1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Kamata M, Taniguchi Y, Yaguchi J, Tanaka H, Yaguchi S. Nonmuscular Troponin-I is required for gastrulation in sea urchin embryos. Dev Dyn 2024; 253:624-628. [PMID: 38071599 DOI: 10.1002/dvdy.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Gastrulation is one of the most important events in our lives (Barresi and Gilbert, 2020, Developmental Biology, 12th ed.). The molecular mechanisms of gastrulation in multicellular organisms are not yet fully understood, since many molecular, physical, and chemical factors are involved in the event. RESULTS Here, we found that one of muscle components, Troponin-I (TnI), is expressed in future gut cells, which are not muscular cells at all, and regulates gastrulation in embryos of a sea urchin, Hemicentrotus pulcherrimus. When we block the function of TnI, the invagination was inhibited in spite that the gut-cell specifier gene is normally expressed. In addition, blocking myosin activity also induced incomplete gastrulation. CONCLUSION These results strongly suggested that TnI regulates nonmuscular actin-myosin interactions during sea urchin gastrulation. So far, Troponin system is treated as specific only for muscle components, especially for striated muscle, but our data clearly show that TnI is involved in nonmuscular event. It is also reported that recent sensitive gene expression analysis revealed that Troponin genes are expressed in nonmuscular tissues in mammals (Ono et al., Sci Data, 2017;4:170105). These evidences propose the new evolutionary and functional scenario of the involvement of Troponin system in nonmuscular cell behaviors using actin-myosin system in bilaterians including human being.
Collapse
Affiliation(s)
- Mai Kamata
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Yuri Taniguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Hiroyuki Tanaka
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
3
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers KJ, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. Curr Biol 2024; 34:361-375.e9. [PMID: 38181793 DOI: 10.1016/j.cub.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine live 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate the sequence and detail of shape changes, the tissues and molecular physiology involved, and the control of these movements. Morphometric analysis and targeted perturbation suggest that the movement is driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent canal system. Thermal proteome profiling and quantitative phosphoproteomics confirm the control of cellular relaxation by an Akt/NO/PKG/PKA pathway. Agitation-induced deflation leads to differential phosphorylation of proteins forming epithelial cell junctions, implying their mechanosensitive role. Unexpectedly, untargeted metabolomics detect a concomitant decrease in antioxidant molecules during deflation, reflecting an increase in reactive oxygen species. Together with the secretion of proteinases, cytokines, and granulin, this indicates an inflammation-like state of the deflating sponge reminiscent of vascular endothelial cells experiencing oscillatory shear stress. These results suggest the conservation of an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals and offer a possible mechanism for whole-body coordination through diffusible paracrine signals and mechanotransduction.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske J Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Bataillé L, Lebreton G, Boukhatmi H, Vincent A. Insights and perspectives on the enigmatic alary muscles of arthropods. Front Cell Dev Biol 2024; 11:1337708. [PMID: 38288343 PMCID: PMC10822924 DOI: 10.3389/fcell.2023.1337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.
Collapse
|
5
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
6
|
Zhang H, Xiao S, Eriksson ME, Duan B, Maas A. Musculature of an Early Cambrian cycloneuralian animal. Proc Biol Sci 2023; 290:20231803. [PMID: 37817588 PMCID: PMC10565385 DOI: 10.1098/rspb.2023.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Cycloneuralians are ecdysozoans with a fossil record extending to the Early Cambrian Fortunian Age and represented mostly by cuticular integuments. However, internal anatomies of Fortunian cycloneuralians are virtually unknown, hampering our understanding of their functional morphology and phylogenetic relationships. Here we report the exceptional preservation of cycloneuralian introvert musculature in Fortunian rocks of South China. The musculature consists of an introvert body-wall muscular grid of four circular and 36 radially arranged longitudinal muscle bundles, as well as an introvert circular muscle associated with 19 roughly radially arranged, short retractors. Collectively, these features support at least a scalidophoran affinity, and the absence of muscles associated with a mouth cone and scalids further indicates a priapulan affinity. As in modern scalidophorans, the fossil musculature, and particularly the introvert circular muscle retractors, may have controlled introvert inversion and facilitated locomotion and feeding. This work supports the evolution of scalidophoran-like or priapulan-like introvert musculature in cycloneuralians at the beginning of the Cambrian Period.
Collapse
Affiliation(s)
- Huaqiao Zhang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Baichuan Duan
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, People's Republic of China
| | | |
Collapse
|
7
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
8
|
Cunha TJ, de Medeiros BAS, Lord A, Sørensen MV, Giribet G. Rampant loss of universal metazoan genes revealed by a chromosome-level genome assembly of the parasitic Nematomorpha. Curr Biol 2023; 33:3514-3521.e4. [PMID: 37467752 DOI: 10.1016/j.cub.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Parasites may manipulate host behavior to increase the odds of transmission or to reach the proper environment to complete their life cycle.1,2 Members of the phylum Nematomorpha (known as horsehair worms, hairworms, or Gordian worms) are large endoparasites that affect the behavior of their arthropod hosts. In terrestrial hosts, they cause erratic movements toward bodies of water,3,4,5,6 where the adult worm emerges from the host to find mates for reproduction. We present a chromosome-level genome assembly for the freshwater Acutogordius australiensis and a draft assembly for one of the few known marine species, Nectonema munidae. The assemblies span 201 Mbp and 213 Mbp in length (N50: 38 Mbp and 716 Kbp), respectively, and reveal four chromosomes in Acutogordius, which are largely rearranged compared to the inferred ancestral condition in animals. Both nematomorph genomes have a relatively low number of genes (11,114 and 8,717, respectively) and lack a high proportion (∼30%) of universal single-copy metazoan orthologs (BUSCO genes7). We demonstrate that missing genes are not an artifact of the assembly process, with the majority of missing orthologs being shared by the two independent assemblies. Missing BUSCOs are enriched for Gene Ontology (GO) terms associated with the organization of cilia and cell projections in other animals. We show that most cilium-related genes conserved across eukaryotes have been lost in Nematomorpha, providing a molecular basis for the suspected absence of ciliary structures in these animals.
Collapse
Affiliation(s)
- Tauana J Cunha
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA.
| | - Bruno A S de Medeiros
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Martin V Sørensen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Wu L, Lambert JD. Clade-specific genes and the evolutionary origin of novelty; new tools in the toolkit. Semin Cell Dev Biol 2023; 145:52-59. [PMID: 35659164 DOI: 10.1016/j.semcdb.2022.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Clade-specific (a.k.a. lineage-specific) genes are very common and found at all taxonomic levels and in all clades examined. They can arise by duplication of previously existing genes, which can involve partial truncations or combinations with other protein domains or regulatory sequences. They can also evolve de novo from non-coding sequences, leading to potentially truly novel protein domains. Finally, since clade-specific genes are generally defined by lack of sequence homology with other proteins, they can also arise by sequence evolution that is rapid enough that previous sequence homology can no longer be detected. In such cases, where the rapid evolution is followed by constraint, we consider them to be ontologically non-novel but likely novel at a functional level. In general, clade-specific genes have received less attention from biologists but there are increasing numbers of fascinating examples of their roles in important traits. Here we review some selected recent examples, and argue that attention to clade-specific genes is an important corrective to the focus on the conserved developmental regulatory toolkit that has been the habit of evo-devo as a field. Finally, we discuss questions that arise about the evolution of clade-specific genes, and how these might be addressed by future studies. We highlight the hypothesis that clade-specific genes are more likely to be involved in synapomorphies that arose in the stem group where they appeared, compared to other genes.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
11
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
12
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
13
|
Cole AG, Jahnel SM, Kaul S, Steger J, Hagauer J, Denner A, Murguia PF, Taudes E, Zimmermann B, Reischl R, Steinmetz PRH, Technau U. Muscle cell-type diversification is driven by bHLH transcription factor expansion and extensive effector gene duplications. Nat Commun 2023; 14:1747. [PMID: 36990990 PMCID: PMC10060217 DOI: 10.1038/s41467-023-37220-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Animals are typically composed of hundreds of different cell types, yet mechanisms underlying the emergence of new cell types remain unclear. Here we address the origin and diversification of muscle cells in the non-bilaterian, diploblastic sea anemone Nematostella vectensis. We discern two fast and two slow-contracting muscle cell populations, which differ by extensive sets of paralogous structural protein genes. We find that the regulatory gene set of the slow cnidarian muscles is remarkably similar to the bilaterian cardiac muscle, while the two fast muscles differ substantially from each other in terms of transcription factor profiles, though driving the same set of structural protein genes and having similar physiological characteristics. We show that anthozoan-specific paralogs of Paraxis/Twist/Hand-related bHLH transcription factors are involved in the formation of fast and slow muscles. Our data suggest that the subsequent recruitment of an entire effector gene set from the inner cell layer into the neural ectoderm contributes to the evolution of a novel muscle cell type. Thus, we conclude that extensive transcription factor gene duplications and co-option of effector modules act as an evolutionary mechanism underlying cell type diversification during metazoan evolution.
Collapse
Affiliation(s)
- Alison G Cole
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Stefan M Jahnel
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Institute of Molecular Biotechnology, Dr.-Bohr-Gasse 3, 1030, Vienna, Austria
| | - Sabrina Kaul
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julia Steger
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julia Hagauer
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Andreas Denner
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Patricio Ferrer Murguia
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Elisabeth Taudes
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Bob Zimmermann
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Robert Reischl
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Patrick R H Steinmetz
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Ulrich Technau
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Max Perutz labs, University of Vienna, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
14
|
Liu F, Cui Y, Lu H, Chen X, Li Q, Ye Z, Chen W, Zhu S. Myofilaments promote wing expansion and maintain genitalia morphology in the American cockroach, Periplaneta americana. INSECT MOLECULAR BIOLOGY 2023; 32:46-55. [PMID: 36214335 DOI: 10.1111/imb.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Insects are the most widely distributed and successful animals on the planet. A large number of insects are capable of flight with functional wings. Wing expansion is an important process for insects to achieve functional wings after eclosion and healthy genital morphology is crucial for adult reproduction. Myofilaments are functional units that constitute sarcomeres and trigger muscle contraction. Here, we identified four myofilament proteins, including Myosin, Paramyosin, Tropomyosin and Troponin T, from the wing pads of nymphs in the American cockroach, Periplaneta americana. RNAi-mediated knockdown of Myosin, Paramyosin, Tropomyosin and Troponin T in the early stage of final instar nymphs caused a severely curly wing phenotype in the imaginal moult, especially in the Paramyosin and Troponin T knockdown groups, indicating that these myofilament proteins are involved in controlling wing expansion behaviours during the nymph-adult transition. In addition, the knockdown resulted in abnormal external genitalia, caused ovulation failure, and affected male accessory gland development. Interestingly, the expression of myofilament genes was induced by methoprene, a juvenile hormone (JH) analogue, and decreased by the depletion of the JH receptor gene Met. Altogether, we have determined that myofilament genes play an important role in promoting wing expansion and maintaining adult genitalia morphology, and their expression is induced by JH signalling. Our data reveal a novel mechanism by which wing expansion is regulated by myofilaments and the functions of myofilaments are involved in maintaining genitalia morphology.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Huna Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Wanyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, People's Republic of China
| |
Collapse
|
15
|
Mackrill JJ. Evolution of the cardiac dyad. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210329. [PMID: 36189805 PMCID: PMC9527923 DOI: 10.1098/rstb.2021.0329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac dyads are the site of communication between the sarcoplasmic reticulum (SR) and infoldings of the sarcolemma called transverse-tubules (TT). During heart excitation-contraction coupling, Ca2+-influx through L-type Ca2+ channels in the TT is amplified by release of Ca2+-from the SR via type 2 ryanodine receptors, activating the contractile apparatus. Key proteins involved in cardiac dyad function are bridging integrator 1 (BIN1), junctophilin 2 and caveolin 3. The work presented here aims to reconstruct the evolutionary history of the cardiac dyad, by surveying the scientific literature for ultrastructural evidence of these junctions across all animal taxa; phylogenetically reconstructing the evolutionary history of BIN1; and by comparing peptide motifs involved in TT formation by this protein across metazoans. Key findings are that cardiac dyads have been identified in mammals, arthropods and molluscs, but not in other animals. Vertebrate BIN1 does not group with members of this protein family from other taxa, suggesting that invertebrate BINs are paralogues rather orthologues of this gene. Comparisons of BIN1 peptide sequences of mammals with those of other vertebrates reveals novel features that might contribute to TT and dyad formation. The analyses presented here suggest that the cardiac dyad evolved independently several times during metazoan evolution: an unexpected observation given the diversity of heart structure and function between different animal taxa. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- John James Mackrill
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Western Road, Cork T12 XF62, Republic of Ireland
| |
Collapse
|
16
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
17
|
Avian M, Mancini L, Voltolini M, Bonnet D, Dreossi D, Macaluso V, Pillepich N, Prieto L, Ramšak A, Terlizzi A, Motta G. A novel endocast technique providing a 3D quantitative analysis of the gastrovascular system in Rhizostoma pulmo: An unexpected through-gut in cnidaria. PLoS One 2022; 17:e0272023. [PMID: 35925896 PMCID: PMC9352040 DOI: 10.1371/journal.pone.0272023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
The investigation of jellyfish gastrovascular systems mainly focused on stain injections and dissections, negatively affected by thickness and opacity of the mesoglea. Therefore, descriptions are incomplete and data about tridimensional structures are scarce. In this work, morphological and functional anatomy of the gastrovascular system of Rhizostoma pulmo (Macri 1778) was investigated in detail with innovative techniques: resin endocasts and 3D X-ray computed microtomography. The gastrovascular system consists of a series of branching canals ending with numerous openings within the frilled margins of the oral arms. Canals presented a peculiar double hemi-canal structure with a medial adhesion area which separates centrifugal and centripetal flows. The inward flow involves only the “mouth” openings on the internal wing of the oral arm and relative hemi-canals, while the outward flow involves only the two outermost wings’ hemi-canals and relative “anal” openings on the external oral arm. The openings differentiation recalls the functional characteristics of a through-gut apparatus. We cannot define the gastrovascular system in Rhizostoma pulmo as a traditional through-gut, rather an example of adaptive convergence, that partially invalidates the paradigm of a single oral opening with both the uptake and excrete function.
Collapse
Affiliation(s)
- Massimo Avian
- Department of Life Science, University of Trieste, Trieste, Italy
- * E-mail:
| | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Marco Voltolini
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Delphine Bonnet
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Vanessa Macaluso
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Nicole Pillepich
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Laura Prieto
- Group Ecosystem Oceanography, Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucia (CSIC), Cádiz, Spain
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Piran, Slovenia
| | - Antonio Terlizzi
- Department of Life Science, University of Trieste, Trieste, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Gregorio Motta
- Department of Life Science, University of Trieste, Trieste, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
18
|
Abstract
Despite the evolutionary loss of tissue regenerative potential, robust skeletal muscle repair processes are largely retained even in higher vertebrates. In mammals, the skeletal muscle regeneration program is driven by resident stem cells termed satellite cells, guided by the coordinated activity of multiple intrinsic and extrinsic factors and other cell types. A thorough understanding of muscle repair mechanisms is crucial not only for combating skeletal myopathies, but for its prospective aid in devising therapeutic strategies to endow regenerative potential on otherwise regeneration-deficient organs. In this review, we discuss skeletal muscle regeneration from an evolutionary perspective, summarize the current knowledge of cellular and molecular mechanisms, and highlight novel paradigms of muscle repair revealed by explorations of the recent decade.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| |
Collapse
|
19
|
MRTF specifies a muscle-like contractile module in Porifera. Nat Commun 2022; 13:4134. [PMID: 35840552 PMCID: PMC9287330 DOI: 10.1038/s41467-022-31756-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-based movement is a hallmark of animal biology, but the evolutionary origins of myocytes are unknown. Although believed to lack muscles, sponges (Porifera) are capable of coordinated whole-body contractions that purge debris from internal water canals. This behavior has been observed for decades, but their contractile tissues remain uncharacterized with respect to their ultrastructure, regulation, and development. We examine the sponge Ephydatia muelleri and find tissue-wide organization of a contractile module composed of actin, striated-muscle myosin II, and transgelin, and that contractions are regulated by the release of internal Ca2+ stores upstream of the myosin-light-chain-kinase (MLCK) pathway. The development of this contractile module appears to involve myocardin-related transcription factor (MRTF) as part of an environmentally inducible transcriptional complex that also functions in muscle development, plasticity, and regeneration. As an actin-regulated force-sensor, MRTF-activity offers a mechanism for how the contractile tissues that line water canals can dynamically remodel in response to flow and can re-form normally from stem-cells in the absence of the intrinsic spatial cues typical of animal embryogenesis. We conclude that the contractile module of sponge tissues shares elements of homology with contractile tissues in other animals, including muscles, indicating descent from a common, multifunctional tissue in the animal stem-lineage. Myocytes are a key cell type that enable animal movement, but their evolutionary origins remain unclear. Colgren and Nichols describe molecular and functional similarities between a contractile module in tissues of a sponge and muscle tissues in other animals, indicating a common evolutionary origin.
Collapse
|
20
|
Rockenfeller R, Günther M, Hooper SL. Muscle active force-length curve explained by an electrophysical model of interfilament spacing. Biophys J 2022; 121:1823-1855. [PMID: 35450825 PMCID: PMC9199101 DOI: 10.1016/j.bpj.2022.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
The active isometric force-length relation (FLR) of striated muscle sarcomeres is central to understanding and modeling muscle function. The mechanistic basis of the descending arm of the FLR is well explained by the decreasing thin:thick filament overlap that occurs at long sarcomere lengths. The mechanistic basis of the ascending arm of the FLR (the decrease in force that occurs at short sarcomere lengths), alternatively, has never been well explained. Because muscle is a constant-volume system, interfilament lattice distances must increase as sarcomere length shortens. This increase would decrease thin and thick-filament electrostatic interactions independently of thin:thick filament overlap. To examine this effect, we present here a fundamental, physics-based model of the sarcomere that includes filament molecular properties, calcium binding, sarcomere geometry including both thin:thick filament overlap and interfilament radial distance, and electrostatics. The model gives extremely good fits to existing FLR data from a large number of different muscles across their entire range of measured activity levels, with the optimized parameter values in all cases lying within anatomically and physically reasonable ranges. A local first-order sensitivity analysis (varying individual parameters while holding the values of all others constant) shows that model output is most sensitive to a subset of model parameters, most of which are related to sarcomere geometry, with model output being most sensitive to interfilament radial distance. This conclusion is supported by re-running the fits with only this parameter subset being allowed to vary, which increases fit errors only moderately. These results show that the model well reproduces existing experimental data, and indicate that changes in interfilament spacing play as central a role as changes in filament overlap in determining the FLR, particularly on its ascending arm.
Collapse
Affiliation(s)
| | - Michael Günther
- Biomechanics and Biorobotics, Stuttgart Center for Simulation Sciences (SC SimTech), Universität Stuttgart, Stuttgart, Germany; Friedrich-Schiller-Universität, Jena, Germany
| | - Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio
| |
Collapse
|
21
|
Houliston E, Leclère L, Munro C, Copley RR, Momose T. Past, present and future of Clytia hemisphaerica as a laboratory jellyfish. Curr Top Dev Biol 2022; 147:121-151. [PMID: 35337447 DOI: 10.1016/bs.ctdb.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions. Here we outline the current state of the art regarding available experimental approaches and in silico resources, and illustrate the contributions of Clytia to understanding embryo patterning mechanisms, oogenesis and regeneration. Looking forward, the recent establishment of transgenesis methods is now allowing gene function and imaging studies at adult stages, making Clytia particularly attractive for whole organism biology studies across fields and extending its scientific impact far beyond the original question of interest.
Collapse
Affiliation(s)
- Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Catriona Munro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France; Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| |
Collapse
|
22
|
Molecular Characterization and Expression Pattern of Paramyosin in Larvae and Adults of Yesso Scallop. BIOLOGY 2022; 11:biology11030453. [PMID: 35336826 PMCID: PMC8945602 DOI: 10.3390/biology11030453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Paramyosin is an important myofibrillar protein in smooth muscle in molluscs that is not present in vertebrate muscles. This study characterized its sequence feature and expression patterns in Yesso scallop Patinopecten yessoensis and revealed the unique phosphorylation sites in scallops. The mRNA and protein expression of paramyosin was mainly found in foot and smooth adductor muscle. At late larval stages, strong paramyosin mRNA signals were detected in the symmetric positions of anterior and posterior adductor muscles. The present findings support that paramyosin may serve as the most important component of smooth muscle assembly during muscle development and catch regulation in scallops. Abstract Paramyosin is an important myofibrillar protein in molluscan smooth muscle. The full-length cDNA encoding paramyosin has been identified from Yesso scallop Patinopecten yessoensis. The length of paramyosin molecule has been found to be 3715 bp, which contains an open reading frame (ORF) of 2805 bp for 934 amino acid residues. Characterization of P. yessoensis paramyosin reveals the typical structural feature of coiled-coil protein, including six α-helix (α1-α6) and one coil (η) structures. Multiple phosphorylation sites have been predicted at the N-terminus of paramyosin, representing the unique phosphorylation sites in scallops. The highest levels of mRNA and protein expression of paramyosin have been found in foot and the smooth adductor muscle. According to whole-mount in situ hybridization (WISH), strong paramyosin mRNA signals were detected in the symmetric positions of anterior and posterior adductor muscles at late larval stages. These findings support that paramyosin may serve as the most important components for myogenesis and catch regulation in scallops. The present findings will not only help uncover the potential function of myofibrillar proteins in molluscs but also provide molecular evidence to infer evolutionary relationships among invertebrates.
Collapse
|
23
|
Root ZD, Allen C, Gould C, Brewer M, Jandzik D, Medeiros DM. A Comprehensive Analysis of Fibrillar Collagens in Lamprey Suggests a Conserved Role in Vertebrate Musculoskeletal Evolution. Front Cell Dev Biol 2022; 10:809979. [PMID: 35242758 PMCID: PMC8887668 DOI: 10.3389/fcell.2022.809979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the lamprey hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the hox clusters, a phenomenon also seen in gnathostomes. While the lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.
Collapse
Affiliation(s)
- Zachary D Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Cara Allen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Claire Gould
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Margaux Brewer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.,Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
24
|
Fujita Y, Chokki T, Nishioka T, Morimoto K, Nakayama A, Nakae H, Ogasawara M, Terasaki AG. The emergence of nebulin repeats and evolution of lasp family proteins. Cytoskeleton (Hoboken) 2022; 78:419-435. [PMID: 35224880 DOI: 10.1002/cm.21693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022]
Abstract
The LIM and SH3 domain protein (lasp) family, the smallest proteins in the nebulin superfamily, consists of vertebrate lasp-1 expressed in various non-muscle tissues, vertebrate lasp-2 expressed in the brain and cardiac muscle, and invertebrate lasp whose functions have been analyzed in Ascidiacea and Insecta. Gene evolution of the lasp family proteins was investigated by multiple alignments, comparison of gene structure, and synteny analyses in eukaryotes in which mRNA expression was confirmed. All invertebrates analyzed in this study belonging to the clade Filasterea, with the exception of Placozoa, have at least one lasp gene. The minimal actin-binding region (LIM domain and first nebulin repeat) and SH3 domain detected in vertebrate lasp-2 were found to be conserved among the lasp family proteins, and we showed that nematode lasp has actin-binding activity. The linker sequences vary among invertebrate lasp proteins, implying that the lasp family proteins have universal and diverse functions. Gene structures and syntenic analyses suggest that a gene fragment encoding two nebulin repeats and a linker emerged in Filasterea or Holozoa, and the first lasp gene was generated following combination of three gene fragments encoding the LIM domain, two nebulin repeats with a linker, and the SH3 domain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Tamami Chokki
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Tatsuji Nishioka
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Kouta Morimoto
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Ayako Nakayama
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Hiroki Nakae
- BIO-Business Solutions, Hisamoto, Takatsu-ku, Kawasaki, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Asako G Terasaki
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| |
Collapse
|
25
|
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. A myxozoan genome reveals mosaic evolution in a parasitic cnidarian. BMC Biol 2022; 20:51. [PMID: 35177085 PMCID: PMC8855578 DOI: 10.1186/s12915-022-01249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Parasite evolution has been conceptualized as a process of genetic loss and simplification. Contrary to this model, there is evidence of expansion and conservation of gene families related to essential functions of parasitism in some parasite genomes, reminiscent of widespread mosaic evolution-where subregions of a genome have different rates of evolutionary change. We found evidence of mosaic genome evolution in the cnidarian Myxobolus honghuensis, a myxozoan parasite of fish, with extremely simple morphology. RESULTS We compared M. honghuensis with other myxozoans and free-living cnidarians, and determined that it has a relatively larger myxozoan genome (206 Mb), which is less reduced and less compact due to gene retention, large introns, transposon insertion, but not polyploidy. Relative to other metazoans, the M. honghuensis genome is depleted of neural genes and has only the simplest animal immune components. Conversely, it has relatively more genes involved in stress resistance, tissue invasion, energy metabolism, and cellular processes compared to other myxozoans and free-living cnidarians. We postulate that the expansion of these gene families is the result of evolutionary adaptations to endoparasitism. M. honghuensis retains genes found in free-living Cnidaria, including a reduced nervous system, myogenic components, ANTP class Homeobox genes, and components of the Wnt and Hedgehog pathways. CONCLUSIONS Our analyses suggest that the M. honghuensis genome evolved as a mosaic of conservative, divergent, depleted, and enhanced genes and pathways. These findings illustrate that myxozoans are not as genetically simple as previously regarded, and the evolution of some myxozoans is driven by both genomic streamlining and expansion.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Bin Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Yanhua Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
26
|
Gauberg J, Elkhatib W, Smith CL, Singh A, Senatore A. Divergent Ca 2+/calmodulin feedback regulation of Ca V1 and Ca V2 voltage-gated calcium channels evolved in the common ancestor of Placozoa and Bilateria. J Biol Chem 2022; 298:101741. [PMID: 35182524 PMCID: PMC8980814 DOI: 10.1016/j.jbc.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022] Open
Abstract
CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian CaV1 channels are uniquely subject to pronounced, buffer-resistant Ca2+/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca2+ rises. Early diverging, nonbilaterian invertebrates also possess CaV1 and CaV2 channels, but it is unclear whether they share these conserved functional features. The most divergent animals to possess both CaV1 and CaV2 channels are placozoans such as Trichoplax adhaerens, which separated from other animals over 600 million years ago shortly after their emergence. Hence, placozoans can provide important insights into the early evolution of CaV1 and CaV2 channels. Here, we build upon previous characterization of Trichoplax CaV channels by determining the cellular expression and ion-conducting properties of the CaV1 channel orthologue, TCaV1. We show that TCaV1 is expressed in neuroendocrine-like gland cells and contractile dorsal epithelial cells. In vitro, this channel conducts dihydropyridine-insensitive, high-voltage–activated Ca2+ currents with kinetics resembling those of rat CaV1.2 but with left-shifted voltage sensitivity for activation and inactivation. Interestingly, TCaV1, but not TCaV2, exhibits buffer-resistant Ca2+/CaM-dependent inactivation, indicating that this functional divergence evolved prior to the emergence of bilaterian animals and may have contributed to their unique adaptation for cytoplasmic Ca2+ signaling within various cellular contexts.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Carolyn L Smith
- NINDS, National Institutes of Health, Bethesda Maryland, 20892 USA
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
27
|
Rasmussen M, Feng HZ, Jin JP. Evolution of the N-Terminal Regulation of Cardiac Troponin I for Heart Function of Tetrapods: Lungfish Presents an Example of the Emergence of Novel Submolecular Structure to Lead the Capacity of Adaptation. J Mol Evol 2022; 90:30-43. [PMID: 34966949 PMCID: PMC10926322 DOI: 10.1007/s00239-021-10039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Troponin-based Ca2+ regulation of striated muscle contraction emerged approximately 700 million years ago with largely conserved functions during evolution. Troponin I (TnI) is the inhibitory subunit of troponin and has evolved into three muscle type-specific isoforms in vertebrates. Cardiac TnI is specifically expressed in the adult heart and has a unique N-terminal extension implicating a specific value during natural selection. The N-terminal extension of cardiac TnI in higher vertebrates contains β-adrenergic-regulated protein kinase A (PKA) phosphorylation sites as a mechanism to enhance cardiac muscle relaxation and facilitate ventricular filling. Phylogenic studies showed that the N-terminal extension of cardiac TnI first emerged in the genomes of early tetrapods as well as primordial lobe-finned fishes such as the coelacanth whereas it is absent in ray-finned fish. This apparently rapid evolution of β-adrenergic regulation of cardiac function suggests a high selection value for the heart of vertebrate animals on land to work under higher metabolic demands. Sequencing and PKA phosphorylation data showed that lungfish cardiac TnI has evolved with an amphibian-like N-terminal extension with prototype PKA phosphorylation sites while its overall structure remained fish like. The data demonstrate that the submolecular structure of TnI may evolve ahead of the whole protein for cardiac muscle contractility to adapt to new environmental conditions. Understanding the evolution of the β-adrenergic regulation of TnI and cardiac adaptation to the increased energetic demands of life on land adds knowledge for the treatment of human heart diseases and failure.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Han-Zhong Feng
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
29
|
Chari T, Weissbourd B, Gehring J, Ferraioli A, Leclère L, Herl M, Gao F, Chevalier S, Copley RR, Houliston E, Anderson DJ, Pachter L. Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types. SCIENCE ADVANCES 2021; 7:eabh1683. [PMID: 34826233 PMCID: PMC8626072 DOI: 10.1126/sciadv.abh1683] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 10/06/2021] [Indexed: 05/12/2023]
Abstract
We present an organism-wide, transcriptomic cell atlas of the hydrozoan medusa Clytia hemisphaerica and describe how its component cell types respond to perturbation. Using multiplexed single-cell RNA sequencing, in which individual animals were indexed and pooled from control and perturbation conditions into a single sequencing run, we avoid artifacts from batch effects and are able to discern shifts in cell state in response to organismal perturbations. This work serves as a foundation for future studies of development, function, and regeneration in a genetically tractable jellyfish species. Moreover, we introduce a powerful workflow for high-resolution, whole-animal, multiplexed single-cell genomics that is readily adaptable to other traditional or nontraditional model organisms.
Collapse
Affiliation(s)
- Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brandon Weissbourd
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Tianqiao and Chrissy Chen Institute for Neuroscience, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jase Gehring
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anna Ferraioli
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230, France
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230, France
| | - Makenna Herl
- University of New Hampshire School of Law, Concord, NH 03301, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230, France
| | - Richard R. Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230, France
| | - David J. Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Tianqiao and Chrissy Chen Institute for Neuroscience, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Schierwater B, Osigus HJ, Bergmann T, Blackstone NW, Hadrys H, Hauslage J, Humbert PO, Kamm K, Kvansakul M, Wysocki K, DeSalle R. The enigmatic Placozoa part 1: Exploring evolutionary controversies and poor ecological knowledge. Bioessays 2021; 43:e2100080. [PMID: 34472126 DOI: 10.1002/bies.202100080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
The placozoan Trichoplax adhaerens is a tiny hairy plate and more simply organized than any other living metazoan. After its original description by F.E. Schulze in 1883, it attracted attention as a potential model for the ancestral state of metazoan organization, the "Urmetazoon". Trichoplax lacks any kind of symmetry, organs, nerve cells, muscle cells, basal lamina, and extracellular matrix. Furthermore, the placozoan genome is the smallest (not secondarily reduced) genome of all metazoan genomes. It harbors a remarkably rich diversity of genes and has been considered the best living surrogate for a metazoan ancestor genome. The phylum Placozoa presently harbors three formally described species, while several dozen "cryptic" species are yet awaiting their description. The phylogenetic position of placozoans has recently become a contested arena for modern phylogenetic analyses and view-driven claims. Trichoplax offers unique prospects for understanding the minimal requirements of metazoan animal organization and their corresponding malfunctions.
Collapse
Affiliation(s)
- Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tjard Bergmann
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Heike Hadrys
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Hauslage
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marc Kvansakul
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kathrin Wysocki
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Rob DeSalle
- American Museum of Natural History, New York, New York, USA
| |
Collapse
|
31
|
Yan Z, Yan Z, Liu S, Yin Y, Yang T, Chen Q. Regulative Mechanism of Guanidinoacetic Acid on Skeletal Muscle Development and Its Application Prospects in Animal Husbandry: A Review. Front Nutr 2021; 8:714567. [PMID: 34458310 PMCID: PMC8387576 DOI: 10.3389/fnut.2021.714567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Guanidinoacetic acid is the direct precursor of creatine and its phosphorylated derivative phosphocreatine in the body. It is a safe nutritional supplement that can be used to promote muscle growth and development. Improving the growth performance of livestock and poultry and meat quality is the eternal goal of the animal husbandry, and it is also the common demand of today's society and consumers. A large number of experimental studies have shown that guanidinoacetic acid could improve the growth performance of animals, promote muscle development and improve the health of animals. However, the mechanism of how it affects muscle development needs to be further elucidated. This article discusses the physical and chemical properties of guanidinoacetic acid and its synthesis pathway, explores its mechanism of how it promotes muscle development and growth, and also classifies and summarizes the impact of its application in animal husbandry, providing a scientific basis for this application. In addition, this article also proposes future directions for the development of this substance.
Collapse
Affiliation(s)
- Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhaoyue Yan
- Chemistry Department, University of Liverpool, Liverpool, United Kingdom
| | - Shuangli Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tai Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
32
|
Moroz LL. Multiple Origins of Neurons From Secretory Cells. Front Cell Dev Biol 2021; 9:669087. [PMID: 34307354 PMCID: PMC8293673 DOI: 10.3389/fcell.2021.669087] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
33
|
Dunn FS, Liu AG, Grazhdankin DV, Vixseboxse P, Flannery-Sutherland J, Green E, Harris S, Wilby PR, Donoghue PCJ. The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs. SCIENCE ADVANCES 2021; 7:eabe0291. [PMID: 34301594 PMCID: PMC8302126 DOI: 10.1126/sciadv.abe0291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Molecular timescales estimate that early animal lineages diverged tens of millions of years before their earliest unequivocal fossil evidence. The Ediacaran macrobiota (~574 to 538 million years ago) are largely eschewed from this debate, primarily due to their extreme phylogenetic uncertainty, but remain germane. We characterize the development of Charnia masoni and establish the affinity of rangeomorphs, among the oldest and most enigmatic components of the Ediacaran macrobiota. We provide the first direct evidence for the internal interconnected nature of rangeomorphs and show that Charnia was constructed of repeated branches that derived successively from pre-existing branches. We find homology and rationalize morphogenesis between disparate rangeomorph taxa, before producing a phylogenetic analysis, resolving Charnia as a stem-eumetazoan and expanding the anatomical disparity of that group to include a long-extinct bodyplan. These data bring competing records of early animal evolution into closer agreement, reformulating our understanding of the evolutionary emergence of animal bodyplans.
Collapse
Affiliation(s)
- Frances S Dunn
- Oxford University Museum of Natural History, University of Oxford, Parks Road, Oxford OX1 3PW, UK.
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alexander G Liu
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Dmitriy V Grazhdankin
- Trofimuk Institute of Petroleum Geology and Geophysics, Prospekt Akademika Koptyuga 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 1, Novosibirsk 630090, Russia
| | - Philip Vixseboxse
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Joseph Flannery-Sutherland
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emily Green
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Simon Harris
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
| | - Philip R Wilby
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
- School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
34
|
Tanay A, Sebé-Pedrós A. Evolutionary Cell Type Mapping with Single-Cell Genomics. Trends Genet 2021; 37:919-932. [PMID: 34020820 DOI: 10.1016/j.tig.2021.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022]
Abstract
A fundamental characteristic of animal multicellularity is the spatial coexistence of functionally specialized cell types that are all encoded by a single genome sequence. Cell type transcriptional programs are deployed and maintained by regulatory mechanisms that control the asymmetric, differential access to genomic information in each cell. This genome regulation ultimately results in specific cellular phenotypes. However, the emergence, diversity, and evolutionary dynamics of animal cell types remain almost completely unexplored beyond a few species. Single-cell genomics is emerging as a powerful tool to build comprehensive catalogs of cell types and their associated gene regulatory programs in non-traditional model species. We review the current state of sampling efforts across the animal tree of life and challenges ahead for the comparative study of cell type programs. We also discuss how the phylogenetic integration of cell atlases can lead to the development of models of cell type evolution and a phylogenetic taxonomy of cells.
Collapse
Affiliation(s)
- Amos Tanay
- Department of Computer Science and Applied Mathematics, and Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| |
Collapse
|
35
|
Abstract
The Ediacara Biota preserves the oldest fossil evidence of abundant, complex metazoans. Despite their significance, assigning individual taxa to specific phylogenetic groups has proved problematic. To better understand these forms, we identify developmentally controlled characters in representative taxa from the Ediacaran White Sea assemblage and compare them with the regulatory tools underlying similar traits in modern organisms. This analysis demonstrates that the genetic pathways for multicellularity, axial polarity, musculature, and a nervous system were likely present in some of these early animals. Equally meaningful is the absence of evidence for major differentiation of macroscopic body units, including distinct organs, localized sensory machinery or appendages. Together these traits help to better constrain the phylogenetic position of several key Ediacara taxa and inform our views of early metazoan evolution. An apparent lack of heads with concentrated sensory machinery or ventral nerve cords in such taxa supports the hypothesis that these evolved independently in disparate bilaterian clades.
Collapse
Affiliation(s)
- Scott D Evans
- Department of Paleobiology MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Mary L Droser
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Douglas H Erwin
- Department of Paleobiology MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| |
Collapse
|
36
|
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction. Int J Mol Sci 2020; 21:ijms21218399. [PMID: 33182367 PMCID: PMC7664901 DOI: 10.3390/ijms21218399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Muscle contraction results from cyclic interactions between myosin II motors and actin with two sets of proteins organized in overlapping thick and thin filaments, respectively, in a nearly crystalline lattice in a muscle sarcomere. However, a sarcomere contains a huge number of other proteins, some with important roles in muscle contraction. In particular, these include thin filament proteins, troponin and tropomyosin; thick filament proteins, myosin binding protein C; and the elastic protein, titin, that connects the thin and thick filaments. Furthermore, the order and 3D organization of the myofilament lattice may be important per se for contractile function. It is possible to model muscle contraction based on actin and myosin alone with properties derived in studies using single molecules and biochemical solution kinetics. It is also possible to reproduce several features of muscle contraction in experiments using only isolated actin and myosin, arguing against the importance of order and accessory proteins. Therefore, in this paper, it is hypothesized that “single molecule actomyosin properties account for the contractile properties of a half sarcomere during shortening and isometric contraction at almost saturating Ca concentrations”. In this paper, existing evidence for and against this hypothesis is reviewed and new modeling results to support the arguments are presented. Finally, further experimental tests are proposed, which if they corroborate, at least approximately, the hypothesis, should significantly benefit future effective analysis of a range of experimental studies, as well as drug discovery efforts.
Collapse
|
37
|
Investigation of structural proteins in sea cucumber (Apostichopus japonicus) body wall. Sci Rep 2020; 10:18744. [PMID: 33127976 PMCID: PMC7599334 DOI: 10.1038/s41598-020-75580-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/16/2020] [Indexed: 02/04/2023] Open
Abstract
Structural proteins play critical roles in the food quality, especially texture properties, of sea cucumbers and their products. Most of the previous studies on sea cucumbers focused on few individual proteins, which limited our understanding of how structural proteins influenced the quality of sea cucumbers. Inspired by the clarification of sea cucumber (Apostichopus japonicus) genome, we established an integrated data of structural proteins in the sea cucumber body wall. A portfolio of 2018 structural proteins was screened out from the sea cucumber annotated proteome by bioinformatics analysis. The portfolio was divided into three divisions, including extracellular matrix proteins, muscle proteins, and proteases, and further classified into 18 categories. The presence of 472 proteins in the sea cucumber body wall was confirmed by using a proteomics approach. Moreover, comparative proteomics analysis revealed the spatial distribution heterogeneity of structural proteins in the sea cucumber body wall at a molecular scale. This study suggested that future researches on sea cucumbers could be performed from an integrated perspective, which would reshape the component map of sea cucumber and provide novel insights into the understanding of how the food quality of sea cucumber was determined on a molecular level.
Collapse
|
38
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
39
|
Johnson CJ, Razy-Krajka F, Stolfi A. Expression of smooth muscle-like effectors and core cardiomyocyte regulators in the contractile papillae of Ciona. EvoDevo 2020; 11:15. [PMID: 32774829 PMCID: PMC7397655 DOI: 10.1186/s13227-020-00162-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The evolution of vertebrate smooth muscles is obscured by lack of identifiable smooth muscle-like cells in tunicates, the invertebrates most closely related to vertebrates. A recent evolutionary model was proposed in which smooth muscles arose before the last bilaterian common ancestor, and were later diversified, secondarily lost or modified in the branches leading to extant animal taxa. However, there is currently no data from tunicates to support this scenario. METHODS AND RESULTS Here, we show that the axial columnar cells, a unique cell type in the adhesive larval papillae of the tunicate Ciona, are enriched for orthologs of vertebrate smooth/non-muscle-specific effectors of contractility, in addition to developing from progenitors that express conserved cardiomyocyte regulatory factors. We show that these cells contract during the retraction of the Ciona papillae during larval settlement and metamorphosis. CONCLUSIONS We propose that the axial columnar cells of Ciona are a myoepithelial cell type required for transducing external stimuli into mechanical forces that aid in the attachment of the motile larva to its final substrate. Furthermore, they share developmental and functional features with vertebrate myoepithelial cells, vascular smooth muscle cells, and cardiomyocytes. We discuss these findings in the context of the proposed models of vertebrate smooth muscle and cardiomyocyte evolution.
Collapse
|
40
|
Alternative pathways control actomyosin contractility in epitheliomuscle cells during morphogenesis and body contraction. Dev Biol 2020; 463:88-98. [PMID: 32361004 DOI: 10.1016/j.ydbio.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022]
Abstract
In adult Hydra, epitheliomuscle cells form the monolayered ecto- and endodermal epithelia. Their basal myonemes function as a longitudinal and circular muscle, respectively. Based on the observation that a Rho/Rock pathway, controlling the cell shape changes during detachment of Hydra buds, is not involved in body movement, at least two actomyosin compartments must exist in these cells: a basal one for body movement and a cortical one for cell shape changes. We therefore analyzed the regional and subcellular localization of the Ser19-phosphorylated myosin regulatory light chain (pMLC20). Along the body column, pMLC20 was detected strongly in the basal myonemes and weakly in the apical cell compartments of ectodermal epitheliomuscle cells. In cells of the bud base undergoing morphogenesis, pMLC20 was localized to intracellular stress fibers as well as to the apical and additionally to the lateral cortical compartment. Pharmacological inhibition revealed that pMLC20 is induced in these compartments by at least two independent pathways. In myonemes, MLC is phosphorylated mainly by myosin light chain kinase (MLCK). In contrast, the cortical apical and lateral MLC phosphorylation in constricting ectodermal cells of the bud base is stimulated via the Rho/ROCK pathway.
Collapse
|
41
|
Padrón R, Ma W, Duno-Miranda S, Koubassova N, Lee KH, Pinto A, Alamo L, Bolaños P, Tsaturyan A, Irving T, Craig R. The myosin interacting-heads motif present in live tarantula muscle explains tetanic and posttetanic phosphorylation mechanisms. Proc Natl Acad Sci U S A 2020; 117:11865-11874. [PMID: 32444484 PMCID: PMC7275770 DOI: 10.1073/pnas.1921312117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Striated muscle contraction involves sliding of actin thin filaments along myosin thick filaments, controlled by calcium through thin filament activation. In relaxed muscle, the two heads of myosin interact with each other on the filament surface to form the interacting-heads motif (IHM). A key question is how both heads are released from the surface to approach actin and produce force. We used time-resolved synchrotron X-ray diffraction to study tarantula muscle before and after tetani. The patterns showed that the IHM is present in live relaxed muscle. Tetanic contraction produced only a very small backbone elongation, implying that mechanosensing-proposed in vertebrate muscle-is not of primary importance in tarantula. Rather, thick filament activation results from increases in myosin phosphorylation that release a fraction of heads to produce force, with the remainder staying in the ordered IHM configuration. After the tetanus, the released heads slowly recover toward the resting, helically ordered state. During this time the released heads remain close to actin and can quickly rebind, enhancing the force produced by posttetanic twitches, structurally explaining posttetanic potentiation. Taken together, these results suggest that, in addition to stretch activation in insects, two other mechanisms for thick filament activation have evolved to disrupt the interactions that establish the relaxed helices of IHMs: one in invertebrates, by either regulatory light-chain phosphorylation (as in arthropods) or Ca2+-binding (in mollusks, lacking phosphorylation), and another in vertebrates, by mechanosensing.
Collapse
Affiliation(s)
- Raúl Padrón
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655;
| | - Weikang Ma
- Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Sebastian Duno-Miranda
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | | | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Antonio Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | - Lorenzo Alamo
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | - Pura Bolaños
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | - Andrey Tsaturyan
- Institute of Mechanics, Moscow State University, 119992 Moscow, Russia
| | - Thomas Irving
- Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
42
|
Bataillé L, Colombié N, Pelletier A, Paululat A, Lebreton G, Carrier Y, Frendo JL, Vincent A. Alary muscles and thoracic alary-related muscles are atypical striated muscles involved in maintaining the position of internal organs. Development 2020; 147:dev.185645. [PMID: 32188630 DOI: 10.1242/dev.185645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Alary muscles (AMs) have been described as a component of the cardiac system in various arthropods. Lineage-related thoracic muscles (TARMs), linking the exoskeleton to specific gut regions, have recently been discovered in Drosophila Asymmetrical attachments of AMs and TARMs, to the exoskeleton on one side and internal organs on the other, suggested an architectural function in moving larvae. Here, we analysed the shape and sarcomeric organisation of AMs and TARMs, and imaged their atypical deformability in crawling larvae. We then selectively eliminated AMs and TARMs by targeted apoptosis. Elimination of AMs revealed that AMs are required for suspending the heart in proper intra-haemocelic position and for opening of the heart lumen, and that AMs constrain the curvature of the respiratory tracheal system during crawling; TARMs are required for proper positioning of visceral organs and efficient food transit. AM/TARM cardiac versus visceral attachment depends on Hox control, with visceral attachment being the ground state. TARMs and AMs are the first example of multinucleate striated muscles connecting the skeleton to the cardiac and visceral systems in bilaterians, with multiple physiological functions.
Collapse
Affiliation(s)
- Laetitia Bataillé
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Colombié
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Aurore Pelletier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Achim Paululat
- University of Osnabrück, Department of Biology/Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Gaëlle Lebreton
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Yannick Carrier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Frendo
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
43
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|
44
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|
45
|
Brunet T, Larson BT, Linden TA, Vermeij MJA, McDonald K, King N. Light-regulated collective contractility in a multicellular choanoflagellate. Science 2020; 366:326-334. [PMID: 31624206 DOI: 10.1126/science.aay2346] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Collective cell contractions that generate global tissue deformations are a signature feature of animal movement and morphogenesis. However, the origin of collective contractility in animals remains unclear. While surveying the Caribbean island of Curaçao for choanoflagellates, the closest living relatives of animals, we isolated a previously undescribed species (here named Choanoeca flexa sp. nov.) that forms multicellular cup-shaped colonies. The colonies rapidly invert their curvature in response to changing light levels, which they detect through a rhodopsin-cyclic guanosine monophosphate pathway. Inversion requires actomyosin-mediated apical contractility and allows alternation between feeding and swimming behavior. C. flexa thus rapidly converts sensory inputs directly into multicellular contractions. These findings may inform reconstructions of hypothesized animal ancestors that existed before the evolution of specialized sensory and contractile cells.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ben T Larson
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Tess A Linden
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Mark J A Vermeij
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, CARMABI, Piscaderabaai z/n Willemstad, Curaçao
| | - Kent McDonald
- Electron Microscopy Laboratory, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
46
|
Han YH, Ryu KB, Medina Jiménez BI, Kim J, Lee HY, Cho SJ. Muscular Development in Urechis unicinctus (Echiura, Annelida). Int J Mol Sci 2020; 21:ijms21072306. [PMID: 32225111 PMCID: PMC7178014 DOI: 10.3390/ijms21072306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
Echiura is one of the most intriguing major subgroups of phylum Annelida because, unlike most other annelids, echiuran adults lack metameric body segmentation. Urechis unicinctus lives in U-shape burrows of soft sediments. Little is known about the molecular mechanisms underlying the development of U. unicinctus. Herein, we overviewed the developmental process from zygote to juvenile U. unicinctus using immunohistochemistry and F-actin staining for the nervous and muscular systems, respectively. Through F-actin staining, we found that muscle fibers began to form in the trochophore phase and that muscles for feeding were produced first. Subsequently, in the segmentation larval stage, the transversal muscle was formed in the shape of a ring in an anterior-to-posterior direction with segment formation, as well as a ventromedian muscle for the formation of a ventral nerve cord. After that, many muscle fibers were produced along the entire body and formed the worm-shaped larva. Finally, we investigated the spatiotemporal expression of Uun_st-mhc, Uun_troponin I, Uun_calponin, and Uun_twist genes found in U. unicinctus. During embryonic development, the striated and smooth muscle genes were co-expressed in the same region. However, the adult body wall muscles showed differential gene expression of each muscle layer. The results of this study will provide the basis for the understanding of muscle differentiation in Echiura.
Collapse
Affiliation(s)
- Yong-Hee Han
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
| | - Kyoung-Bin Ryu
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
| | - Brenda I. Medina Jiménez
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
- Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Jung Kim
- Department of Molecular and Cell Biology, University of California, 539 LSA, Berkeley, CA 94720-3200, USA;
| | - Hae-Youn Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
- Correspondence: (H.-Y.L.); (S.-J.C.); Tel.: +82-43-261-2294 (S.-J.C.)
| | - Sung-Jin Cho
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
- Correspondence: (H.-Y.L.); (S.-J.C.); Tel.: +82-43-261-2294 (S.-J.C.)
| |
Collapse
|
47
|
Nayak A, Amrute-Nayak M. SUMO system - a key regulator in sarcomere organization. FEBS J 2020; 287:2176-2190. [PMID: 32096922 DOI: 10.1111/febs.15263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Skeletal muscles constitute roughly 40% of human body mass. Muscles are specialized tissues that generate force to drive movements through ATP-driven cyclic interactions between the protein filaments, namely actin and myosin filaments. The filaments are organized in an intricate structure called the 'sarcomere', which is a fundamental contractile unit of striated skeletal and cardiac muscle, hosting a fine assembly of macromolecular protein complexes. The micrometer-sized sarcomere units are arranged in a reiterated array within myofibrils of muscle cells. The precise spatial organization of sarcomere is tightly controlled by several molecular mechanisms, indispensable for its force-generating function. Disorganized sarcomeres, either due to erroneous molecular signaling or due to mutations in the sarcomeric proteins, lead to human diseases such as cardiomyopathies and muscle atrophic conditions prevalent in cachexia. Protein post-translational modifications (PTMs) of the sarcomeric proteins serve a critical role in sarcomere formation (sarcomerogenesis), as well as in the steady-state maintenance of sarcomeres. PTMs such as phosphorylation, acetylation, ubiquitination, and SUMOylation provide cells with a swift and reversible means to adapt to an altered molecular and therefore cellular environment. Over the past years, SUMOylation has emerged as a crucial modification with implications for different aspects of cell function, including organizing higher-order protein assemblies. In this review, we highlight the fundamentals of the small ubiquitin-like modifiers (SUMO) pathway and its link specifically to the mechanisms of sarcomere assembly. Furthermore, we discuss recent studies connecting the SUMO pathway-modulated protein homeostasis with sarcomere organization and muscle-related pathologies.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
Mackrill JJ, Shiels HA. Evolution of Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:281-320. [DOI: 10.1007/978-3-030-12457-1_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Buzgariu W, Curchod ML, Perruchoud C, Galliot B. Combining BrdU-Labeling to Detection of Neuronal Markers to Monitor Adult Neurogenesis in Hydra. Methods Mol Biol 2020; 2047:3-24. [PMID: 31552646 DOI: 10.1007/978-1-4939-9732-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nervous system is produced and maintained in adult Hydra through the continuous production of nerve cells and mechanosensory cells (nematocytes or cnidocytes). De novo neurogenesis occurs slowly in intact animals that replace their dying nerve cells, at a faster rate in animals regenerating their head as a complete apical nervous system is built in few days. To dissect the molecular mechanisms that underlie these properties, a precise monitoring of the markers of neurogenesis and nematogenesis is required. Here we describe the conditions for an efficient BrdU-labeling coupled to an immunodetection of neuronal markers, either regulators of neurogenesis, here the homeoprotein prdl-a, or neuropeptides such as RFamide or Hym-355. This method can be performed on whole-mount animals as well as on macerated tissues when cells retain their morphology. Moreover, when antibodies are not available, BrdU-labeling can be combined with the analysis of gene expression by whole-mount in situ hybridization. This co-immunodetection procedure is well adapted to visualize and quantify the dynamics of de novo neurogenesis. Upon continuous BrdU labeling, the repeated measurements of BrdU-labeling indexes in specific cellular populations provide a precise monitoring of nematogenesis as well as neurogenesis, in homeostatic or developmental conditions.
Collapse
Affiliation(s)
- Wanda Buzgariu
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marie-Laure Curchod
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
50
|
Pallasdies F, Goedeke S, Braun W, Memmesheimer RM. From single neurons to behavior in the jellyfish Aurelia aurita. eLife 2019; 8:e50084. [PMID: 31868586 PMCID: PMC6999044 DOI: 10.7554/elife.50084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/22/2019] [Indexed: 01/13/2023] Open
Abstract
Jellyfish nerve nets provide insight into the origins of nervous systems, as both their taxonomic position and their evolutionary age imply that jellyfish resemble some of the earliest neuron-bearing, actively-swimming animals. Here, we develop the first neuronal network model for the nerve nets of jellyfish. Specifically, we focus on the moon jelly Aurelia aurita and the control of its energy-efficient swimming motion. The proposed single neuron model disentangles the contributions of different currents to a spike. The network model identifies factors ensuring non-pathological activity and suggests an optimization for the transmission of signals. After modeling the jellyfish's muscle system and its bell in a hydrodynamic environment, we explore the swimming elicited by neural activity. We find that different delays between nerve net activations lead to well-controlled, differently directed movements. Our model bridges the scales from single neurons to behavior, allowing for a comprehensive understanding of jellyfish neural control of locomotion.
Collapse
Affiliation(s)
- Fabian Pallasdies
- Neural Network Dynamics and Computation, Institute of GeneticsUniversity of BonnBonnGermany
| | - Sven Goedeke
- Neural Network Dynamics and Computation, Institute of GeneticsUniversity of BonnBonnGermany
| | - Wilhelm Braun
- Neural Network Dynamics and Computation, Institute of GeneticsUniversity of BonnBonnGermany
| | | |
Collapse
|