1
|
Wang S, Zhang X, Tian D, Zhao J, Rabiee H, Cai F, Xie M, Virdis B, Guo J, Yuan Z, Zhang R, Hu S. Anaerobic oxidation of methane coupled to reductive immobilization of hexavalent chromium by "Candidatus Methanoperedens". JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136020. [PMID: 39383693 DOI: 10.1016/j.jhazmat.2024.136020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
The anaerobic oxidation of methane (AOM) carried out by anaerobic methanotrophic archaea (ANME) plays an important role in mitigating methane emissions from aqueous environments and has applications in bioremediation and wastewater treatment. Previous studies showed that AOM could be coupled to chromate reduction. However, the specific responsible microorganisms and the biochemical mechanisms are unclear. Herein, we showed that a consortium dominated by ANME "Candidatus Methanoperedens" was able to couple AOM to the reduction of Cr(VI) to Cr(III) at a stoichiometry close to the theoretical ratio. Quantitative distribution analysis of Cr(III) products suggested Cr(VI) was predominantly reduced via the extracellular respiratory pathways. Further Cr(III)-targeted fluorescent visualization combined with single-cell electron microscopic imaging suggested that Cr(VI) was reduced by "Ca. Methanoperedens" independently. Biochemical mechanism investigation via proteomic analysis showed proteins for nitrate reduction under nitrate-reducing conditions were significantly downregulated in Cr(VI)-reducing incubation. Instead, many multiheme cytochrome c (MHCs) were among the most upregulated proteins during the Cr(VI) reduction process, suggesting MHC-governed pathways for extracellular Cr(VI) reduction. The significant upregulation of a formate-dependent nitrite reductase during Cr(VI) reduction indicated its potential contribution to the small proportion of Cr(VI) reduction inside cells.
Collapse
Affiliation(s)
- Suicao Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Zhao
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, Australia
| | - Fangrui Cai
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mengying Xie
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Dinh TA, Allen KD. Toward the Use of Methyl-Coenzyme M Reductase for Methane Bioconversion Applications. Acc Chem Res 2024; 57:2746-2757. [PMID: 39190795 PMCID: PMC11411713 DOI: 10.1021/acs.accounts.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ConspectusAs the main component of natural gas and renewable biogas, methane is an abundant, affordable fuel. Thus, there is interest in converting these methane reserves into liquid fuels and commodity chemicals, which would contribute toward mitigating climate change, as well as provide potentially sustainable routes to chemical production. Unfortunately, specific activation of methane for conversion into other molecules is a difficult process due to the unreactive nature of methane C-H bonds. The use of methane activating enzymes, such as methyl-coenzyme M reductase (MCR), may offer a solution. MCR catalyzes the methane-forming step of methanogenesis in methanogenic archaea (methanogens), as well as the initial methane oxidation step during the anaerobic oxidation of methane (AOM) in anaerobic methanotrophic archaea (ANME). In this Account, we highlight our contributions toward understanding MCR catalysis and structure, focusing on features that may tune the catalytic activity. Additionally, we discuss some key considerations for biomanufacturing approaches to MCR-based production of useful compounds.MCR is a complex enzyme consisting of a dimer of heterotrimers with several post-translational modifications, as well as the nickel-hydrocorphin prosthetic group, known as coenzyme F430. Since MCR is difficult to study in vitro, little information is available regarding which MCRs have ideal catalytic properties. To investigate the role of the MCR active site electronic environment in promoting methane synthesis, we performed electric field calculations based on molecular dynamics simulations with a MCR from Methanosarcina acetivorans and an ANME-1 MCR. Interestingly, the ANME-1 MCR active site better optimizes the electric field with methane formation substrates, indicating that it may have enhanced catalytic efficiency. Our lab has also worked toward understanding the structures and functions of modified F430 coenzymes, some of which we have discovered in methanogens. We found that methanogens produce modified F430s under specific growth conditions, and we hypothesize that these modifications serve to fine-tune the activity of MCR.Due to the complexity of MCR, a methanogen host is likely the best near-term option for biomanufacturing platforms using methane as a C1 feedstock. M. acetivorans has well-established genetic tools and has already been used in pilot methane oxidation studies. To make methane oxidation energetically favorable, extracellular electron acceptors are employed. This electron transfer can be facilitated by carbon-based materials. Interestingly, our analyses of AOM enrichment cultures and pure methanogen cultures revealed the biogenic production of an amorphous carbon material with similar characteristics to activated carbon, thus highlighting the potential use of such materials as conductive elements to enhance extracellular electron transfer.In summary, the possibilities for sustainable MCR-based methane conversions are exciting, but there are still some challenges to tackle toward understanding and utilizing this complex enzyme in efficient methane oxidation biomanufacturing processes. Additionally, further work is necessary to optimize bioengineered MCR-containing host organisms to produce large quantities of desired chemicals.
Collapse
Affiliation(s)
- Thuc-Anh Dinh
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kylie D Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Ray P, Rand-Fleming CR, Mansoorabadi SO. Preparation of coenzyme F430 biosynthetic enzymes and intermediates. Methods Enzymol 2024; 702:147-170. [PMID: 39155109 DOI: 10.1016/bs.mie.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Methyl-coenzyme M reductase (MCR) is the key enzyme in pathways for the formation and anaerobic oxidation of methane. As methane is a potent greenhouse gas and biofuel, investigations of MCR catalysis and maturation are of interest for the development of both methanogenesis inhibitors and natural gas conversion strategies. The activity of MCR is dependent on a unique, nickel-containing coenzyme F430, the most highly reduced tetrapyrrole found in nature. Coenzyme F430 is biosynthesized from sirohydrochlorin in four steps catalyzed by the CfbABCDE enzymes. Here, methods for the expression and purification of the coenzyme F430 biosynthesis enzymes are described along with conditions for the synthesis and purification of biosynthetic intermediates on the milligram scale from commercially available porphobilinogen.
Collapse
Affiliation(s)
- Prosenjit Ray
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States
| | | | - Steven O Mansoorabadi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States.
| |
Collapse
|
4
|
Polêto M, Allen KD, Lemkul JA. Structural Dynamics of the Methyl-Coenzyme M Reductase Active Site Are Influenced by Coenzyme F 430 Modifications. Biochemistry 2024; 63:1783-1794. [PMID: 38914925 PMCID: PMC11256747 DOI: 10.1021/acs.biochem.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Methyl-coenzyme M reductase (MCR) is a central player in methane biogeochemistry, governing methanogenesis and the anaerobic oxidation of methane (AOM) in methanogens and anaerobic methanotrophs (ANME), respectively. The prosthetic group of MCR is coenzyme F430, a nickel-containing tetrahydrocorphin. Several modified versions of F430 have been discovered, including the 172-methylthio-F430 (mtF430) used by ANME-1 MCR. Here, we employ molecular dynamics (MD) simulations to investigate the active site dynamics of MCR from Methanosarcina acetivorans and ANME-1 when bound to the canonical F430 compared to 172-thioether coenzyme F430 variants and substrates (methyl-coenzyme M and coenzyme B) for methane formation. Our simulations highlight the importance of the Gln to Val substitution in accommodating the 172 methylthio modification in ANME-1 MCR. Modifications at the 172 position disrupt the canonical substrate positioning in M. acetivorans MCR. However, in some replicates, active site reorganization to maintain substrate positioning suggests that the modified F430 variants could be accommodated in a methanogenic MCR. We additionally report the first quantitative estimate of MCR intrinsic electric fields that are pivotal in driving methane formation. Our results suggest that the electric field aligned along the CH3-S-CoM thioether bond facilitates homolytic bond cleavage, coinciding with the proposed catalytic mechanism. Structural perturbations, however, weaken and misalign these electric fields, emphasizing the importance of the active site structure in maintaining their integrity. In conclusion, our results deepen the understanding of MCR active site dynamics, the enzyme's organizational role in intrinsic electric fields for catalysis, and the interplay between active site structure and electrostatics.
Collapse
Affiliation(s)
- Marcelo
D. Polêto
- Department of Biochemistry, Virginia Tech, 111 Engel Hall, 340 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Tech, 111 Engel Hall, 340 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, 111 Engel Hall, 340 West Campus Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Stemple B, Gulliver D, Sarkar P, Tinker K, Bibby K. Metagenome-assembled genomes provide insight into the metabolic potential during early production of Hydraulic Fracturing Test Site 2 in the Delaware Basin. Front Microbiol 2024; 15:1376536. [PMID: 38933028 PMCID: PMC11199900 DOI: 10.3389/fmicb.2024.1376536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Demand for natural gas continues to climb in the United States, having reached a record monthly high of 104.9 billion cubic feet per day (Bcf/d) in November 2023. Hydraulic fracturing, a technique used to extract natural gas and oil from deep underground reservoirs, involves injecting large volumes of fluid, proppant, and chemical additives into shale units. This is followed by a "shut-in" period, during which the fracture fluid remains pressurized in the well for several weeks. The microbial processes that occur within the reservoir during this shut-in period are not well understood; yet, these reactions may significantly impact the structural integrity and overall recovery of oil and gas from the well. To shed light on this critical phase, we conducted an analysis of both pre-shut-in material alongside production fluid collected throughout the initial production phase at the Hydraulic Fracturing Test Site 2 (HFTS 2) located in the prolific Wolfcamp formation within the Permian Delaware Basin of west Texas, USA. Specifically, we aimed to assess the microbial ecology and functional potential of the microbial community during this crucial time frame. Prior analysis of 16S rRNA sequencing data through the first 35 days of production revealed a strong selection for a Clostridia species corresponding to a significant decrease in microbial diversity. Here, we performed a metagenomic analysis of produced water sampled on Day 33 of production. This analysis yielded three high-quality metagenome-assembled genomes (MAGs), one of which was a Clostridia draft genome closely related to the recently classified Petromonas tenebris. This draft genome likely represents the dominant Clostridia species observed in our 16S rRNA profile. Annotation of the MAGs revealed the presence of genes involved in critical metabolic processes, including thiosulfate reduction, mixed acid fermentation, and biofilm formation. These findings suggest that this microbial community has the potential to contribute to well souring, biocorrosion, and biofouling within the reservoir. Our research provides unique insights into the early stages of production in one of the most prolific unconventional plays in the United States, with important implications for well management and energy recovery.
Collapse
Affiliation(s)
- Brooke Stemple
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Preom Sarkar
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Kara Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
- Leidos Research Support Team, Pittsburgh, PA, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
6
|
Sarno N, Hyde E, De Anda V, Baker BJ. Beyond methane, new frontiers in anaerobic microbial hydrocarbon utilizing pathways. Microb Biotechnol 2024; 17:e14508. [PMID: 38888492 PMCID: PMC11184930 DOI: 10.1111/1751-7915.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
Alkanes, single carbon methane to long-chain hydrocarbons (e.g. hexadecane and tetradecane), are important carbon sources to anaerobic microbial communities. In anoxic environments, archaea are known to utilize and produce methane via the methyl-coenzyme M reductase enzyme (MCR). Recent explorations of new environments, like deep sea sediments, that have coupled metagenomics and cultivation experiments revealed divergent MCRs, also referred to as alkyl-coenzyme M reductases (ACRs) in archaea, with similar mechanisms as the C1 utilizing canonical MCR mechanism. These ACR enzymes have been shown to activate other alkanes such as ethane, propane and butane for subsequent degradation. The reversibility of canonical MCRs suggests that these non-methane-activating homologues (ACRs) might have similar reversibility, perhaps mediated by undiscovered lineages that produce alkanes under certain conditions. The discovery of these alternative alkane utilization pathways holds significant promise for a breadth of potential biotechnological applications in bioremediation, energy production and climate change mitigation.
Collapse
Affiliation(s)
- Natalie Sarno
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | - Emily Hyde
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | - Valerie De Anda
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
- Department of Marine ScienceUniversity of Texas at Austin, Marine Science InstitutePort AransasTexasUSA
| | - Brett J. Baker
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
- Department of Marine ScienceUniversity of Texas at Austin, Marine Science InstitutePort AransasTexasUSA
| |
Collapse
|
7
|
He L, Lidstrom ME. Utilisation of low methane concentrations by methanotrophs. Adv Microb Physiol 2024; 85:57-96. [PMID: 39059823 DOI: 10.1016/bs.ampbs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O2. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA United States
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA United States; Department of Microbiology, University of Washington, Seattle, WA United States.
| |
Collapse
|
8
|
Benito Merino D, Lipp JS, Borrel G, Boetius A, Wegener G. Anaerobic hexadecane degradation by a thermophilic Hadarchaeon from Guaymas Basin. THE ISME JOURNAL 2024; 18:wrad004. [PMID: 38365230 PMCID: PMC10811742 DOI: 10.1093/ismejo/wrad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 02/18/2024]
Abstract
Hadarchaeota inhabit subsurface and hydrothermally heated environments, but previous to this study, they had not been cultured. Based on metagenome-assembled genomes, most Hadarchaeota are heterotrophs that grow on sugars and amino acids, or oxidize carbon monoxide or reduce nitrite to ammonium. A few other metagenome-assembled genomes encode alkyl-coenzyme M reductases (Acrs), β-oxidation, and Wood-Ljungdahl pathways, pointing toward multicarbon alkane metabolism. To identify the organisms involved in thermophilic oil degradation, we established anaerobic sulfate-reducing hexadecane-degrading cultures from hydrothermally heated sediments of the Guaymas Basin. Cultures at 70°C were enriched in one Hadarchaeon that we propose as Candidatus Cerberiarchaeum oleivorans. Genomic and chemical analyses indicate that Ca. C. oleivorans uses an Acr to activate hexadecane to hexadecyl-coenzyme M. A β-oxidation pathway and a tetrahydromethanopterin methyl branch Wood-Ljungdahl (mWL) pathway allow the complete oxidation of hexadecane to CO2. Our results suggest a syntrophic lifestyle with sulfate reducers, as Ca. C. oleivorans lacks a sulfate respiration pathway. Comparative genomics show that Acr, mWL, and β-oxidation are restricted to one family of Hadarchaeota, which we propose as Ca. Cerberiarchaeaceae. Phylogenetic analyses further indicate that the mWL pathway is basal to all Hadarchaeota. By contrast, the carbon monoxide dehydrogenase/acetyl-coenzyme A synthase complex in Ca. Cerberiarchaeaceae was horizontally acquired from Bathyarchaeia. The Acr and β-oxidation genes of Ca. Cerberiarchaeaceae are highly similar to those of other alkane-oxidizing archaea such as Ca. Methanoliparia and Ca. Helarchaeales. Our results support the use of Acrs in the degradation of petroleum alkanes and suggest a role of Hadarchaeota in oil-rich environments.
Collapse
Affiliation(s)
- David Benito Merino
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2, 428359, Bremen, Germany
| | - Julius S Lipp
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
| | - Guillaume Borrel
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
| |
Collapse
|
9
|
Weng C, Peng X, Han Y. From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:119-146. [PMID: 37597946 DOI: 10.1016/bs.aambs.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.
Collapse
Affiliation(s)
- Caihong Weng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
10
|
Carr S, Buan NR. Insights into the biotechnology potential of Methanosarcina. Front Microbiol 2022; 13:1034674. [PMID: 36590411 PMCID: PMC9797515 DOI: 10.3389/fmicb.2022.1034674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as serving as a vital component in the treatment of wastewater though this is only the tip of the iceberg with respect to their metabolic potential. In this review we will discuss how the efficient central metabolism of methanoarchaea could be harnessed for future biotechnology applications.
Collapse
Affiliation(s)
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
11
|
In Silico Discovery of Anticancer Peptides from Sanghuang. Int J Mol Sci 2022; 23:ijms232213682. [PMID: 36430160 PMCID: PMC9693127 DOI: 10.3390/ijms232213682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Anticancer peptide (ACP) is a short peptide with less than 50 amino acids that has been discovered in a variety of foods. It has been demonstrated that traditional Chinese medicine or food can help treat cancer in some cases, which suggests that ACP may be one of the therapeutic ingredients. Studies on the anti-cancer properties of Sanghuangporus sanghuang have concentrated on polysaccharides, flavonoids, triterpenoids, etc. The function of peptides has not received much attention. The purpose of this study is to use computer mining techniques to search for potential anticancer peptides from 62 proteins of Sanghuang. We used mACPpred to perform sequence scans after theoretical trypsin hydrolysis and discovered nine fragments with an anticancer probability of over 0.60. The study used AlphaFold 2 to perform structural modeling of the first three ACPs discovered, which had blast results from the Cancer PPD database. Using reverse docking technology, we found the target proteins and interacting residues of two ACPs with an unknown mechanism. Reverse docking results predicted the binding modes of the ACPs and their target protein. In addition, we determined the active part of ACPs by quantum chemical calculation. Our study provides a framework for the future discovery of functional peptides from foods. The ACPs discovered have the potential to be used as drugs in oncology clinical treatment after further research.
Collapse
|
12
|
Adam PS, Kolyfetis GE, Bornemann TLV, Vorgias CE, Probst AJ. Genomic remnants of ancestral methanogenesis and hydrogenotrophy in Archaea drive anaerobic carbon cycling. SCIENCE ADVANCES 2022; 8:eabm9651. [PMID: 36332026 PMCID: PMC9635834 DOI: 10.1126/sciadv.abm9651] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/19/2022] [Indexed: 05/19/2023]
Abstract
Anaerobic methane metabolism is among the hallmarks of Archaea, originating very early in their evolution. Here, we show that the ancestor of methane metabolizers was an autotrophic CO2-reducing hydrogenotrophic methanogen that possessed the two main complexes, methyl-CoM reductase (Mcr) and tetrahydromethanopterin-CoM methyltransferase (Mtr), the anaplerotic hydrogenases Eha and Ehb, and a set of other genes collectively called "methanogenesis markers" but could not oxidize alkanes. Overturning recent inferences, we demonstrate that methyl-dependent hydrogenotrophic methanogenesis has emerged multiple times independently, either due to a loss of Mtr while Mcr is inherited vertically or from an ancient lateral acquisition of Mcr. Even if Mcr is lost, Mtr, Eha, Ehb, and the markers can persist, resulting in mixotrophic metabolisms centered around the Wood-Ljungdahl pathway. Through their methanogenesis remnants, Thorarchaeia and two newly reconstructed order-level lineages in Archaeoglobi and Bathyarchaeia act as metabolically versatile players in carbon cycling of anoxic environments across the globe.
Collapse
Affiliation(s)
- Panagiotis S. Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Corresponding author.
| | - George E. Kolyfetis
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Till L. V. Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Alexander J. Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Environmental Metagenomics, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
13
|
Shao N, Fan Y, Chou CW, Yavari S, Williams RV, Amster IJ, Brown SM, Drake IJ, Duin EC, Whitman WB, Liu Y. Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea. Commun Biol 2022; 5:1113. [PMID: 36266535 PMCID: PMC9584954 DOI: 10.1038/s42003-022-04057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Methanogens and anaerobic methane-oxidizing archaea (ANME) are important players in the global carbon cycle. Methyl-coenzyme M reductase (MCR) is a key enzyme in methane metabolism, catalyzing the last step in methanogenesis and the first step in anaerobic methane oxidation. Divergent mcr and mcr-like genes have recently been identified in uncultured archaeal lineages. However, the assembly and biochemistry of MCRs from uncultured archaea remain largely unknown. Here we present an approach to study MCRs from uncultured archaea by heterologous expression in a methanogen, Methanococcus maripaludis. Promoter, operon structure, and temperature were important determinants for MCR production. Both recombinant methanococcal and ANME-2 MCR assembled with the host MCR forming hybrid complexes, whereas tested ANME-1 MCR and ethyl-coenzyme M reductase only formed homogenous complexes. Together with structural modeling, this suggests that ANME-2 and methanogen MCRs are structurally similar and their reaction directions are likely regulated by thermodynamics rather than intrinsic structural differences.
Collapse
Affiliation(s)
- Nana Shao
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Yu Fan
- EMTEC IT, ExxonMobil Technical Computing Company, Annandale, NJ, USA
| | - Chau-Wen Chou
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Shadi Yavari
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | | | | | - Stuart M Brown
- Energy Sciences, ExxonMobil Technology & Engineering Company, Annandale, NJ, USA
| | - Ian J Drake
- Biomedical Sciences, ExxonMobil Technology & Engineering Company, Annandale, NJ, USA
| | - Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | | | - Yuchen Liu
- Energy Sciences, ExxonMobil Technology & Engineering Company, Annandale, NJ, USA.
| |
Collapse
|
14
|
Benito Merino D, Zehnle H, Teske A, Wegener G. Deep-branching ANME-1c archaea grow at the upper temperature limit of anaerobic oxidation of methane. Front Microbiol 2022; 13:988871. [PMID: 36212815 PMCID: PMC9539880 DOI: 10.3389/fmicb.2022.988871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023] Open
Abstract
In seafloor sediments, the anaerobic oxidation of methane (AOM) consumes most of the methane formed in anoxic layers, preventing this greenhouse gas from reaching the water column and finally the atmosphere. AOM is performed by syntrophic consortia of specific anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Cultures with diverse AOM partners exist at temperatures between 12°C and 60°C. Here, from hydrothermally heated sediments of the Guaymas Basin, we cultured deep-branching ANME-1c that grow in syntrophic consortia with Thermodesulfobacteria at 70°C. Like all ANME, ANME-1c oxidize methane using the methanogenesis pathway in reverse. As an uncommon feature, ANME-1c encode a nickel-iron hydrogenase. This hydrogenase has low expression during AOM and the partner Thermodesulfobacteria lack hydrogen-consuming hydrogenases. Therefore, it is unlikely that the partners exchange hydrogen during AOM. ANME-1c also does not consume hydrogen for methane formation, disputing a recent hypothesis on facultative methanogenesis. We hypothesize that the ANME-1c hydrogenase might have been present in the common ancestor of ANME-1 but lost its central metabolic function in ANME-1c archaea. For potential direct interspecies electron transfer (DIET), both partners encode and express genes coding for extracellular appendages and multiheme cytochromes. Thermodesulfobacteria encode and express an extracellular pentaheme cytochrome with high similarity to cytochromes of other syntrophic sulfate-reducing partner bacteria. ANME-1c might associate specifically to Thermodesulfobacteria, but their co-occurrence is so far only documented for heated sediments of the Gulf of California. However, in the deep seafloor, sulfate-methane interphases appear at temperatures up to 80°C, suggesting these as potential habitats for the partnership of ANME-1c and Thermodesulfobacteria.
Collapse
Affiliation(s)
- David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
15
|
He K, Li W, Tang L, Li W, Lv S, Xing D. Suppressing Methane Production to Boost High-Purity Hydrogen Production in Microbial Electrolysis Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11931-11951. [PMID: 35969804 DOI: 10.1021/acs.est.2c02371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen gas (H2) is an attractive fuel carrier due to its high specific enthalpy; moreover, it is a clean source of energy because in the combustion reaction with oxygen (O2) it produces water as the only byproduct. The microbial electrolysis cell (MEC) is a promising technology for producing H2 from simple or complex organics present in wastewater and solid wastes. Methanogens and non-archaeal methane (CH4)-producing microorganisms (NAMPMs) often grow in the MECs and lead to rapid conversion of produced H2 to CH4. Moreover, non-archaeal methane production (NAMP) catalyzed by nitrogenase of photosynthetic bacteria was always overlooked. Thus, suppression of CH4 production is required to enhance H2 yield and production rate. This review comprehensively addresses the principles and current state-of-the-art technologies for suppressing methanogenesis and NAMP in MECs. Noteworthy, specific strategies aimed at the inhibition of methanogenic enzymes and nitrogenase could be a more direct approach than physical and chemical strategies for repressing the growth of methanogenic archaea. In-depth studies on the multiomics of CH4 metabolism can possibly provide insights into sustainable and efficient approaches for suppressing metabolic pathways of methanogenesis and NAMP. The main objective of this review is to highlight key concepts, directions, and challenges related to boosting H2 generation by suppressing CH4 production in MECs. Finally, perspectives are briefly outlined to guide and advance the future direction of MECs for production of high-purity H2 based on genetic and metabolic engineering and on the interspecific interactions.
Collapse
Affiliation(s)
- Kuanchang He
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Wegener G, Laso-Pérez R, Orphan VJ, Boetius A. Anaerobic Degradation of Alkanes by Marine Archaea. Annu Rev Microbiol 2022; 76:553-577. [PMID: 35917471 DOI: 10.1146/annurev-micro-111021-045911] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alkanes are saturated apolar hydrocarbons that range from its simplest form, methane, to high-molecular-weight compounds. Although alkanes were once considered biologically recalcitrant under anaerobic conditions, microbiological investigations have now identified several microbial taxa that can anaerobically degrade alkanes. Here we review recent discoveries in the anaerobic oxidation of alkanes with a specific focus on archaea that use specific methyl coenzyme M reductases to activate their substrates. Our understanding of the diversity of uncultured alkane-oxidizing archaea has expanded through the use of environmental metagenomics and enrichment cultures of syntrophic methane-, ethane-, propane-, and butane-oxidizing marine archaea with sulfate-reducing bacteria. A recently cultured group of archaea directly couples long-chain alkane degradation with methane formation, expanding the range of substrates used for methanogenesis. This article summarizes the rapidly growing knowledge of the diversity, physiology, and habitat distribution of alkane-degrading archaea. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rafael Laso-Pérez
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany.,Current affiliation: Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Victoria J Orphan
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Division of Geological and Planetary Sciences and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Antje Boetius
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany.,Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany;
| |
Collapse
|
17
|
Lemaire O, Wagner T. A Structural View of Alkyl-Coenzyme M Reductases, the First Step of Alkane Anaerobic Oxidation Catalyzed by Archaea. Biochemistry 2022; 61:805-821. [PMID: 35500274 PMCID: PMC9118554 DOI: 10.1021/acs.biochem.2c00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Indexed: 11/28/2022]
Abstract
Microbial anaerobic oxidation of alkanes intrigues the scientific community by way of its impact on the global carbon cycle, and its biotechnological applications. Archaea are proposed to degrade short- and long-chain alkanes to CO2 by reversing methanogenesis, a theoretically reversible process. The pathway would start with alkane activation, an endergonic step catalyzed by methyl-coenzyme M reductase (MCR) homologues that would generate alkyl-thiols carried by coenzyme M. While the methane-generating MCR found in methanogens has been well characterized, the enzymatic activity of the putative alkane-fixing counterparts has not been validated so far. Such an absence of biochemical investigations contrasts with the current explosion of metagenomics data, which draws new potential alkane-oxidizing pathways in various archaeal phyla. Therefore, validating the physiological function of these putative alkane-fixing machines and investigating how their structures, catalytic mechanisms, and cofactors vary depending on the targeted alkane have become urgent needs. The first structural insights into the methane- and ethane-capturing MCRs highlighted unsuspected differences and proposed some explanations for their substrate specificity. This Perspective reviews the current physiological, biochemical, and structural knowledge of alkyl-CoM reductases and offers fresh ideas about the expected mechanistic and chemical differences among members of this broad family. We conclude with the challenges of the investigation of these particular enzymes, which might one day generate biofuels for our modern society.
Collapse
Affiliation(s)
- Olivier
N. Lemaire
- Max Planck Institute for
Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Tristan Wagner
- Max Planck Institute for
Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
18
|
Ohmer CJ, Dasgupta M, Patwardhan A, Bogacz I, Kaminsky C, Doyle MD, Chen PYT, Keable SM, Makita H, Simon PS, Massad R, Fransson T, Chatterjee R, Bhowmick A, Paley DW, Moriarty NW, Brewster AS, Gee LB, Alonso-Mori R, Moss F, Fuller FD, Batyuk A, Sauter NK, Bergmann U, Drennan CL, Yachandra VK, Yano J, Kern JF, Ragsdale SW. XFEL serial crystallography reveals the room temperature structure of methyl-coenzyme M reductase. J Inorg Biochem 2022; 230:111768. [PMID: 35202981 PMCID: PMC8930625 DOI: 10.1016/j.jinorgbio.2022.111768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 01/08/2023]
Abstract
Methyl-Coenzyme M Reductase (MCR) catalyzes the biosynthesis of methane in methanogenic archaea, using a catalytic Ni-centered Cofactor F430 in its active site. It also catalyzes the reverse reaction, that is, the anaerobic activation and oxidation, including the cleavage of the CH bond in methane. Because methanogenesis is the major source of methane on earth, understanding the reaction mechanism of this enzyme can have massive implications in global energy balances. While recent publications have proposed a radical-based catalytic mechanism as well as novel sulfonate-based binding modes of MCR for its native substrates, the structure of the active state of MCR, as well as a complete characterization of the reaction, remain elusive. Previous attempts to structurally characterize the active MCR-Ni(I) state have been unsuccessful due to oxidation of the redox- sensitive catalytic Ni center. Further, while many cryo structures of the inactive Ni(II)-enzyme in various substrates-bound forms have been published, no room temperature structures have been reported, and the structure and mechanism of MCR under physiologically relevant conditions is not known. In this study, we report the first room temperature structure of the MCRred1-silent Ni(II) form using an X-ray Free-Electron Laser (XFEL), with simultaneous X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) data collection. In celebration of the seminal contributions of inorganic chemist Dick Holm to our understanding of nickel-based catalysis, we are honored to announce our findings in this special issue dedicated to this remarkable pioneer of bioinorganic chemistry.
Collapse
Affiliation(s)
- Christopher J Ohmer
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., 5200 MSRBIII, Ann Arbor, MI 48109-0606, USA
| | - Medhanjali Dasgupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anjali Patwardhan
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., 5200 MSRBIII, Ann Arbor, MI 48109-0606, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corey Kaminsky
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Margaret D Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Percival Yang-Ting Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stephen M Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ramzi Massad
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Thomas Fransson
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel W Paley
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Frank Moss
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Franklin D Fuller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Alexander Batyuk
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biology and the Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Canadian Institute for Advanced Research, Bio-inspired Solar Energy Program, Toronto, ON M5G 1M1, Canada
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., 5200 MSRBIII, Ann Arbor, MI 48109-0606, USA.
| |
Collapse
|
19
|
Gendron A, Allen KD. Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression. Front Microbiol 2022; 13:867342. [PMID: 35547147 PMCID: PMC9081873 DOI: 10.3389/fmicb.2022.867342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR) is an archaeal enzyme that catalyzes the final step of methanogenesis and the first step in the anaerobic oxidation of methane, the energy metabolisms of methanogens and anaerobic methanotrophs (ANME), respectively. Variants of MCR, known as alkyl-coenzyme M reductases, are involved in the anaerobic oxidation of short-chain alkanes including ethane, propane, and butane as well as the catabolism of long-chain alkanes from oil reservoirs. MCR is a dimer of heterotrimers (encoded by mcrABG) and requires the nickel-containing tetrapyrrole prosthetic group known as coenzyme F430. MCR houses a series of unusual post-translational modifications within its active site whose identities vary depending on the organism and whose functions remain unclear. Methanogenic MCRs are encoded in a highly conserved mcrBDCGA gene cluster, which encodes two accessory proteins, McrD and McrC, that are believed to be involved in the assembly and activation of MCR, respectively. The requirement of a unique and complex coenzyme, various unusual post-translational modifications, and many remaining questions surrounding assembly and activation of MCR largely limit in vitro experiments to native enzymes with recombinant methods only recently appearing. Production of MCRs in a heterologous host is an important step toward developing optimized biocatalytic systems for methane production as well as for bioconversion of methane and other alkanes into value-added compounds. This review will first summarize MCR catalysis and structure, followed by a discussion of advances and challenges related to the production of diverse MCRs in a heterologous host.
Collapse
Affiliation(s)
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
20
|
Tseten T, Sanjorjo RA, Kwon M, Kim SW. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J Microbiol Biotechnol 2022; 32:269-277. [PMID: 35283433 PMCID: PMC9628856 DOI: 10.4014/jmb.2202.02019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.
Collapse
Affiliation(s)
- Tenzin Tseten
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Rey Anthony Sanjorjo
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea,
M. Kwon Phone: +82-55-772-1362 Fax: +82-55-759-9363 E-mail:
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding authors S.W. Kim Phone: +82-55-772-1362 Fax: +82-55-759-9363 E-mail:
| |
Collapse
|
21
|
Glodowska M, Welte CU, Kurth JM. Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors. Adv Microb Physiol 2022; 80:157-201. [PMID: 35489791 DOI: 10.1016/bs.ampbs.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Methane (CH4) is a potent greenhouse gas significantly contributing to the climate warming we are currently facing. Microorganisms play an important role in the global CH4 cycle that is controlled by the balance between anaerobic production via methanogenesis and CH4 removal via methanotrophic oxidation. Research in recent decades advanced our understanding of CH4 oxidation, which until 1976 was believed to be a strictly aerobic process. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is now known to be an important sink of CH4 in marine ecosystems. Furthermore, in 2006 it was discovered that anaerobic CH4 oxidation can also be coupled to nitrate reduction (N-DAMO), demonstrating that AOM may be much more versatile than previously thought and linked to other electron acceptors. In consequence, an increasing number of studies in recent years showed or suggested that alternative electron acceptors can be used in the AOM process including FeIII, MnIV, AsV, CrVI, SeVI, SbV, VV, and BrV. In addition, humic substances as well as biochar and perchlorate (ClO4-) were suggested to mediate AOM. Anaerobic methanotrophic archaea, the so-called ANME archaea, are key players in the AOM process, yet we are still lacking deeper understanding of their metabolism, electron acceptor preferences and their interaction with other microbial community members. It is still not clear whether ANME archaea can oxidize CH4 and reduce metallic electron acceptors independently or via electron transfer to syntrophic partners, interspecies electron transfer, nanowires or conductive pili. Therefore, the aim of this review is to summarize and discuss the current state of knowledge about ANME archaea, focusing on their physiology, metabolic flexibility and potential to use various electron acceptors.
Collapse
Affiliation(s)
- Martyna Glodowska
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| | - Julia M Kurth
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Miyazaki Y, Oohora K, Hayashi T. Focusing on a nickel hydrocorphinoid in a protein matrix: methane generation by methyl-coenzyme M reductase with F430 cofactor and its models. Chem Soc Rev 2022; 51:1629-1639. [PMID: 35148362 DOI: 10.1039/d1cs00840d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methyl-coenzyme M reductase (MCR) containing a nickel hydrocorphinoid cofactor, F430, is an essential enzyme that catalyzes anaerobic methane generation and oxidation. The active Ni(I) species in MCR converts methyl-coenzyme M (CH3S-CoM) and coenzyme B (HS-CoB) to methane and heterodisulfide (CoM-S-S-CoB). Extensive experimental and theoretical studies focusing on the substrate-binding cavity including the F430 cofactor in MCR have suggested two principally different reaction mechanisms involving an organonickel CH3-Ni(III) species or a transient methyl radical species. In parallel with research on native MCR itself, the functionality of MCR has been investigated in the context of model complexes of F430 and recent protein-based functional models, which include a nickel complex. In the latter case, hemoproteins reconstituted with tetradehydro- and didehydrocorrinoid nickel complexes have been found to represent useful model systems that are responsible for methane generation. These efforts support the proposed mechanism of the enzymatic reaction and provide important insight into replicating the MCR-like methane-generation process. Furthermore, the modeling of MCR described here is expected to lead to understanding of protein-supported nickel porphyrinoid chemistry as well as the creation of MCR-inspired catalysis.
Collapse
Affiliation(s)
- Yuta Miyazaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
23
|
Adam PS, Bornemann TLV, Probst AJ. Progress and Challenges in Studying the Ecophysiology of Archaea. Methods Mol Biol 2022; 2522:469-486. [PMID: 36125771 DOI: 10.1007/978-1-0716-2445-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta'omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea. We then peer into the history of how our knowledge on two particularly important lineages was assembled: the anaerobic methane and alkane oxidizers, encountered primarily among Euryarchaeota, and the nanosized, mainly parasitic, members of the DPANN superphylum.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| |
Collapse
|
24
|
Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C, Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson GW, Wegener G, Boetius A, Orphan VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol 2022; 20:e3001508. [PMID: 34986141 PMCID: PMC9012536 DOI: 10.1371/journal.pbio.3001508] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor. A comparative genomics study of anaerobic methanotrophic (ANME) archaea reveals the genetic "parts list" associated with the repeated evolutionary transition between methanogenic and methanotrophic metabolism in the archaeal domain of life.
Collapse
Affiliation(s)
- Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andy O. Leu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daan R. Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Danielle Goudeau
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex Malmstrom
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, University of British Columbia, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, British Columbia, Canada
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| |
Collapse
|
25
|
|
26
|
Bollinger E, Zubrod JP, Lai FY, Ahrens L, Filker S, Lorke A, Bundschuh M. Antibiotics as a silent driver of climate change? A case study investigating methane production in freshwater sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113025. [PMID: 34847437 DOI: 10.1016/j.ecoenv.2021.113025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2) and is inter alia produced in natural freshwater ecosystems. Given the rise in CH4 emissions from natural sources, researchers are investigating environmental factors and climate change feedbacks to explain this increment. Despite being omnipresent in freshwaters, knowledge on the influence of chemical stressors of anthropogenic origin (e.g., antibiotics) on methanogenesis is lacking. To address this knowledge gap, we incubated freshwater sediment under anaerobic conditions with a mixture of five antibiotics at four levels (from 0 to 5000 µg/L) for 42 days. Weekly measurements of CH4 and CO2 in the headspace, as well as their compound-specific δ13C, showed that the CH4 production rate was increased by up to 94% at 5000 µg/L and up to 29% at field-relevant concentrations (i.e., 50 µg/L). Metabarcoding of the archaeal and eubacterial 16S rRNA gene showed that effects of antibiotics on bacterial community level (i.e., species composition) may partially explain the observed differences in CH4 production rates. Despite the complications of transferring experimental CH4 production rates to realistic field conditions, the study indicated that chemical stressors contribute to the emissions of greenhouse gases by affecting the methanogenesis in freshwaters.
Collapse
Affiliation(s)
- E Bollinger
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Germany; Eusserthal Ecosystem Research Station, University of Koblenz-Landau, Germany
| | - J P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Germany; Eusserthal Ecosystem Research Station, University of Koblenz-Landau, Germany
| | - F Y Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
| | - L Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
| | - S Filker
- Department of Molecular Ecology, University of Technology Kaiserslautern, Germany
| | - A Lorke
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Germany
| | - M Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Germany; Eusserthal Ecosystem Research Station, University of Koblenz-Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden.
| |
Collapse
|
27
|
Gregory GJ, Bennett RK, Papoutsakis ET. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab Eng 2021; 71:99-116. [PMID: 34547453 DOI: 10.1016/j.ymben.2021.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Abundant natural gas reserves, along with increased biogas production, have prompted recent interest in harnessing methane as an industrial feedstock for the production of liquid fuels and chemicals. Methane can either be used directly for fermentation or first oxidized to methanol via biological or chemical means. Methanol is advantageous due to its liquid state under normal conditions. Methylotrophy, defined as the ability of microorganisms to utilize reduced one-carbon compounds like methane and methanol as sole carbon and energy sources for growth, is widespread in bacterial communities. However, native methylotrophs lack the extensive and well-characterized synthetic biology toolbox of platform microorganisms like Escherichia coli, which results in slow and inefficient design-build-test cycles. If a heterologous production pathway can be engineered, the slow growth and uptake rates of native methylotrophs generally limit their industrial potential. Therefore, much focus has been placed on engineering synthetic methylotrophs, or non-methylotrophic platform microorganisms, like E. coli, that have been engineered with synthetic methanol utilization pathways. These platform hosts allow for rapid design-build-test cycles and are well-suited for industrial application at the current time. In this review, recent progress made toward synthetic methylotrophy (including methanotrophy) is discussed. Specifically, the importance of amino acid metabolism and alternative one-carbon assimilation pathways are detailed. A recent study that has achieved methane bioconversion to liquid chemicals in a synthetic E. coli methanotroph is also briefly discussed. We also discuss strategies for the way forward in order to realize the industrial potential of synthetic methanotrophs and methylotrophs.
Collapse
Affiliation(s)
- Gwendolyn J Gregory
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; The Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| | - R Kyle Bennett
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; The Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; The Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
28
|
Tian X, Liu H, Chen HF. Catalytic mechanism of butane anaerobic oxidation for alkyl-coenzyme M reductase. Chem Biol Drug Des 2021; 98:701-712. [PMID: 34328701 DOI: 10.1111/cbdd.13931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Abstract
Methane is among the most potent of the greenhouse gases, which plays a key role in global climate change. As an excellent carbon and energy source, methane can be utilized by anaerobic methane oxidizing archaea and aerobic methane oxidizing bacteria. The previous work shows that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. However, the catalytic mechanism of butane anaerobic oxidation for alkyl-coenzyme M reductase is still unknown. Therefore, molecular dynamics (MD) simulation was used to investigate the dynamics differences of catalytic mechanism between methane coenzyme M reductase (MCR) and alkyl-coenzyme M reductase (ACR). At first, the binding pocket of ACR is larger than that of MCR. Then, the complex of butane and ACR is more stable than that of methane and ACR. Protein conformation cloud suggests that the position of methane is dynamics and methane escapes from the binding pocket of ACR during most of the simulation time, while butane tightly binds in the pocket of ACR. The hydrophobic interactions between butane and ACR are more and stronger than those between methane and ACR. At the same time, the binding free energy between butane and ACR is significantly lower than that between methane and ACR. The dynamics correlation network indicates that the transformation of information flow for ACR-butane is smoother than that for ACR-methane. The shortest pathway for ACR-butane is from Gln144, Ala141, Hie135, Ile133, Ala160, Arg206, Asp97, Met94, Tyr347 to Phe345 with synergistic effect for two butane molecules. This study can insight into the catalytic mechanism for butane/ACR complex.
Collapse
Affiliation(s)
- Xiaopian Tian
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| |
Collapse
|
29
|
Hahn CJ, Lemaire ON, Kahnt J, Engilberge S, Wegener G, Wagner T. Crystal structure of a key enzyme for anaerobic ethane activation. Science 2021; 373:118-121. [PMID: 34210888 DOI: 10.1126/science.abg1765] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 02/01/2023]
Abstract
Ethane, the second most abundant hydrocarbon gas in the seafloor, is efficiently oxidized by anaerobic archaea in syntrophy with sulfate-reducing bacteria. Here, we report the 0.99-angstrom-resolution structure of the proposed ethane-activating enzyme and describe the specific traits that distinguish it from methane-generating and -consuming methyl-coenzyme M reductases. The widened catalytic chamber, harboring a dimethylated nickel-containing F430 cofactor, would adapt the chemistry of methyl-coenzyme M reductases for a two-carbon substrate. A sulfur from methionine replaces the oxygen from a canonical glutamine as the nickel lower-axial ligand, a feature conserved in thermophilic ethanotrophs. Specific loop extensions, a four-helix bundle dilatation, and posttranslational methylations result in the formation of a 33-angstrom-long hydrophobic tunnel, which guides the ethane to the buried active site as confirmed with xenon pressurization experiments.
Collapse
Affiliation(s)
- Cedric J Hahn
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | | | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany. .,Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany.,Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
| |
Collapse
|
30
|
Structural Insights into the Methane-Generating Enzyme from a Methoxydotrophic Methanogen Reveal a Restrained Gallery of Post-Translational Modifications. Microorganisms 2021; 9:microorganisms9040837. [PMID: 33919946 PMCID: PMC8070964 DOI: 10.3390/microorganisms9040837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 11/24/2022] Open
Abstract
Methanogenic archaea operate an ancient, if not primordial, metabolic pathway that releases methane as an end-product. This last step is orchestrated by the methyl-coenzyme M reductase (MCR), which uses a nickel-containing F430-cofactor as the catalyst. MCR astounds the scientific world by its unique reaction chemistry, its numerous post-translational modifications, and its importance in biotechnology not only for production but also for capturing the greenhouse gas methane. In this report, we investigated MCR natively isolated from Methermicoccus shengliensis. This methanogen was isolated from a high-temperature oil reservoir and has recently been shown to convert lignin and coal derivatives into methane through a process called methoxydotrophic methanogenesis. A methoxydotrophic culture was obtained by growing M. shengliensis with 3,4,5-trimethoxybenzoate as the main carbon and energy source. Under these conditions, MCR represents more than 12% of the total protein content. The native MCR structure refined at a resolution of 1.6-Å precisely depicts the organization of a dimer of heterotrimers. Despite subtle surface remodeling and complete conservation of its active site with other homologues, MCR from the thermophile M. shengliensis contains the most limited number of post-translational modifications reported so far, questioning their physiological relevance in other relatives.
Collapse
|
31
|
Kevorkian RT, Callahan S, Winstead R, Lloyd KG. ANME-1 archaea may drive methane accumulation and removal in estuarine sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:185-194. [PMID: 33462984 DOI: 10.1111/1758-2229.12926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
ANME-1 archaea subsist on the very low energy of anaerobic oxidation of methane (AOM). Most marine sediments shift from net AOM in the sulfate methane transition zone (SMTZ) to methanogenesis in the methane zone (MZ) below it. In White Oak River estuarine sediments, ANME-1 comprised 99.5% of 16S rRNA genes from amplicons and 100% of 16S rRNA genes from metagenomes of the Methanomicrobia in the SMTZ and 99.9% and 98.3%, respectively, in the MZ. Each of the 16 ANME-1 OTUs (97% similarity) had peaks in the SMTZ that coincided with peaks of putative sulfate-reducing bacteria Desulfatiglans sp. and SEEP-SRB1. In the MZ, ANME-1, but none of the putative sulfate-reducing bacteria or cultured methanogens, increased with depth. Our meta-analysis of public data showed only ANME-1 expressed methanogenic genes during both net AOM and net methanogenesis in an enrichment culture. We conclude that ANME-1 perform AOM in the SMTZ and methanogenesis in the MZ of White Oak River sediments. This metabolic flexibility may expand habitable zones in extraterrestrial environments, since it enables greater energy yields in a fluctuating energetic landscape.
Collapse
Affiliation(s)
| | - Sean Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Rachel Winstead
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
32
|
Fujishiro T, Ogawa S. The nickel-sirohydrochlorin formation mechanism of the ancestral class II chelatase CfbA in coenzyme F430 biosynthesis. Chem Sci 2021; 12:2172-2180. [PMID: 34163982 PMCID: PMC8179277 DOI: 10.1039/d0sc05439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The class II chelatase CfbA catalyzes Ni2+ insertion into sirohydrochlorin (SHC) to yield the product nickel-sirohydrochlorin (Ni-SHC) during coenzyme F430 biosynthesis. CfbA is an important ancestor of all the class II chelatase family of enzymes, including SirB and CbiK/CbiX, functioning not only as a nickel-chelatase, but also as a cobalt-chelatase in vitro. Thus, CfbA is a key enzyme in terms of diversity and evolution of the chelatases catalyzing formation of metal-SHC-type of cofactors. However, the reaction mechanism of CfbA with Ni2+ and Co2+ remains elusive. To understand the structural basis of the underlying mechanisms and evolutionary aspects of the class II chelatases, X-ray crystal structures of Methanocaldococcus jannaschii wild-type CfbA with various ligands, including SHC, Ni2+, Ni-SHC, and Co2+ were determined. Further, X-ray crystallographic snapshot analysis captured a unique Ni2+-SHC-His intermediate complex and Co-SHC-bound CfbA, which resulted from a more rapid chelatase reaction for Co2+ than Ni2+. Meanwhile, an in vitro activity assay confirmed the different reaction rates for Ni2+ and Co2+ by CfbA. Based on these structural and functional analyses, the following substrate-SHC-assisted Ni2+ insertion catalytic mechanism was proposed: Ni2+ insertion to SHC is promoted by the support of an acetate side chain of SHC.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University Shimo-Okubo 255 Sakura Saitama 338-8570 Japan +81-48-858-9293
| | - Shoko Ogawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University Shimo-Okubo 255 Sakura Saitama 338-8570 Japan +81-48-858-9293
| |
Collapse
|
33
|
Chen H, Gan Q, Fan C. Methyl-Coenzyme M Reductase and Its Post-translational Modifications. Front Microbiol 2020; 11:578356. [PMID: 33162960 PMCID: PMC7581889 DOI: 10.3389/fmicb.2020.578356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
The methyl-coenzyme M reductase (MCR) is a central enzyme in anaerobic microbial methane metabolism, which consists of methanogenesis and anaerobic oxidation of methane (AOM). MCR catalyzes the final step of methanogenesis and the first step of AOM to achieve the production and oxidation of methane, respectively. Besides a unique nickel tetrahydrocorphinoid (coenzyme F430), MCR also features several unusual post-translational modifications (PTMs), which are assumed to play important roles in regulating MCR functions. However, only few studies have been implemented on MCR PTMs. Therefore, to recapitulate current knowledge and prospect future studies, this review summarizes and discusses studies on MCR and its PTMs.
Collapse
Affiliation(s)
- Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States.,Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
34
|
Berger S, Cabrera-Orefice A, Jetten MSM, Brandt U, Welte CU. Investigation of central energy metabolism-related protein complexes of ANME-2d methanotrophic archaea by complexome profiling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148308. [PMID: 33002447 DOI: 10.1016/j.bbabio.2020.148308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/02/2023]
Abstract
The anaerobic oxidation of methane is important for mitigating emissions of this potent greenhouse gas to the atmosphere and is mediated by anaerobic methanotrophic archaea. In a 'Candidatus Methanoperedens BLZ2' enrichment culture used in this study, methane is oxidized to CO2 with nitrate being the terminal electron acceptor of an anaerobic respiratory chain. Energy conservation mechanisms of anaerobic methanotrophs have mostly been studied at metagenomic level and hardly any protein data is available at this point. To close this gap, we used complexome profiling to investigate the presence and subunit composition of protein complexes involved in energy conservation processes. All enzyme complexes and their subunit composition involved in reverse methanogenesis were identified. The membrane-bound enzymes of the respiratory chain, such as F420H2:quinone oxidoreductase, membrane-bound heterodisulfide reductase, nitrate reductases and Rieske cytochrome bc1 complex were all detected. Additional or putative subunits such as an octaheme subunit as part of the Rieske cytochrome bc1 complex were discovered that will be interesting targets for future studies. Furthermore, several soluble proteins were identified, which are potentially involved in oxidation of reduced ferredoxin produced during reverse methanogenesis leading to formation of small organic molecules. Taken together these findings provide an updated, refined picture of the energy metabolism of the environmentally important group of anaerobic methanotrophic archaea.
Collapse
Affiliation(s)
- Stefanie Berger
- Institute for Wetland and Water Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Alfredo Cabrera-Orefice
- Molecular Bioenergetics Group, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Mike S M Jetten
- Institute for Wetland and Water Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands.
| | - Cornelia U Welte
- Institute for Wetland and Water Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
35
|
Shima S, Huang G, Wagner T, Ermler U. Structural Basis of Hydrogenotrophic Methanogenesis. Annu Rev Microbiol 2020; 74:713-733. [DOI: 10.1146/annurev-micro-011720-122807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most methanogenic archaea use the rudimentary hydrogenotrophic pathway—from CO2and H2to methane—as the terminal step of microbial biomass degradation in anoxic habitats. The barely exergonic process that just conserves sufficient energy for a modest lifestyle involves chemically challenging reactions catalyzed by complex enzyme machineries with unique metal-containing cofactors. The basic strategy of the methanogenic energy metabolism is to covalently bind C1species to the C1carriers methanofuran, tetrahydromethanopterin, and coenzyme M at different oxidation states. The four reduction reactions from CO2to methane involve one molybdopterin-based two-electron reduction, two coenzyme F420–based hydride transfers, and one coenzyme F430–based radical process. For energy conservation, one ion-gradient-forming methyl transfer reaction is sufficient, albeit supported by a sophisticated energy-coupling process termed flavin-based electron bifurcation for driving the endergonic CO2reduction and fixation. Here, we review the knowledge about the structure-based catalytic mechanism of each enzyme of hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Gangfeng Huang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Ulrich Ermler
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Nickel(II)‐Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of the Catalytic Cycle of Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Wang Y, Wegener G, Ruff SE, Wang F. Methyl/alkyl-coenzyme M reductase-based anaerobic alkane oxidation in archaea. Environ Microbiol 2020; 23:530-541. [PMID: 32367670 DOI: 10.1111/1462-2920.15057] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/04/2023]
Abstract
Methyl-coenzyme M reductase (MCR) has been originally identified to catalyse the final step of the methanogenesis pathway. About 20 years ago anaerobic methane-oxidizing archaea (ANME) were discovered that use MCR enzymes to activate methane. ANME thrive at the thermodynamic limit of life, are slow-growing, and in most cases form syntrophic consortia with sulfate-reducing bacteria. Recently, archaea that have the ability to anaerobically oxidize non-methane multi-carbon alkanes such as ethane and n-butane were described in both enrichment cultures and environmental samples. These anaerobic multi-carbon alkane-oxidizing archaea (ANKA) use enzymes homologous to MCR named alkyl-coenzyme M reductase (ACR). Here we review the recent progresses on the diversity, distribution and functioning of both ANME and ANKA by presenting a detailed MCR/ACR-based phylogeny, compare their metabolic pathways and discuss the gaps in our knowledge of physiology of these organisms. To improve our understanding of alkane oxidation in archaea, we identified three directions for future research: (i) expanding cultivation attempts to validate omics-based metabolic models of yet-uncultured organisms, (ii) performing biochemical and structural analyses of key enzymes to understand thermodynamic and steric constraints and (iii) investigating the evolution of anaerobic alkane metabolisms and their impact on biogeochemical cycles.
Collapse
Affiliation(s)
- Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - S Emil Ruff
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA.,J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
38
|
Hahn CJ, Laso-Pérez R, Vulcano F, Vaziourakis KM, Stokke R, Steen IH, Teske A, Boetius A, Liebeke M, Amann R, Knittel K, Wegener G. " Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane. mBio 2020; 11:e00600-20. [PMID: 32317322 PMCID: PMC7175092 DOI: 10.1128/mbio.00600-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/01/2023] Open
Abstract
Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.
Collapse
Affiliation(s)
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Francesca Vulcano
- K.G. Jebsen Centre for Deep Sea Research and Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Runar Stokke
- K.G. Jebsen Centre for Deep Sea Research and Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- K.G. Jebsen Centre for Deep Sea Research and Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Teske
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Manuel Liebeke
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf Amann
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Katrin Knittel
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
39
|
Bhandari A, Mishra S, Maji RC, Kumar A, Olmstead MM, Patra AK. Nickel(II)‐Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of the Catalytic Cycle of Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2020; 59:9177-9185. [DOI: 10.1002/anie.202001363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Anirban Bhandari
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Saikat Mishra
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Ram Chandra Maji
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Akhilesh Kumar
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | | | - Apurba K. Patra
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| |
Collapse
|
40
|
Nayak DD, Liu A, Agrawal N, Rodriguez-Carerro R, Dong SH, Mitchell DA, Nair SK, Metcalf WW. Functional interactions between posttranslationally modified amino acids of methyl-coenzyme M reductase in Methanosarcina acetivorans. PLoS Biol 2020; 18:e3000507. [PMID: 32092071 PMCID: PMC7058361 DOI: 10.1371/journal.pbio.3000507] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/05/2020] [Accepted: 02/04/2020] [Indexed: 01/27/2023] Open
Abstract
The enzyme methyl-coenzyme M reductase (MCR) plays an important role in mediating global levels of methane by catalyzing a reversible reaction that leads to the production or consumption of this potent greenhouse gas in methanogenic and methanotrophic archaea. In methanogenic archaea, the alpha subunit of MCR (McrA) typically contains four to six posttranslationally modified amino acids near the active site. Recent studies have identified enzymes performing two of these modifications (thioglycine and 5-[S]-methylarginine), yet little is known about the formation and function of the remaining posttranslationally modified residues. Here, we provide in vivo evidence that a dedicated S-adenosylmethionine-dependent methyltransferase encoded by a gene we designated methylcysteine modification (mcmA) is responsible for formation of S-methylcysteine in Methanosarcina acetivorans McrA. Phenotypic analysis of mutants incapable of cysteine methylation suggests that the S-methylcysteine residue might play a role in adaption to mesophilic conditions. To examine the interactions between the S-methylcysteine residue and the previously characterized thioglycine, 5-(S)-methylarginine modifications, we generated M. acetivorans mutants lacking the three known modification genes in all possible combinations. Phenotypic analyses revealed complex, physiologically relevant interactions between the modified residues, which alter the thermal stability of MCR in a combinatorial fashion that is not readily predictable from the phenotypes of single mutants. High-resolution crystal structures of inactive MCR lacking the modified amino acids were indistinguishable from the fully modified enzyme, suggesting that interactions between the posttranslationally modified residues do not exert a major influence on the static structure of the enzyme but rather serve to fine-tune the activity and efficiency of MCR.
Collapse
Affiliation(s)
- Dipti D. Nayak
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Andi Liu
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Neha Agrawal
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Roy Rodriguez-Carerro
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Douglas A. Mitchell
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
- Center for Biophysics & Quantitative Biology, University of Illinois, Urbana, Illinois, United States of America
| | - William W. Metcalf
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
41
|
Posttranslational Methylation of Arginine in Methyl Coenzyme M Reductase Has a Profound Impact on both Methanogenesis and Growth of Methanococcus maripaludis. J Bacteriol 2020; 202:JB.00654-19. [PMID: 31740491 DOI: 10.1128/jb.00654-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/09/2019] [Indexed: 02/05/2023] Open
Abstract
Catalyzing the key step for anaerobic production and/or oxidation of methane and likely other short-chain alkanes, methyl coenzyme M reductase (Mcr) and its homologs play a key role in the global carbon cycle. The McrA subunit possesses up to five conserved posttranslational modifications (PTMs) at its active site. It was previously suggested that methanogenesis marker protein 10 (Mmp10) could play an important role in methanogenesis. To systematically examine its physiological role, mmpX (locus tag MMP1554), the gene encoding Mmp10 in Methanococcus maripaludis, was deleted with a new genetic tool, resulting in the complete loss of the 5-C-(S)-methylarginine PTM of residue 275 in the McrA subunit. When the ΔmmpX mutant was complemented with the wild-type gene expressed by either a strong or a weak promoter, methylation was fully restored. Compared to the parental strain, maximal rates of methane formation by whole cells were reduced by 40 to 60% in the ΔmmpX mutant. The reduction in activity was fully reversed by the complement with the strong promoter. Site-directed mutagenesis of mmpX resulted in a differential loss of arginine methylation among the mutants in vivo, suggesting that activities of Mmp10 directly modulated methylation. R275 was present in a highly conserved PXRR275(A/S)R(G/A) signature sequence in McrAs. The only other protein in M. maripaludis containing a similar sequence was not methylated, suggesting that Mmp10 is specific for McrA. In conclusion, Mmp10 modulates the methyl-Arg PTM on McrA in a highly specific manner, which has a profound impact on Mcr activity.IMPORTANCE Mcr is the key enzyme in methanogenesis and a promising candidate for bioengineering the conversion of methane to liquid fuel. Our knowledge of Mcr is still limited. In terms of complexity, uniqueness, and environmental importance, Mcr is more comparable to photosynthetic reaction centers than conventional enzymes. PTMs have long been hypothesized to play key roles in modulating Mcr activity. Here, we directly link the mmpX gene to the arginine PTM of Mcr, demonstrate its association with methanogenesis activity, and offer insights into its substrate specificity and putative cofactor binding sites. This is also the first time that a PTM of McrA has been shown to have a substantial impact on both methanogenesis and growth in the absence of additional stressors.
Collapse
|
42
|
Methane generation via intraprotein C–S bond cleavage in cytochrome b562 reconstituted with nickel didehydrocorrin. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Bhattarai S, Cassarini C, Lens PNL. Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiol Mol Biol Rev 2019; 83:e00074-18. [PMID: 31366606 PMCID: PMC6710461 DOI: 10.1128/mmbr.00074-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In marine anaerobic environments, methane is oxidized where sulfate-rich seawater meets biogenic or thermogenic methane. In those niches, a few phylogenetically distinct microbial types, i.e., anaerobic methanotrophs (ANME), are able to grow through anaerobic oxidation of methane (AOM). Due to the relevance of methane in the global carbon cycle, ANME have drawn the attention of a broad scientific community for 4 decades. This review presents and discusses the microbiology and physiology of ANME up to the recent discoveries, revealing novel physiological types of anaerobic methane oxidizers which challenge the view of obligate syntrophy for AOM. An overview of the drivers shaping the distribution of ANME in different marine habitats, from cold seep sediments to hydrothermal vents, is given. Multivariate analyses of the abundance of ANME in various habitats identify a distribution of distinct ANME types driven by the mode of methane transport. Intriguingly, ANME have not yet been cultivated in pure culture, despite intense attempts. Further advances in understanding this microbial process are hampered by insufficient amounts of enriched cultures. This review discusses the advantages, limitations, and potential improvements for ANME laboratory-based cultivation systems.
Collapse
Affiliation(s)
- S Bhattarai
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
| | - C Cassarini
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| | - P N L Lens
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
44
|
Gupta A, Ahmad A, Chothwe D, Madhu MK, Srivastava S, Sharma VK. Genome-scale metabolic reconstruction and metabolic versatility of an obligate methanotroph Methylococcus capsulatus str. Bath. PeerJ 2019; 7:e6685. [PMID: 31316867 PMCID: PMC6613435 DOI: 10.7717/peerj.6685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
The increase in greenhouse gases with high global warming potential such as methane is a matter of concern and requires multifaceted efforts to reduce its emission and increase its mitigation from the environment. Microbes such as methanotrophs can assist in methane mitigation. To understand the metabolic capabilities of methanotrophs, a complete genome-scale metabolic model (GSMM) of an obligate methanotroph, Methylococcus capsulatus str. Bath was reconstructed. The model contains 535 genes, 899 reactions and 865 metabolites and is named iMC535. The predictive potential of the model was validated using previously-reported experimental data. The model predicted the Entner–Duodoroff pathway to be essential for the growth of this bacterium, whereas the Embden–Meyerhof–Parnas pathway was found non-essential. The performance of the model was simulated on various carbon and nitrogen sources and found that M. capsulatus can grow on amino acids. The analysis of network topology of the model identified that six amino acids were in the top-ranked metabolic hubs. Using flux balance analysis, 29% of the metabolic genes were predicted to be essential, and 76 double knockout combinations involving 92 unique genes were predicted to be lethal. In conclusion, we have reconstructed a GSMM of a methanotroph Methylococcus capsulatus str. Bath. This is the first high quality GSMM of a Methylococcus strain which can serve as an important resource for further strain-specific models of the Methylococcus genus, as well as identifying the biotechnological potential of M. capsulatus Bath.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ahmad Ahmad
- Systems Biology for Biofuels Group, International Centre For Genetic Engineering And Biotechnology, New Delhi, India.,Department of Biotechnology, Noida International University, Noida, India
| | - Dipesh Chothwe
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre For Genetic Engineering And Biotechnology, New Delhi, India
| | - Vineet K Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
45
|
Seigo Shima. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Seigo Shima. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/anie.201900274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Enzymatic Systems with Homology to Nitrogenase: Biosynthesis of Bacteriochlorophyll and Coenzyme F 430. Methods Mol Biol 2019; 1876:25-35. [PMID: 30317472 DOI: 10.1007/978-1-4939-8864-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Enzymes with homology to nitrogenase are essential for the reduction of chemically stable double bonds within the biosynthetic pathways of bacteriochlorophyll and coenzyme F430. These tetrapyrrole-based compounds are crucial for bacterial photosynthesis and the biogenesis of methane in methanogenic archaea. Formation of bacteriochlorophyll requires the unique ATP-dependent enzyme chlorophyllide oxidoreductase (COR) for the two-electron reduction of chlorophyllide to bacteriochlorophyllide. COR catalysis is based on the homodimeric protein subunit BchX2, which facilitates the transfer of electrons to the corresponding heterotetrameric catalytic subunit (BchY/BchZ)2. By analogy to the nitrogenase system, the dynamic switch protein BchX2 contains a [4Fe-4S] cluster that triggers the ATP-driven transfer of electrons onto a second [4Fe-4S] cluster located in (BchY/BchZ)2. The subsequent substrate reduction and protonation is unrelated to nitrogenase catalysis, with no further involvement of a molybdenum-containing cofactor. The biosynthesis of the nickel-containing coenzyme F430 includes the six-electron reduction of the tetrapyrrole macrocycle of Ni2+-sirohydrochlorin a,c-diamide to Ni2+-hexahydrosirohydrochlorin a,c-diamide catalyzed by CfbC/D. The homodimeric CfbC2 subunit carrying a [4Fe-4S] cluster shows close homology to BchX2. Accordingly, parallelism for the initial ATP-driven electron transfer steps of CfbC/D was proposed. Electrons are received by the dimeric catalytic subunit CfbD2, which contains a second [4Fe-4S] cluster and carries out the saturation of an overall of three double bonds in a highly orchestrated spatial and regioselective process. Following a short introduction to nitrogenase catalysis, this chapter will focus on the recent progress toward the understanding of the nitrogenase-like enzymes COR and CfbC/D, with special emphasis on the underlying enzymatic mechanism(s).
Collapse
|
48
|
Thauer RK. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Biochemistry 2019; 58:5198-5220. [PMID: 30951290 PMCID: PMC6941323 DOI: 10.1021/acs.biochem.9b00164] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methyl-coenzyme
M reductase (MCR) catalyzes the methane-forming
step in methanogenic archaea. The active enzyme harbors the nickel(I)
hydrocorphin coenzyme F-430 as a prosthetic group and catalyzes the
reversible reduction of methyl-coenzyme M (CH3–S-CoM)
with coenzyme B (HS-CoM) to methane and CoM-S–S-CoB. MCR is
also involved in anaerobic methane oxidation in reverse of methanogenesis
and most probably in the anaerobic oxidation of ethane, propane, and
butane. The challenging question is how the unreactive CH3–S thioether bond in methyl-coenzyme M and the even more unreactive
C–H bond in methane and the other hydrocarbons are anaerobically
cleaved. A key to the answer is the negative redox potential (Eo′) of the Ni(II)F-430/Ni(I)F-430 couple
below −600 mV and the radical nature of Ni(I)F-430. However,
the negative one-electron redox potential is also the Achilles heel
of MCR; it makes the nickel enzyme one of the most O2-sensitive
enzymes known to date. Even under physiological conditions, the Ni(I)
in MCR is oxidized to the Ni(II) or Ni(III) states, e.g., when in
the cells the redox potential (E′) of the
CoM-S–S-CoB/HS-CoM and HS-CoB couple (Eo′ = −140 mV) gets too high. Methanogens therefore
harbor an enzyme system for the reactivation of inactivated MCR in
an ATP-dependent reduction reaction. Purification of active MCR in
the Ni(I) oxidation state is very challenging and has been achieved
in only a few laboratories. This perspective reviews the function,
structure, and properties of MCR, what is known and not known about
the catalytic mechanism, how the inactive enzyme is reactivated, and
what remains to be discovered.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Strasse 10 , Marburg 35043 , Germany
| |
Collapse
|
49
|
He Z, Wang J, Hu J, Yu H, Jetten MSM, Liu H, Cai C, Liu Y, Ren H, Zhang X, Hua M, Xu X, Zheng P, Hu B. Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:228-237. [PMID: 30342364 DOI: 10.1016/j.envpol.2018.10.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/29/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Coastal wetlands are widely recognized as atmospheric methane sources. However, recent field studies suggest that some coastal wetlands could also act as methane sinks, but the mechanism is not yet clear. Here, we investigated methane oxidation with different electron acceptors (i.e., oxygen, nitrate/nitrite, sulfate, Fe(III) and Mn(IV)) in four coastal wetlands in China using a combination of molecular biology methods and isotopic tracing technologies. The geochemical profiles and in situ Gibbs free energies suggest that there was significant nitrite-dependent anaerobic oxidation of methane (nitrite-AOM) in the sub-surface sediments; this was subsequently experimentally verified by both the microbial abundance and activity. Remarkably, the methanotrophic communities seemed to exist in the sediments as layered structures, and the surface aerobic methane-oxidizing bacteria were able to take up atmospheric methane at a rate of 0.10-0.18 nmol CH4 day-1 cm-2, while most, if not all, sedimentary methane was being completely consumed by anaerobic methanotrophs (23-58% by methane oxidizers in phylum NC10). These results suggest that coastal methane sinks might be governed by diverse microbial communities where NC10 methane oxidizers contributed significantly. This finding helps to better understand and predict the coastal methane cycle and reduce uncertainties in the estimations of the global methane flux.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Hanqing Yu
- Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Hongxing Ren
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xu Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Miaolian Hua
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
50
|
Insight into anaerobic methanotrophy from 13C/ 12C- amino acids and 14C/ 12C-ANME cells in seafloor microbial ecology. Sci Rep 2018; 8:14070. [PMID: 30250249 PMCID: PMC6155224 DOI: 10.1038/s41598-018-31004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/07/2018] [Indexed: 11/22/2022] Open
Abstract
Oceanic methane from global deep-sea sediment is largely consumed through microbially mediated sulfate-coupled oxidation, resulting in 13C-depleted cell biomass of anaerobic methanotrophic archaea (ANME). The general ecological importance of subseafloor ANME has been well recognized in the last two decades. However, the crucial biochemical pathways for the overall anaerobic oxidation of methane (AOM) still remain enigmatic. Here, methanotrophic pathways were analyzed to trace 13C-depleted amino acid biosynthesis in two clades of ANME (ANME-1 and ANME-2) from the Black Sea. Compound-specific analysis of ANME-dominated microbial mats showed a significant 13C-depletion trend in association with increasing carbon numbers in protein-derived amino acid families (e.g., the pyruvate family in the order of alanine, valine, isoleucine and leucine was down to −114‰). This result indicates a stepwise elongation of 13C-depleted carbon during amino acid biosynthesis. The overall results suggest that intracellular protein amino acids and the most 13C-depleted signature of leucine, which has a specific branched-chain structure, are potentially propagated as isoprenoid precursor molecules into archaeal biosynthesis, resulting in the extremely 13C- and 14C-depleted nature of ANME cells in the deep microbial oasis.
Collapse
|