui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Xiaojing Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Duohuo Shu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Quankun Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Hanbing Zou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jialin Dong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Qianyun Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huishan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Xiaoxiang Chen
- Allergy Department Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jun Pu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Bin Gu
- Department of Urology, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, P. R. China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
6
|
Tang Y, Yu X, He L, Tang M, Yue W, Chen R, Zhao J, Pan Q, Li W. A high-valence bismuth(V) nanoplatform triggers cancer cell death and anti-tumor immune responses with exogenous excitation-free endogenous H 2O 2- and O 2-independent ROS generation. Nat Commun 2025; 16:860. [PMID: 39833161 PMCID: PMC11747550 DOI: 10.1038/s41467-025-56110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous H2O2 and O2. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiVO3-PEG) can generate reactive oxygen species in an excitation-free and H2O2- and O2-independent manner. Upon exposure to the tumor microenvironment, NaBiVO3-PEG undergoes continuous H+-accelerated hydrolysis with •OH and 1O2 generation through electron transfer-mediated BiV-to-BiIII conversion and lattice oxygen transformation. The simultaneous release of sodium counterions after endocytosis triggers caspase-1-mediated pyroptosis. NaBiVO3-PEG intratumorally administered initiates robust therapeutic efficacies against both primary and distant tumors and activates systemic immune responses to combat tumor metastasis. NaBiVO3-PEG intravenously administered can efficiently accumulate at the tumor site for further real-time computed tomography monitoring, immunotherapy, or alternative synergistic immune-radiotherapy. Overall, this work offers a nanomedicine based on high-valence bismuth(V) nanoplatform and underscores its great potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Yizhang Tang
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China.
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China.
| | - Liangrui He
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Meng Tang
- Department of Comprehensive Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College 17 Panjiayuan South Lane, Beijing, P. R. China
| | - Wenji Yue
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Ruitong Chen
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Jie Zhao
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Qi Pan
- Department of Urology Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 85 Wujin Road, Shanghai, P. R. China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China.
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China.
| |
Collapse
|
7
|
Hosui A, Hayata N, Kurahashi T, Namiki A, Okamoto A, Aochi K, Ashida M, Tanimoto T, Murai H, Ohnishi K, Hirao M, Yamada T, Hiramatsu N. Efficacy of Adding Locoregional Therapy in ATZ/BEV-Treated Patients with Stable HCC. Cancers (Basel) 2025; 17:185. [PMID: 39857967 PMCID: PMC11763424 DOI: 10.3390/cancers17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Combination therapy with atezolizumab and bevacizumab (ATZ/BEV) is extremely effective and yields a high response rate in patients with hepatocellular carcinoma (HCC). In this study, the efficacy of adding locoregional therapy to ATZ/BEV in patients with stable disease (SD) HCC was investigated. Methods: One hundred five HCC patients who were treated with ATZ/BEV or lenvatinib (LEN) as first-line chemotherapy for unresectable HCC were evaluated on the basis of the modified RECIST criteria. SD patients whose initial antitumor effect was achieved received locoregional therapy, and the overall survival (OS) rate was assessed. Results: This study included 58 ATZ/BEV-treated participants and 47 LEN-treated participants. Twenty-eight SD patients (ATZ/BEV) and 20 SD patients (LEN) were identified. OS was significantly greater in ATZ/BEV-treated patients who also received locoregional therapy than in those who did not receive this additional therapy (p = 0.0343), whereas there was no difference between LEN-treated patients who also received locoregional therapy and those who did not. The locoregional therapy consisted of transcatheter arterial chemoembolization (TACE) and/or radiofrequency ablation (RFA). When assessing the add-on effect of TACE and/or RFA in the SD patients treated with ATZ/BEV, five patients were found to achieve CR. Conclusions: The addition of locoregional therapy, such as TACE/RFA, was found to affect SD patients. When a response is limited during ATZ/BEV therapy, it is important to consider the therapeutic option of adding locoregional therapy, as this additional treatment may contribute to improved prognosis via immune modulation.
Collapse
Affiliation(s)
- Atsushi Hosui
- Department of Gastroenterology and Hepatology, Osaka Rosai Hospital, 1179-3 Nagasonecho, Kita Ward, Sakai 591-8025, Osaka, Japan; (N.H.); (T.K.); (A.N.); (A.O.); (K.A.); (M.A.); (T.T.); (H.M.); (K.O.); (M.H.); (T.Y.); (N.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yan Y, Sun D, Hu J, Chen Y, Sun L, Yu H, Xiong Y, Huang Z, Xia H, Zhu X, Bian D, Sun F, Hou L, Wu C, Fan OR, Hu H, Zeng A, Zhang L, Sun YE, Wang C, Zhang P. Multi-omic profiling highlights factors associated with resistance to immuno-chemotherapy in non-small-cell lung cancer. Nat Genet 2025; 57:126-139. [PMID: 39658657 DOI: 10.1038/s41588-024-01998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2024] [Indexed: 12/12/2024]
Abstract
Although immune checkpoint blockade (ICB) therapies have shifted the treatment paradigm for non-small-cell lung cancer (NSCLC), many patients remain resistant. Here we characterize the tumor cell states and spatial cellular compositions of the NSCLC tumor microenvironment (TME) by analyzing single-cell transcriptomes of 232,080 cells and spatially resolved transcriptomes of tumors from 19 patients before and after ICB-chemotherapy. We find that tumor cells and secreted phosphoprotein 1-positive macrophages interact with collagen type XI alpha 1 chain-positive cancer-associated fibroblasts to stimulate the deposition and entanglement of collagen fibers at tumor boundaries, obstructing T cell infiltration and leading to poor prognosis. We also reveal distinct states of tertiary lymphoid structures (TLSs) in the TME. Activated TLSs are associated with improved prognosis, whereas a hypoxic microenvironment appears to suppress TLS development and is associated with poor prognosis. Our study provides novel insights into different cellular and molecular components corresponding to NSCLC ICB-chemotherapeutic responsiveness, which will benefit future individualized immuno-chemotherapy.
Collapse
Affiliation(s)
- Yilv Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Junjie Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yue Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huansha Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yicheng Xiong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhida Huang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoran Xia
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongliang Bian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenghuan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orion R Fan
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - An Zeng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China.
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai, China.
- Frontier Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China.
| |
Collapse
|
9
|
Wu S, Ho C, Yang JC, Yu S, Lin Y, Lin S, Liao B, Yang C, Lin Y, Yu C, Chuang Y, Liao W, Yap KY, Kou WS, Shih J. Atezolizumab, bevacizumab, pemetrexed and platinum for EGFR-mutant NSCLC patients after EGFR TKI failure: A phase II study with immune cell profile analysis. Clin Transl Med 2025; 15:e70149. [PMID: 39715697 PMCID: PMC11666332 DOI: 10.1002/ctm2.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) remains a significant hurdle for patients with EGFR-mutated non-small cell lung cancer (NSCLC), particularly those lacking the EGFRT790M. IMpower 150 study demonstrated promising efficacy for a combination of immune-chemotherapy and bevacizumab in patients with EGFR-mutated NSCLC. METHODS This open-label, single-arm, phase II trial evaluated the efficacy and immune cell profile of the modified regimen combining atezolizumab, bevacizumab (7.5 mg/kg) and chemotherapy in patients with EGFR-mutated NSCLC following TKI failure. The primary endpoint was objective response rate (ORR). The re-biopsy tissue specimens and serial peripheral blood samples were collected to analyse the immune cell profile and tumour microenvironments. RRESULTS 22 EGFR-mutant NSCLC patients participated in this study. The ORR was 42.9%, with a disease control rate (DCR) of 100%. Median progression-free survival (PFS) was 6.3 months. Patients with programmed death-ligand 1 (PD-L1) expression ≥1% exhibited significantly higher ORR (75 vs. 23.1%; p = .032) and longer PFS (14.0 vs. 6.1 months; p = .022) compared with those with PD-L1 expression < 1%. Grade ≥ 3 adverse events occurred in 40.9% of patients. Higher peritumour nature killer (NK) cell infiltration and lower peripheral helper T cell counts before treatment were associated with favourable ORR and longer PFS, respectively. After disease progression, the proportion of S100A9+ myelod-derived suppressor cells (MDSCs) increased, while regulatory T cells decreased. CONCLUSION This modified combination regimen may be a promising therapeutic option for EGFR-mutant NSCLC patients with TKI resistance, especially those with PD-L1-positive tumours. Furthermore, immune cell profiling may aid in identifying patients who may benefit from this approach. KEY POINTS The combination regimen yielded promising efficacy in NSCLC patients after EGFR-TKI resistance, particularly those with PD-L1-positive tumours. Higher peritumour NK cell and lower peripheral helper T cell were associated with favourable ORR and longer PFS, respectively. After disease progression, the proportion of S100A9+ MDSC increased, but Treg cells decreased.
Collapse
Affiliation(s)
- Shang‐Gin Wu
- Department of Internal MedicineNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Chao‐Chi Ho
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - James Chih‐Hsin Yang
- Department of OncologyNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of OncologyNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of OncologyCancer Research CenterNational Taiwan UniversityTaipeiTaiwan
| | - Shu‐Han Yu
- Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Yen‐Feng Lin
- Center for Neuropsychiatric ResearchNational Health Research InstitutesMiaoliTaiwan
- Department of Public Health & Medical HumanitiesSchool of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Institute of Behavioral MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Shu‐Chin Lin
- Center for Neuropsychiatric ResearchNational Health Research InstitutesMiaoliTaiwan
| | - Bin‐Chi Liao
- Department of OncologyNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of OncologyNational Taiwan University HospitalTaipeiTaiwan
| | - Ching‐Yao Yang
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Yen‐Ting Lin
- Department of Internal MedicineNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Chong‐Jen Yu
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital Hsinchu BranchHsinchuTaiwan
| | - Ya‐Ting Chuang
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Wei‐Yu Liao
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Kah Yi Yap
- Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Weng Si Kou
- Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Jin‐Yuan Shih
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
10
|
Kane K, Edwards D, Chen J. The influence of endothelial metabolic reprogramming on the tumor microenvironment. Oncogene 2025; 44:51-63. [PMID: 39567756 PMCID: PMC11706781 DOI: 10.1038/s41388-024-03228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Endothelial cells (ECs) that line blood vessels act as gatekeepers and shape the metabolic environment of every organ system. In normal conditions, endothelial cells are relatively quiescent with organ-specific expression signatures and metabolic profiles. In cancer, ECs are metabolically reprogrammed to promote the formation of new blood vessels to fuel tumor growth and metastasis. In addition to EC's role on tumor cells, the tortuous tumor vasculature contributes to an immunosuppressive environment by limiting T lymphocyte infiltration and activity while also promoting the recruitment of other accessory pro-angiogenic immune cells. These elements aid in the metastatic spreading of cancer cells and contribute to therapeutic resistance. The concept of restoring a more stabilized vasculature in concert with cancer immunotherapy is emerging as a potential approach to overcoming barriers in cancer treatment. This review summarizes the metabolism of endothelial cells, their regulation of nutrient uptake and delivery, and their impact in shaping the tumor microenvironment and anti-tumor immunity. We highlight new therapeutic approaches that target the tumor vasculature and harness the immune response. Appreciating the integration of metabolic state and nutrient levels and the crosstalk among immune cells, tumor cells, and ECs in the TME may provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kelby Kane
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Deanna Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
11
|
Huang T, Li F, Wang Y, Gu J, Lu L. Tumor-infiltrating regulatory T cell: A promising therapeutic target in tumor microenvironment. Chin Med J (Engl) 2024; 137:2996-3009. [PMID: 39679474 PMCID: PMC11706582 DOI: 10.1097/cm9.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Regulatory T cell (Tregs) predominantly maintain the immune balance and prevent autoimmunity via their immunosuppressive functions. However, tumor-infiltrating Tregs (TI-Tregs) may mediate tumor immune tolerance in complex tumor microenvironments, resulting in poor prognosis. Distinguishing specific TI-Treg subpopulations from peripheral Tregs and intratumoral conventional T cells (Tconvs) has recently emerged as an important topic in antitumor therapy. In this review, we summarize novel therapeutic approaches targeting both the metabolic pathways and hallmarks of TI-Tregs in preclinical and clinical studies. Although the phenotypic and functional diversity of TI-Tregs remains unclear, our review provides new insights into TI-Treg-based therapies and facilitates precision medicine for tumor treatment.
Collapse
Affiliation(s)
- Tianning Huang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Fan Li
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Yiming Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian Gu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Ling Lu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221011, China
| |
Collapse
|
12
|
Padzińska-Pruszyńska IB, Taciak B, Kiraga Ł, Smolarska A, Górczak M, Kucharzewska P, Kubiak M, Szeliga J, Matejuk A, Król M. Targeting Cancer: Microenvironment and Immunotherapy Innovations. Int J Mol Sci 2024; 25:13569. [PMID: 39769334 PMCID: PMC11679359 DOI: 10.3390/ijms252413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME). The TME-comprising various tumor and immune cells, blood vessels, and biochemical factors-plays a crucial role in tumor growth and resistance to therapies. Recent innovations in cancer treatment, particularly in the field of immuno-oncology, have leveraged insights into TME interactions. An emerging example is the FDA-approved therapy using tumor-infiltrating lymphocytes (TILs), demonstrating the potential of cell-based approaches in solid tumors. However, TIL therapy is just one of many strategies being explored. This review provides a comprehensive overview of the emerging field of immuno-oncology, focusing on how novel therapies targeting or harnessing components of the TME could enhance treatment efficacy and address persistent challenges in cancer care.
Collapse
Affiliation(s)
- Irena Barbara Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Jacek Szeliga
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| |
Collapse
|
13
|
Abdallah M, Voland R, Decamp M, Flickinger J, Pacioles T, Jamil M, Silbermins D, Shenouda M, Valsecchi M, Bir A, Shweihat Y, Bastidas J, Chowdhury N, Kachynski Y, Eldib H, Wright T, Mahdi A, Al-Nusair J, Nwanwene K, Varlotto J. Evaluation of Anti-Angiogenic Therapy Combined with Immunotherapy and Chemotherapy as a Strategy to Treat Locally Advanced and Metastatic Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:4207. [PMID: 39766108 PMCID: PMC11674749 DOI: 10.3390/cancers16244207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has made recent improvements in disease-free survival (DFS) and/or overall survival (OS) in all stages of non-small-cell lung cancer (NSCLC). Here, we review the tumor microenvironment and its immunosuppressive effects and discuss how anti-angiogenic therapies may potentiate the anti-carcinogenic effects of immunotherapy. We also review all the past literature and discuss strategies of combining anti-angiogenic therapy and immunotherapy +/- chemotherapy and hypothesize how we can use this strategy for non-small-cell lung cancer in metastatic previously untreated/previously treated settings in previously treated EGFR-mutated NSCLC for the upfront treatment of brain metastases prior to radiation therapy and for the incorporation of this strategy into stage III unresectable disease. We assert the use of anti-angiogenic therapy and immunotherapy when combined appropriately with chemotherapy and radiotherapy has the potential to increase the long-term survivals in both the stage III and metastatic setting so that we can now consider more patients to experience curative treatment.
Collapse
Affiliation(s)
- Mahmoud Abdallah
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Rick Voland
- Department of Ophthalmology, University of Wisconsin, Madison, WI 53705, USA;
| | - Malcolm Decamp
- Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
| | - John Flickinger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA;
| | - Toni Pacioles
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Muhammad Jamil
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Damian Silbermins
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Mina Shenouda
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Matias Valsecchi
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Arvinder Bir
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Yousef Shweihat
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Juan Bastidas
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Nepal Chowdhury
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Yury Kachynski
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Howide Eldib
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - Thomas Wright
- Department of Internal Medicine, Marshall Health, Huntington, WV 25701, USA; (T.W.); (A.M.); (J.A.-N.)
| | - Ahmad Mahdi
- Department of Internal Medicine, Marshall Health, Huntington, WV 25701, USA; (T.W.); (A.M.); (J.A.-N.)
| | - Jowan Al-Nusair
- Department of Internal Medicine, Marshall Health, Huntington, WV 25701, USA; (T.W.); (A.M.); (J.A.-N.)
| | - Kemnasom Nwanwene
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| | - John Varlotto
- Department of Oncology, Edwards Comprehensive Cancer Institute, Marshall University, Huntington, WV 25701, USA; (M.A.); (T.P.); (M.J.); (D.S.); (M.S.); (M.V.); (A.B.); (Y.S.); (J.B.); (N.C.); (Y.K.); (H.E.); (K.N.)
| |
Collapse
|
14
|
Sun J, Wang D, Wei Y, Wang D, Ji Z, Sun W, Wang X, Wang P, Basmadji NP, Larrarte E, Pedraz JL, Ramalingam M, Xie S, Wang R. Capsaicin-induced Ca 2+ overload and ablation of TRPV1-expressing axonal terminals for comfortable tumor immunotherapy. NANOSCALE 2024. [PMID: 39688368 DOI: 10.1039/d4nr04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As a common malignancy symptom, cancer pain significantly affects patients' quality of life. Approximately 60%-90% of patients with advanced cancer experience debilitating pain. Therefore, a comprehensive treatment system that combines cancer pain suppression and tumor treatment could provide significant benefits for these patients. Here, we designed a manganese oxide (MnO2)/Bovine serum albumin (BSA)/polydopamine (PDA) composite nanoplatform internally loaded with capsaicin for cancer pain suppression and immunotherapy. MBD&C nanoparticles (NPs) can ablate tumor-innervated sensory nerve fibers via Transient receptor potential vanilloid 1 (TRPV1) channels, thereby reducing the pain caused by various inflammatory mediators. The ablation of TRPV1+ nerve terminals can also decrease the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP) in sensory nerve fibers, thus reducing the tumor pain and inhibit tumor progression. MBD&C can promote calcium influx by activating overexpressed TRPV1 channels on the tumor membrane surface, thereby achieving cancer immunotherapy induced by endogenous Ca2+ overloading. In addition, MnO2 NPs can alleviate tumor hypoxia and mitigate the immunosuppressive tumor microenvironment (TME). Ultimately, this treatment system with dual capabilities of inhibiting tumor growth and relieving cancer pain makes comfortable tumor therapy feasible and paves the way for the development of patient-centered approaches to cancer treatment in the future.
Collapse
Affiliation(s)
- Jian Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Zhengkun Ji
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Eider Larrarte
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
15
|
Yu H, Li J, Peng S, Liu Q, Chen D, He Z, Xiang J, Wang B. Tumor microenvironment: Nurturing cancer cells for immunoevasion and druggable vulnerabilities for cancer immunotherapy. Cancer Lett 2024; 611:217385. [PMID: 39645024 DOI: 10.1016/j.canlet.2024.217385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tumor microenvironment (TME) is an intricate ecosystem where cancer cells thrive, encompassing a wide array of cellular and non-cellular components. The TME co-evolves with tumor progression in a spatially and temporally dynamic manner, which endows cancer cells with the adaptive capability of evading immune surveillance. To this end, diverse cancer-intrinsic mechanisms were exploited to dampen host immune system, such as upregulating immune checkpoints, impairing antigens presentation and competing for nutrients. In this review, we discuss how cancer immunoevasion is tightly regulated by hypoxia, one of the hallmark biochemical features of the TME. Moreover, we comprehensively summarize how immune evasiveness of cancer cells is facilitated by the extracellular matrix, as well as soluble components of TME, including inflammatory factors, lactate, nutrients and extracellular vesicles. Given their important roles in dictating cancer immunoevasion, various strategies to target TME components are proposed, which holds promising translational potential in developing novel therapeutics to sensitize anti-cancer immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Hongyang Yu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Shiyin Peng
- School of Medicine, Chongqing University, Chongqing, China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; Institute of Pathology and Southwest Cancer Center, And Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
16
|
Xu Q, Shao D. Leveraging the synergy between anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system cancers. Front Immunol 2024; 15:1487610. [PMID: 39691707 PMCID: PMC11649667 DOI: 10.3389/fimmu.2024.1487610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The response rates to immunotherapy vary widely depending on the type of cancer and the specific treatment used and can be disappointingly low for many solid tumors. Fortunately, due to their complementary mechanisms of action, immunotherapy and anti-angiogenic therapy have synergistic effects in cancer treatment. By normalizing the tumor vasculature, anti-angiogenic therapy can improve blood flow and oxygenation to facilitate better immune cell infiltration into the tumor and enhance the effectiveness of immunotherapy. It also reduces immunosuppressive factors and enhances immune activation, to create a more favorable environment for immune cells to attack the tumor. Their combination leverages the strengths of both therapies to enhance anti-tumor effects and improve patient outcomes. This review discusses the vasculature-immunity crosstalk in the tumor microenvironment and summarizes the latest advances in combining anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system tumors.
Collapse
Affiliation(s)
| | - Dong Shao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow
University, Changzhou, Jiangsu, China
| |
Collapse
|
17
|
Wu Z, Zhang Y, Gong Y, Hu J. Knowledge landscape of Treg research in breast cancer: a bibliometric and visual analysis. Front Oncol 2024; 14:1448714. [PMID: 39664195 PMCID: PMC11631855 DOI: 10.3389/fonc.2024.1448714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Background Regulatory T (Treg) cells play a strategic role in maintaining immune homeostasis and their functions are closely linked to the development of different diseases, including cancer. This study aims to investigate the evolution patterns and popular research topics of Treg cells through bibliometric analysis. Method The Web of Science Core Collection database was used to extract publications related to Treg cells, which were then subjected to bibliometric analysis and visualization through VOSviewer, CiteSpace, and R software. Results Between 2003 and 2023, a total of 666 articles were published. China and the United States had the highest citation counts, with Fudan University, Shanghai Jiao Tong University, and Tarbiat Modares University being the leading research institutions. Beckhove Philipp from the German Cancer Research Center and the National Center for Tumor Diseases in Heidelberg, and Christophe from the Cancer Research Center of Lyon, were the most prolific authors. Sakaguchi Shimon from the Immunology Frontier Research Center at Osaka University was the most cited author. "Frontiers in Immunology" published the most articles, while "Journal of Immunology" received the highest co-citations. Key terms in Treg research include immunotherapy, tumor microenvironment, prognosis, immunosuppression, and PD-L1. Among these, immunotherapy, prognosis, PD-L1, and immunosuppression have emerged as focal points of research in recent years. Conclusion With active collaboration worldwide, research on Treg cells is rapidly advancing. Focusing on Treg cells as a potential target for cancer treatment shows great promise for future research, especially in terms of practical applications. This could offer valuable direction and fresh perspectives for further exploration of Treg cells in the medical field.
Collapse
Affiliation(s)
- Zankai Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanting Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Gong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Upadhyay S, Kumar S, Singh VK, Tiwari R, Kumar A, Sundar S, Kumar R. Chemokines Signature and T Cell Dynamics in Leishmaniasis: Molecular insight and therapeutic application. Expert Rev Mol Med 2024; 27:1-55. [PMID: 39587036 PMCID: PMC11707835 DOI: 10.1017/erm.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Leishmaniasis, caused by obligate intracellular Leishmania parasites, poses a significant global health burden. The control of Leishmania infection relies on an effective T cell-dependent immune response; however, various factors impede the host’s ability to mount a successful defence. Alterations in the chemokine profile, responsible for cell trafficking to the infection site, can disrupt optimal immune responses and influence the outcome of pathogenesis by facilitating parasite persistence. This review aims to emphasize the significance of the chemokine system in T cell responses and to summarize the current knowledge on the dysregulation of chemokines and their receptors associated with different subsets of T lymphocytes during Leishmaniasis. A comprehensive understanding of the dynamic nature of the chemokine system during Leishmaniasis is crucial for the development of successful immunotherapeutic approaches.
Collapse
Affiliation(s)
- Shreya Upadhyay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Ummarino A, Calà N, Allavena P. Extrinsic and Cell-Intrinsic Stress in the Immune Tumor Micro-Environment. Int J Mol Sci 2024; 25:12403. [PMID: 39596467 PMCID: PMC11594858 DOI: 10.3390/ijms252212403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
In continuously progressive tumor tissues, the causes of cellular stress are multiple: metabolic alterations, nutrient deprivation, chronic inflammation and hypoxia. To survive, tumor cells activate the stress response program, a highly conserved molecular reprogramming proposed to cope with challenges in a hostile environment. Not only cancer cells are affected, but stress responses in tumors also have a profound impact on their normal cellular counterparts: fibroblasts, endothelial cells and infiltrating immune cells. In recent years, there has been a growing interest in the interaction between cancer and immune cells, especially in difficult conditions of cellular stress. A growing literature indicates that knowledge of the molecular pathways activated in tumor and immune cells under stress conditions may offer new insights for possible therapeutic interventions. Counter-regulating the stress caused by the presence of a growing tumor can therefore be a weapon to limit disease progression. Here, we review the main pathways activated in cellular stress responses with a focus on immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Aldo Ummarino
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Nicholas Calà
- Etromapmacs Pole, Agorà Biomedical Sciences, 71010 Foggia, Italy;
| | | |
Collapse
|
20
|
Lin SK, Zhang CM, Men B, Hua Z, Ma SC, Zhang F. Bioinformatics-based screening of hub genes for prostate cancer bone metastasis and analysis of immune infiltration. Medicine (Baltimore) 2024; 103:e40570. [PMID: 39560511 PMCID: PMC11575990 DOI: 10.1097/md.0000000000040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Bioinformatics analysis of genes and immune cells that influence prostate cancer (PCa) bone metastases. Using the gene expression omnibus database, we analyzed a PCa bone metastasis dataset. Differentially expressed genes were identified through the utilization of GEO2R and weighted gene co-expression network analysis. Gene set enrichment analysis software was used to identify important pathways. In addition to creating a network of protein-protein interactions, functional enrichment analyses were conducted using Kyoto encyclopedia of genes databases. To screen hub genes, Cytoscape software was used with the CytoHubba plug-in and performed mRNA and survival curve validation analysis of key genes using the cBioPortal website and GEPIA2 database. Immune infiltration analysis was performed using the CIBERSORTx website, and finally, immune cell correlation analysis was performed for key genes according to the TIMER database. A total of 197 PCa bone metastasis risk genes were screened, "G2M_CHECKPOINT" was significantly enriched in PCa bone metastasis samples according to genomic enrichment analysis. Based on the protein interactions network, we have identified 10 alternative hub genes, and 3 hub genes, CCNA2, NUSAP1, and PBK, were validated by the cBioPortal website and the GEPIA2 database. T cells regulatory and macrophages M0 may influence PCa to metastasize to bones, according to CIBERSORTx immune cell infiltration analysis. TIMER database analysis found different degrees of correlation between 3 key genes and major immune cells. PCa bone metastasis has been associated with CCNA2, NUSAP1, and PBK. T cells regulatory and macrophages (M0) may also be involved.
Collapse
Affiliation(s)
- Shu-Kun Lin
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chen-Ming Zhang
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Bo Men
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Zhong Hua
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Si-Cheng Ma
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Fang Zhang
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Hamze Sinno S, Imperatore JA, Bai S, Gomes-Jourdan N, Mafarachisi N, Coronnello C, Zhang L, Jašarević E, Osmanbeyoglu HU, Buckanovich RJ, Cascio S. Egfl6 promotes ovarian cancer progression by enhancing the immunosuppressive functions of tumor-associated myeloid cells. J Clin Invest 2024; 134:e175147. [PMID: 39312740 PMCID: PMC11527450 DOI: 10.1172/jci175147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play a critical role in resistance to immunotherapy. In this study, we identified epidermal growth factor-like 6 (Egfl6) as a regulator of myeloid cell functions. Our analyses indicated that Egfl6, via binding with β3 integrins and activation of p38 and SYK signaling, acts as a chemotactic factor for myeloid cell migration and promotes their differentiation toward an immunosuppressive state. In syngeneic mouse models of ovarian cancer (OvCa), tumor expression of Egfl6 increased the intratumoral accumulation of polymorphonuclear (PMN) MDSCs and TAMs and their expression of immunosuppressive factors, including CXCL2, IL-10, and PD-L1. Consistent with this, in an immune 'hot' tumor model, Egfl6 expression eliminated response to anti-PD-L1 therapy, while Egfl6 neutralizing antibody decreased the accumulation of tumor-infiltrating CD206+ TAMs and PMN-MDSCs and restored the efficacy of anti-PD-L1 therapy. Supporting a role in human tumors, in human OvCa tissue samples, areas of high EGFL6 expression colocalized with myeloid cell infiltration. scRNA-Seq analyses revealed a correlation between EGFL6 and immune cell expression of immunosuppressive factors. Our data provide mechanistic insights into the oncoimmunologic functions of EGFL6 in mediating tumor immune suppression and identified EGFL6 as a potential therapeutic target to enhance immunotherapy in patients with OvCa.
Collapse
Affiliation(s)
- Sarah Hamze Sinno
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Shoumei Bai
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Linan Zhang
- Department of Applied Mathematics, School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang, China
| | - Eldin Jašarević
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, Pittsburgh, Pennsylvania, USA
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine
- UPMC Hillman Cancer Center
- Department of Bioengineering, School of Engineering, and
| | - Ronald J. Buckanovich
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sandra Cascio
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center
| |
Collapse
|
23
|
Khaliq AM, Rajamohan M, Saeed O, Mansouri K, Adil A, Zhang C, Turk A, Carstens JL, House M, Hayat S, Nagaraju GP, Pappas SG, Wang YA, Zyromski NJ, Opyrchal M, Lee KP, O'Hagan H, El Rayes B, Masood A. Spatial transcriptomic analysis of primary and metastatic pancreatic cancers highlights tumor microenvironmental heterogeneity. Nat Genet 2024; 56:2455-2465. [PMID: 39294496 DOI: 10.1038/s41588-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Although the spatial, cellular and molecular landscapes of resected pancreatic ductal adenocarcinoma (PDAC) are well documented, the characteristics of its metastatic ecology remain elusive. By applying spatially resolved transcriptomics to matched primary and metastatic PDAC samples, we discovered a conserved continuum of fibrotic, metabolic and immunosuppressive spatial ecotypes across anatomical regions. We observed spatial tumor microenvironment heterogeneity spanning beyond that previously appreciated in PDAC. Through comparative analysis, we show that the spatial ecotypes exhibit distinct enrichment between primary and metastatic sites, implying adaptability to the local environment for survival and progression. The invasive border ecotype exhibits both pro-tumorigenic and anti-tumorigenic cell-type enrichment, suggesting a potential immunotherapy target. The ecotype heterogeneity across patients emphasizes the need to map individual patient landscapes to develop personalized treatment strategies. Collectively, our findings provide critical insights into metastatic PDAC biology and serve as a valuable resource for future therapeutic exploration and molecular investigations.
Collapse
Affiliation(s)
- Ateeq M Khaliq
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meenakshi Rajamohan
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Omer Saeed
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimia Mansouri
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Asif Adil
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anita Turk
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julienne L Carstens
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael House
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Ganji P Nagaraju
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sam G Pappas
- Division of Surgical Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Y Alan Wang
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas J Zyromski
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelvin P Lee
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather O'Hagan
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bassel El Rayes
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashiq Masood
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
24
|
Zhang Y, Rao Y, Lu J, Wang J, Ker DFE, Zhou J, Wang DM. The influence of biophysical niche on tumor-associated macrophages in liver cancer. Hepatol Commun 2024; 8:e0569. [PMID: 39470328 PMCID: PMC11524744 DOI: 10.1097/hc9.0000000000000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 10/30/2024] Open
Abstract
HCC, the most common type of primary liver cancer, is a leading cause of cancer-related mortality worldwide. Although the advancement of immunotherapies by immune checkpoint inhibitors (ICIs) that target programmed cell death 1 or programmed cell death 1-ligand 1 has revolutionized the treatment for HCC, the majority is still not beneficial. Accumulating evidence has pointed out that the potent immunosuppressive tumor microenvironment in HCC poses a great challenge to ICI therapeutic efficacy. As a key component in tumor microenvironment, tumor-associated macrophages (TAMs) play vital roles in HCC development, progression, and ICI low responsiveness. Mechanistically, TAM can promote cancer invasion and metastasis, angiogenesis, epithelial-mesenchymal transition, maintenance of stemness, and most importantly, immunosuppression. Targeting TAMs, therefore, represents an opportunity to enhance the ICI therapeutic efficacy in patients with HCC. While previous research has primarily focused on biochemical cues influencing macrophages, emerging evidence highlights the critical role of biophysical signals, such as substrate stiffness, topography, and external forces. In this review, we summarize the influence of biophysical characteristics within the tumor microenvironment that regulate the phenotype and function of TAMs in HCC pathogenesis and progression. We also explore the possible mechanisms and discuss the potential of manipulating biophysical cues in regulating TAM for HCC therapy. By gaining a deeper understanding of how macrophages sense and respond to mechanical forces, we may potentially usher in a path toward a curative approach for combinatory cancer immunotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jiahuan Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jiyu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dai Fei Elmer Ker
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Jingying Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| |
Collapse
|
25
|
Artamonova N, Kafka M, Faiss L, Avetisyan D, Puche Sanz I, La Bombarda G, Iacono G, Zattoni F, Steiner E, D’Elia C, Pycha A, Ladurner M, Jagodic S, Gandaglia G, Heidegger I. Impact of Renin-Angiotensin System Inhibitors on Disease Characteristics in Patients with Localized Prostate Cancer Treated with Radical Prostatectomy: A European Association of Urology Young Academic Urologists Prostate Cancer Working Group Multi-institutional Study. EUR UROL SUPPL 2024; 69:105-111. [PMID: 39430410 PMCID: PMC11490865 DOI: 10.1016/j.euros.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Background and objective Collagen biosynthesis is intricately involved in the development and progression of solid tumors. Renin-angiotensin system inhibitors (RASi) impede TGF-β-mediated collagen synthesis in tumors by hindering activation of the angiotensin receptor. Our aim was to investigate a potential association between RASi use and the aggressiveness of prostate cancer (PCa). Methods We conducted a retrospective multicenter analysis for a cohort of 1250 patients with PCa who underwent radical prostatectomy (RP) between 1990 and 2023 in four European high-volume centers. The study cohort comprised 625 RASi-treated patients and 625 age-matched RASi-naïve patients. Data for various parameters were collected, including age at RP, body mass index (BMI), prostate volume, prostate-specific antigen (PSA), percentage of free PSA, Gleason score (GS) at biopsy and RP, TNM stage, and the rate of biochemical recurrence (BCR). Clinical parameters for patients with and without RASi treatment were documented. Differences between the groups were compared using a Mann-Whitney U test and χ2 tests. Survival analyses were performed using the Kaplan-Meier method. Key findings and limitations As expected, the RASi group had higher BMI levels than the RASi-naïve group (p < 0.001). However, RASi use was not associated with key markers of PCa aggressiveness such as GS upgrading from biopsy to RP (p = 0.089), surgical margin status (p = 0.109), and lymph node involvement (p = 0.33). Moreover, there were no significant differences between the groups in BCR incidence (p = 0.258) or the time to BCR (p = 0.683). Conclusions and clinical implications Our findings indicate that RASi therapy does not have a significant effect on the biological aggressiveness of PCa. Patient summary We analyzed data for 1250 patients with prostate cancer and found that the use of a commonly prescribed high blood pressure medication was not associated with a less aggressive form of localized prostate cancer.
Collapse
Affiliation(s)
| | - Mona Kafka
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Laura Faiss
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - David Avetisyan
- UGC Urología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Ignacio Puche Sanz
- UGC Urología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Gennaio Iacono
- Department of Urology, University of Padova, Padova, Italy
| | - Fabio Zattoni
- Department of Urology, University of Padova, Padova, Italy
- Department of Medicine, University of Padova, Padua, Italy
| | - Eberhard Steiner
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Caroline D’Elia
- Department of Urology, Zentralkankenhaus Bozen, Bozen, Italy
| | - Armin Pycha
- Department of Urology, Zentralkankenhaus Bozen, Bozen, Italy
| | - Michael Ladurner
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Samed Jagodic
- Department of Urology, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Giorgio Gandaglia
- Department of Urology, Urological Research Institute Vita-Salute University and San Raffaele Hospital, Milan, Italy
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Huo MH, Adeerjiang Y, Abulitipu A, Khan U, Li XX, Zhang L, Tian Y, Jiang S, Xu CC, Chao XZ, Yang YF, Zhang JX, Du GL. Th17/Treg cell balance in patients with papillary thyroid carcinoma: a new potential biomarker and therapeutic target. Front Oncol 2024; 14:1325575. [PMID: 39534095 PMCID: PMC11554530 DOI: 10.3389/fonc.2024.1325575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid carcinoma. The most effective treatment for PTC is surgical resection, and patients who undergo surgery have good survival outcomes, but some patients have distant metastasis or even multiorgan metastases at the time of initial diagnosis. Distant metastasis is associated with poorer prognosis and a higher mortality rate. Helper T lymphocyte 17 (Th17) cells and regulatory T lymphocytes (Tregs) play different roles in PTC, and the Th17/Treg balance is closely related to the progression of PTC. Th17 cells play anticancer roles, whereas Tregs play cancer-promoting roles. A Th17/Treg imbalance promotes tumor progression and accelerates invasive behaviors such as tumor metastasis. Th17/Treg homeostasis can be regulated by the TGF-β/IL-2 and IL-6 cytokine axes. Immune checkpoint inhibitors contribute to Treg/Th17 cell homeostasis. For PTC, monoclonal antibodies against CTLA-4, PD-1 and PD-L1 inhibit the activation of Tregs, reversing the Th17/Treg cell imbalance and providing a new option for the prevention and treatment of PTC. This article reviews the role of Tregs and Th17 cells in PTC and their potential targets, aiming to provide better treatment options for PTC.
Collapse
Affiliation(s)
- Meng-Han Huo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Gastroenterology and Endocrinology, Tianjin Haihe Hospital, Tianjin, China
| | - Yilinuer Adeerjiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ayiguzhali Abulitipu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Umair Khan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xin-Xi Li
- Department of Endocrine Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Zhang
- Department of Endocrine Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ye Tian
- Department of Endocrine Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Sheng Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Can-Can Xu
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xian-Zhen Chao
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ye-Fan Yang
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin-Xia Zhang
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guo-Li Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Endocrinology, Bayingolin Mongolian Autonomous Prefecture People's Hospital, Kuerle, China
| |
Collapse
|
27
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
28
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
29
|
Safaei S, Alipour S, Bahojb Mahdavi SZ, Shalmashi H, Shahgoli VK, Shanehbandi D, Baradaran B, Kazemi T. Triple-negative breast cancer-derived exosomes change the immunological features of human monocyte-derived dendritic cells and influence T-cell responses. Mol Biol Rep 2024; 51:1058. [PMID: 39417912 DOI: 10.1007/s11033-024-10007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) exhibits a lower survival rate in comparison to other BC subtypes. Utilizing dendritic cell (DC) vaccines as a form of immunotherapy is becoming a promising new approach to cancer treatment. However, inadequate immunogenicity of tumor antigens leads to unsatisfactory effectiveness of the DC vaccines. Exosomes are the basis for the latest improvements in tumor immunotherapy. This study examined whether TNBC-derived exosomes elicit immunogenicity on the maturation and function of monocyte-derived DCs and the impact of the exosome-treated monocyte-derived DCs (moDCs) on T cell differentiation. METHODS exosomes were isolated from MDA-MB-231 TNBC cancer cells and characterized. Monocytes were separated from peripheral blood mononuclear cells and differentiated into DCs. Then, monocyte-derived DCs were treated with TNBC-derived exosomes. Furthermore, the mRNA levels of the genes and cytokines involved in DC maturation and function were examined using qRT-PCR and ELISA assays. We also cocultured TNBC-derived exosome-treated moDCs with T cells and investigated the role of the treatment in T cell differentiation by evaluating the expression of some related genes by qRT-PCR. The concentration of the cytokines secreted from T cells cocultured with exosome-treated moDCs was quantified by the ELISA assays. RESULTS Our findings showed that TNBC-derived exosomes induce immunogenicity by enhancing moDCs' maturation and function. In addition, exosome-treated moDCs promote cocultured T-cell expansion by inducing TH1 differentiation through increasing cytokine production. CONCLUSION TNBC-derived exosomes could improve vaccine-elicited immunotherapy by inducing an immunogenic response and enhancing the effectiveness of the DC vaccines. However, this needs to be investigated further in future studies.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hooman Shalmashi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Li Y, Fan Y, Xie Y, Li L, Li J, Liu J, Jin Z, Xue H, Wang Z. Genome-wide RNA-Seq identifies TP53-mediated embryonic stem cells inhibiting tumor invasion and metastasis. Stem Cell Res Ther 2024; 15:369. [PMID: 39415294 PMCID: PMC11483973 DOI: 10.1186/s13287-024-04000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
The discovery of embryonic stem cell (ESC) mediating tumoricidal activity revealed the intimate relationship between ESCs and tumor cells, but the functional role of ESCs in tumor progression is poorly understood. To further investigate tumor cell and ESC interactions, we co-cultured mouse ESCs with mouse pancreatic cancer Pan02 cells or mouse melanoma B16-F10 cells in Transwell, and found that tumor cell invasion was significantly inhibited by ESCs. Application of ESCs to tumor-bearing mice resulted in significant inhibition of tumor metastasis in vivo. RNA-Seq analyses of tumor cell and ESC co-cultures identified TP53 and related signalling as major pathways involved in ESC-mediated inhibition of tumor cell invasion and metastasis, which indicated the potential clinical application of ESCs to treat cancer.
Collapse
Affiliation(s)
- Yatong Li
- Department of Radiology, Peking Union Medical College Hospital, Beijing, 100730, China.
- State Key Laboratory of Medical Molecular Biology, Department of Pathology and Pathophysiology, Institute of Basic Medical Sciences, Center of Molecular Pathology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Yongna Fan
- State Key Laboratory of Medical Molecular Biology, Department of Pathology and Pathophysiology, Institute of Basic Medical Sciences, Center of Molecular Pathology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yunyi Xie
- State Key Laboratory of Medical Molecular Biology, Department of Pathology and Pathophysiology, Institute of Basic Medical Sciences, Center of Molecular Pathology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Limin Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathology and Pathophysiology, Institute of Basic Medical Sciences, Center of Molecular Pathology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Juan Li
- Department of Radiology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jingyi Liu
- Department of Radiology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
31
|
Nguyen TNH, Horowitz LF, Nguyen B, Lockhart E, Zhu S, Gujral TS, Folch A. Microfluidic Modulation of Microvasculature in Microdissected Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615278. [PMID: 39386436 PMCID: PMC11463410 DOI: 10.1101/2024.09.26.615278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The microvasculature within the tumor microenvironment (TME) plays an essential role in cancer signaling beyond nutrient delivery. However, it has been challenging to control the generation and/or maintenance of microvasculature in ex vivo systems, a critical step for establishing cancer models of high clinical biomimicry. There have been great successes in engineering tissues incorporating microvasculature de novo (e.g., organoids and organs-on-chip), but these reconstituted tissues are formed with non-native cellular and molecular components that can skew certain outcomes such as drug efficacy. Microdissected tumors, on the other hand, show promise in preserving the TME, which is key for creating cancer models that can bridge the gap between bench and bedside. However, microdissected tumors are challenging to perfuse. Here, we developed a microfluidic platform that allows for perfusing the microvasculature of microdissected tumors. We demonstrate that, compared to diffusive transport, microfluidically perfused tissues feature larger and longer microvascular structures, with a better expression of CD31, a marker for endothelial cells, as analyzed by 3D imaging. This study also explores the effects of nitric oxide pathway-related drugs on endothelial cells, which are sensitive to shear stress and can activate endothelial nitric oxide synthase, producing nitric oxide. Our findings highlight the critical role of controlled perfusion and biochemical modulation in preserving tumor microvasculature, offering valuable insights for developing more effective cancer treatments.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Brandon Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Songli Zhu
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| |
Collapse
|
32
|
Goudarzi S, Vosough Ghanbari M, Rohani J, Ghodsi R, Rassouli FB. Developing new drugs for adult T-cell leukemia/lymphoma by targeting hypoxia: insights from toxicity of MS-275 and its analogs. J Chemother 2024:1-10. [PMID: 39375926 DOI: 10.1080/1120009x.2024.2411825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
The low survival rate of adult T-cell leukemia/lymphoma (ATL) underscores the critical need for innovative therapeutic agents. While the pharmacokinetics of HDACis have been documented in several hematological neoplasms, there is a notable gap in research regarding their activity against ATL. Given that hypoxia can induce unpredictable effects on lymphoma cells, this study aimed to evaluate the toxic effects of MS-275 and novel analogs on ATL cells in hypoxic condition for the first time. Protein-protein interaction and gene set enrichment analyses were performed, the expression of HIF1A and downstream targets were assessed, and molecular docking was conducted on MS-275 and novel analogs with HIF-1α. For in vitro studies, at first benzamide analogs of MS-275 were synthesized and then, viability of MT-2 cells was evaluated in hypoxic condition. Enrichment analyses confirmed the involvement of hub genes in HIF-1 signaling pathway and volcano plot revealed over expression of HIF1A, GAL3ST1 and CD274. Molecular docking indicated favorable interaction between MS-275 and analogs with HIF-1α PAS-B domain. Results of alamarBlue assay demonstrated that MS-275 and analogs significantly (p < 0.001) reduced viability of MT-2 cells in hypoxic condition. Findings of the present study hold promise for developing new drugs targeting hypoxia-induced changes in ATL.
Collapse
Affiliation(s)
- Sajad Goudarzi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohamad Vosough Ghanbari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Rohani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
33
|
Ciepła J, Smolarczyk R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies. Clin Exp Med 2024; 24:235. [PMID: 39361163 PMCID: PMC11449960 DOI: 10.1007/s10238-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Hypoxia is one of the defining characteristics of the tumor microenvironment (TME) in solid cancers. It has a major impact on the growth and spread of malignant cells as well as their resistance to common treatments like radiation and chemotherapy. Here, we explore the complex functions of hypoxia in the TME and investigate its effects on angiogenesis, immunological evasion, and cancer cell metabolism. For prognostic and therapeutic reasons, hypoxia identification is critical, and recent developments in imaging and molecular methods have enhanced our capacity to precisely locate underoxygenated areas inside tumors. Furthermore, targeted therapies that take advantage of hypoxia provide a potential new direction in the treatment of cancer. Therapeutic approaches that specifically target hypoxic conditions in tumors without causing adverse effects are being led by hypoxia-targeted nanocarriers and hypoxia-activated prodrugs (HAPs). This review provides an extensive overview of this dynamic and clinically significant area of oncology research by synthesizing current knowledge about the mechanisms of hypoxia in cancer, highlighting state-of-the-art detection methodologies, and assessing the potential and efficacy of hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Joanna Ciepła
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
34
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
Sposito M, Eccher S, Scaglione I, Avancini A, Rossi A, Pilotto S, Belluomini L. The frontier of neoadjuvant therapy in non-small cell lung cancer beyond PD-(L)1 agents. Expert Opin Biol Ther 2024; 24:1025-1037. [PMID: 39311630 DOI: 10.1080/14712598.2024.2408292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION While surgical resection is the cornerstone of treatment for resectable lung cancer, neoadjuvant/adjuvant chemotherapy has shown limited improvement in survival rates over the past decades. With the success of immune checkpoint inhibitors (ICIs) in advanced NSCLC, there is growing interest in their application in earlier stages of the disease. Recent approvals for neoadjuvant/adjuvant ICIs in stage II-IIIA NSCLC highlight this shift in treatment paradigms. AREAS COVERED In this review, we aim to explore available data regarding alternative agents beyond the PD-(L)1 inhibitors, such as monoclonal antibodies against CTLA4, LAG3, TIGIT, antiangiogenic drugs, and novel therapies (antibody drug conjugates, bispecific antibodies) in neoadjuvant/perioperative regimens. EXPERT OPINION Novel agents and combinations (with or without ICI or/and chemotherapy), guided by molecular profiling and immune phenotyping, showed promise in improving surgical and survival outcomes. Crucial is, also in early setting, to identifying biomarkers predictive of treatment efficacy in order to personalize neoadjuvant/perioperative treatment strategies.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Serena Eccher
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Scaglione
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, Milan, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
36
|
Guo M, Sun Y, Wang X, Wang Z, Yuan X, Chen X, Yuan X, Wang L. The MCIB Model: A Novel Theory for Describing the Spatial Heterogeneity of the Tumor Microenvironment. Int J Mol Sci 2024; 25:10486. [PMID: 39408814 PMCID: PMC11476373 DOI: 10.3390/ijms251910486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment (TME) can be regarded as a complex and dynamic microecosystem generated by the interactions of tumor cells, interstitial cells, the extracellular matrix, and their products and plays an important role in the occurrence, progression and metastasis of tumors. In a previous study, we constructed an IEO model (prI-, prE-, and pOst-metastatic niche) according to the chronological sequence of TME development. In this paper, to fill the theoretical gap in spatial heterogeneity in the TME, we defined an MCIB model (Metabolic, Circulatory, Immune, and microBial microenvironment). The MCIB model divides the TME into four subtypes that interact with each other in terms of mechanism, corresponding to the four major links of metabolic reprogramming, vascular remodeling, immune response, and microbial action, providing a new way to assess the TME. The combination of the MCIB model and IEO model comprehensively depicts the spatiotemporal evolution of the TME and can provide a theoretical basis for the combination of clinical targeted therapy, immunotherapy, and other comprehensive treatment modalities for tumors according to the combination and crosstalk of different subtypes in the MCIB model and provide a powerful research paradigm for tumor drug-resistance mechanisms and tumor biological behavior.
Collapse
Affiliation(s)
- Minghao Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Yinan Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zikun Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| |
Collapse
|
37
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00992-0. [PMID: 39325360 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
38
|
Tan M, Song B, Zhao X, Du J. The role and mechanism of compressive stress in tumor. Front Oncol 2024; 14:1459313. [PMID: 39351360 PMCID: PMC11439826 DOI: 10.3389/fonc.2024.1459313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Recent research has revealed the important role of mechanical forces in the initiation and progression of tumors. The interplay between mechanical and biochemical cues affects the function and behavior of tumor cells during the development of solid tumors, especially their metastatic potential. The compression force generated by excessive cell proliferation and the tumor microenvironment widely regulates the progression of solid tumor disease. Tumor cells can sense alterations in compressive stress through diverse mechanosensitive components and adapt their mechanical characteristics accordingly to adapt to environmental changes. Here, we summarize the current role of compressive stress in regulating tumor behavior and its biophysical mechanism from the mechanobiological direction.
Collapse
Affiliation(s)
- Min Tan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bingqi Song
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinbin Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
39
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
40
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
41
|
Dai S, Peng Y, Wang G, Chen C, Chen Q, Yin L, Yan H, Zhang K, Tu M, Lu Z, Wei J, Li Q, Wu J, Jiang K, Zhu Y, Miao Y. LIM domain only 7: a novel driver of immune evasion through regulatory T cell differentiation and chemotaxis in pancreatic ductal adenocarcinoma. Cell Death Differ 2024:10.1038/s41418-024-01358-7. [PMID: 39143228 DOI: 10.1038/s41418-024-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
With advancements in genomics and immunology, immunotherapy has emerged as a revolutionary strategy for tumor treatment. However, pancreatic ductal adenocarcinoma (PDAC), an immunologically "cold" tumor, exhibits limited responsiveness to immunotherapy. This study aimed to address the urgent need to uncover PDAC's immune microenvironment heterogeneity and identify the molecular mechanisms driving immune evasion. Using single-cell RNA sequencing datasets and spatial proteomics, we discovered LIM domain only 7 (LMO7) in PDAC cells as a previously unrecognized driver of immune evasion through Treg cell enrichment. LMO7 was positively correlated with infiltrating regulatory T cells (Tregs) and dysfunctional CD8+ T cells. A series of in vitro and in vivo experiments demonstrated LMO7's significant role in promoting Treg cell differentiation and chemotaxis while inhibiting CD8+ T cells and natural killer cell cytotoxicity. Mechanistically, LMO7, through its LIM domain, directly bound and promoted the ubiquitination and degradation of Foxp1. Foxp1 negatively regulated transforming growth factor-beta (TGF-β) and C-C motif chemokine ligand 5 (CCL5) expression by binding to sites 2 and I/III, respectively. Elevated TGF-β and CCL5 levels contribute to Treg cell enrichment, inducing immune evasion in PDAC. Combined treatment with TGF-β/CCL5 antibodies, along with LMO7 inhibition, effectively reversed immune evasion in PDAC, activated the immune response, and prolonged mouse survival. Therefore, this study identified LMO7 as a novel facilitator in driving immune evasion by promoting Treg cell enrichment and inhibiting cytotoxic effector functions. Targeting the LMO7-Foxp1-TGF-β/CCL5 axis holds promise as a therapeutic strategy for PDAC. Graphical abstract revealing LMO7 as a novel facilitator in driving immune evasion by promoting Tregs differentiation and chemotaxis, inducing CD8+ T/natural killer cells inhibition.
Collapse
Affiliation(s)
- Shangnan Dai
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yunpeng Peng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Guangfu Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chongfa Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuyang Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Lingdi Yin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Han Yan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Qiang Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Junli Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yi Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
Bao R, Qu H, Li B, Cheng K, Miao Y, Wang J. The role of metabolic reprogramming in immune escape of triple-negative breast cancer. Front Immunol 2024; 15:1424237. [PMID: 39192979 PMCID: PMC11347331 DOI: 10.3389/fimmu.2024.1424237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has become a thorny problem in the treatment of breast cancer because of its high invasiveness, metastasis and recurrence. Although immunotherapy has made important progress in TNBC, immune escape caused by many factors, especially metabolic reprogramming, is still the bottleneck of TNBC immunotherapy. Regrettably, the mechanisms responsible for immune escape remain poorly understood. Exploring the mechanism of TNBC immune escape at the metabolic level provides a target and direction for follow-up targeting or immunotherapy. In this review, we focus on the mechanism that TNBC affects immune cells and interstitial cells through hypoxia, glucose metabolism, lipid metabolism and amino acid metabolism, and changes tumor metabolism and tumor microenvironment. This will help to find new targets and strategies for TNBC immunotherapy.
Collapse
Affiliation(s)
- Ruochen Bao
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Hongtao Qu
- Emergency Department of Yantai Mountain Hospital, Yantai, China
| | - Baifeng Li
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Kai Cheng
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 Medical College of Binzhou Medical University, Yantai, China
| | - Jiangtao Wang
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| |
Collapse
|
43
|
Zhao Y, Tang G, Li J, Bian X, Zhou X, Feng J. Integrative transcriptome analysis reveals the molecular events underlying impaired T-cell responses in EGFR-mutant lung cancer. Sci Rep 2024; 14:18366. [PMID: 39112565 PMCID: PMC11306370 DOI: 10.1038/s41598-024-69020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
EGFR mutations are critical oncogenic drivers in lung adenocarcinoma (LUAD). However, the mechanisms by which they impact the tumor microenvironment (TME) and tumor immunity are unclear. Furthermore, the reasons underlying the poor response of EGFR-mutant (EGFR-MU) LUADs to immunotherapy with PD-1/PD-L1 inhibitors are unknown. Utilizing single-cell RNA (sc-RNA) and bulk RNA sequencing datasets, we conducted high-dimensional weighted gene coexpression network analysis to identify key genes and immune-related pathways contributing to the immunosuppressive TME. EGFR-MU cancer cells downregulated MHC class I genes to evade CD8+ cytotoxic T cells, expressed substantial levels of MHC class II molecules, and engaged with CD4+ regulatory T cells (Tregs). EGFR-MU tumors may recruit Tregs primarily through the CCL17/CCL22/CCR4 axis, leading to a Treg-enriched TME. High levels of MHC class II-positive cancer-associated fibroblasts and tumor endothelial cells were found within EGFR-MU tumors. Owing to the absence of costimulatory factors, they may inhibit rather than activate the tumor antigen-specific CD4+ T-cell response, contributing further to immune suppression. Multiplex immunohistochemistry analyses in a LUAD cohort confirmed increased expression of MHC class II molecules in cancer cells and fibroblasts in EGFR-MU tumors. Our research elucidates the highly immunosuppressive TME in EGFR-MU LUAD and suggests potential targets for effective immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Gu Tang
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jun Li
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaonan Bian
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
44
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
45
|
Jingushi K, Kawashima A, Tanikawa S, Saito T, Yamamoto A, Uemura T, Sassi N, Ishizuya Y, Yamamoto Y, Kato T, Hatano K, Hase H, Nonomura N, Tsujikawa K. Cutibacterium acnes-derived extracellular vesicles promote tumor growth in renal cell carcinoma. Cancer Sci 2024; 115:2578-2587. [PMID: 38682309 PMCID: PMC11309925 DOI: 10.1111/cas.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Bacterial flora are present in various parts of the human body, including the intestine, and are thought to be involved in the etiology of various diseases such as multiple sclerosis, intestinal diseases, cancer, and uterine diseases. In recent years, the presence of bacterial 16S rRNA genes has been revealed in blood, which was previously thought to be a sterile environment, and characteristic blood microbiomes have been detected in various diseases. However, the mechanism and the origin of the bacterial information are unknown. In this study, we performed 16S rRNA metagenomic analysis of bacterial DNA in serum extracellular vesicles from five healthy donors and seven patients with renal cell carcinoma and detected Cutibacterium acnes DNA as a characteristic bacterial DNA in the serum extracellular vesicles of patients with renal cell carcinoma. In addition, C. acnes DNA was significantly reduced in postoperative serum extracellular vesicles from patients with renal cell carcinoma compared with that in preoperative serum extracellular vesicles from these patients and was also detected in tumor tissue and extracellular vesicles from tumor tissue-associated microbiota, suggesting an association between C. acnes extracellular vesicles and renal cell carcinoma. C. acnes extracellular vesicles were taken up by renal carcinoma cells to enhance their proliferative potential. C. acnes extracellular vesicles also exhibited tumor-promoting activity in a mouse model of renal cancer allografts with enhanced angiogenesis. These results suggest that extracellular vesicles released by C. acnes localized in renal cell carcinoma tissues act in a tumor-promoting manner.
Collapse
Affiliation(s)
- Kentaro Jingushi
- Laboratory of Molecular and Cellular PhysiologyGraduate School of Pharmaceutical Sciences, Osaka UniversitySuitaOsakaJapan
| | - Atsunari Kawashima
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Sayaka Tanikawa
- Laboratory of Molecular and Cellular PhysiologyGraduate School of Pharmaceutical Sciences, Osaka UniversitySuitaOsakaJapan
| | - Takuro Saito
- Department of SurgeryGraduate School of Medicine, Osaka UniversitySuitaOsakaJapan
- Department of Clinical Research in Tumor ImmunologyGraduate School of Medicine, Osaka UniversitySuitaOsakaJapan
| | - Akinaru Yamamoto
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Toshihiro Uemura
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Nesrine Sassi
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Yu Ishizuya
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Yoshiyuki Yamamoto
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Taigo Kato
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Koji Hatano
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular PhysiologyGraduate School of Pharmaceutical Sciences, Osaka UniversitySuitaOsakaJapan
| | - Norio Nonomura
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular PhysiologyGraduate School of Pharmaceutical Sciences, Osaka UniversitySuitaOsakaJapan
| |
Collapse
|
46
|
Pan Y, Yu L, Liu L, Zhang J, Liang S, Parshad B, Lai J, Ma LM, Wang Z, Rao L. Genetically engineered nanomodulators elicit potent immunity against cancer stem cells by checkpoint blockade and hypoxia relief. Bioact Mater 2024; 38:31-44. [PMID: 38699238 PMCID: PMC11061653 DOI: 10.1016/j.bioactmat.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Rapid development of checkpoint inhibitors has provided significant breakthroughs for cancer stem cell (CSC) therapy, while the therapeutic efficacy is restricted by hypoxia-mediated tumor immune evasion, especially hypoxia-induced CD47 overexpression in CSCs. Herein, we developed a genetically engineered CSC membrane-coated hollow manganese dioxide (hMnO2@gCMs) to elicit robust antitumor immunity by blocking CD47 and alleviating hypoxia to ultimately achieve the eradication of CSCs. The hMnO2 core effectively alleviated tumor hypoxia by inducing decomposition of tumor endogenous H2O2, thus suppressing the CSCs and reducing the expression of CD47. Cooperating with hypoxia relief-induced downregulation of CD47, the overexpressed SIRPα on gCM shell efficiently blocked the CD47-SIRPα "don't eat me" pathway, synergistically eliciting robust antitumor-mediated immune responses. In a B16F10-CSC bearing melanoma mouse model, the hMnO2@gCMs showed an enhanced therapeutic effect in eradicating CSCs and inhibiting tumor growth. Our work presents a simple, safe, and robust platform for CSC eradication and cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanwei Pan
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ling Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jing Zhang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Badri Parshad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Li-Min Ma
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
47
|
Yuan Y, Chen L, Yang J, Zhou S, Fang Y, Zhang Q, Zhang N, Li Y, Yuan L, Jia F, Ni S, Xiang C. Enhanced homing of mesenchymal stem cells for in situ niche remodeling and bone regeneration. NANO RESEARCH 2024; 17:7449-7460. [DOI: 10.1007/s12274-024-6715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 09/09/2024]
|
48
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
49
|
Liu Y, Chen X, Zhang X, Guo J, Tang Y, Jin C, Wu M. CCL28 promotes progression of hepatocellular carcinoma through PDGFD-regulated MMP9 and VEGFA pathways. Discov Oncol 2024; 15:324. [PMID: 39085670 PMCID: PMC11291847 DOI: 10.1007/s12672-024-01185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major global health concern with limited therapeutic options and poor prognosis. Chemokines have emerged as critical regulators in the progression and metastasis of HCC. This study aims to investigate the mechanisms involved in CCL28-promoted progression of HCC and provide novel therapeutic targets for HCC treatment. Relationship between CCL28 expression and HCC progression were investigated by bioinformatic analysis and immunohistochemical staining assays. CCK-8, Transwell, and colony formation assay were conducted to explore the impact of CCL28 on the growth, migration and invasion of HCC cells. Quantitative real-time PCR and western blotting assays were performed to learn potential molecular mechanisms underlying the transformation of HCC driven by CCL28. The results showed that there was a direct link between increased CCL28 levels and the advancement of HCC, leading to a worse outcome. CCL28 significantly augmented malignant transformation of HCC cells, containing proliferation, migration, invasion, and clonogenicity, via activation of PDGFD-regulated MMP9 and VEGFA pathways. CCL28 emerges as a pivotal contributor to HCC tumorigenesis, propelling HCC development through the PDGFD signaling pathway. Our findings unveil potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Youyi Liu
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Xingyi Chen
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Xiading Zhang
- Wuxi Higher Health Vocational Technology School, Wuxi, 214000, China
| | - Jingrou Guo
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Yifei Tang
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Jiangnan University, No. 1000 Hefeng Road, Wuxi, 214041, Jiangsu, China.
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
50
|
Chen Y, Zhang Z, Pan F, Li P, Yao W, Chen Y, Xiong L, Wang T, Li Y, Huang G. Pericytes recruited by CCL28 promote vascular normalization after anti-angiogenesis therapy through RA/RXRA/ANGPT1 pathway in lung adenocarcinoma. J Exp Clin Cancer Res 2024; 43:210. [PMID: 39075504 PMCID: PMC11285179 DOI: 10.1186/s13046-024-03135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND It has been proposed that anti-angiogenesis therapy could induce tumor "vascular normalization" and further enhance the efficacy of chemotherapy, radiotherapy, target therapy, and immunotherapy for nearly twenty years. However, the detailed molecular mechanism of this phenomenon is still obscure. METHOD Overexpression and knockout of CCL28 in human lung adenocarcinoma cell line A549 and murine lung adenocarcinoma cell line LLC, respectively, were utilized to establish mouse models. Single-cell sequencing was performed to analyze the proportion of different cell clusters and metabolic changes in the tumor microenvironment (TME). Immunofluorescence and multiplex immunohistochemistry were conducted in murine tumor tissues and clinical biopsy samples to assess the percentage of pericytes coverage. Primary pericytes were isolated from lung adenocarcinoma tumor tissues using magnetic-activated cell sorting (MACS). These pericytes were then treated with recombinant human CCL28 protein, followed by transwell migration assays and RNA sequencing analysis. Changes in the secretome and metabolome were examined, and verification of retinoic acid metabolism alterations in pericytes was conducted using quantitative real-time PCR, western blotting, and LC-MS technology. Chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) was employed to validate the transcriptional regulatory ability and affinity of RXRα to specific sites at the ANGPT1 promoter. RESULTS Our study showed that after undergoing anti-angiogenesis treatment, the tumor exhibited a state of ischemia and hypoxia, leading to an upregulation in the expression of CCL28 in hypoxic lung adenocarcinoma cells by the hypoxia-sensitive transcription factor CEBPB. Increased CCL28 could promote tumor vascular normalization through recruiting and metabolic reprogramming pericytes in the tumor microenvironment. Mechanistically, CCL28 modified the retinoic acid (RA) metabolism and increased ANGPT1 expression via RXRα in pericytes, thereby enhancing the stability of endothelial cells. CONCLUSION We reported the details of the molecular mechanisms of "vascular normalization" after anti-angiogenesis therapy for the first time. Our work might provide a prospective molecular marker for guiding the clinical arrangement of combination therapy between anti-angiogenesis treatment and other therapies.
Collapse
Affiliation(s)
- Ying Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zhiyong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Fan Pan
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Pengfei Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Weiping Yao
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yuxi Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Lei Xiong
- Department of Cardio-Thoracic Surgery, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Yan Li
- Department of Respiratory Critical Care Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Guichun Huang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China.
- Department of Oncology, Medical School, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|