1
|
Samitsu S, Tamate R, Ueki T. Rheological Properties of Dense Particle Suspensions of Starches: Shear Thickening, Shear Jamming, and Shock Absorption Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26852-26863. [PMID: 39668378 DOI: 10.1021/acs.langmuir.4c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Concentrated suspensions of Brownian and non-Brownian particles display distinctive rheological behavior highly dependent on shear rate and shear stress. Cornstarch suspensions, composed of starch particles from corn plants, served as a model for concentrated non-Brownian suspensions, demonstrating discontinuous shear thickening (DST) and dynamic shear jamming (SJ). However, starch particles from other plant sources have not yet been investigated, despite their different sizes and shapes. This study is focused on the evaluation of the effects of the structural parameters of starch particles by preparing concentrated suspensions of starch particles from 13 different plants at particle fractions of 25-50% and their rheological behavior through steady shear, pull-out, and ball-drop tests. Starch particles can be roughly classified as polygonal and ellipsoidal. The DST and SJ behavior typically reported for concentrated cornstarch suspensions were confirmed for other starch particles in both particle groups. The ball-drop test demonstrated excellent shock absorption properties for 11 concentrated suspensions of starch particles, except for sago palms. In the case of concentrated suspensions of starch particles, the particle fraction and shear applied were the dominant factors that significantly affected the rheological behavior, whereas the particle shape was not a primary contributor. The findings of this study drive further investigation on the effect of liquid and particle surface properties in concentrated particle suspensions on DST and SJ behaviors.
Collapse
Affiliation(s)
- Sadaki Samitsu
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ryota Tamate
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takeshi Ueki
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
2
|
Samitsu S, Tamate R, Ueki T. Effect of Liquid Properties on the Non-Newtonian Rheology of Concentrated Silica Suspensions: Discontinuous Shear Thickening, Shear Jamming, and Shock Absorbance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24241-24256. [PMID: 39511763 DOI: 10.1021/acs.langmuir.4c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Concentrated particle suspensions exhibit rheological behavior, such as discontinuous shear thickening (DST) and dynamic shear jamming (SJ), which affect applications such as soft armors. Although the origin of this behavior in shear-activated particle-particle interactions has been identified, the effect of chemical factors, especially the role of liquids, on this behavior remains unexplored. Hydrogen bonding in suspensions has been proposed to be essential for frictional contacts between particles, and therefore, most studies on DST and SJ have focused on aqueous and protic organic media with a definite hydrogen bonding ability. To identify an alternative molecular mechanism, this study explored the effects of liquid polarity and an aprotic nature on the rheological behavior of concentrated suspensions of silica microparticles. Owing to their excellent particle dispersion, the DST behavior of polar liquids was observed, independent of protic and aprotic liquids. In contrast, nonpolar liquids formed particle agglomerates because of the particle-particle attraction and became a paste at a high particle fraction. The SJ behavior was confirmed for three aprotic organic liquids (propylene carbonate, 1,3-dimethyl-2-imidazolidinone, and 1,3-dimethylpropyleneurea), suggesting the hydrogen bonding ability of these aprotic liquids. The diverse mechanisms of shear-activated interactions between particles present material design possibilities for the non-Newtonian rheology of concentrated particle suspensions.
Collapse
Affiliation(s)
- Sadaki Samitsu
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ryota Tamate
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takeshi Ueki
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
3
|
Shang L, Xu K, Lu PJ, Abbaspourrad A, Zhao Y, Weitz DA. Dramatic droplet deformation through interfacial particles jamming. Proc Natl Acad Sci U S A 2024; 121:e2403953121. [PMID: 39388273 PMCID: PMC11494287 DOI: 10.1073/pnas.2403953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Droplets of one fluid in a second, immiscible fluid are typically spherical in shape due to the interfacial tension between the two fluids. Shear forces can lead to droplet deformation when they are subjected to flow, and these effects can be further modified when the droplet is stabilized by a surfactant due to a flow-induced gradients in the surfactant concentration. An alternative method of stabilizing droplets is through the use of colloidal particles, whose stabilization behavior is intrinsically different from molecular surfactants. Under the same flow condition, a gradient of particle concentration can result in the jamming of particles in regions with a high packing density, making the interface solid-like, albeit only under compression and not tension. However, how this asymmetry in the surfactant properties alters the droplet shape under shear is unknown. Here, we show that shear of particle-stabilized droplets can lead to a remarkable array of shape deformations as the droplets flow through a constrained microchannel. The shear-induced migration of particles on the surface results in the formation of an elastic shell at the back of the droplet, which can wrinkle and invaginate, ultimately leading to a unique core-shell structure. The shapes depend on the Peclet number of the flow, reflecting the balance of shear forces that drive the particles and diffusion that randomizes them. These findings highlight the consequences of the asymmetry in the forces between the particles and provide a unique method to controllably create droplets with a vast array of different shapes.
Collapse
Affiliation(s)
- Luoran Shang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- The Shanghai Key Laboratory of Medical Epigenetics, the International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Ke Xu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing100871, China
| | - Peter J. Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02215
| |
Collapse
|
4
|
Shah P, Driscoll MM. Drop impact dynamics of complex fluids: a review. SOFT MATTER 2024; 20:4839-4858. [PMID: 38873962 DOI: 10.1039/d4sm00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The impact of fluid drops on solid substrates has widespread interest in many industrial coating and spraying applications, such as ink-jet printing and agricultural pesticide sprays. Many of the fluids used in these applications are non-Newtonian, that is they contain particulate or polymeric additives that strongly modify their flow behaviour. While a large body of experimental and theoretical work has been done to understand the impact dynamics of Newtonian fluids, we as a community have much progress to make to understand how these dynamics are modified when the impact fluid has non-Newtonian rheology. In this review, we outline recent experimental, theoretical, and computational advances in the study of impact dynamics of complex fluids on solid surfaces. Here, we provide an overview of this field that is geared towards a multidisciplinary audience. Our discussion is segmented by two principal material constitutions: polymeric fluids and particulate suspensions. Throughout, we highlight promising future directions, as well as ongoing experimental and theoretical challenges in the field.
Collapse
Affiliation(s)
- Phalguni Shah
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| | - Michelle M Driscoll
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
5
|
Lin J, Zhao T, Jiang M. Drag force regime in dry and immersed granular media. Phys Rev E 2024; 109:064908. [PMID: 39020922 DOI: 10.1103/physreve.109.064908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
The drag force acting on an intruder colliding with granular media is typically influenced by the impact velocity and the penetrating depth. In this paper, the investigation was extended to the dry and immersed scenarios through coupled simulations at different penetrating velocities. The drag force regime was clarified to exhibit velocity dependence in the initial contact stage, followed by the inertial transit stage with a F∼z^{2} (force-depth) relationship. Subsequently, it transitioned into the depth-dependent regime in both dry and immersed cases. The underlying rheological mechanism was explored, revealing that, in both dry and immersed scenarios, the granular bulk underwent a state relaxation process, as indicated by the granular inertial number. Additionally, the presence of the ambient fluid restricted the flow dynamics of the perturbed granular material, exhibiting a similar rheology as observed in the dry case.
Collapse
|
6
|
Bougouin A, Metzger B, Forterre Y, Boustingorry P, Lhuissier H. A frictional soliton controls the resistance law of shear-thickening suspensions in pipes. Proc Natl Acad Sci U S A 2024; 121:e2321581121. [PMID: 38625944 PMCID: PMC11046699 DOI: 10.1073/pnas.2321581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
Pipe flows are commonly found in nature and industry as an effective mean of transporting fluids. They are primarily characterized by their resistance law, which relates the mean flow rate to the driving pressure gradient. Since Poiseuille and Hagen, various flow regimes and fluid rheologies have been investigated, but the behavior of shear-thickening suspensions, which jam above a critical shear stress, remains poorly understood despite important applications (e.g., concrete or food processing). In this study, we build on recent advances in the physics of shear-thickening suspensions to address their flow through pipes and establish their resistance law. We find that for discontinuously shear-thickening suspensions (large particule volume fractions), the flow rate saturates at high driving stress. Local pressure and velocity measurements reveal that this saturation stems from the emergence of a frictional soliton: a unique, localized, superdissipative, and backpropagating flow structure coexisting with the laminar frictionless flow phase observed at low driving stress. We characterize the remarkably steep effective rheology of the frictional soliton and show that it sets the resistance law at the whole pipe scale. These findings offer an unusual perspective on low-Reynolds suspension flows through pipes, intriguingly reminiscent of the transition to turbulence for simple fluids. They also provide a predictive law for the transport of such suspensions in pipe systems, with implications for a wide range of applications.
Collapse
Affiliation(s)
- Alexis Bougouin
- Aix Marseille Univ, CNRS, Institut Universitaire des Systèmes Thermiques et Industriels, Marseille13453, France
| | - Bloen Metzger
- Aix Marseille Univ, CNRS, Institut Universitaire des Systèmes Thermiques et Industriels, Marseille13453, France
| | - Yoël Forterre
- Aix Marseille Univ, CNRS, Institut Universitaire des Systèmes Thermiques et Industriels, Marseille13453, France
| | | | - Henri Lhuissier
- Aix Marseille Univ, CNRS, Institut Universitaire des Systèmes Thermiques et Industriels, Marseille13453, France
| |
Collapse
|
7
|
Mandal MK, Roy S. High speed impact on granular media: breakdown of conventional inertial drag models. SOFT MATTER 2024; 20:877-886. [PMID: 38173332 DOI: 10.1039/d3sm01410j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, we extensively explore the impact process on granular media, particularly focusing on situations where the ratio of impact speed to acoustic speed is on the order of 0.01-1. This range significantly exceeds that considered in existing literature (0.0001-0.001). Our investigation involves a comprehensive comparison between our simulation data, obtained under high-speed conditions, and the established macroscopic drag models. In the high-speed regime, conventional drag force models prove inadequate, and the drag force cannot be separated into a depth-dependent static pressure and a depth-independent inertial drag, as suggested in previous literature. A detailed examination of the impact process in the high-speed limit is also presented, involving the spatio-temporal evolution of the force chain network, displacement field, and velocity field at the particle length scale. Unlike prior works demonstrating the exponential decay of pulses, we provide direct evidence of acoustic pulses propagating over long distances, reflecting from boundaries, and interfering with the original pulses. These acoustic pulses, in turn, induce large scale reorganization of the force chain network, and the granular medium continuously traverses different jammed states to support the impact load. Reorientation of the force chains leads to plastic dissipation and the eventual dissipation of the impact energy. Furthermore, we study the scaling of the early stage peak forces with the impact velocity and find that spatial dimensionality strongly influences the scaling.
Collapse
Affiliation(s)
- Manish Kumar Mandal
- Department of Chemical Engineering, IIT Ropar, Rupnagar, Punjab, 140001, India.
| | - Saikat Roy
- Department of Chemical Engineering, IIT Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
8
|
Zhang X, Zheng J, Pan J, Zhang X, Fang J, Min J, Yu C. Construction of nano-silica particle clusters and their effects on the shear thickening properties of liquids. SOFT MATTER 2023; 20:255-265. [PMID: 38086671 DOI: 10.1039/d3sm01217d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
It is of great research significance to prepare a new shear thickening fluid (STF) with a simple process, remarkable thickening effect and excellent impact resistance from the properties of the particles. Inspired by the shear thickening mechanism, nano-silica particle clusters (SPC) with different morphological structures were prepared by the reaction of amino-modified silica with polyethylene glycol diglycidyl ether (PEGDGE), and the structure models of particle clusters were designed through theoretical analysis. The structure of SPC was affected by the degree of amination modification and the molecular weight of PEGDGE, which was analyzed by DLS and TEM. The shear thickening behavior of the fluid was evaluated by steady-state rheology and dynamic-state rheology analysis. The shear thickening behavior of the fluid composed of SPC also changed greatly with the influence of the degree of amination modification and the molecular weight of PEGDGE. In addition, compared with the STF contained original silica, the STF contained SPC could produce a faster and stronger shear thickening response. Therefore, silica particle clusters are not only a promising candidate for the preparation of high-performance shear thickening fluids, but can also be better applied to industrial and scientific fields such as impact protection and shock absorption.
Collapse
Affiliation(s)
- Xingmin Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| | - Jian Zheng
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| | - Jianjun Pan
- Huzhou Customs, Huzhou 313000, Zhejiang, China
| | | | - Jin Fang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 24100, Anhui, China
| | - Jie Min
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
- Key Laboratory of Textile Science & Technology, Ministry of Education, Shanghai 201620, China
| | - Chengbing Yu
- School of Materials Science and Engineering, Shanghai University, Shanghai 201800, China.
| |
Collapse
|
9
|
Pradipto, Hayakawa H. Effective viscosity and elasticity in dense suspensions under impact: Toward a modeling of walking on suspensions. Phys Rev E 2023; 108:024604. [PMID: 37723712 DOI: 10.1103/physreve.108.024604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 09/20/2023]
Abstract
The elastic response of dense suspensions under an impact is studied using coupled lattice Boltzmann method and discrete element method (LBM-DEM) and its reduced model. We succeed to extract the elastic force acting on the impactor in dense suspensions, which can exist even in the absence of percolating clusters of suspended particles. We then propose a reduced model to describe the motion of the impactor and demonstrate its relevancy through the comparison of the solution of the reduced model and that of LBM-DEM. Furthermore, we illustrate that the perturbation analysis of the reduced model captures the short-time behavior of the impactor motion quantitatively. We apply this reduced model to the impact of a foot-spring-body system on a dense suspension, which is the minimal model to realize walking on the suspension. Due to the spring force of the system and the stiffness of the suspension, the foot undergoes multiple bounces. We also study the parameter dependencies of the hopping motion and find that multiple bounces are suppressed as the spring stiffness increases.
Collapse
Affiliation(s)
- Pradipto
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Wu C, Liu H, Lin S, Li Y, Chen Y. Investigation of Fluidic Universal Gripper for Delicate Object Manipulation. Biomimetics (Basel) 2023; 8:biomimetics8020209. [PMID: 37218795 DOI: 10.3390/biomimetics8020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
The compliance of conventional granular jamming universal grippers is limited due to the increasing friction among particles when enveloping an object. This property limits the applications of such grippers. In this paper, we propose a fluidic-based approach for universal gripper which has a much higher compliance compared to conventional granular jamming universal grippers. The fluid is made of micro-particles suspended in liquid. Jamming transition of the dense granular suspension fluid from a fluid (hydrodynamic interactions) to solid-like state (frictional contacts) in the gripper is achieved by external pressure from the inflation of an airbag. The basic jamming mechanism and theoretical analysis of the proposed fluid is investigated, and a prototype universal gripper based on the fluid is developed. The proposed universal gripper exhibits advantageous compliance and grasping robustness in sample grasping of delicate objects, such as plants and sponge objects, where the traditional granular jamming universal gripper fails.
Collapse
Affiliation(s)
- Changchun Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Hao Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Senyuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Yunquan Li
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Liu H, Fu K, Cui X, Zhu H, Yang B. Shear Thickening Fluid and Its Application in Impact Protection: A Review. Polymers (Basel) 2023; 15:polym15102238. [PMID: 37242813 DOI: 10.3390/polym15102238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Shear thickening fluid (STF) is a dense colloidal suspension of nanoparticles in a carrier fluid in which the viscosity increases dramatically with a rise in shear rate. Due to the excellent energy absorption and energy dissipation of STF, there is a desire to employ STFs in a variety of impact applications. In this study, a comprehensive review on STFs' applications is presented. First, several common shear thickening mechanisms are discussed in this paper. The applications of different STF impregnated fabric composites and the STF's contributions on improving the impact, ballistic and stab resistance performance have also been presented. Moreover, recent developments of STF's applications, including dampers and shock absorbers, are included in this review. In addition, some novel applications (acoustic structure, STF-TENG and electrospun nonwoven mats) based on STF are summarized, to suggest the challenges of future research and propose some more deterministic research directions, e.g., potential trends for applications of STF.
Collapse
Affiliation(s)
- Haiqing Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xiaoyu Cui
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Huixin Zhu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Bin Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Liu M, Yang M, Wan X, Tang Z, Jiang L, Wang S. From Nanoscopic to Macroscopic Materials by Stimuli-Responsive Nanoparticle Aggregation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208995. [PMID: 36409139 DOI: 10.1002/adma.202208995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Indexed: 05/19/2023]
Abstract
Stimuli-responsive nanoparticle (NP) aggregation plays an increasingly important role in regulating NP assembly into microscopic superstructures, macroscopic 2D, and 3D functional materials. Diverse external stimuli are widely used to adjust the aggregation of responsive NPs, such as light, temperature, pH, electric, and magnetic fields. Many unique structures based on responsive NPs are constructed including disordered aggregates, ordered superlattices, structural droplets, colloidosomes, and bulk solids. In this review, the strategies for NP aggregation by external stimuli, and their recent progress ranging from nanoscale aggregates, microscale superstructures to macroscale bulk materials along the length scales as well as their applications are summarized. The future opportunities and challenges for designing functional materials through NP aggregation at different length scales are also discussed.
Collapse
Affiliation(s)
- Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Man Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Liu J, Sheng Z, Zhang M, Li J, Zhang Y, Xu X, Yu S, Cao M, Hou X. Non-Newtonian fluid gating membranes with acoustically responsive and self-protective gas transport control. MATERIALS HORIZONS 2023; 10:899-907. [PMID: 36541214 DOI: 10.1039/d2mh01182d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Control of gas transport through porous media is desired in multifarious processes such as chemical reactions, interface absorption, and medical treatment. Liquid gating technology, based on dynamically adaptive interfaces, has been developed in recent years and has shown excellent control capability in gas manipulation-the reversible opening and closing of a liquid gate for gas transport as the applied pressure changes. Here, we report a new strategy to achieve self-protective gas transport control by regulating the dynamic porous interface in a non-Newtonian fluid gating membrane based on the shear thickening fluid. The gas transport process can be suspended and restored via modulation of the acoustic field, owing to the transition of particle-to-particle interactions in a confined geometry. Our experimental and theoretical results support the stability and tunability of the gas transport control. In addition, relying on the shear thickening behaviour of the gating fluid, the transient response can be achieved to resist high-impact pressure. This strategy could be utilized to design integrated smart materials used in complex and extreme environments such as hazardous and explosive gas transportation.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Zhizhi Sheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Mengchuang Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal H3A 0G4, Canada
- Department of Biomedical Engineering, McGill University, Montreal H3A 0G4, Canada
- Department of Surgery, McGill University, Montreal H3A 0G4, Canada
| | - Yunmao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xue Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shijie Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Min Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Gómez LR. Finite amplitude waves in jammed matter. SOFT MATTER 2023; 19:1749-1758. [PMID: 36779234 DOI: 10.1039/d2sm01488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here we use simulations and theory to show that, close to the jamming point, an arbitrary initial distortion of a granular media induces the formation of forward and backward non-linear finite amplitude waves. There are two regimes in the evolution of these waves (near field and far field). Initially, non-linear interactions between forward and backward waves dominate the propagation, leading to complex early evolution (near field). At longer times, forward and backwards waves cease interacting in the far field, and the propagation enters a new regime. Here the waves acquire a triangular-like profile, and evolve in a self-similar fashion characterized by a power law attenuation, whose exponent is weakly dependent on the initial pressure of the system. The finite amplitude waves gradually become linear waves when the amplitude of the initial distortion decreases, or the confining pressure on the system increases.
Collapse
Affiliation(s)
- Leopoldo R Gómez
- Department of Physics, Universidad Nacional del Sur - IFISUR - CONICET, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
15
|
Meslam M, Elzatahry AA, Youssry M. Promising aqueous dispersions of carbon black for semisolid flow battery application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids. Polymers (Basel) 2022; 14:polym14142768. [PMID: 35890543 PMCID: PMC9322945 DOI: 10.3390/polym14142768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Shear jamming, a relatively new type of phase transition from discontinuous shear thickening into a solid-like state driven by shear in dense suspensions, has been shown to originate from frictional interactions between particles. However, not all dense suspensions shear jam. Dense fumed silica colloidal systems have wide applications in the industry of smart materials from body armor to dynamic dampers due to extremely low bulk density and high colloid stability. In this paper, we provide new evidence of shear jamming in polypropylene glycol/fumed silica suspensions using optical in situ speed recording during low-velocity impact and explain how it contributes to impact absorption. Flow rheology confirmed the presence of discontinuous shear thickening at all studied concentrations. Calculations of the flow during impact reveal that front propagation speed is 3–5 times higher than the speed of the impactor rod, which rules out jamming by densification, showing that the cause of the drastic impact absorption is the shear jamming. The main impact absorption begins when the jamming front reaches the boundary, creating a solid-like plug under the rod that confronts its movement. These results provide important insights into the impact absorption mechanism in fumed silica suspensions with a focus on shear jamming.
Collapse
|
17
|
Vo TT, Nguyen TK. Unified penetration depth of low-velocity intruders into granular packings. Phys Rev E 2022; 106:014902. [PMID: 35974579 DOI: 10.1103/physreve.106.014902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Penetration of intruders into granular packings is well described by separately considering the dry or wet case of granular environments in previous experiments and simulations; however, the unified description of such penetration depth in these two granular media remains elusive due to lacking clear explanations about its origins. Based on three-dimensional discrete element method simulations, we introduce a power-law fitting form of the final penetration depth of a spherical intruder with low velocity vertically penetrating into dry and wet granular packings, excellently expressed on a master curve as a power-law function of a dimensionless impact number that is defined as the square root of the ratio between the inertial stress of the intruder and the linear combination of the mean gravitational stress and the cohesive stress exerted on each grain in the packings, as a remarkable extension of the inertial number in dry granular flows. This scaling robustly provides physical insights inherent in the unified description of the material properties of granular packings and the impactor penetration conditions on the final penetration depth in the impact tests, providing evidence of impact properties in different disciplines and applications in science and engineering.
Collapse
Affiliation(s)
- Thanh-Trung Vo
- School of Transportation Engineering, Danang Architecture University, 566 Nui Thanh Street, Da Nang City, Vietnam
- Office of Research Administration, Danang Architecture University, 566 Nui Thanh Street, Da Nang City, Vietnam
| | - Trung-Kien Nguyen
- Faculty of Building and Industrial Construction, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hanoi, Vietnam
| |
Collapse
|
18
|
Barik S, Majumdar S. Origin of Two Distinct Stress Relaxation Regimes in Shear Jammed Dense Suspensions. PHYSICAL REVIEW LETTERS 2022; 128:258002. [PMID: 35802438 DOI: 10.1103/physrevlett.128.258002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Many dense particulate suspensions show a stress induced transformation from a liquidlike state to a solidlike shear jammed (SJ) state. However, the underlying particle-scale dynamics leading to such striking, reversible transition of the bulk remains unknown. Here, we study transient stress relaxation behaviour of SJ states formed by a well-characterized dense suspension under a step strain perturbation. We observe a strongly nonexponential relaxation that develops a sharp discontinuous stress drop at short time for high enough peak-stress values. High resolution boundary imaging and normal stress measurements confirm that such stress discontinuity originates from the localized plastic events, whereas system spanning dilation controls the slower relaxation process. We also find an intriguing correlation between the nature of transient relaxation and the steady-state shear jamming phase diagram obtained from the Wyart-Cates model.
Collapse
Affiliation(s)
- Sachidananda Barik
- Soft Condensed Matter Group, Raman Research Institute, Bangalore 560080, Karnataka, India
| | - Sayantan Majumdar
- Soft Condensed Matter Group, Raman Research Institute, Bangalore 560080, Karnataka, India
| |
Collapse
|
19
|
Liu M, Wan X, Yang M, Wang Z, Bao H, Dai B, Liu H, Wang S. Thermo‐Responsive Jamming of Nanoparticle Dense Suspensions towards Macroscopic Liquid–Solid Switchable Materials. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Man Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bing Dai
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
20
|
Wang H, Chen Y, Wang W. Particle‐level dynamics of clusters: Experiments in a gas‐fluidized bed. AIChE J 2021. [DOI: 10.1002/aic.17525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haifeng Wang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing China
- Research Institute of Petroleum Processing, SINOPEC Beijing China
| | - Yanpei Chen
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Wei Wang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
21
|
Liu M, Wan X, Yang M, Wang Z, Bao H, Dai B, Liu H, Wang S. Thermo-Responsive Jamming of Nanoparticle Dense Suspensions towards Macroscopic Liquid-Solid Switchable Materials. Angew Chem Int Ed Engl 2021; 61:e202114602. [PMID: 34807500 DOI: 10.1002/anie.202114602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/11/2022]
Abstract
Nanoparticle aggregation for constructing functional materials has shown enormous advantages in various applications. Most efforts focused on ordered nanoparticle aggregation for specific functions but were often limited to irreversible aggregation processes due to the thermodynamic equilibrium. Herein, we report a reversible disordered aggregation of SiO2 -PNIPAAm nanoparticles (SPNPs) through thermo-responsive jamming, obtaining smart liquid-solid switchable materials. The smart materials can display a switch between liquid-like state and solid-like state responding to a temperature change. This unique macroscopic behavior originates from the reversible disordered aggregation modulated by temperature-dependent hydrophobic interactions among the SPNPs. Notably, the materials at the solid-like state show anti-impact properties and can withstand the impact of a steel sphere with a speed of 328 cm s-1 . We envision that this finding offers inspiration to design smart liquid-solid switchable materials for impact protection.
Collapse
Affiliation(s)
- Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Man Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Dai
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Supramolecular assembly inspired molecular engineering to dynamically tune non-Newtonian fluid:from quasi-static flowability-free to shear thickening. J Colloid Interface Sci 2021; 607:1805-1812. [PMID: 34600344 DOI: 10.1016/j.jcis.2021.09.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Shear thickening fluids (STFs) have been the research focus for decades because of the prospect as a damping ingredient. However, their inherent liquid character confines their practical applications. In this work, inspired by the assembly engineering, novel gelatinous shear thickening fluids (GSTFs) are fabricated by integrating low molecular weight gelators (LMWGs) into STFs and investigated by rheological experiments. The results show that the apparent performances of GSTFs are determined by the LMWGs content. LMWGs inside GSTFs can assemble into three-dimensional network that can constraint the flowability of liquid molecular and their content dominate the density and strength of assembly network. At a moderate content, GSTFs exhibit desired properties with restricted quasi-static flowability and almost undamaged dynamic shear thickening character. While a higher content will disappear shear thickening and a lower content cannot gelate STFs. Besides, three different LMWGs are employed to gelate STFs and all they can gelate STFs in spite of the distinct minimum gelation concentration, indicating the universality for GSTFs preparation and the superiority of a reasonable molecular structure of LMWGs. Further, the temperature sweep experiments suggest that GSTFs can endure higher temperature without flowing due to its higher gel-sol transition temperature. Basing on these advanced mechanical properties, we believe that the GSTFs with more expected characters have significance for the study of non-Newtonian fluids and will broaden the special application field of STFs.
Collapse
|
23
|
Hsu CP, Mandal J, Ramakrishna SN, Spencer ND, Isa L. Exploring the roles of roughness, friction and adhesion in discontinuous shear thickening by means of thermo-responsive particles. Nat Commun 2021; 12:1477. [PMID: 33674607 PMCID: PMC7935878 DOI: 10.1038/s41467-021-21580-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/24/2021] [Indexed: 01/31/2023] Open
Abstract
Dense suspensions of colloidal or granular particles can display pronounced non-Newtonian behaviour, such as discontinuous shear thickening and shear jamming. The essential contribution of particle surface roughness and adhesive forces confirms that stress-activated frictional contacts can play a key role in these phenomena. Here, by employing a system of microparticles coated by responsive polymers, we report experimental evidence that the relative contributions of friction, adhesion, and surface roughness can be tuned in situ as a function of temperature. Modifying temperature during shear therefore allows contact conditions to be regulated, and discontinuous shear thickening to be switched on and off on demand. The macroscopic rheological response follows the dictates of independent single-particle characterization of adhesive and tribological properties, obtained by colloidal-probe atomic force microscopy. Our findings identify additional routes for the design of smart non-Newtonian fluids and open a way to more directly connect experiments to computational models of sheared suspensions.
Collapse
Affiliation(s)
- Chiao-Peng Hsu
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Joydeb Mandal
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | | | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
You J, Wang Z, Worster MG. Thermal regelation of single particles and particle clusters in ice. SOFT MATTER 2021; 17:1779-1787. [PMID: 33393958 DOI: 10.1039/d0sm01547d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the migration by thermal regelation of single particles and clusters of particles surrounded by ice subjected to a temperature gradient. This phenomenon is relevant to the casting of porous materials, to cryopreservation of biological tissue, and to the degradation of paleoclimatic signals held in ice sheets, for example. Using carefully controlled laboratory experiments, we measure the migration rates of single particles and clusters as they approach the freezing front. We find that clusters migrate at a constant rate, while single particles accelerate towards the freezing front. This fundamental difference is attributed to the fact that, during regelation, melt water passes through the interstices of a cluster, limited by its constant permeability, but for a single particle must flow through a thin layer of pre-melted ice whose thickness diverges as the freezing temperature is approached, reducing the viscous resistance to migration. We extend existing theories of particle and cluster migration to include the influences of different thermal conductivities and of latent heat on the local temperature field in and around the particle or cluster. We find that if the specific latent heat is large or the viscous resistance to flow is sufficiently small then the migration rate is determined solely by heat transport.
Collapse
Affiliation(s)
- Jiaxue You
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - M Grae Worster
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| |
Collapse
|
25
|
Liu K, Cheng L, Zhang N, Pan H, Fan X, Li G, Zhang Z, Zhao D, Zhao J, Yang X, Wang Y, Bai R, Liu Y, Liu Z, Wang S, Gong X, Bao Z, Gu G, Yu W, Yan X. Biomimetic Impact Protective Supramolecular Polymeric Materials Enabled by Quadruple H-Bonding. J Am Chem Soc 2020; 143:1162-1170. [DOI: 10.1021/jacs.0c12119] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ningbin Zhang
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiwen Fan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Sheng Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
26
|
Liard M, Sato A, Sautel J, Lootens D, Hébraud P. Jet instability of a shear-thickening concentrated suspension. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:69. [PMID: 33190210 DOI: 10.1140/epje/i2020-11994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
We investigate the flow of a concentrated suspension of colloidal particles at deformation rates higher than the discontinuous shear-thickening transition shear rate. We show that, under its own weight, a jet of a concentrated enough colloidal suspension, simultaneously flows while it sustains tensile stress and transmits transverse waves. This results in a new flow instability of jets of shear-thickening suspensions: the jet is submitted to rapid transverse oscillations, that we characterize.
Collapse
Affiliation(s)
- Maxime Liard
- Université de Strasbourg, IPCMS/CNRS UMR 7504, 23 rue du Loess, 67034, Strasbourg, France
- Sika Technology AG, Tuffenwies 16, 8048, Zürich, Switzerland
| | - Akihiro Sato
- Université de Strasbourg, IPCMS/CNRS UMR 7504, 23 rue du Loess, 67034, Strasbourg, France
| | - Jérémy Sautel
- Université de Strasbourg, IPCMS/CNRS UMR 7504, 23 rue du Loess, 67034, Strasbourg, France
| | - Didier Lootens
- Sika Technology AG, Tuffenwies 16, 8048, Zürich, Switzerland
| | - Pascal Hébraud
- Université de Strasbourg, IPCMS/CNRS UMR 7504, 23 rue du Loess, 67034, Strasbourg, France.
| |
Collapse
|
27
|
Krizou N, Clark AH. Power-Law Scaling of Early-Stage Forces during Granular Impact. PHYSICAL REVIEW LETTERS 2020; 124:178002. [PMID: 32412283 DOI: 10.1103/physrevlett.124.178002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
We experimentally and computationally study the early-stage forces during intruder impacts with granular beds in the regime where the impact velocity approaches the granular force propagation speed. Experiments use 2D assemblies of photoelastic disks of varying stiffness, and complimentary discrete-element simulations are performed in 2D and 3D. The peak force during the initial stages of impact and the time at which it occurs depend only on the impact speed, the intruder diameter, the stiffness of the grains, and the mass density of the grains according to power-law scaling forms that are not consistent with Poncelet models, granular shock theory, or added-mass models. The insensitivity of our results to many system details suggests that they may also apply to impacts into similar materials like foams and emulsions.
Collapse
Affiliation(s)
- Nasser Krizou
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
| | - Abram H Clark
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
| |
Collapse
|
28
|
Niu R, Ramaswamy M, Ness C, Shetty A, Cohen I. Tunable solidification of cornstarch under impact: How to make someone walking on cornstarch sink. SCIENCE ADVANCES 2020; 6:eaay6661. [PMID: 32494699 PMCID: PMC7209985 DOI: 10.1126/sciadv.aay6661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Hundreds of YouTube videos show people running on cornstarch suspensions demonstrating that dense shear thickening suspensions solidify under impact. Such processes are mimicked by impacting and pulling out a plate from the surface of a thickening cornstarch suspension. Here, using both experiments and simulations, we show that applying fast oscillatory shear transverse to the primary impact or extension directions tunes the degree of solidification. The forces acting on the impacting surface are modified by varying the dimensionless ratio of the orthogonal shear to the compression and extension flow rate. Simulations show varying this parameter changes the number of particle contacts governing solidification. To demonstrate this strategy in an untethered context, we show the sinking speed of a cylinder dropped onto the suspension varies markedly by changing this dimensionless ratio. These results suggest applying orthogonal shear while people are running on cornstarch would de-solidify the suspension and cause them to sink.
Collapse
Affiliation(s)
- Ran Niu
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Meera Ramaswamy
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Christopher Ness
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - Abhishek Shetty
- Anton Paar USA, 10215 Timber Ridge Drive, Ashland, VA 23005, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
29
|
Hayakawa H. Simulation of dense non-Brownian suspensions with the lattice Boltzmann method: shear jammed and fragile states. SOFT MATTER 2020; 16:945-959. [PMID: 31845696 DOI: 10.1039/c9sm00850k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dense non-Brownian suspensions, including both hydrodynamic interactions and frictional contacts between particles, are numerically studied under simple and oscillatory shears in terms of the lattice Boltzmann method. We successfully reproduce the discontinuous shear thickening (DST) under a simple shear for bulk three-dimensional systems. For our simulation of an oscillatory shear in a quasi-two-dimensional system, we measure the mechanical response after the reduction of the strain amplitude from the initial oscillations. Here, we find the existence of a shear-jammed state under this protocol in which the storage modulus G' is only finite for high initial strain amplitude γI0. We also find the existence of a fragile state in which both fluid-like and solid-like responses can be detected for an identical area fraction and an initial strain amplitude γI0 depending on the initial phase Θ (or the asymmetricity of the applied strain) of the oscillatory shear. We also observe a DST-like behavior under the oscillatory shear in the fragile state. Moreover, we find that the stress anisotropy becomes large in the fragile state. Finally, we confirm that a stress formula based on the angular distribution of the contact force recovers the contact contributions to the stress tensors for both simple and oscillatory shears with large strains.
Collapse
Affiliation(s)
- Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
30
|
Wei M, Lv Y, Sun L, Sun H. Rheological properties of multi-walled carbon nanotubes/silica shear thickening fluid suspensions. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04599-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Bulletproof Performance of Composite Plate Fabricated Using Shear Thickening Fluid and Natural Fiber Paper. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the munitions industry, there have been considerable efforts spent to develop low-cost, simply fabricated, easily wearable, and biocompatible bulletproof armors. Recently, long fiber-reinforced composites and shear thickening fluids (STFs) were inceptively utilized to improve bulletproof performance with solid or fabric materials. In this study, Hanji, a cornstarch suspension, Korean traditional long fiber paper, and a well-known STF, respectively, were examined for bulletproof applications to evaluate their own effects on bulletproof performance; tests were carried out in the field and finite element analysis (FEA) was performed to evaluate the behavior of materials regarding with perforated clay areas from in-field tests. It was found that both Hanji and STF influenced the bullet penetration by two factors, namely the momentum of bullet and stress propagation. The cornstarch suspension, rather than Hanji, showed outstanding performance in decreasing the linear velocity of the bullet and minimized the stress propagation to the protecting object. Thus, although STF performed a key role in bulletproof performance, Hanji also proved to be a suitable material as an exterior covering for absorbing the initial impact stress and maintaining the durability and stability of the armor itself.
Collapse
|
32
|
Xie Z, Burke CJ, Mbanga B, Spicer PT, Atherton TJ. Geometry and kinetics determine the microstructure in arrested coalescence of Pickering emulsion droplets. SOFT MATTER 2019; 15:9587-9596. [PMID: 31725145 DOI: 10.1039/c9sm00435a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arrested coalescence occurs in Pickering emulsions where colloidal particles adsorbed on the surface of the droplets become crowded and inhibit both relaxation of the droplet shape and further coalescence. The resulting droplets have a nonuniform distribution of curvature and, depending on the initial coverage, may incorporate a region with negative Gaussian curvature around the neck that bridges the two droplets. Here, we resolve the relative influence of the curvature and the kinetic process of arrest on the microstructure of the final state. In the quasistatic case, defects are induced and distributed to screen the Gaussian curvature. Conversely, if the rate of area change per particle exceeds the diffusion constant of the particles, the evolving surface induces local solidification reminiscent of jamming fronts observed in other colloidal systems. In this regime, the final structure is shown to be strongly affected by the compressive history just prior to arrest, which can be predicted from the extrinsic geometry of the sequence of surfaces in contrast to the intrinsic geometry that governs the static regime.
Collapse
Affiliation(s)
- Zhaoyu Xie
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA.
| | - Christopher J Burke
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA.
| | - Badel Mbanga
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA.
| | - Patrick T Spicer
- Complex Fluids Group, School of Chemical Engineering, UNSW Sydney, Sydney, Australia
| | - Timothy J Atherton
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA.
| |
Collapse
|
33
|
Han E, James NM, Jaeger HM. Stress Controlled Rheology of Dense Suspensions Using Transient Flows. PHYSICAL REVIEW LETTERS 2019; 123:248002. [PMID: 31922854 DOI: 10.1103/physrevlett.123.248002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Dense suspensions of hard particles in a Newtonian liquid can be jammed by shear when the applied stress exceeds a certain threshold. However, this jamming transition from a fluid into a solidified state cannot be probed with conventional steady-state rheology because the stress distribution inside the material cannot be controlled with sufficient precision. Here we introduce and validate a method that overcomes this obstacle. Rapidly propagating shear fronts are generated and used to establish well-controlled local stress conditions that sweep across the material. Exploiting such transient flows, we can track how a dense suspension approaches its shear-jammed state dynamically and quantitatively map out the onset stress for solidification in a state diagram.
Collapse
Affiliation(s)
- Endao Han
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Nicole M James
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heinrich M Jaeger
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
34
|
Baumgarten AS, Kamrin K. A general constitutive model for dense, fine-particle suspensions validated in many geometries. Proc Natl Acad Sci U S A 2019; 116:20828-20836. [PMID: 31562198 PMCID: PMC6800318 DOI: 10.1073/pnas.1908065116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fine-particle suspensions (such as cornstarch mixed with water) exhibit dramatic changes in viscosity when sheared, producing fascinating behaviors that captivate children and rheologists alike. Examination of these mixtures in simple flow geometries suggests intergranular repulsion and its influence on the frictional nature of granular contacts is central to this effect-for mixtures at rest or shearing slowly, repulsion prevents frictional contacts from forming between particles, whereas when sheared more forcefully, granular stresses overcome the repulsion allowing particles to interact frictionally and form microscopic structures that resist flow. Previous constitutive studies of these mixtures have focused on particular cases, typically limited to 2D, steady, simple shearing flows. In this work, we introduce a predictive and general, 3D continuum model for this material, using mixture theory to couple the fluid and particle phases. Playing a central role in the model, we introduce a microstructural state variable, whose evolution is deduced from small-scale physical arguments and checked with existing data. Our space- and time-dependent model is implemented numerically in a variety of unsteady, nonuniform flow configurations where it is shown to accurately capture a variety of key behaviors: 1) the continuous shear-thickening (CST) and discontinuous shear-thickening (DST) behavior observed in steady flows, 2) the time-dependent propagation of "shear jamming fronts," 3) the time-dependent propagation of "impact-activated jamming fronts," and 4) the non-Newtonian, "running on oobleck" effect, wherein fast locomotors stay afloat while slow ones sink.
Collapse
Affiliation(s)
- Aaron S Baumgarten
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ken Kamrin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
35
|
Experimental synthesis and characterization of rough particles for colloidal and granular rheology. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Rheological and Interfacial Properties of Colloidal Electrolytes. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2334-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Tan Z, Ma H, Zhou H, Han X, Cho C. The influence of graphene on the dynamic mechanical behaviour of shear thickening fluids. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
James NM, Xue H, Goyal M, Jaeger HM. Controlling shear jamming in dense suspensions via the particle aspect ratio. SOFT MATTER 2019; 15:3649-3654. [PMID: 30994148 DOI: 10.1039/c9sm00335e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dense suspensions of particles in a liquid exhibit rich, non-Newtonian behaviors such as shear thickening (ST) and shear jamming (SJ). ST has been widely studied and is known to be enhanced by increasing the particles' frictional interactions and also by making their shape more anisotropic. SJ however has only recently been understood to be a distinct phenomenon and, while the role of interparticle friction has been investigated, the role of particle anisotropy in controlling the SJ regime has remained unknown. To address this we here synthesize silica particles for use in water/glycerol suspensions. This pairing of hydrogen-bonding particle surfaces and suspension solvent has been shown to elicit SJ with spherical particles. We then vary particle aspect ratio from Γ = 1 (spheres) to Γ = 11 (slender rods), and perform rheological measurements to determine the effect of particle anisotropy on the onset of shear jamming. We also show that the effect on the precursor to SJ, discontinuous shear thickening (DST), is consistent with prior work. We find that increasing aspect ratio significantly reduces φm, the minimum particle packing fraction at which SJ can be observed, to values as low φm = 33% for Γ = 11. The ability to fix the properties of the solvated particle surfaces, and thus the particle interactions at contact, while varying shape anisotropy, yields fundamental insights about the SJ capabilities of suspensions and provides a framework to rationally design and tune these behaviors.
Collapse
Affiliation(s)
- Nicole M James
- Chemistry Department, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
39
|
Dövencioglu DN, van Doorn A, Koenderink J, Doerschner K. Seeing through transparent layers. J Vis 2019; 18:25. [PMID: 30267077 DOI: 10.1167/18.9.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The human visual system is remarkably good at decomposing local and global deformations in the flow of visual information into different perceptual layers, a critical ability for daily tasks such as driving through rain or fog or catching that evasive trout. In these scenarios, changes in the visual information might be due to a deforming object or deformations due to a transparent medium, such as structured glass or water, or a combination of these. How does the visual system use image deformations to make sense of layering due to transparent materials? We used eidolons to investigate equivalence classes for perceptually similar transparent layers. We created a stimulus space for perceptual equivalents of a fiducial scene by systematically varying the local disarray parameters reach and grain. This disarray in eidolon space leads to distinct impressions of transparency, specifically, high reach and grain values vividly resemble water whereas smaller grain values appear diffuse like structured glass. We asked observers to adjust image deformations so that the objects in the scene looked like they were seen (a) under water, (b) behind haze, or (c) behind structured glass. Observers adjusted image deformation parameters by moving the mouse horizontally (grain) and vertically (reach). For two conditions, water and glass, we observed high intraobserver consistency: responses were not random. Responses yielded a concentrated equivalence class for water and structured glass.
Collapse
Affiliation(s)
- Dicle N Dövencioglu
- Department of Psychology, Justus-Liebig-University Giessen, Giessen, Germany.,National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | - Andrea van Doorn
- KU Leuven, Leuven, Belgium.,Utrecht University, Utrecht, The Netherlands
| | - Jan Koenderink
- KU Leuven, Leuven, Belgium.,Utrecht University, Utrecht, The Netherlands
| | - Katja Doerschner
- Department of Psychology, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey.,Department of Psychology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
40
|
Maharjan R, Brown E. Effective packing fraction for better resolution near the critical point of shear thickening suspensions. Phys Rev E 2019; 99:042604. [PMID: 31108706 DOI: 10.1103/physreve.99.042604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 06/09/2023]
Abstract
We present a technique for obtaining an effective packing fraction for discontinuous shear thickening suspensions near a critical point. It uses a measurable quantity that diverges at the critical point-in this case the inverse of the shear rate γ[over ̇]_{c}^{-1} at the onset of discontinuous shear thickening-as a proxy for packing fraction ϕ. We obtain an effective packing fraction for cornstarch and water by fitting γ[over ̇]_{c}^{-1}(ϕ) and then invert the function to obtain ϕ_{eff}(γ[over ̇]_{c}). We further include the dependence of γ[over ̇]_{c}^{-1} on the rheometer gap d to obtain the function ϕ_{eff}(γ[over ̇]_{c},d). This effective packing fraction ϕ_{eff} has better resolution near the critical point than the raw measured packing fraction ϕ by as much as an order of magnitude. Furthermore, ϕ_{eff} normalized by the critical packing fraction ϕ_{c} can be used to compare rheology data for cornstarch and water suspensions from different laboratory environments with different temperature and humidity. This technique can be straightforwardly generalized to improve resolution in any system with a diverging quantity near a critical point.
Collapse
Affiliation(s)
- Rijan Maharjan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Eric Brown
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
41
|
Zuñiga R, Job S, Santibanez F. Effect of an interstitial fluid on the dynamics of three-dimensional granular media. Phys Rev E 2019; 99:032905. [PMID: 30999475 DOI: 10.1103/physreve.99.032905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/07/2022]
Abstract
The propagation of mechanical energy in granular materials has been intensively studied in recent years given the wide range of fields that have processes related to this phenomena, from geology to impact mitigation and protection of buildings and structures. In this paper, we experimentally explore the effect of an interstitial fluid on the dynamics of the propagation of a mechanical pulse in a granular packing under controlled confinement pressure. The experimental results reveal the occurrence of an elastohydrodynamic mechanism at the scale of the contacts between wet particles. We describe our results in terms of an effective medium theory, including the presence of the viscous fluid. Finally, we study the nonlinear weakening of the granular packing as a function of the amplitude of the pulses. Our observations demonstrate that the softening of the material can be impeded by adjusting the viscosity of the interstitial fluid above a threshold at which the elastohydrodynamic interaction overcomes the elastic repulsion due to the confinement.
Collapse
Affiliation(s)
- Rene Zuñiga
- Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso, Chile.,Laboratoire Quartz, EA 7393, Supméca, 3 rue Fernand Hainaut 93400 Saint-Ouen, France
| | - Stéphane Job
- Laboratoire Quartz, EA 7393, Supméca, 3 rue Fernand Hainaut 93400 Saint-Ouen, France
| | - Francisco Santibanez
- Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso, Chile.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and the North Carolina State University, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
High-velocity impact of solid objects on Non-Newtonian Fluids. Sci Rep 2019; 9:1250. [PMID: 30718642 PMCID: PMC6362045 DOI: 10.1038/s41598-018-37543-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/10/2018] [Indexed: 12/01/2022] Open
Abstract
We investigate which property of non-Newtonian fluids determines the deceleration of a high-speed impacting object. Using high-speed camera footage, we measure the velocity decrease of a high-speed spherical object impacting a typical Newtonian fluid (water) as a reference and compare it with a shear thickening fluid (cornstarch) and a shear thinning viscoelastic fluid (a weakly cross-linked polymer gel). Three models describing the kinetic energy loss of the object are considered: fluid inertia, shear thickening and viscoelasticity. By fitting the three models to the experimental data, we conclude that the viscoelastic model works best for both the cornstarch and the polymer gel. Since the cornstarch is also viscoelastic, we conclude that the ability to stop objects of these complex fluids is given by their viscoelasticity rather than shear thickening or shear thinning.
Collapse
|
43
|
Chen Y, Zhou Y, Pi H, Zeng G. Controlling the shear thickening behavior of suspensions by changing the surface properties of dispersed microspheres. RSC Adv 2019; 9:3469-3478. [PMID: 35518989 PMCID: PMC9060219 DOI: 10.1039/c8ra09692a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022] Open
Abstract
To investigate the effect of the surface properties of dispersed particles on the shear thickening behavior of their corresponding suspensions and further control this characteristic, three kinds of suspensions were prepared by mixing SiO2, SiO2-NH2, and SiO2-COOH microspheres with a poly(ethylene glycol) fluid medium, and their rheological behavior was analyzed carefully. Compared to the SiO2 microsphere suspension, the SiO2-NH2 and SiO2-COOH microsphere suspensions show a weaker thickening behavior and a greater critical shear rate due to the aggregation tendency caused primarily by the organic chains. Moreover, the rheological behavior of the three suspensions display different dependencies on the pH value, which is comprehensively determined by the interaction between the microspheres and the medium. Moreover, the critical shear stress of suspensions with different pH values could be predicted by the Wagner model, which basically proves that the interaction between the particles significantly influences the beginning of thickening. The thickening degree could be interpreted by friction theory. The critical volume fraction corresponding to the onset of discontinuous shear thickening is determined by the friction coefficient between the particles, which is greatly affected by the pH value.
Collapse
Affiliation(s)
- Yi Chen
- Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology Zhuzhou 412007 China .,Hunan Provincial Engineering Laboratory of Key Technique of Non-metallic Packaging Waste Resources Utilization, Hunan University of Technology Zhuzhou 412007 China
| | - Yueyun Zhou
- Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology Zhuzhou 412007 China
| | - Hejie Pi
- Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology Zhuzhou 412007 China .,Hunan Provincial Engineering Laboratory of Key Technique of Non-metallic Packaging Waste Resources Utilization, Hunan University of Technology Zhuzhou 412007 China
| | - Guangsheng Zeng
- Hunan Provincial Engineering Laboratory of Key Technique of Non-metallic Packaging Waste Resources Utilization, Hunan University of Technology Zhuzhou 412007 China .,Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, Hunan University of Technology Zhuzhou 412007 China
| |
Collapse
|
44
|
James NM, Han E, de la Cruz RAL, Jureller J, Jaeger HM. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. NATURE MATERIALS 2018; 17:965-970. [PMID: 30297814 DOI: 10.1038/s41563-018-0175-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Dense suspensions of hard particles in a liquid can exhibit strikingly counter-intuitive behaviour, such as discontinuous shear thickening (DST)1-7 and reversible shear jamming (SJ) into a state where flow is arrested and the suspension is solid-like8-12. A stress-activated crossover from hydrodynamic interactions to frictional particle contacts is key for these behaviours2-4,6,7,9,13. However, in experiments, many suspensions show only DST, not SJ. Here we show that particle surface chemistry plays a central role in creating conditions that make SJ readily observable. We find the system's ability to form interparticle hydrogen bonds when sheared into contact elicits SJ. We demonstrate this with charge-stabilized polymer microspheres and non-spherical cornstarch particles, controlling hydrogen bond formation with solvents. The propensity for SJ is quantified by tensile tests12 and linked to an enhanced friction by atomic force microscopy. Our results extend the fundamental understanding of the SJ mechanism and open avenues for designing strongly non-Newtonian fluids.
Collapse
Affiliation(s)
- Nicole M James
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Endao Han
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Ricardo Arturo Lopez de la Cruz
- Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J.M. Burgers Centre for Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Justin Jureller
- James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Heinrich M Jaeger
- James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Physics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
45
|
Mukhopadhyay S, Allen B, Brown E. Testing constitutive relations by running and walking on cornstarch and water suspensions. Phys Rev E 2018; 97:052604. [PMID: 29906894 DOI: 10.1103/physreve.97.052604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 11/07/2022]
Abstract
The ability of a person to run on the surface of a suspension of cornstarch and water has fascinated scientists and the public alike. However, the constitutive relation obtained from traditional steady-state rheology of cornstarch and water suspensions has failed to explain this behavior. In another paper we presented an averaged constitutive relation for impact rheology consisting of an effective compressive modulus of a system-spanning dynamically jammed structure [R. Maharjan et al., this issue, Phys. Rev. E 97, 052602 (2018)10.1103/PhysRevE.97.052602]. Here we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water. The ability of the constitutive relation to predict the material behavior in a case with different forcing conditions and flow geometry than it was obtained from suggests that the constitutive relation could be applied more generally. We also present a detailed calculation of the added mass effect to show that while it may be able to explain some cases of people running or walking on the surface of cornstarch and water for pool depths H>1.2 m and foot impact velocities V_{I}>1.7 m/s, it cannot explain observations of people walking or running on the surface of cornstarch and water for smaller H or V_{I}.
Collapse
Affiliation(s)
- Shomeek Mukhopadhyay
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Benjamin Allen
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,School of Natural Sciences, University of California, Merced, Merced, California 95343, USA
| | - Eric Brown
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,School of Natural Sciences, University of California, Merced, Merced, California 95343, USA
| |
Collapse
|
46
|
Abstract
Shear thickening is a ubiquitous rheological phenomenon whereby dense suspensions of particles in a fluid exhibit a viscosity increase at high shear, which can turn into a viscosity divergence [discontinuous shear thickening (DST)]. Although macroscopically well characterized, the microscopic origin of DST is still debated, especially in connection to particle surface properties, e.g., roughness and friction. We elucidate here the mechanisms underpinning DST by carrying out nanotribological measurements of the interparticle contacts of model rough colloids. We demonstrate that rough particles exhibit DST over a broader range of shear rates and for volume fractions much lower than for smooth colloids, due to interlocking of surface asperities, showing that taking an engineering-tribology approach is a powerful way to tune DST. Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle–particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as “stick–slip” frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle–particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions.
Collapse
|
47
|
Maharjan R, Mukhopadhyay S, Allen B, Storz T, Brown E. Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys Rev E 2018; 97:052602. [PMID: 29906932 DOI: 10.1103/physreve.97.052602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 06/08/2023]
Abstract
We experimentally characterize the impact response of concentrated suspensions consisting of cornstarch and water. We observe that the suspensions support a large normal stress-on the order of MPa-with a delay after the impactor hits the suspension surface. We show that neither the delay nor the magnitude of the stress can yet be explained by either standard rheological models of shear thickening in terms of steady-state viscosities, or impact models based on added mass or other inertial effects. The stress increase occurs when a dynamically jammed region of the suspension in front of the impactor propagates to the opposite boundary of the container, which can support large stresses when it spans between solid boundaries. We present a constitutive relation for impact rheology to relate the force on the impactor to its displacement. This can be described in terms of an effective modulus but only after the delay required for the dynamically jammed region to span between solid boundaries. Both the modulus and the delay are reported as a function of impact velocity, fluid height, and weight fraction. We report in a companion paper the structure of the dynamically jammed region when it spans between the impactor and the opposite boundary [Allen et al., Phys. Rev. E 97, 052603 (2018)10.1103/PhysRevE.97.052603]. In a direct follow-up paper, we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water [Mukhopadhyay et al., Phys. Rev. E 97, 052604 (2018)10.1103/PhysRevE.97.052604].
Collapse
Affiliation(s)
- Rijan Maharjan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Shomeek Mukhopadhyay
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Benjamin Allen
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - Tobias Storz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Eric Brown
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- School of Natural Sciences, University of California, Merced, California 95343, USA
| |
Collapse
|
48
|
Allen B, Sokol B, Mukhopadhyay S, Maharjan R, Brown E. System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys Rev E 2018; 97:052603. [PMID: 29906931 DOI: 10.1103/physreve.97.052603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 06/08/2023]
Abstract
We experimentally characterize the structure of concentrated suspensions of cornstarch and water in response to impact. Using surface imaging and particle tracking at the boundary opposite the impactor, we observed that a visible structure and particle flow at the boundary occur with a delay after impact. We show the delay time is about the same time as the strong stress response, confirming that the strong stress response results from deformation of the dynamically jammed structure once it spans between the impactor and a solid boundary. A characterization of this strong stress response is reported in a companion paper [Maharjan, Mukhopadhyay, Allen, Storz, and Brown, Phys. Rev. E 97, 052602 (2018)10.1103/PhysRevE.97.052602]. We observed particle flow in the outer part of the dynamically jammed region at the bottom boundary, with a net transverse displacement of up to about 5% of the impactor displacement, indicating shear at the boundary. Direct imaging of the surface of the outer part of the dynamically jammed region reveals a change in surface structure that appears the same as the result of dilation in other cornstarch suspensions. Imaging also reveals cracks, like a brittle solid. These observations suggest the dynamically jammed structure can temporarily support stress according to an effective modulus, like a soil or dense granular material, along a network of frictional contacts between the impactor and solid boundary.
Collapse
Affiliation(s)
- Benjamin Allen
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - Benjamin Sokol
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Shomeek Mukhopadhyay
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Rijan Maharjan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Eric Brown
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- School of Natural Sciences, University of California, Merced, California 95343, USA
| |
Collapse
|
49
|
Kang W, Feng Y, Liu C, Blumenfeld R. Archimedes' law explains penetration of solids into granular media. Nat Commun 2018; 9:1101. [PMID: 29549250 PMCID: PMC5856792 DOI: 10.1038/s41467-018-03344-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
Understanding the response of granular matter to intrusion of solid objects is key to modelling many aspects of behaviour of granular matter, including plastic flow. Here we report a general model for such a quasistatic process. Using a range of experiments, we first show that the relation between the penetration depth and the force resisting it, transiently nonlinear and then linear, is scalable to a universal form. We show that the gradient of the steady-state part, K ϕ , depends only on the medium's internal friction angle, ϕ, and that it is nonlinear in μ = tan ϕ, in contrast to an existing conjecture. We further show that the intrusion of any convex solid shape satisfies a modified Archimedes' law and use this to: relate the zero-depth intercept of the linear part to K ϕ and the intruder's cross-section; explain the curve's nonlinear part in terms of the stagnant zone's development.
Collapse
Affiliation(s)
- Wenting Kang
- State Key Laboratory of Turbulence and Complex System, College of Engineering, Peking University, 100871, Beijing, China
| | - Yajie Feng
- State Key Laboratory of Turbulence and Complex System, College of Engineering, Peking University, 100871, Beijing, China
| | - Caishan Liu
- State Key Laboratory of Turbulence and Complex System, College of Engineering, Peking University, 100871, Beijing, China.
| | - Raphael Blumenfeld
- Imperial College London, London SW7 2AZ, UK
- University of Cambridge, Cambridge CB3 0HE, UK
- National University of Defence Technology, Changsha, Hunan 410073, China
| |
Collapse
|
50
|
Chu B, Salem DR. Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions. Phys Rev E 2018; 96:042601. [PMID: 29347503 DOI: 10.1103/physreve.96.042601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 11/07/2022]
Abstract
Modified drop weight impact tests were performed on SiO_{2}-ethylene glycol concentrated suspensions. Counterintuitive impact-induced solidlike behavior and elasticity, causing significant deceleration and rebound of the impactor, were observed. We provide evidence that the observed large deceleration force on the impactor mainly originates from the hydrodynamic force, and that the elasticity arises from the short-range repulsive force of a solvation layer on the particle surface. This study presents key experimental results to help understand the mechanisms underlying various stress-induced solidification phenomena.
Collapse
Affiliation(s)
- Baojin Chu
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - David R Salem
- Composites and Polymer Engineering (CAPE) Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| |
Collapse
|