1
|
Xie W, Li Z, Li M, Liu Y, Liu Y, Cao C, Guo K, Liu K, Zhou Y, Lu P. Observation of Attosecond Time Delays in Above-Threshold Ionization. PHYSICAL REVIEW LETTERS 2024; 133:183201. [PMID: 39547174 DOI: 10.1103/physrevlett.133.183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/03/2024] [Accepted: 10/02/2024] [Indexed: 11/17/2024]
Abstract
Attosecond-scale temporal characterization of photoionization is essential in understanding how light and matter interact on the most fundamental level. However, characterizing the temporal property of strong-field above-threshold ionization has remained unreached. Here, we propose a novel photoelectron interferometric method to disentangle the contribution of Coulomb effect from an attoclock, allowing us to clock energy-resolved time delays of strong-field above-threshold ionization. We disentangle two types of Coulomb effects for the attoclock, i.e., one arising from the Coulomb disturbance of a single electron trajectory and the second effect arising from the photoelectron phase space distortion due to the Coulomb field. We find that the second Coulomb effect manifests itself as an energy-resolved attosecond time delay in the electron emission, which is relevant to the effect of nonadiabatic initial longitudinal momentum at the tunnel exit. Our study further indicates a sensitivity of the time delay to the temporal profile of the released electron wave packet within one half laser cycle. The temporal width of the released electron wave packet is found to increase with energy, which contradicts the common assumption in the adiabatic picture.
Collapse
|
2
|
Yang Y, Hu X, Wu L, Wang Z, Li X, Zhou S, Wang Z, Guo F, He L, Luo S, Zhang D, Wang J, Chen X, Wu Y, Wang C, Ding D. Extraction of Molecular-Frame Electron-Ion Differential Scattering Cross Sections Based on Elliptical Laser-Induced Electron Diffraction. PHYSICAL REVIEW LETTERS 2024; 133:113203. [PMID: 39331986 DOI: 10.1103/physrevlett.133.113203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/29/2024]
Abstract
We extracted the molecular-frame elastic differential cross sections (MFDCSs) for electrons scattering from N_{2}^{+} based on elliptical laser-induced electron diffraction (ELIED), wherein the structural evolution is initialized by the same tunneling ionization and probed by incident angle-resolved laser-induced electron diffraction imaging. To establish ELIED, an intuitive interpretation of the ellipticity-dependent rescattering electron momentum distributions was first provided by analyzing the transverse momentum distribution. It was shown that the incident angle of the laser-induced returning electrons could be tuned within 20° by varying the ellipticity and handedness of the driving laser pulses. Accordingly, the incident angle-resolved DCSs of returning electrons for spherically symmetric targets (Xe^{+} and Ar^{+}) were successfully extracted as a proof-of-principle for ELIED. The MFDCSs for N_{2}^{+} were experimentally obtained at incident angles of 4° and 7°, which were well reproduced by the simulations. The ELIED approach is the only successful method so far for obtaining incident angle-resolved ionic MFDCS, which provides a new sensitive observable for the transient structure retrieval of N_{2}^{+}. Our results suggest that the ELIED has the potential to extract the structural tomographic information of polyatomic molecules with femtosecond and subangstrom spatiotemporal resolutions that can enable the visualization of the nuclear motions in complex chemical reactions as well as chiral recognition.
Collapse
|
3
|
Dantus M. Ultrafast studies of elusive chemical reactions in the gas phase. Science 2024; 385:eadk1833. [PMID: 39116221 DOI: 10.1126/science.adk1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
The chemical composition of the interstellar medium and planetary atmospheres is constantly in flux as atoms and molecules collide and interact with high-energy particles such as electrons, protons, and photons. These transformative processes ultimately lead to the coalescence of molecules and eventually the birth of stars. Our understanding of these chemical ecosystems relies on models that synthesize data from gas-phase experiments, providing insights into reaction cross sections. This Review examines efforts to delve into the fundamental bond-forming and bond-breaking dynamics that occur during bimolecular and electron-initiated reactions. These experiments involve clever approaches to establish a time reference and the collision geometry necessary for tracking atomic motion with femtosecond time resolution. Findings from these efforts enhance present models and improve predictions for molecule-molecule and electron-molecule collisions.
Collapse
Affiliation(s)
- Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
He L, Yuen CH, He Y, Sun S, Goetz E, Le AT, Deng Y, Xu C, Lan P, Lu P, Lin CD. Ultrafast Picometer-Resolved Molecular Structure Imaging by Laser-Induced High-Order Harmonics. PHYSICAL REVIEW LETTERS 2024; 133:023201. [PMID: 39073922 DOI: 10.1103/physrevlett.133.023201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
Real-time visualization of molecular transformations is a captivating yet challenging frontier of ultrafast optical science and physical chemistry. While ultrafast x-ray and electron diffraction methods can achieve the needed subangstrom spatial resolution, their temporal resolution is still limited to hundreds of femtoseconds, much longer than the few femtoseconds required to probe real-time molecular dynamics. Here, we show that high-order harmonics generated by intense femtosecond lasers can be used to image molecules with few-ten-attosecond temporal resolution and few-picometer spatial resolution. This is achieved by exploiting the sensitive dependence of molecular recombination dipole moment to the geometry of the molecule at the time of harmonic emission. In a proof-of-principle experiment, we have applied this high-harmonic structure imaging (HHSI) method to monitor the structural rearrangement in NH_{3}, ND_{3}, and N_{2} from one to a few femtoseconds after the molecule is ionized by an intense laser. Our findings establish HHSI as an effective approach to resolve molecular dynamics with unprecedented spatiotemporal resolution, which can be extended to trace photochemical reactions in the future.
Collapse
|
5
|
Chirvi K, Biegert J. Laser-induced electron diffraction: Imaging of a single gas-phase molecular structure with one of its own electrons. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:041301. [PMID: 39221452 PMCID: PMC11365610 DOI: 10.1063/4.0000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Among the many methods to image molecular structure, laser-induced electron diffraction (LIED) can image a single gas-phase molecule by locating all of a molecule's atoms in space and time. The method is based on attosecond electron recollision driven by a laser field and can reach attosecond temporal resolution. Implementation with a mid-IR laser and cold-target recoil ion-momentum spectroscopy, single molecules are measured with picometer resolution due to the keV electron impact energy without ensemble averaging or the need for molecular orientation. Nowadays, the method has evolved to detect single complex and chiral molecular structures in 3D. The review will touch on the various methods to discuss the implementations of LIED toward single-molecule imaging and complement the discussions with noteworthy experimental findings in the field.
Collapse
Affiliation(s)
- K. Chirvi
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - J. Biegert
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Liu Y, Cao W, Yao LH, Pi LW, Zhou Y, Lu P. In-line attosecond photoelectron holography for single photon ionization. Phys Chem Chem Phys 2024; 26:17902-17909. [PMID: 38888148 DOI: 10.1039/d3cp05919g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The momentum distribution of photoelectrons in H2+ molecules subjected to an attosecond pulse is theoretically investigated. To better understand the laser-molecule interaction, we develop an in-line photoelectron holography approach that is analogous to optical holography. This approach is specifically suitable for extracting the amplitude and phase of the forward-scattered electron wave packet in a dissociating molecule with atomic precision. We also extend this approach to imaging the transient scattering cross-section of a molecule dressed by a near infrared laser field. This attosecond photoelectron holography sheds light on structural microscopy of dissociating molecules with high spatial-temporal resolution.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Wei Cao
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ling-Hui Yao
- Research Center for Attosecond Science and Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an 710119, China.
| | - Liang-Wen Pi
- Research Center for Attosecond Science and Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an 710119, China.
| | - Yueming Zhou
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Peixiang Lu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
7
|
Khurelbaatar T, Heo J, Yu S, Lai X, Liu X, Kim DE. Strong-field photoelectron holography in the subcycle limit. LIGHT, SCIENCE & APPLICATIONS 2024; 13:108. [PMID: 38714677 PMCID: PMC11076600 DOI: 10.1038/s41377-024-01457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 05/10/2024]
Abstract
Strong-field photoelectron holography is promising for the study of electron dynamics and structure in atoms and molecules, with superior spatiotemporal resolution compared to conventional electron and X-ray diffractometry. However, the application of strong-field photoelectron holography has been hindered by inter-cycle interference from multicycle fields. Here, we address this challenge by employing a near-single-cycle field to suppress the inter-cycle interference. We observed and separated two distinct holographic patterns for the first time. Our measurements allow us not only to identify the Gouy phase effect on electron wavepackets and holographic patterns but also to correctly extract the internuclear separation of the target molecule from the holographic pattern. Our work leads to a leap jump from theory to application in the field of strong-field photoelectron holography-based ultrafast imaging of molecular structures.
Collapse
Affiliation(s)
- Tsendsuren Khurelbaatar
- Center for Attosecond Science and Technology, Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea
- Max Planck POSTECH/KOREA Research Initiative, Pohang, Gyeongbuk, 37673, Korea
| | - Jaewuk Heo
- Center for Attosecond Science and Technology, Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea
- Max Planck POSTECH/KOREA Research Initiative, Pohang, Gyeongbuk, 37673, Korea
| | - ShaoGang Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - XuanYang Lai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Wuhan Institute of Quantum Technology, 430206, Wuhan, China.
| | - XiaoJun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Dong Eon Kim
- Center for Attosecond Science and Technology, Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea.
- Max Planck POSTECH/KOREA Research Initiative, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
8
|
Tan F, Wang SY, Zhang YX, Zhang ZM, Zhu B, Wu YC, Yu MH, Yang Y, Li G, Zhang TK, Yan YH, Lu F, Fan W, Zhou WM, Gu YQ, Qiao B. Mechanism studies for relativistic attosecond electron bunches from laser-illuminated nanotargets. Phys Rev E 2024; 109:045205. [PMID: 38755824 DOI: 10.1103/physreve.109.045205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/05/2023] [Indexed: 05/18/2024]
Abstract
To find a way to control the electron-bunching process and the bunch-emitting directions when an ultraintense, linearly polarized laser pulse interacts with a nanoscale target, we explored the mechanisms for the periodical generation of relativistic attosecond electron bunches. By comparing the simulation results of three different target geometries, the results show that for nanofoil target, limiting the transverse target size to a small value and increasing the longitudinal size to a certain extent is an effective way to improve the total electron quantity in a single bunch. Then the subfemtosecond electronic dynamics when an ultrashort ultraintense laser grazing propagates along a nanofoil target was analyzed through particle-in-cell simulations and semiclassical analyses, which shows the detailed dynamics of the electron acceleration, radiation, and bunching process in the laser field. The analyses also show that the charge separation field produced by the ions plays a key role in the generation of electron bunches, which can be used to control the quantity of the corresponding attosecond radiation bunches by adjusting the length of the nanofoil target.
Collapse
Affiliation(s)
- F Tan
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - S Y Wang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Y X Zhang
- Department of Experimental Physics, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Z M Zhang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - B Zhu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Y C Wu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - M H Yu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Y Yang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - G Li
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - T K Zhang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Y H Yan
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - F Lu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - W Fan
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - W M Zhou
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Y Q Gu
- National Key Laboratory of Plasma Physics, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - B Qiao
- Center for Applied physics and Techology, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Kuraoka T, Goto S, Kanno M, Díaz-Tendero S, Reino-González J, Trinter F, Pier A, Sommerlad L, Melzer N, McGinnis OD, Kruse J, Wenzel T, Jahnke T, Xue H, Kishimoto N, Yoshikawa K, Tamura Y, Ota F, Hatada K, Ueda K, Martín F. Tracing Photoinduced Hydrogen Migration in Alcohol Dications from Time-Resolved Molecular-Frame Photoelectron Angular Distributions. J Phys Chem A 2024; 128:1241-1249. [PMID: 38324399 PMCID: PMC10895665 DOI: 10.1021/acs.jpca.3c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space. Although visualization of this dynamics is more straightforward in the smaller systems, methanol and ethanol, one can still recognize the signature of that motion in propanol and isopropyl alcohol and assign a tentative path to it. A possible pathway for a corresponding experiment requires an angularly resolved detection of photoelectrons in coincidence with molecular fragment ions used to define a molecular frame of reference. Such studies have become, in principle, possible since the first XFELs with sufficiently high repetition rates have emerged. To further support our findings, we provide experimental evidence of H migration in ethanol-OD from ion-ion coincidence measurements performed with synchrotron radiation.
Collapse
Affiliation(s)
- T. Kuraoka
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - S. Goto
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - M. Kanno
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - S. Díaz-Tendero
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - J. Reino-González
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| | - F. Trinter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - A. Pier
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - L. Sommerlad
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - N. Melzer
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - O. D. McGinnis
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - J. Kruse
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Wenzel
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Jahnke
- Max-Planck-Institut
für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- European
XFEL, Holzkoppel
4, Schenefeld 22869, Germany
| | - H. Xue
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - N. Kishimoto
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - K. Yoshikawa
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Y. Tamura
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Ota
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Hatada
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Ueda
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - F. Martín
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
10
|
Reiger S, Mamaikin M, Kormin D, Golyari K, Kassab H, Seeger M, Pervak V, Karpowicz N, Nubbemeyer T. Ultra-phase-stable infrared light source at the watt level. OPTICS LETTERS 2024; 49:1049-1052. [PMID: 38359250 DOI: 10.1364/ol.509905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Ultrashort pulses at infrared wavelengths are advantageous when studying light-matter interaction. For the spectral region around 2 µm, multi-stage parametric amplification is the most common method to reach higher pulse energies. Yet it has been a key challenge for such systems to deliver waveform-stable pulses without active stabilization and synchronization systems. Here, we present a different approach for the generation of infrared pulses centered at 1.8 µm with watt-level average power utilizing only a single nonlinear crystal. Our laser system relies on a well-established Yb:YAG thin-disk technology at 1.03 µm wavelength combined with a hybrid two-stage broadening scheme. We show the high-power downconversion process via intra-pulse difference frequency generation, which leads to excellent passive stability of the carrier envelope phase below 20 mrad-comparable to modern oscillators. It also provides simple control over the central wavelength within a broad spectral range. The developed infrared source is employed to generate a multi-octave continuum from 500 nm to 2.5 µm opening the path toward sub-cycle pulse synthesis with extreme waveform stability.
Collapse
|
11
|
Gong X, Zhang W, Lu P, Ni H, Wu J. Probing and Steering Attosecond Electron Motion Using Tailored Ultrafast Laser Fields. J Phys Chem A 2024; 128:401-412. [PMID: 38181198 DOI: 10.1021/acs.jpca.3c06613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
An ultrafast intense laser field is one of the most important tools to observe and manipulate electronic and nuclear dynamics with subcycle precision in highly nonlinear light-matter interactions, which provides access to attosecond chemistry and physics. In this review, we briefly summarize the protocol of attosecond chronoscopy and its application in probing the attosecond photoemission dynamics from atoms and molecules. We also review the control schemes of attosecond electron motion in atoms and molecules as well as molecular bond formation and cleavage with the assistance of tailored femtosecond laser fields.
Collapse
Affiliation(s)
- Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Robinson MS, Küpper J. Unraveling the ultrafast dynamics of thermal-energy chemical reactions. Phys Chem Chem Phys 2024; 26:1587-1601. [PMID: 38131437 DOI: 10.1039/d3cp03954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this perspective, we discuss how one can initiate, image, and disentangle the ultrafast elementary steps of thermal-energy chemical dynamics, building upon advances in technology and scientific insight. We propose that combinations of ultrashort mid-infrared laser pulses, controlled molecular species in the gas phase, and forefront imaging techniques allow to unravel the elementary steps of general-chemistry reaction processes in real time. We detail, for prototypical first reaction systems, experimental methods enabling these investigations, how to sufficiently prepare and promote gas-phase samples to thermal-energy reactive states with contemporary ultrashort mid-infrared laser systems, and how to image the initiated ultrafast chemical dynamics. The results of such experiments will clearly further our understanding of general-chemistry reaction dynamics.
Collapse
Affiliation(s)
- Matthew S Robinson
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
13
|
Ge P, Dou Y, Han M, Fang Y, Deng Y, Wu C, Gong Q, Liu Y. Spatiotemporal imaging and shaping of electron wave functions using novel attoclock interferometry. Nat Commun 2024; 15:497. [PMID: 38216557 PMCID: PMC10786904 DOI: 10.1038/s41467-024-44775-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Electrons detached from atoms by photoionization carry valuable information about light-atom interactions. Characterizing and shaping the electron wave function on its natural timescale is of paramount importance for understanding and controlling ultrafast electron dynamics in atoms, molecules and condensed matter. Here we propose a novel attoclock interferometry to shape and image the electron wave function in atomic photoionization. Using a combination of a strong circularly polarized second harmonic and a weak linearly polarized fundamental field, we spatiotemporally modulate the atomic potential barrier and shape the electron wave functions, which are mapped into a temporal interferometry. By analyzing the two-color phase-resolved and angle-resolved photoelectron interference, we are able to reconstruct the spatiotemporal evolution of the shaping on the amplitude and phase of electron wave function in momentum space within the optical cycle, from which we identify the quantum nature of strong-field ionization and reveal the effect of the spatiotemporal properties of atomic potential on the departing electron. This study provides a new approach for spatiotemporal shaping and imaging of electron wave function in intense light-matter interactions and holds great potential for resolving ultrafast electronic dynamics in molecules, solids, and liquids.
Collapse
Affiliation(s)
- Peipei Ge
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yankun Dou
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Meng Han
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - Yiqi Fang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Yongkai Deng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, Jiangsu, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, Jiangsu, China.
| |
Collapse
|
14
|
Min Y, Xu X, Lv X, Zhang Y, Lu Y, Hao X, Tan J. Probing the electron motion in molecules using forward-scattering photoelectron holography. OPTICS EXPRESS 2024; 32:857-870. [PMID: 38175105 DOI: 10.1364/oe.513783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Charge migration initiated by the coherent superposition of several electronic states is a basic process in intense laser-matter interactions. Observing this process on its intrinsic timescale is one of the central goals of attosecond science. Here, using forward-scattering photoelectron holography we theoretically demonstrate a scheme to probe the charge migration in molecules. In our scheme, by solving the time-dependent Schrödinger equation, the photoelectron momentum distributions (PEMDs) for strong-field tunneling ionization of the molecule are obtained. For a superposition state, it is shown that an intriguing shift of the holographic interference appears in the PEMDs, when the molecule is aligned perpendicularly to the linearly polarized laser field. With the quantum-orbit analysis, we demonstrate that this shift of the interference fringes is caused by the time evolution of the non-stationary superposition state. By analyzing the dependence of the shift on the final parallel momentum of the electrons, the relative phase and the expansion coefficient ratio of the two electronic states involved in the superposition state are determined accurately. Our study provides an efficient method for probing the charge migration in molecules. It will facilitate the application of the forward-scattering photoelectron holography to survey the electronic dynamics in more complex molecules.
Collapse
|
15
|
Zen H, Hajima R, Ohgaki H. Nonlinear compression of naturally down-chirped superradiance pulses from a free-electron laser oscillator by thick germanium plates. OPTICS EXPRESS 2023; 31:40928-40936. [PMID: 38041381 DOI: 10.1364/oe.503090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Naturally down-chirped superradiance pulses, with mirco-pulse energy, peak wavelength, and micropulse duration of 40 µJ, 8.7 μm, and 5.1 optical cycles, respectively, emitted from a free-electron laser (FEL) oscillator were nonlinearly compressed down to 3.7 optical cycles using a 30-mm-thick Ge plate. The peak power enhancement owing to nonlinear compression was found to be 40%. The achieved peak power and pulse duration were comparable to those of recently developed high-intensity and few-cycle long-wavelength infrared sources based on solid-state lasers. FEL oscillators operating in the superradiance regime can serve as unique tools for studying strong-field physics in long-wavelength infrared regions.
Collapse
|
16
|
Si M, Huang Y, Ruan M, Shen B, Xu Z, Yu T, Wang X, Chen Y. Relativistic-guided stable mode of few-cycle 20 µm level infrared radiation. OPTICS EXPRESS 2023; 31:40202-40209. [PMID: 38041326 DOI: 10.1364/oe.503814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
The generation of intense infrared radiation with a wavelength greater than 10 µm is limited by the optical materials in traditional methods or the laser-plasma parameters of plasma-bubble methods. In this study, we propose a new method for generating an intense longitudinal radiation field of tens of GV/m. By utilizing the oscillations of the electron film on the inner surface of the micro-tube, excited by the relativistic electron beam propagating within it, it is possible to obtain tunable long-wavelength few-cycle infrared radiation, ranging from 20 to 30 µm and even longer. The radiation source is guided entirely by a relativistic electron beam and formed a stable TM propagation mode in the micro-tube. This opens up new opportunities for applications of the relativistic intensity infrared radiation to high-field physics, shorter attosecond pulses generation and charged particle acceleration.
Collapse
|
17
|
Wang Z, Hu X, Xue X, Zhou S, Li X, Yang Y, Zhou J, Shu Z, Zhao B, Yu X, Gong M, Wang Z, Ma P, Wu Y, Chen X, Wang J, Ren X, Wang C, Ding D. Directly imaging excited state-resolved transient structures of water induced by valence and inner-shell ionisation. Nat Commun 2023; 14:5420. [PMID: 37669964 PMCID: PMC10480213 DOI: 10.1038/s41467-023-41204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Real-time imaging of transient structure of the electronic excited state is fundamentally critical to understand and control ultrafast molecular dynamics. The ejection of electrons from the inner-shell and valence level can lead to the population of different excited states, which trigger manifold ultrafast relaxation processes, however, the accurate imaging of such electronic state-dependent structural evolutions is still lacking. Here, by developing the laser-induced electron recollision-assisted Coulomb explosion imaging approach and molecular dynamics simulations, snapshots of the vibrational wave-packets of the excited (A) and ground states (X) of D2O+ are captured simultaneously with sub-10 picometre and few-femtosecond precision. We visualise that θDOD and ROD are significantly increased by around 50∘ and 10 pm, respectively, within approximately 8 fs after initial ionisation for the A state, and the ROD further extends 9 pm within 2 fs along the ground state of the dication in the present condition. Moreover, the ROD can stretch more than 50 pm within 5 fs along autoionisation state of dication. The accuracies of the results are limited by the simulations. These results provide comprehensive structural information for studying the fascinating molecular dynamics of water, and pave the way towards to make a movie of excited state-resolved ultrafast molecular dynamics and light-induced chemical reaction.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xiaoqing Hu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Shengpeng Zhou
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xiaokai Li
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Yizhang Yang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Zheng Shu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Banchi Zhao
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xitao Yu
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Maomao Gong
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi' an, China
| | - Zhenpeng Wang
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
| | - Pan Ma
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Yong Wu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China.
- HEDPS, Center of Applied Physics and Technology, Peking University, 100871, Beijing, China.
| | - Xiangjun Chen
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
| | - Jianguo Wang
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Chuncheng Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| | - Dajun Ding
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| |
Collapse
|
18
|
Hata M, Sano T, Iwata N, Sentoku Y. Optimum design of double-layer target for proton acceleration by ultrahigh intense femtosecond lasers considering relativistic rising edge. Phys Rev E 2023; 108:035205. [PMID: 37849131 DOI: 10.1103/physreve.108.035205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023]
Abstract
Advances in laser technology have led to ever-increasing laser intensities. As a result, in addition to the amplified spontaneous emission and pedestal, it has become necessary to accurately treat the relativistic rising edge component. This component has not needed much consideration in the past because of its not relativistic intensity. In the previous study, a thin contamination layer was blown away from the target by the rear sheath field due to the relativistic rising edge component, and the target bulk was accelerated by the sheath field due to the main pulse. These indicated that the proton acceleration is not efficient in the target normal sheath acceleration by the ultrahigh intense femtosecond laser if the proton-containing layer is as thin as the contamination layer. Here we employ a double-layer target, making the second (rear) layer thick enough not to be blown away by the rising edge, so that the second layer is accelerated by the main pulse. The first layer is composed of heavy ions to reduce the total thickness of the target for efficient proton acceleration. We investigate an optimal design of a double-layer target for proton acceleration by the ultrahigh intense femtosecond laser considering the relativistic rising edge using two-dimensional particle-in-cell simulations. We also discuss how to optimize the design of such a double-layer target and find that it can be designed with two conditions: the first layer is not penetrated by hole boring, and the second layer is not blown away by the rising edge.
Collapse
Affiliation(s)
- Masayasu Hata
- Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kizugawa, Kyoto 619-0215, Japan
| | - Takayoshi Sano
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Natsumi Iwata
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Sentoku
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Guo Y, Lin W, Wang W, Zhang R, Liu T, Xu Y, Wei X, Yang Z. Unveiling the complexity of spatiotemporal soliton molecules in real time. Nat Commun 2023; 14:2029. [PMID: 37041171 PMCID: PMC10090195 DOI: 10.1038/s41467-023-37711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Observing the dynamics of 3D soliton molecules can hold great opportunities for unveiling the mechanism of molecular complexity and other nonlinear problems. In spite of this fantastic potential, real-time visualization of their dynamics occurring on femtosecond-to-picosecond time scales is still challenging, particularly when high-spatiotemporal-resolution and long-term observation are required. In this work, we observe the real-time speckle-resolved spectral-temporal dynamics of 3D soliton molecules for a long time interval using multispeckle spectral-temporal measurement technology. Diverse real-time dynamics of 3D soliton molecules are captured for the first time, including the speckle-resolved birth, spatiotemporal interaction, and internal vibration of 3D soliton molecules. Further studies show that nonlinear spatiotemporal coupling associated with a large average-chirp gradient over the speckled mode profile plays a significant role in these dynamics. These efforts may shed new light on decomposing the complexity of 3D soliton molecules, and create an analogy between 3D soliton molecules and chemical molecules.
Collapse
Affiliation(s)
- Yuankai Guo
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Wei Lin
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Wenlong Wang
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Runsen Zhang
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Tao Liu
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Yiqing Xu
- Department of Physics, University of Auckland, Auckland, 1010, New Zealand
| | - Xiaoming Wei
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China.
| | - Zhongmin Yang
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China.
- Research Institute of Future Technology, South China Normal University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
20
|
Chen JH, Wen LC, Zhao SF. Orbital-resolved photoelectron momentum distributions of F - ions in a counter-rotating bicircular field. OPTICS EXPRESS 2023; 31:5708-5721. [PMID: 36823844 DOI: 10.1364/oe.481153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
We present a theoretical study of the orbital-resolved photoelectron momentum distributions (PMDs) of F- ions by a two-color counter-rotating circularly polarized field. We show that the PMDs of F- ions can be modulated from an isotropic symmetric distribution into a three-lobe one by adding a weak fundamental counter-rotating field to the intense second harmonic circularly polarized field, and this modulation strongly depends on the initial atomic orbital. The PMDs simulated by the strong-field approximation method show good agreement with those obtained by solving the time-dependent Schrödinger equation. Based on the strong-field approximation method, we find that the radial momentum shift of PMDs for different orbitals is the fingerprint of orbital-dependent initial momentum at the tunnel exit. More importantly, we demonstrate that the lobes in PMDs appear in sequential order, highlighting that the scheme can be viewed as controllable rotating temporal Young's two-slit interferometer.
Collapse
|
21
|
Onvlee J, Trippel S, Küpper J. Ultrafast light-induced dynamics in the microsolvated biomolecular indole chromophore with water. Nat Commun 2022; 13:7462. [PMID: 36460654 PMCID: PMC9718776 DOI: 10.1038/s41467-022-33901-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions between proteins and their solvent environment can be studied in a bottom-up approach using hydrogen-bonded chromophore-solvent clusters. The ultrafast dynamics following UV-light-induced electronic excitation of the chromophores, potential radiation damage, and their dependence on solvation are important open questions. The microsolvation effect is challenging to study due to the inherent mix of the produced gas-phase aggregates. We use the electrostatic deflector to spatially separate different molecular species in combination with pump-probe velocity-map-imaging experiments. We demonstrate that this powerful experimental approach reveals intimate details of the UV-induced dynamics in the near-UV-absorbing prototypical biomolecular indole-water system. We determine the time-dependent appearance of the different reaction products and disentangle the occurring ultrafast processes. This approach ensures that the reactants are well-known and that detailed characteristics of the specific reaction products are accessible - paving the way for the complete chemical-reactivity experiment.
Collapse
Affiliation(s)
- Jolijn Onvlee
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
22
|
Allum F, McManus J, Denby O, Burt M, Brouard M. Photoionization and Photofragmentation Dynamics of I 2 in Intense Laser Fields: A Velocity-Map Imaging Study. J Phys Chem A 2022; 126:8577-8587. [PMID: 36351075 PMCID: PMC9706571 DOI: 10.1021/acs.jpca.2c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/21/2022] [Indexed: 11/10/2022]
Abstract
The photoionization and photofragmentation dynamics of I2 in intense femtosecond near-infrared laser fields were studied using velocity-map imaging of cations, electrons, and anions. A series of photofragmentation pathways originating from different cationic electronic states were observed following single ionization, leading to I+ fragments with distinct kinetic energies, which could not be resolved in previous studies. Photoelectron spectra indicate that these high-lying dissociative states are primarily produced through nonresonant ionization from several molecular orbitals (MO) of the neutral. The photoelectron spectra also show clear signatures of resonant ionization pathways (Freeman resonances) to low-lying bound ionic states via Rydberg states of the neutral moiety. To investigate the role of these Rydberg states further, we imaged anionic products (I-) formed through ion-pair dissociations of neutral molecules excited to these Rydberg states by the intense femtosecond laser pulse. Collectively, these results shed significant new light on the complex dynamics of I2 molecules in intense laser fields and on the important role of neutral Rydberg states in a full description of strong-field phenomena in molecules.
Collapse
Affiliation(s)
| | - Joseph McManus
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Oskar Denby
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Michael Burt
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Mark Brouard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
23
|
Pushkin A, Potemkin F. High-gain broadband laser amplification of mid-IR pulses in Fe:CdSe crystal at 5 μm with millijoule output energy and multigigawatt peak power. OPTICS LETTERS 2022; 47:5762-5765. [PMID: 37219097 DOI: 10.1364/ol.472689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 05/24/2023]
Abstract
We report on a first of its kind, to our knowledge broadband amplification in a Fe:CdSe single crystal in the mid-IR beyond 5 µm. The experimentally measured gain properties demonstrate saturation fluence close to 13 mJ/cm2 and support the bandwidth up to 320 nm (full width at half maximum). Such properties allow the energy of the seeding mid-IR laser pulse, generated by an optical parametric amplifier, to be pushed up to more than 1 mJ. Dispersion management with bulk stretcher and prism compressor enables 5-µm laser pulses of 134-fs duration, providing access to multigigawatt peak power. Ultrafast laser amplifiers based on a family of Fe-doped chalcogenides open the route for wavelength tuning together with energy scaling of mid-IR laser pulses that are strongly demanded for the areas of spectroscopy, laser-matter interaction, and attoscience.
Collapse
|
24
|
Milošević DB, Habibović D. Nondipole effects in terahetz-pulse-assisted strong-field ionization. OPTICS EXPRESS 2022; 30:29979-29990. [PMID: 36242110 DOI: 10.1364/oe.468146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
Nondipole effects in processes assisted by a THz field having the strength of a few MV/cm can be significant due to its long wavelength. We illustrate this for strong-laser-field-induced ionization assisted by a THz field. To this end, we generalize our strong-field-approximation theory so that it includes the first-order term in a 1/c expansion of the vector potential. We show that in this case, in addition to a shift of the maximum of the photoelectron momentum distribution, the differential ionization probability as well as the cutoff energy can be significantly increased. For an explanation of these unexpected results we use the saddle-point method adjusted to include nondipole effects.
Collapse
|
25
|
Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy. Nat Commun 2022; 13:4595. [PMID: 35933558 PMCID: PMC9357086 DOI: 10.1038/s41467-022-32313-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Electron migration in molecules is the progenitor of chemical reactions and biological functions after light-matter interaction. Following this ultrafast dynamics, however, has been an enduring endeavor. Here we demonstrate that, by using machine learning algorithm to analyze high-order harmonics generated by two-color laser pulses, we are able to retrieve the complex amplitudes and phases of harmonics of single fixed-in-space molecules. These complex dipoles enable us to construct movies of laser-driven electron migration after tunnel ionization of N2 and CO2 molecules at time steps of 50 attoseconds. Moreover, the angular dependence of the migration dynamics is fully resolved. By examining the movies, we observe that electron holes do not just migrate along the laser polarization direction, but may swirl around the atom centers. Our result establishes a general scheme for studying ultrafast electron dynamics in molecules, paving a way for further advance in tracing and controlling photochemical reactions by femtosecond lasers.
Collapse
|
26
|
Li H, Gong X, Ni H, Lu P, Luo X, Wen J, Yang Y, Qian X, Sun Z, Wu J. Light-Induced Ultrafast Molecular Dynamics: From Photochemistry to Optochemistry. J Phys Chem Lett 2022; 13:5881-5893. [PMID: 35730581 PMCID: PMC9251772 DOI: 10.1021/acs.jpclett.2c01119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/10/2022] [Indexed: 05/04/2023]
Abstract
By precisely controlling the waveform of ultrashort laser fields, electronic and nuclear motions in molecules can be steered on extremely short time scales, even in the attosecond regime. This new research field, termed "optochemistry", presents the light field in the time-frequency domain and opens new avenues for tailoring molecular reactions beyond photochemistry. This Perspective summarizes the ultrafast laser techniques employed in recent years for manipulating the molecular reactions based on waveform control of intense ultrashort laser pulses, where the chemical reactions can take place in isolated molecules, clusters, and various nanosystems. The underlying mechanisms for the coherent control of molecular dynamics are explicitly explored. Challenges and opportunities coexist in the field of optochemistry. Advanced technologies and theoretical modeling are still being pursued, with great prospects for controlling chemical reactions with unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Hui Li
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaochun Gong
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hongcheng Ni
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiao Luo
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jin Wen
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Youjun Yang
- State
Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory
of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhenrong Sun
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jian Wu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| |
Collapse
|
27
|
Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a FEL. Nat Commun 2022; 13:2741. [PMID: 35585096 PMCID: PMC9117673 DOI: 10.1038/s41467-022-30404-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron momentum maps of excited states of a bilayer pentacene film on Ag(110). We use optical pump and FEL probe pulses by keeping FEL source conditions to minimize space charge effects and radiation damage. From the momentum microscopy signal, we obtain time-dependent momentum maps of the excited-state dynamics of both pentacene layers separately. In a combined experimental and theoretical study, we interpret the observed signal for the bottom layer as resulting from the charge redistribution between the molecule and the substrate induced by excitation. We identify that the dynamics of the top pentacene layer resembles excited-state molecular dynamics. Ultrafast pulses are useful to investigate the electron dynamics in excited atoms, molecules and other complex systems. Here, the authors measure transient photoelectron momentum maps following the free-electron laser pulse-induced ionization of a bilayer pentacene thin film on Ag (110) by using time-resolved orbital tomography.
Collapse
|
28
|
Kitanaka M, Ishikawa M, Kanya R, Yamanouchi K. Observation of terahertz-wave assisted electron scattering by Ar. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Milošević DB. Strong-laser-field-induced ionization assisted by a terahertz pulse. OPTICS LETTERS 2022; 47:1669-1672. [PMID: 35363705 DOI: 10.1364/ol.451572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Extreme terahertz (THz) pulses can be generated via interaction of strong infrared ultrashort laser pulses with a suitable target. Inverting this scheme, we propose to use such THz pulses to control strong-laser-field-driven processes. In particular, we show that for THz-pulse-assisted strong-laser-field ionization the electron yield can be increased by one order of magnitude for some energies, and that the maximal emitted photoelectron energy can be a few times higher than that realized with the laser field alone. This can be achieved with the THz field intensity many orders of magnitude lower than that of the ionizing laser field. The only requirement is that the vector potential amplitude of the THz field, which governs the electron dynamics after the ionization by the laser field, be comparable with that of the used laser field. An important control parameter is the time delay between the THz pulse and the laser pulse. Strong-field ionization of Cs atoms is used for an illustration. The numerical results are obtained applying the improved strong-field approximation. For a physical explanation, we use quantum-orbit theory supported by the modified saddle-point method, as well as a classical model.
Collapse
|
30
|
Zhang M, Guo Z, Mi X, Li Z, Liu Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J Phys Chem Lett 2022; 13:1668-1680. [PMID: 35147438 DOI: 10.1021/acs.jpclett.1c03916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The requirement of high space-time resolution and brightness is a great challenge for imaging atomic motion and making molecular movies. Important breakthroughs in ultrabright tabletop laser, X-ray, and electron sources have enabled the direct imaging of evolving molecular structures in chemical processes, and recent experimental advances in preparing ultrafast laser and electron pulses resulted in molecular imaging with femtosecond time resolution. This Perspective presents an overview of the versatile imaging methods of molecular dynamics. High-order harmonic generation imaging and photoelectron diffraction imaging are based on laser-induced ionization and rescattering processes. Coulomb explosion imaging retrieves molecular structural information by detecting the momentum vectors of fragmented ions. Diffraction imaging encodes molecular structural and electronic information in reciprocal space. We also present various applications of these ultrafast imaging methods in resolving laser-induced nuclear and electronic dynamics.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhengning Guo
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoyu Mi
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Identifying the complexity of the holographic structures in strong field ionization. Sci Rep 2022; 12:2877. [PMID: 35190560 PMCID: PMC8861099 DOI: 10.1038/s41598-022-06768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
We present numerical investigations of the strong-field attosecond photoelectron holography by analyzing the holographic interference structures in the two-dimensional photoelectron momentum distribution (PMD) in hydrogen atom target induced by a strong infrared laser pulse. The PMDs are calculated by solving the full-dimensional time-dependent Schrödinger equation. The effect of the number of optical cycles on the PMD is considered and analyzed. We show how the complex interference patterns are formed from a single-cycle pulse to multi-cycle pulses. Furthermore, snapshots of the PMD during the time evolution are presented for a single-cycle pulse in order to track the formation of the so-called fish-bone like holographic structure. The spider- and fan-like holographic structures are also identified and investigated. We found that the fan-like structure could only be identified clearly for pulses with three or more optical cycles and its symmetry depends closely on the number of optical cycles. In addition, we found that the intensity and wavelength of the laser pulse affect the density of interference fringes in the holographic patterns. We show that the longer the wavelength, the more the holographic structures are confined to the polarization axis.
Collapse
|
32
|
Lin K, Brennecke S, Ni H, Chen X, Hartung A, Trabert D, Fehre K, Rist J, Tong XM, Burgdörfer J, Schmidt LPH, Schöffler MS, Jahnke T, Kunitski M, He F, Lein M, Eckart S, Dörner R. Magnetic-Field Effect in High-Order Above-Threshold Ionization. PHYSICAL REVIEW LETTERS 2022; 128:023201. [PMID: 35089761 DOI: 10.1103/physrevlett.128.023201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
We experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the 2U_{p} classical cutoff is found to be vastly different from that below this cutoff, where U_{p} is the ponderomotive potential of the driving laser field. A local minimum structure in the momentum dependence of the nondipole shift above the cutoff is identified for the first time. With the help of classical and quantum-orbit analysis, we show that large-angle rescattering of the electrons strongly alters the partitioning of the photon momentum between electron and ion. The sensitivity of the observed nondipole shift to the electronic structure of the target atom is confirmed by three-dimensional time-dependent Schrödinger equation simulations for different model potentials. Our work paves the way toward understanding the physics of extreme light-matter interactions at long wavelengths and high electron kinetic energies.
Collapse
Affiliation(s)
- Kang Lin
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Simon Brennecke
- Institut für Theoretische Physik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Institute for Theoretical Physics, Vienna University of Technology, Vienna 1040, Austria
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiang Chen
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alexander Hartung
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Daniel Trabert
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Kilian Fehre
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Jonas Rist
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Xiao-Min Tong
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Joachim Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Lothar Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Till Jahnke
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Maksim Kunitski
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Manfred Lein
- Institut für Theoretische Physik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Sebastian Eckart
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| |
Collapse
|
33
|
Cheng C, Moğol G, Weinacht T, Nomerotski A, Trallero-Herrero C. 3D velocity map imaging of electrons with TPX3CAM. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:013003. [PMID: 35104954 DOI: 10.1063/5.0071804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate three-dimensional velocity map imaging of low energy electrons using a TPX3CAM, where the three-dimensional momentum information [px, py, pz] is encoded in position and timing [x, y, t] of hits on the camera sensor. We make use of the camera sensor for the [x, y] information and a constant fraction discriminator and fast time to digital converter in the camera for the time information. We illustrate the capabilities of our apparatus by presenting above threshold ionization measurements of xenon, which produces well defined structures in the momentum resolved photoelectron yield.
Collapse
Affiliation(s)
- Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Gönenç Moğol
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Andrei Nomerotski
- Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | |
Collapse
|
34
|
Dowek D, Decleva P. Trends in angle-resolved molecular photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:24614-24654. [DOI: 10.1039/d2cp02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this perspective article, main trends of angle-resolved molecular photoelectron spectroscopy in the laboratory up to the molecular frame, in different regimes of light-matter interactions, are highlighted with emphasis on foundations and most recent applications.
Collapse
Affiliation(s)
- Danielle Dowek
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Piero Decleva
- CNR IOM and Dipartimento DSCF, Università di Trieste, Trieste, Italy
| |
Collapse
|
35
|
Fehre K, Novikovskiy NM, Grundmann S, Kastirke G, Eckart S, Trinter F, Rist J, Hartung A, Trabert D, Janke C, Pitzer M, Zeller S, Wiegandt F, Weller M, Kircher M, Nalin G, Hofmann M, Schmidt LPH, Knie A, Hans A, Ben Ltaief L, Ehresmann A, Berger R, Fukuzawa H, Ueda K, Schmidt-Böcking H, Williams JB, Jahnke T, Dörner R, Demekhin PV, Schöffler MS. A new route for enantio-sensitive structure determination by photoelectron scattering on molecules in the gas phase. Phys Chem Chem Phys 2022; 24:26458-26465. [DOI: 10.1039/d2cp03090j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Combination of Coulomb explosion imaging, molecular frame diffraction imaging, and ab initio computations provide a route for enantio-sensitive structure determination.
Collapse
Affiliation(s)
- Kilian Fehre
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Nikolay M. Novikovskiy
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
- Institute of Physics, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Gregor Kastirke
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Sebastian Eckart
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Jonas Rist
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Alexander Hartung
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Daniel Trabert
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Christian Janke
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Martin Pitzer
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Stefan Zeller
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Florian Wiegandt
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Miriam Weller
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Max Kircher
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Giammarco Nalin
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Max Hofmann
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Lothar Ph. H. Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - André Knie
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Andreas Hans
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Ltaief Ben Ltaief
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Arno Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Robert Berger
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Hironobu Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Horst Schmidt-Böcking
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | | | - Till Jahnke
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| | - Philipp V. Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Markus S. Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Albareda G, Lively K, Sato SA, Kelly A, Rubio A. Conditional Wave Function Theory: A Unified Treatment of Molecular Structure and Nonadiabatic Dynamics. J Chem Theory Comput 2021; 17:7321-7340. [PMID: 34752108 PMCID: PMC8675140 DOI: 10.1021/acs.jctc.1c00772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/28/2022]
Abstract
We demonstrate that a conditional wave function theory enables a unified and efficient treatment of the equilibrium structure and nonadiabatic dynamics of correlated electron-ion systems. The conditional decomposition of the many-body wave function formally recasts the full interacting wave function of a closed system as a set of lower-dimensional (conditional) coupled "slices". We formulate a variational wave function ansatz based on a set of conditional wave function slices and demonstrate its accuracy by determining the structural and time-dependent response properties of the hydrogen molecule. We then extend this approach to include time-dependent conditional wave functions and address paradigmatic nonequilibrium processes including strong-field molecular ionization, laser-driven proton transfer, and nuclear quantum effects induced by a conical intersection. This work paves the road for the application of conditional wave function theory in equilibrium and out-of-equilibrium ab initio molecular simulations of finite and extended systems.
Collapse
Affiliation(s)
- Guillermo Albareda
- Nano-Bio
Spectroscopy Group and European Theoretical Spectroscopy Facility
(ETSF), Universidad del País Vasco
(UPV/EHU), Av. Tolosa
72, 20018 San Sebastian, Spain
- Institute
of Theoretical and Computational Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Kevin Lively
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Centre for Ultrafast Imaging, University
of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Shunsuke A. Sato
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Aaron Kelly
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Centre for Ultrafast Imaging, University
of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Angel Rubio
- Nano-Bio
Spectroscopy Group and European Theoretical Spectroscopy Facility
(ETSF), Universidad del País Vasco
(UPV/EHU), Av. Tolosa
72, 20018 San Sebastian, Spain
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Centre for Ultrafast Imaging, University
of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United
States
| |
Collapse
|
37
|
Li L, Lan P, Zhu X, Lu P. Huygens-Fresnel Picture for High Harmonic Generation in Solids. PHYSICAL REVIEW LETTERS 2021; 127:223201. [PMID: 34889630 DOI: 10.1103/physrevlett.127.223201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
High harmonic generation (HHG) is usually described by the laser-induced recollision of particlelike electrons, which lies at the heart of attosecond physics and also inspires numerous attosecond spectroscopic methods. Here, we demonstrate that the wavelike behavior of electrons plays an important role in solid HHG. By taking an analogy to the Huygens-Fresnel principle, an electron wave perspective on solid HHG is proposed by using the wavelet stationary-phase method. From this perspective, we have explained the deviation between the cutoff law predicted by the particlelike recollision model and the numerical simulation of semiconductor Bloch equations. Moreover, the emission times of HHG can be well predicted with our method involving the wave property of electrons. However, in contrast, the prediction with the particlelike recollision model shows obvious deviations compared to the semiconductor Bloch equations simulation. The wavelike properties of the electron motion can also be revealed by the HHG in a two-color field.
Collapse
Affiliation(s)
- Liang Li
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengfei Lan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaosong Zhu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
38
|
Liu X, Amini K, Sanchez A, Belsa B, Steinle T, Biegert J. Machine learning for laser-induced electron diffraction imaging of molecular structures. Commun Chem 2021; 4:154. [PMID: 36697668 PMCID: PMC9814146 DOI: 10.1038/s42004-021-00594-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
Ultrafast diffraction imaging is a powerful tool to retrieve the geometric structure of gas-phase molecules with combined picometre spatial and attosecond temporal resolution. However, structural retrieval becomes progressively difficult with increasing structural complexity, given that a global extremum must be found in a multi-dimensional solution space. Worse, pre-calculating many thousands of molecular configurations for all orientations becomes simply intractable. As a remedy, here, we propose a machine learning algorithm with a convolutional neural network which can be trained with a limited set of molecular configurations. We demonstrate structural retrieval of a complex and large molecule, Fenchone (C10H16O), from laser-induced electron diffraction (LIED) data without fitting algorithms or ab initio calculations. Retrieval of such a large molecular structure is not possible with other variants of LIED or ultrafast electron diffraction. Combining electron diffraction with machine learning presents new opportunities to image complex and larger molecules in static and time-resolved studies.
Collapse
Affiliation(s)
- Xinyao Liu
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Kasra Amini
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Aurelien Sanchez
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Blanca Belsa
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Tobias Steinle
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jens Biegert
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain ,grid.425902.80000 0000 9601 989XICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Tan J, Zhou Y, Xu S, Ke Q, Liang J, Ma X, Cao W, Li M, Zhang Q, Lu P. Analyzing the electron trajectories in strong-field tunneling ionization with the phase-of-the-phase spectroscopy. OPTICS EXPRESS 2021; 29:37927-37944. [PMID: 34808856 DOI: 10.1364/oe.442903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
By numerically solving the time-dependent Schrödinger equation, we theoretically study strong-field tunneling ionization of Ar atom in the parallel two-color field which consists of a strong fundamental pulse and a much weaker second harmonic component. Based on the quantum orbits concept, we analyzed the photoelectron momentum distributions with the phase-of-the-phase spectroscopy, and the relative contributions of the two parts of the photoelectrons produced during the rising and falling edges of the adjacent quarters of the laser cycle are identified successfully. Our results show that the relative contributions of these two parts depend on both of the transverse and longitude momenta. By comparing the results from model atoms with Coulomb potential and short-range potential, the role of the long-range Coulomb interaction on the relative contributions of these two parts of electrons is revealed. Additionally, we show that the effects of Coulomb interaction on ionization time are vital for identifying their relative contributions.
Collapse
|
40
|
Abstract
Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Martin Centurion
- Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska, USA;
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA;
| | - Jie Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, China;
| |
Collapse
|
41
|
Wang SJ, Daněk J, Blaga CI, DiMauro LF, Biegert J, Lin CD. Two-dimensional retrieval methods for ultrafast imaging of molecular structure using laser-induced electron diffraction. J Chem Phys 2021; 155:164104. [PMID: 34717362 DOI: 10.1063/5.0064761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular structural retrieval based on electron diffraction has been proposed to determine the atomic positions of molecules with sub-angstrom spatial and femtosecond temporal resolutions. Given its success on small molecular systems, in this work, we point out that the accuracy of structure retrieval is constrained by the availability of a wide range of experimental data in the momentum space in all molecular systems. To mitigate the limitations, for laser-induced electron diffraction, here we retrieve molecular structures using two-dimensional (energy and angle) electron momentum spectra in the laboratory frame for a number of small molecular systems, which have previously been studied with 1D methods. Compared to the conventional single-energy or single-angle analysis, our 2D methods effectively expand the momentum range of the measured data. Besides utilization of the 2D data, two complementary methods are developed for consistency check on the retrieved results. The 2D nature of our methods also offers a way of estimating the error from retrieval, which has never been explored before. Comparing with results from prior experiments, our findings show evidence that our 2D methods outperform the conventional 1D methods. Paving the way to the retrieval of large molecular systems, in which their tunneling ionization rates are challenging to obtain, we estimate the error of using the isotropic model in place of including the orientation-dependent ionization rate.
Collapse
Affiliation(s)
- Su-Ju Wang
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jiří Daněk
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Cosmin I Blaga
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jens Biegert
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - C D Lin
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
42
|
Sun F, Lu C, Ma Y, Pan S, Wang J, Zhang W, Qiang J, Chen F, Ni H, Li H, Wu J. Orbital effects in strong-field Rydberg state excitation of N 2, Ar, O 2 and Xe. OPTICS EXPRESS 2021; 29:31240-31248. [PMID: 34615224 DOI: 10.1364/oe.437437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Rather than being freed to the continuum, the strong-field tunneled electrons can make a trajectory driven by the remaining laser fields and have certain probability to be captured by the high lying Rydberg states of the parent atoms or molecules. To explore the effect of molecular orbital on Rydberg state excitation, the ellipticity dependence of Rydberg state yields of N2 and O2 molecules are experimentally investigated using cold target recoil ion momentum spectroscopy and are compared with their counterpart atoms Ar and Xe with comparable ionization potentials. We found the generation probability of the neutral Rydberg fragment O2* was orders of magnitude higher than that of Xe* due to the butterfly-shaped highest occupied molecular orbital of O2. Meanwhile, our experimental and simulation results reveal that it is the initial momentum distribution (determined by the detailed characteristics of orbitals) that finally leads to the tendency that the Rydberg state yield of O2 (Ar) decreased slower than that obtained for Xe (N2) when the ellipticity of the excitation laser field is increased.
Collapse
|
43
|
Ota F, Abe S, Hatada K, Ueda K, Díaz-Tendero S, Martín F. Imaging intramolecular hydrogen migration with time- and momentum-resolved photoelectron diffraction. Phys Chem Chem Phys 2021; 23:20174-20182. [PMID: 34473148 DOI: 10.1039/d1cp02055b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging ultrafast hydrogen migration with few- or sub-femtosecond time resolution is a challenge for ultrafast spectroscopy due to the lightness and small scattering cross-section of the moving hydrogen atom. Here we propose time- and momentum-resolved photoelectron diffraction (TMR-PED) as a way to overcome limitations of existing methodologies and illustrate its performance in the ethanol molecule. By combining different theoretical methods, namely molecular dynamics and electron scattering methods, we show that TMR-PED, along with a judicious choice of the reference frame for multi-coincidence detection, allows for direct imaging of single and double hydrogen migration in doubly-charged ethanol with both few-fs and Å resolutions, all the way from its birth to the very end. It also provides hints of proton extraction following H2 roaming. The signature of hydrogen dynamics shows up in polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) as moving features that allow for a straightforward visualization in space.
Collapse
Affiliation(s)
- Fukiko Ota
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Shigeru Abe
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Keisuke Hatada
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Kiyoshi Ueda
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049 Madrid, EU, Spain
| |
Collapse
|
44
|
Luo H, Wang Y, Li J, Liu Y. High-stability, linearly polarized mode-locking generation from a polarization-maintaining fiber oscillator around 2.8 µm. OPTICS LETTERS 2021; 46:4550-4553. [PMID: 34525042 DOI: 10.1364/ol.434999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In this Letter, a high-stability, linearly polarized mode-locked polarization-maintaining (PM) Er3+-doped fluoride fiber oscillator at ∼2.8µm is presented for the first time, to the best of our knowledge, where an InAs-based semiconductor saturable absorber mirror is used as the mode locker, and a film polarizer is employed for maintaining the linearly polarized oscillation. In the free-running state, stable linearly polarized mode-locked pulses (τ=44ps and P=446mW) at 2.795 µm, with a high polarization extinction ratio of >23dB and a low integrated relative intensity noise of 0.087% [1 Hz-10 MHz], have been achieved, which can be strongly immune to external mechanical perturbations. By introducing a ruled reflective diffraction grating into the cavity in a Littman configuration, the continuous wavelength tuning of the linearly polarized mode-locked pulses in the range of 2717-2827 nm is obtained as well. To the best of our knowledge, this marks the first demonstration of a linearly polarized PM fiber oscillator in the >2.5µm mid-infrared region.
Collapse
|
45
|
Quantum state tomography of molecules by ultrafast diffraction. Nat Commun 2021; 12:5441. [PMID: 34521840 PMCID: PMC8440554 DOI: 10.1038/s41467-021-25770-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Ultrafast electron diffraction and time-resolved serial crystallography are the basis of the ongoing revolution in capturing at the atomic level of detail the structural dynamics of molecules. However, most experiments capture only the probability density of the nuclear wavepackets to determine the time-dependent molecular structures, while the full quantum state has not been accessed. Here, we introduce a framework for the preparation and ultrafast coherent diffraction from rotational wave packets of molecules, and we establish a new variant of quantum state tomography for ultrafast electron diffraction to characterize the molecular quantum states. The ability to reconstruct the density matrix, which encodes the amplitude and phase of the wavepacket, for molecules of arbitrary degrees of freedom, will enable the reconstruction of a quantum molecular movie from experimental x-ray or electron diffraction data. Ultrafast diffraction is fundamental in capturing the structural dynamics of molecules. Here, the authors establish a variant of quantum state tomography for arbitrary degrees of freedom to characterize the molecular quantum states, which will enable the reconstruction of a quantum molecular movie from diffraction data.
Collapse
|
46
|
Allum F, Cheng C, Howard AJ, Bucksbaum PH, Brouard M, Weinacht T, Forbes R. Multi-Particle Three-Dimensional Covariance Imaging: "Coincidence" Insights into the Many-Body Fragmentation of Strong-Field Ionized D 2O. J Phys Chem Lett 2021; 12:8302-8308. [PMID: 34428066 DOI: 10.1021/acs.jpclett.1c02481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We demonstrate the applicability of covariance analysis to three-dimensional velocity-map imaging experiments using a fast time stamping detector. Studying the photofragmentation of strong-field doubly ionized D2O molecules, we show that combining high count rate measurements with covariance analysis yields the same level of information typically limited to the "gold standard" of true, low count rate coincidence experiments, when averaging over a large ensemble of photofragmentation events. This increases the effective data acquisition rate by approximately 2 orders of magnitude, enabling a new class of experimental studies. This is illustrated through an investigation into the dependence of three-body D2O2+ dissociation on the intensity of the ionizing laser, revealing mechanistic insights into the nuclear dynamics driven during the laser pulse. The experimental methodology laid out, with its drastic reduction in acquisition time, is expected to be of great benefit to future photofragment imaging studies.
Collapse
Affiliation(s)
- Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Chuan Cheng
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Thomas Weinacht
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
47
|
Wang W, Zhou J, Liu B, Wang X. Exciting the Isomeric ^{229}Th Nuclear State via Laser-Driven Electron Recollision. PHYSICAL REVIEW LETTERS 2021; 127:052501. [PMID: 34397255 DOI: 10.1103/physrevlett.127.052501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
We propose a new approach to excite the isomeric ^{229}Th nuclear state, which has attracted much attention recently as a potential "nuclear clock." Our approach is based on a laser-driven electron recollision process, the core process of strong-field atomic physics. Bringing together knowledge of recollision physics and of the related nuclear physics, we calculate the isomeric excitation probability. This new approach does not require precise knowledge of the energy of the isomeric state. The excitation is well timed which may be exploited to control the coherence of the isomeric state. Experimental realization is within reach using tabletop laser systems.
Collapse
Affiliation(s)
- Wu Wang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jie Zhou
- Graduate School, China Academy of Engineering Physics, Beijing 100193, China
| | - Boqun Liu
- Graduate School, China Academy of Engineering Physics, Beijing 100193, China
| | - Xu Wang
- Graduate School, China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
48
|
Bouakline F, Saalfrank P. Seemingly asymmetric atom-localized electronic densities following laser-dissociation of homonuclear diatomics. J Chem Phys 2021; 154:234305. [PMID: 34241262 DOI: 10.1063/5.0049710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent experiments on laser-dissociation of aligned homonuclear diatomic molecules show an asymmetric forward-backward (spatial) electron-localization along the laser polarization axis. Most theoretical models attribute this asymmetry to interference effects between gerade and ungerade vibronic states. Presumably due to alignment, these models neglect molecular rotations and hence infer an asymmetric (post-dissociation) charge distribution over the two identical nuclei. In this paper, we question the equivalence that is made between spatial electron-localization, observed in experiments, and atomic electron-localization, alluded by these theoretical models. We show that (seeming) agreement between these models and experiments is due to an unfortunate omission of nuclear permutation symmetry, i.e., quantum statistics. Enforcement of the latter requires mandatory inclusion of the molecular rotational degree of freedom, even for perfectly aligned molecules. Unlike previous interpretations, we ascribe spatial electron-localization to the laser creation of a rovibronic wavepacket that involves field-free molecular eigenstates with opposite space-inversion symmetry i.e., even and odd parity. Space-inversion symmetry breaking would then lead to an asymmetric distribution of the (space-fixed) electronic density over the forward and backward hemisphere. However, owing to the simultaneous coexistence of two indistinguishable molecular orientational isomers, our analytical and computational results show that the post-dissociation electronic density along a specified space-fixed axis is equally shared between the two identical nuclei-a result that is in perfect accordance with the principle of the indistinguishability of identical particles.
Collapse
Affiliation(s)
- Foudhil Bouakline
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Peter Saalfrank
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
49
|
Suzuki T. Spiers Memorial Lecture: Introduction to ultrafast spectroscopy and imaging of photochemical reactions. Faraday Discuss 2021; 228:11-38. [PMID: 33876168 DOI: 10.1039/d1fd00015b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A brief overview is presented on ultrafast spectroscopy and imaging of photochemical reactions by highlighting several experimental studies reported in the last five years. A particular focus is placed on new experiments performed using high-order harmonic generation, X-ray free electron lasers, and relativistic electron beams. Exploration of fundamental chemical reaction dynamics using these advanced experimental methodologies is in an early stage, and exciting new research opportunities await in this rapidly expanding and advancing research field. At the same time, there is no experimental methodology that provides all aspects of the electronic and structural dynamics in a single experiment, and investigations using different methodologies with various perspectives need to be considered in a comprehensive manner.
Collapse
Affiliation(s)
- Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
50
|
Karamatskos ET, Yarlagadda S, Patchkovskii S, Vrakking MJJ, Welsch R, Küpper J, Rouzée A. Time-resolving the UV-initiated photodissociation dynamics of OCS. Faraday Discuss 2021; 228:413-431. [PMID: 33570531 DOI: 10.1039/d0fd00119h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a time-resolved study of the photodissociation dynamics of OCS after UV-photoexcitation at λ = 237 nm. OCS molecules (X1Σ+) were primarily excited to the 11A'' and the 21A' Renner-Teller components of the 1Σ- and 1Δ states. Dissociation into CO and S fragments was observed through time-delayed strong-field ionisation and imaging of the kinetic energy of the resulting CO+ and S+ fragments by intense 790 nm laser pulses. Surprisingly, fast oscillations with a period of ∼100 fs were observed in the S+ channel of the UV dissociation. Based on wavepacket-dynamics simulations coupled with a simple electrostatic-interaction model, these oscillations do not correspond to the known highly-excited rotational motion of the leaving CO(X1Σ+, J ≫ 0) fragments, which has a timescale of ∼140 fs. Instead, we suggest to assign the observed oscillations to the excitation of vibrational wavepackets in the 23A'' or 21A'' states of the molecule that predissociate to form S(3PJ) photoproducts.
Collapse
Affiliation(s)
- Evangelos T Karamatskos
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | - Ralph Welsch
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arnaud Rouzée
- Max Born Institute, Max-Born-Straße 2a, 12489 Berlin, Germany.
| |
Collapse
|