1
|
Shi Y, Magarian Blander J. Patterns of bacterial viability governing noncanonical inflammasome activation. Curr Opin Immunol 2025; 92:102512. [PMID: 39675154 DOI: 10.1016/j.coi.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Noncanonical inflammasomes are instrumental in defense against Gram-negative bacteria, activated primarily by bacterial lipopolysaccharide. This review examines commonalities and distinctions in noncanonical inflammasome activation either by virulence factor activity indicating cellular invasion or by detection of bacterial mRNA signaling the undesired presence of live bacteria in sterile tissue. These inflammasome triggers, alongside other examples discussed, reflect properties exclusive to live bacteria. The emerging picture underscores noncanonical inflammasome activation hinging on detection of indicators of bacterial viability such as the presence of certain molecules or activity of specific processes. The complex interpretation of combinatorial signals is essential for inflammasome activation according to the specific facet of infection confronting the host. Decoding these signals and their convergence on inflammasome activation will inform interventions and therapies for infectious diseases.
Collapse
Affiliation(s)
- Yuhua Shi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Programs, Weill Cornell and Sloan Kettering Institute Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Chan FHM, Yeap HW, Liu Z, Rosli SN, Low KE, Bonne I, Wu Y, Chong SZ, Chen KW. Plasticity of cell death pathways ensures GSDMD activation during Yersinia pseudotuberculosis infection. Cell Rep 2025; 44:115216. [PMID: 39823227 DOI: 10.1016/j.celrep.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD). However, whether and how macrophages respond to Yersinia infection in the absence of YopJ or caspase-8 activity remains unclear. Here, we demonstrate that loss of YopJ or its catalytic activity triggers non-canonical inflammasome activation in macrophages and that caspase-11 is required to restrict the bacterial burden in vivo. Under conditions of low caspase-8 activity, wild-type Y. pseudotuberculosis invades macrophages and accesses the cytosol, leading to non-canonical inflammasome activation. Thus, our study highlights the plasticity of death pathways to ensure GSDMD activation during Yersinia infection.
Collapse
Affiliation(s)
- Felicia Hui Min Chan
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Zonghan Liu
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Isabelle Bonne
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Shu Zhen Chong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
3
|
Kravets E, Poschmann G, Hänsch S, Raba V, Weidtkamp-Peters S, Degrandi D, Stühler K, Pfeffer K. mGBP2 engages Galectin-9 for immunity against Toxoplasma gondii. PLoS One 2025; 20:e0316209. [PMID: 39854420 PMCID: PMC11761162 DOI: 10.1371/journal.pone.0316209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025] Open
Abstract
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms. Murine GBPs (mGBPs) recognize T. gondii PVs and assemble into supramolecular mGBP homo- and heterocomplexes that are required for the disruption of the membrane of PVs eventually resulting in the cell-autonomous immune control of vacuole-resident pathogens. We have previously shown that mGBP2 plays an important role in T. gondii immune control. Here, to unravel mGBP2 functions, we report Galectin-9 (Gal9) as a critical mGBP2 interaction partner engaged for immunity to T. gondii. Interestingly, Gal9 also accumulates and colocalizes with mGBP2 at the T. gondii PV. Furthermore, we could prove the requirement of Gal9 for growth control of T. gondii by CRISPR/Cas9 mediated gene editing. These discoveries clearly indicate that Gal9 is a crucial factor for the mGBP2-coordinated cell-autonomous host defense mechanism against T. gondii.
Collapse
Affiliation(s)
- Elisabeth Kravets
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center of Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Veronica Raba
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
VanPortfliet JJ, Lei Y, Ramanathan M, Martinez CG, Wong J, Stodola TJ, Hoffmann BR, Pflug K, Sitcheran R, Kneeland SC, Murray SA, McGuire PJ, Cannon CL, West AP. Caspase-11 drives macrophage hyperinflammation in models of Polg-related mitochondrial disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.11.593693. [PMID: 38798587 PMCID: PMC11118447 DOI: 10.1101/2024.05.11.593693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this vulnerable population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive cytokine secretion and activation of pyroptotic cell death pathways contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.
Collapse
|
5
|
Solomon A, Bossel Ben-Moshe N, Hoffman D, Trzebanski S, Yehezkel D, Vainman L, Netea MG, Avraham R. Early and delayed STAT1-dependent responses drive local trained immunity of macrophages in the spleen. eLife 2025; 13:RP100922. [PMID: 39819562 PMCID: PMC11737870 DOI: 10.7554/elife.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette-Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Salmonella Typhimurium (S.Tm). Utilizing single cell RNA-sequencing and flow cytometry, we discerned STAT1-regulated genes in TI-associated resident and recruited splenic myeloid populations. The temporal dynamics of TI were further elucidated, revealing both early and delayed myeloid subsets with time-dependent, cell-type-specific STAT1 signatures. Using lineage tracing, we find that tissue-resident red pulp macrophages (RPM), initially depleted by BCG exposure, are restored from both tissue-trained, self-renewing macrophages and from bone marrow-derived progenitors, fostering long lasting local defense. Early inhibition of STAT1 activation, using specific JAK-STAT inhibitors, reduces both RPM loss and recruitment of trained monocytes. Our study suggests a temporal window soon after BCG vaccination, in which STAT1-dependent activation of long-lived resident cells in the tissue mediates localized protection.
Collapse
Affiliation(s)
- Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Dotan Hoffman
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Dror Yehezkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Leia Vainman
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterNijmegenNetherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of BonnBonnGermany
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
6
|
Sun Y, Zhou Y, Peng T, Huang Y, Lu H, Ying X, Kang M, Jiang H, Wang J, Zheng J, Zeng C, Liu W, Zhang X, Ai L, Peng Q. Preventing NLRP3 inflammasome activation: Therapeutic atrategy and challenges in atopic dermatitis. Int Immunopharmacol 2025; 144:113696. [PMID: 39608174 DOI: 10.1016/j.intimp.2024.113696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder characterized by its chronic, persistent, and recurrent nature. The pathophysiology of this condition is complex, involving various factors including cell-mediated immune responses, compromised skin barrier function, and alterations in hypersensitivity reactions. These components synergistically contribute to the perpetuation of the bothersome "itch-scratch-itch" cycle. Recent research has highlighted the significant role of the NLRP3 inflammasome in the development of AD and other inflammatory conditions. Current research indicates that the NLRP3 inflammasome plays a pivotal role in both the acute and chronic phases of AD by modulating the Th2/Th1 immune deviation. Moreover, the pharmacological suppression of NLRP3 has shown promising results in mitigating the pathological aspects of AD. This review outlines potential drug development strategies that target the NLRP3 inflammasome as a therapeutic approach for AD and the challenges faced in this endeavor.
Collapse
Affiliation(s)
- Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yangang Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Tong Peng
- Department of R&D, Keystonecare Technology (Chengdu) Co., Ltd, Chengdu 610094, China
| | - Yuhang Huang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hao Lu
- School of Biosciences and Technology, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases at Chengdu Medical College of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Xiran Ying
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Mingsheng Kang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hao Jiang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jingying Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jiayao Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chenyu Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Wanting Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lin Ai
- Department of Dermatology and Venereology, Nanbu County People's Hospital, Nanchong 637399, China
| | - Quekun Peng
- School of Biosciences and Technology, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases at Chengdu Medical College of Sichuan Province, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
7
|
Kuhm T, Taisne C, de Agrela Pinto C, Gross L, Giannopoulou EA, Huber ST, Pardon E, Steyaert J, Tans SJ, Jakobi AJ. Structural basis of antimicrobial membrane coat assembly by human GBP1. Nat Struct Mol Biol 2025; 32:172-184. [PMID: 39394410 PMCID: PMC11746146 DOI: 10.1038/s41594-024-01400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Guanylate-binding proteins (GBPs) are interferon-inducible guanosine triphosphate hydrolases (GTPases) mediating host defense against intracellular pathogens. Their antimicrobial activity hinges on their ability to self-associate and coat pathogen-associated compartments or cytosolic bacteria. Coat formation depends on GTPase activity but how nucleotide binding and hydrolysis prime coat formation remains unclear. Here, we report the cryo-electron microscopy structure of the full-length human GBP1 dimer in its guanine nucleotide-bound state and describe the molecular ultrastructure of the GBP1 coat on liposomes and bacterial lipopolysaccharide membranes. Conformational changes of the middle and GTPase effector domains expose the isoprenylated C terminus for membrane association. The α-helical middle domains form a parallel, crossover arrangement essential for coat formation and position the extended effector domain for intercalation into the lipopolysaccharide layer of gram-negative membranes. Nucleotide binding and hydrolysis create oligomeric scaffolds with contractile abilities that promote membrane extrusion and fragmentation. Our data offer a structural and mechanistic framework for understanding GBP1 effector functions in intracellular immunity.
Collapse
Affiliation(s)
- Tanja Kuhm
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Clémence Taisne
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cecilia de Agrela Pinto
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Evdokia A Giannopoulou
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Stefan T Huber
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Els Pardon
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sander J Tans
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- AMOLF, Amsterdam, The Netherlands
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
8
|
Abstract
Macrophages, neutrophils, and epithelial cells are pivotal components of the host's immune response against bacterial infections. These cells employ inflammasomes to detect various microbial stimuli during infection, triggering an inflammatory response aimed at eradicating the pathogens. Among these inflammatory responses, pyroptosis, a lytic form of cell death, plays a crucial role in eliminating replicating bacteria and recruiting immune cells to combat the invading pathogen. The immunological function of pyroptosis varies across macrophages, neutrophils, and epithelial cells, aligning with their specific roles within the innate immune system. This review centers on elucidating the role of pyroptosis in resisting gram-negative bacterial infections, with a particular focus on the mechanisms at play in macrophages, neutrophils, and intestinal epithelial cells. Additionally, we underscore the cell type-specific roles of pyroptosis in vivo in these contexts during defense.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Todd J Spears
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Holbert S, Barilleau E, Yan J, Trotereau J, Koczerka M, Charton M, Le Vern Y, Pichon J, Grassl GA, Velge P, Wiedemann A. The Salmonella virulence protein PagN contributes to the advent of a hyper-replicating cytosolic bacterial population. Virulence 2024; 15:2357670. [PMID: 38804638 PMCID: PMC11135831 DOI: 10.1080/21505594.2024.2357670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Salmonella enterica subspecies enterica serovar Typhimurium is an intracellular pathogen that invades and colonizes the intestinal epithelium. Following bacterial invasion, Salmonella is enclosed within a membrane-bound vacuole known as a Salmonella-containing vacuole (SCV). However, a subset of Salmonella has the capability to prematurely rupture the SCV and escape, resulting in Salmonella hyper-replication within the cytosol of epithelial cells. A recently published RNA-seq study provides an overview of cytosolic and vacuolar upregulated genes and highlights pagN vacuolar upregulation. Here, using transcription kinetics, protein production profile, and immunofluorescence microscopy, we showed that PagN is exclusively produced by Salmonella in SCV. Gentamicin protection and chloroquine resistance assays were performed to demonstrate that deletion of pagN affects Salmonella replication by affecting the cytosolic bacterial population. This study presents the first example of a Salmonella virulence factor expressed within the endocytic compartment, which has a significant impact on the dynamics of Salmonella cytosolic hyper-replication.
Collapse
Affiliation(s)
| | | | - Jin Yan
- IRSD - Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, China
- Research Center of Digestive Disease, Central South University, China
| | | | | | - Mégane Charton
- INRAE, Université de Tours, ISP, Nouzilly, France
- Service biologie vétérinaire et santé animale, Inovalys, Angers, France
| | - Yves Le Vern
- INRAE, Université de Tours, ISP, Nouzilly, France
| | | | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | | | - Agnès Wiedemann
- INRAE, Université de Tours, ISP, Nouzilly, France
- IRSD - Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France
| |
Collapse
|
10
|
Li FJ, Starrs L, Mathur A, Enosi Tuipulotu D, Man SM, Burgio G. Interferon signalling and non-canonical inflammasome activation promote host protection against multidrug-resistant Acinetobacter baumannii. Commun Biol 2024; 7:1494. [PMID: 39533032 PMCID: PMC11557958 DOI: 10.1038/s42003-024-07204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii are of major concern worldwide due to their resistance to last resort carbapenem and polymyxin antibiotics. To develop an effective treatment strategy, it is critical to better understand how an A. baumannii MDR bacterium interacts with its mammalian host. Pattern-recognition receptors sense microbes, and activate the inflammasome pathway, leading to pro-inflammatory cytokine production and programmed cell death. Here, we examined the effects of a systemic MDR A. baumannii infection and found that MDR A. baumannii activate the NLRP3 inflammasome complex predominantly via the non-canonical caspase-11-dependent pathway. We show that caspase-1 and caspase-11-deficient mice are protected from a virulent MDR A. baumannii strain by maintaining a balance between protective and deleterious inflammation. Caspase-11-deficient mice also compromise between effector cell recruitment, phagocytosis, and programmed cell death in the lung during infection. Importantly, we found that cytosolic immunity - mediated by guanylate-binding protein 1 (GBP1) and type I interferon signalling - orchestrates caspase-11-dependent inflammasome activation. Together, our results suggest that non-canonical inflammasome activation via the (Interferon) IFN pathway plays a critical role in the host response against MDR A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lora Starrs
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
11
|
Egan MS, O’Rourke EA, Mageswaran SK, Zuo B, Martynyuk I, Demissie T, Hunter EN, Bass AR, Chang YW, Brodsky IE, Shin S. Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.17.549348. [PMID: 37503120 PMCID: PMC10370064 DOI: 10.1101/2023.07.17.549348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into host cells and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and restricting bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and Ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells as well as increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.
Collapse
Affiliation(s)
- Marisa S. Egan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emily A. O’Rourke
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Biao Zuo
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Inna Martynyuk
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tabitha Demissie
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma N. Hunter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Antonia R. Bass
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Verma A, Azhar G, Patyal P, Zhang W, Zhang X, Wei JY. Proteomic analysis of P. gingivalis-Lipopolysaccharide induced neuroinflammation in SH-SY5Y and HMC3 cells. GeroScience 2024; 46:4315-4332. [PMID: 38507186 PMCID: PMC11336124 DOI: 10.1007/s11357-024-01117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic periodontitis and its keystone pathogen, Porphyromonas gingivalis, have increasingly been linked with Alzheimer's disease (AD). However, P.gingivalis-lipopolysaccharide (LPS) mediated release of neuroinflammatory proteins contributes to AD remains underexplored. In this study, we utilized data-independent acquisition mass spectrometry to characterize P.gingivalis-LPS induced profile of differentially expressed proteins associated with the neuroinflammatory response in human neuroblastoma (SH-SY5Y) and human microglial (HMC3) cells. We reported a set of 124 proteins in SH-SY5Y cells and 96 proteins in HMC3 cells whose levels were significantly upregulated or downregulated by exposure to P. gingivalis-LPS. Our findings demonstrate that P. gingivalis-LPS contributed to the elevated expressions of dementia biomarkers and pro-inflammatory cytokines that include APP, Aβ1-42, Aβ1-40, T-Tau, p-Tau, VEGF, TGF-β, IL-1β, IL-6 and TNF-α through 2 distinct pathways of extracellular sensing by cell surface receptors and intracellular cytosolic receptors. Interestingly, intracellular signaling proteins activated with P. gingivalis-LPS transfection using Lipofectamine™ 2000 had significantly higher fold change protein expression compared to the extracellular signaling with P. gingivalis-LPS treatment. Additionally, we also explored P. gingivalis-LPS mediated activation of caspase-4 dependent non canonical inflammasome pathway in both SH-SY5Y and HMC3 cells. In summary, P. gingivalis-LPS induced neuroinflammatory protein expression in SH-SY5Y and HMC3 cells, provided insights into the specific inflammatory pathways underlying the potential link between P. gingivalis-LPS infection and the pathogenesis of Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Ambika Verma
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Gohar Azhar
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Pankaj Patyal
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Wei Zhang
- Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Xiaomin Zhang
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Jeanne Y Wei
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA.
| |
Collapse
|
13
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
14
|
Kawai A, Noda M, Hirata H, Munakata L, Matsuda T, Omata D, Takemura N, Onoe S, Hirose M, Kato T, Saitoh T, Hirai T, Suzuki R, Yoshioka Y. Lipid Nanoparticle with 1,2-Di-O-octadecenyl-3-trimethylammonium-propane as a Component Lipid Confers Potent Responses of Th1 Cells and Antibody against Vaccine Antigen. ACS NANO 2024; 18:16589-16609. [PMID: 38885198 PMCID: PMC11223497 DOI: 10.1021/acsnano.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Hirata
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lisa Munakata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Teppei Matsuda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Omata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Naoki Takemura
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sakura Onoe
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika Hirose
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yasuo Yoshioka
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of
Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Sun Y, Li F, Liu Y, Qiao D, Yao X, Liu GS, Li D, Xiao C, Wang T, Chi W. Targeting inflammasomes and pyroptosis in retinal diseases-molecular mechanisms and future perspectives. Prog Retin Eye Res 2024; 101:101263. [PMID: 38657834 DOI: 10.1016/j.preteyeres.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Retinal diseases encompass various conditions associated with sight-threatening immune responses and are leading causes of blindness worldwide. These diseases include age-related macular degeneration, diabetic retinopathy, glaucoma and uveitis. Emerging evidence underscores the vital role of the innate immune response in retinal diseases, beyond the previously emphasized T-cell-driven processes of the adaptive immune system. In particular, pyroptosis, a newly discovered programmed cell death process involving inflammasome formation, has been implicated in the loss of membrane integrity and the release of inflammatory cytokines. Several disease-relevant animal models have provided evidence that the formation of inflammasomes and the induction of pyroptosis in innate immune cells contribute to inflammation in various retinal diseases. In this review article, we summarize current knowledge about the innate immune system and pyroptosis in retinal diseases. We also provide insights into translational targeting approaches, including novel drugs countering pyroptosis, to improve the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Yimeng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Fan Li
- Eye Center, Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Yunfei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Dijie Qiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinyu Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dequan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tao Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangming District, Shenzhen, 518132, China; School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao You'anMen Street, Beijing, 100069, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Robinson KS, Boucher D. Inflammasomes in epithelial innate immunity: front line warriors. FEBS Lett 2024; 598:1335-1353. [PMID: 38485451 DOI: 10.1002/1873-3468.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/12/2024]
Abstract
Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.
Collapse
Affiliation(s)
- Kim Samirah Robinson
- The Skin Innate Immunity and Inflammatory Disease Lab, Skin Research Centre, Department of Hull York Medical School, University of York, UK
- York Biomedical Research Institute, University of York, UK
| | - Dave Boucher
- York Biomedical Research Institute, University of York, UK
- Department of Biology, University of York, UK
| |
Collapse
|
17
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Reitano JR, Coers J. Restriction and evasion: a review of IFNγ-mediated cell-autonomous defense pathways during genital Chlamydia infection. Pathog Dis 2024; 82:ftae019. [PMID: 39210512 PMCID: PMC11407441 DOI: 10.1093/femspd/ftae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection (STI) in the USA. As an STI, C. trachomatis infections can cause inflammatory damage to the female reproductive tract and downstream sequelae including infertility. No vaccine currently exists to C. trachomatis, which evades sterilizing immune responses in its human host. A better understanding of this evasion will greatly benefit the production of anti-Chlamydia therapeutics and vaccination strategies. This minireview will discuss a single branch of the immune system, which activates in response to genital Chlamydia infection: so-called "cell-autonomous immunity" activated by the cytokine interferon-gamma. We will also discuss the mechanisms by which human and mouse-adapted Chlamydia species evade cell-autonomous immune responses in their native hosts. This minireview will examine five pathways of host defense and their evasion: (i) depletion of tryptophan and other nutrients, (ii) immunity-related GTPase-mediated defense, (iii) production of nitric oxide, (iv) IFNγ-induced cell death, and (v) RNF213-mediated destruction of inclusions.
Collapse
Affiliation(s)
- Jeffrey R Reitano
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical School, 213 Research Dr. Box 3054, Durham, NC 27710, United States
| |
Collapse
|
19
|
Akuma DC, Wodzanowski KA, Schwartz Wertman R, Exconde PM, Vázquez Marrero VR, Odunze CE, Grubaugh D, Shin S, Taabazuing C, Brodsky IE. Catalytic activity and autoprocessing of murine caspase-11 mediate noncanonical inflammasome assembly in response to cytosolic LPS. eLife 2024; 13:e83725. [PMID: 38231198 PMCID: PMC10794067 DOI: 10.7554/elife.83725] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Inflammatory caspases are cysteine protease zymogens whose activation following infection or cellular damage occurs within supramolecular organizing centers (SMOCs) known as inflammasomes. Inflammasomes recruit caspases to undergo proximity-induced autoprocessing into an enzymatically active form that cleaves downstream targets. Binding of bacterial LPS to its cytosolic sensor, caspase-11 (Casp11), promotes Casp11 aggregation within a high-molecular-weight complex known as the noncanonical inflammasome, where it is activated to cleave gasdermin D and induce pyroptosis. However, the cellular correlates of Casp11 oligomerization and whether Casp11 forms an LPS-induced SMOC within cells remain unknown. Expression of fluorescently labeled Casp11 in macrophages revealed that cytosolic LPS induced Casp11 speck formation. Unexpectedly, catalytic activity and autoprocessing were required for Casp11 to form LPS-induced specks in macrophages. Furthermore, both catalytic activity and autoprocessing were required for Casp11 speck formation in an ectopic expression system, and processing of Casp11 via ectopically expressed TEV protease was sufficient to induce Casp11 speck formation. These data reveal a previously undescribed role for Casp11 catalytic activity and autoprocessing in noncanonical inflammasome assembly, and shed new light on the molecular requirements for noncanonical inflammasome assembly in response to cytosolic LPS.
Collapse
Affiliation(s)
- Daniel C Akuma
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Ronit Schwartz Wertman
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Patrick M Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Víctor R Vázquez Marrero
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | | | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Cornelius Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
20
|
Cinar MU, Oliveira RD, Hadfield TS, Lichtenwalner A, Brzozowski RJ, Settlemire CT, Schoenian SG, Parker C, Neibergs HL, Cockett NE, White SN. Genome-wide association with footrot in hair and wool sheep. Front Genet 2024; 14:1297444. [PMID: 38288162 PMCID: PMC10822918 DOI: 10.3389/fgene.2023.1297444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Ovine footrot is an infectious disease with important contributions from Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is characterized by separation of the hoof from underlying tissue, and this causes severe lameness that negatively impacts animal wellbeing, growth, and profitability. Large economic losses result from lost production as well as treatment costs, and improved genetic tools to address footrot are a valuable long-term goal. Prior genetic studies had examined European wool sheep, but hair sheep breeds such as Katahdin and Blackbelly have been reported to have increased resistance to footrot, as well as to intestinal parasites. Thus, footrot condition scores were collected from 251 U.S. sheep including Katahdin, Blackbelly, and European-influenced crossbred sheep with direct and imputed genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density. Genome-wide association was performed with a mixed model accounting for farm and principal components derived from animal genotypes, as well as a random term for the genomic relationship matrix. We identified three genome-wide significant associations, including SNPs in or near GBP6 and TCHH. We also identified 33 additional associated SNPs with genome-wide suggestive evidence, including a cluster of 6 SNPs in a peak near the genome-wide significance threshold located near the glutamine transporter gene SLC38A1. These findings suggest genetic susceptibility to footrot may be influenced by genes involved in divergent biological processes such as immune responses, nutrient availability, and hoof growth and integrity. This is the first genome-wide study to investigate susceptibility to footrot by including hair sheep and also the first study of any kind to identify multiple genome-wide significant associations with ovine footrot. These results provide a foundation for developing genetic tests for marker-assisted selection to improve resistance to ovine footrot once additional steps like fine mapping and validation are complete.
Collapse
Affiliation(s)
- Mehmet Ulas Cinar
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkiye
| | - Ryan D. Oliveira
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Tracy S. Hadfield
- Department of Animal, Agricultural Experiment Station, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Anne Lichtenwalner
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| | | | | | - Susan G. Schoenian
- Western Maryland Research and Education Center, University of Maryland, College Park, MD, United States
| | - Charles Parker
- Department of Animal Sciences, Professor Emeritus, The Ohio State University, Columbus, OH, United States
| | - Holly L. Neibergs
- Department of Animal Science, Washington State University, Pullman, WA, United States
| | - Noelle E. Cockett
- Department of Animal, Agricultural Experiment Station, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Stephen N. White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
21
|
Jiang Y, Gao S, Chen Z, Zhao X, Gu J, Wu H, Liao Y, Wang J, Chen W. Pyroptosis in septic lung injury: Interactions with other types of cell death. Biomed Pharmacother 2023; 169:115914. [PMID: 38000360 DOI: 10.1016/j.biopha.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Sepsis is a life-threatening systemic inflammatory response syndrome caused by the host imbalanced response to infection. Lung injury is the most common complication of sepsis and one of the leading causes of patient death. Pyroptosis is a specific programmed cell death characterized by the release of inflammatory cytokines. Appropriate pyroptosis can reduce tissue damage and exert a protective effect against infection during sepsis. However, overactivated pyroptosis results in massive cell death, leading to septic shock, multiple organ dysfunction syndrome, and even an increased risk of secondary infection. Recent studies suggest that pyroptosis can interact with and cross-regulate other types of cell death programs to establish a complex network of cell death, which participates in the occurrence and development of septic lung injury. This review will focus on the interactions between pyroptosis and other types of cell death, including apoptosis, necroptosis, PANoptosis, NETosis, autophagy, and ferroptosis, to summarize the role of pyroptosis in sepsis-induced lung injury, and will discuss the potential therapeutic strategies of targeting pyroptosis during sepsis treatment.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai 201104, China; Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201799, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai 201104, China; Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201799, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai 201104, China; Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201799, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Xiaoqiang Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai 201104, China; Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201799, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Han Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai 201104, China; Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201799, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Yun Liao
- Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai 201104, China; Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201799, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China.
| |
Collapse
|
22
|
Ghait M, Duduskar SN, Rooney M, Häfner N, Reng L, Göhrig B, Reuken PA, Bloos F, Bauer M, Sponholz C, Bruns T, Rubio I. The non-canonical inflammasome activators Caspase-4 and Caspase-5 are differentially regulated during immunosuppression-associated organ damage. Front Immunol 2023; 14:1239474. [PMID: 38106412 PMCID: PMC10722270 DOI: 10.3389/fimmu.2023.1239474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The non-canonical inflammasome, which includes caspase-11 in mice and caspase-4 and caspase-5 in humans, is upregulated during inflammatory processes and activated in response to bacterial infections to carry out pyroptosis. Inadequate activity of the inflammasome has been associated with states of immunosuppression and immunopathological organ damage. However, the regulation of the receptors caspase-4 and caspase-5 during severe states of immunosuppression is largely not understood. We report that CASP4 and CASP5 are differentially regulated during acute-on-chronic liver failure and sepsis-associated immunosuppression, suggesting non-redundant functions in the inflammasome response to infection. While CASP5 remained upregulated and cleaved p20-GSDMD could be detected in sera from critically ill patients, CASP4 was downregulated in critically ill patients who exhibited features of immunosuppression and organ failure. Mechanistically, downregulation of CASP4 correlated with decreased gasdermin D levels and impaired interferon signaling, as reflected by decreased activity of the CASP4 transcriptional activators IRF1 and IRF2. Caspase-4 gene and protein expression inversely correlated with markers of organ dysfunction, including MELD and SOFA scores, and with GSDMD activity, illustrating the association of CASP4 levels with disease severity. Our results document the selective downregulation of the non-canonical inflammasome activator caspase-4 in the context of sepsis-associated immunosuppression and organ damage and provide new insights for the development of biomarkers or novel immunomodulatory therapies for the treatment of severe infections.
Collapse
Affiliation(s)
- Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital, Jena, Germany
| | - Laura Reng
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bianca Göhrig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Frank Bloos
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Wu J, Cai J, Tang Y, Lu B. The noncanonical inflammasome-induced pyroptosis and septic shock. Semin Immunol 2023; 70:101844. [PMID: 37778179 DOI: 10.1016/j.smim.2023.101844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.
Collapse
Affiliation(s)
- Junru Wu
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jingjing Cai
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410000, PR China
| | - Ben Lu
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, PR China.
| |
Collapse
|
24
|
Dejas L, Santoni K, Meunier E, Lamkanfi M. Regulated cell death in neutrophils: From apoptosis to NETosis and pyroptosis. Semin Immunol 2023; 70:101849. [PMID: 37939552 PMCID: PMC10753288 DOI: 10.1016/j.smim.2023.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Neutrophils are among the most abundant immune cells, representing about 50%- 70% of all circulating leukocytes in humans. Neutrophils rapidly infiltrate inflamed tissues and play an essential role in host defense against infections. They exert microbicidal activity through a variety of specialized effector mechanisms, including phagocytosis, production of reactive oxygen species, degranulation and release of secretory vesicles containing broad-spectrum antimicrobial factors. In addition to their homeostatic turnover by apoptosis, recent studies have revealed the mechanisms by which neutrophils undergo various forms of regulated cell death. In this review, we will discuss the different modes of regulated cell death that have been described in neutrophils, with a particular emphasis on the current understanding of neutrophil pyroptosis and its role in infections and autoinflammation.
Collapse
Affiliation(s)
- Léonie Dejas
- Laboratory of Medical Immunology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent B-9000, Belgium
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse 31400, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse 31400, France
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent B-9000, Belgium.
| |
Collapse
|
25
|
Bass AR, Egan MS, Alexander-Floyd J, Lopes Fischer N, Doerner J, Shin S. Human GBP1 facilitates the rupture of the Legionella-containing vacuole and inflammasome activation. mBio 2023; 14:e0170723. [PMID: 37737612 PMCID: PMC10653807 DOI: 10.1128/mbio.01707-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Inflammasomes are essential for host defense against intracellular bacterial pathogens like Legionella, as they activate caspases, which promote cytokine release and cell death to control infection. In mice, interferon (IFN) signaling promotes inflammasome responses against bacteria by inducing a family of IFN-inducible GTPases known as guanylate-binding proteins (GBPs). Within murine macrophages, IFN promotes the rupture of the Legionella-containing vacuole (LCV), while GBPs are dispensable for this process. Instead, GBPs facilitate the lysis of cytosol-exposed Legionella. In contrast, the functions of IFN and GBPs in human inflammasome responses to Legionella are poorly understood. We show that IFN-γ enhances inflammasome responses to Legionella in human macrophages. Human GBP1 is required for these IFN-γ-driven inflammasome responses. Furthermore, GBP1 co-localizes with Legionella and/or LCVs in a type IV secretion system (T4SS)-dependent manner and promotes damage to the LCV, which leads to increased exposure of the bacteria to the host cell cytosol. Thus, our findings reveal species- and pathogen-specific differences in how GBPs function to promote inflammasome responses.
Collapse
Affiliation(s)
- Antonia R. Bass
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S. Egan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jasmine Alexander-Floyd
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Lopes Fischer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Doerner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Kirkby M, Enosi Tuipulotu D, Feng S, Lo Pilato J, Man SM. Guanylate-binding proteins: mechanisms of pattern recognition and antimicrobial functions. Trends Biochem Sci 2023; 48:883-893. [PMID: 37567806 DOI: 10.1016/j.tibs.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
Guanylate-binding proteins (GBPs) are a family of intracellular proteins which have diverse biological functions, including pathogen sensing and host defense against infectious disease. These proteins are expressed in response to interferon (IFN) stimulation and can localize and target intracellular microbes (e.g., bacteria and viruses) by protein trafficking and membrane binding. These properties contribute to the ability of GBPs to induce inflammasome activation, inflammation, and cell death, and to directly disrupt pathogen membranes. Recent biochemical studies have revealed that human GBP1, GBP2, and GBP3 can directly bind to the lipopolysaccharide (LPS) of Gram-negative bacteria. In this review we discuss emerging data highlighting the functional versatility of GBPs, with a focus on their molecular mechanisms of pattern recognition and antimicrobial activity.
Collapse
Affiliation(s)
- Max Kirkby
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jordan Lo Pilato
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
27
|
Abstract
The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.
Collapse
Affiliation(s)
- Beatrice I Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James P Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Current affiliation: Oncology Discovery, Abbvie, Inc., Chicago, Illinois, USA;
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Broz P. Unconventional protein secretion by gasdermin pores. Semin Immunol 2023; 69:101811. [PMID: 37473560 DOI: 10.1016/j.smim.2023.101811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Unconventional protein secretion (UPS) allows the release of specific leaderless proteins independently of the classical endoplasmic reticulum (ER)-Golgi secretory pathway. While it remains one of the least understood mechanisms in cell biology, UPS plays an essential role in immunity as it controls the release of the IL-1 family of cytokines, which coordinate host defense and inflammatory responses. The unconventional secretion of IL-1β and IL-18, the two most prominent members of the IL-1 family, is initiated by inflammasome complexes - cytosolic signaling platforms that are assembled in response to infectious or noxious stimuli. Inflammasomes activate inflammatory caspases that proteolytically mature IL-1β/- 18, but also induce pyroptosis, a lytic form of cell death. Pyroptosis is caused by gasdermin-D (GSDMD), a member of the gasdermin protein family, which is activated by caspase cleavage and forms large β-barrel plasma membrane pores. This pore-forming activity is shared with other family members that are activated during infection or upon treatment with chemotherapy drugs. While the induction of cell death was assumed to be the main function of gasdermin pores, accumulating evidence suggests that they have also non-lytic functions, such as in the release of cytokines and alarmins, or in regulating ion fluxes. This has raised the possibility that gasdermin pores are one of the main mediators of UPS. Here, I summarize and discuss new insights into gasdermin activation and pore formation, how gasdermin pores achieve selective cargo release, and how gasdermin pore formation and ninjurin-1-driven plasma membrane rupture are executed and regulated.
Collapse
Affiliation(s)
- Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
29
|
Li L, Dickinson MS, Coers J, Miao EA. Pyroptosis in defense against intracellular bacteria. Semin Immunol 2023; 69:101805. [PMID: 37429234 PMCID: PMC10530505 DOI: 10.1016/j.smim.2023.101805] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Pathogenic microbes invade the human body and trigger a host immune response to defend against the infection. In response, host-adapted pathogens employ numerous virulence strategies to overcome host defense mechanisms. As a result, the interaction between the host and pathogen is a dynamic process that shapes the evolution of the host's immune response. Among the immune responses against intracellular bacteria, pyroptosis, a lytic form of cell death, is a crucial mechanism that eliminates replicative niches for intracellular pathogens and modulates the immune system by releasing danger signals. This review focuses on the role of pyroptosis in combating intracellular bacterial infection. We examine the cell type specific roles of pyroptosis in neutrophils and intestinal epithelial cells. We discuss the regulatory mechanisms of pyroptosis, including its modulation by autophagy and interferon-inducible GTPases. Furthermore, we highlight that while host-adapted pathogens can often subvert pyroptosis, environmental microbes are effectively eliminated by pyroptosis.
Collapse
Affiliation(s)
- Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Mary S Dickinson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
30
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
31
|
Stoess C, Leszczynska A, Kui L, Feldstein AE. Pyroptosis and gasdermins-Emerging insights and therapeutic opportunities in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2023; 11:1218807. [PMID: 37664463 PMCID: PMC10470644 DOI: 10.3389/fcell.2023.1218807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, there has been a rapid expansion in our understanding of regulated cell death, leading to the discovery of novel mechanisms that govern diverse cell death pathways. One recently discovered type of cell death is pyroptosis, initially identified in the 1990s as a caspase-1-dependent lytic cell death. However, further investigations have redefined pyroptosis as a regulated cell death that relies on the activation of pore-forming proteins, particularly the gasdermin family. Among the key regulators of pyroptosis is the inflammasome sensor NOD-like receptor 3 (NLRP3), a critical innate immune sensor responsible for regulating the activation of caspase-1 and gasdermin D. A deeper understanding of pyroptosis and its interplay with other forms of regulated cell death is emerging, shedding light on a complex regulatory network controlling pore-forming proteins and cell fate. Cell death processes play a central role in diseases such as metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-associated steatohepatitis, autoinflammatory disorders, and cancer. Cell death often acts as a starting point in these diseases, making it an appealing target for drug development. Yet, the complete molecular mechanisms are not fully understood, and new discoveries reveal promising novel avenues for therapeutic interventions. In this review, we summarize recent evidence on pathways and proteins controlling pyroptosis and gasdermins. Furthermore, we will address the role of pyroptosis and the gasdermin family in metabolic dysfunction-associated steatotic liver disease and steatohepatitis. Additionally, we highlight new potential therapeutic targets for treating metabolic dysfunction-associated steatohepatitis and other inflammatory-associated diseases.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Aleksandra Leszczynska
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Lin Kui
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
32
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
33
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Yin B, Holness NK, Smiley J, Ewald SE. Inducible nitric oxide synthase (iNOS) is necessary for GBP-mediated T. gondii restriction in murine macrophages via vacuole nitration and intravacuolar network collapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.549965. [PMID: 37546987 PMCID: PMC10402109 DOI: 10.1101/2023.07.24.549965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Toxoplasma gondii is an obligate intracellular, protozoan pathogen of rodents and humans. T. gondii's ability to grow within cells and evade cell-autonomous immunity depends on the integrity of the parasitophorous vacuole (PV). Interferon-inducible guanylate binding proteins (GBPs) are central mediators of T. gondii clearance, however, the precise mechanism linking GBP recruitment to the PV and T. gondii restriction is not clear. This knowledge gap is linked to heterogenous GBP-targeting across a population of vacuoles and the lack of tools to selectively purify the intact PV. To identify mediators of parasite clearance associated with GBP2-positive vacuoles, we employed a novel protein discovery tool automated spatially targeted optical micro proteomics (autoSTOMP). This approach identified inducible nitric oxide synthetase (iNOS) enriched at levels similar to the GBPs in infected bone marrow-derived myeloid cells. iNOS expression on myeloid cells was necessary for mice to control T. gondii growth in vivo and survive acute infection. T. gondii infection of IFNγ-primed macrophage was sufficient to robustly induce iNOS expression. iNOS restricted T. gondii infection through nitric oxide synthesis rather than arginine depletion, leading to robust and selective nitration of the PV. Optimal parasite restriction by iNOS and vacuole nitration depended on the chromosome 3 GBPs. Notably, GBP2 recruitment and ruffling of the PV membrane occurred in iNOS knockouts, however, these vacuoles contained dividing parasites. iNOS activity was necessary for the collapse of the intravacuolar network of nanotubular membranes which connects parasites to each other and the host cytosol. Based on these data we conclude reactive nitrogen species generated by iNOS cooperate with the chromosome 3 GBPs to target distinct biology of the PV that are necessary for optimal parasite clearance in murine myeloid cells.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jan C. Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nadia K. Holness
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
34
|
Heyman O, Yehezkel D, Ciolli Mattioli C, Blumberger N, Rosenberg G, Solomon A, Hoffman D, Bossel Ben-Moshe N, Avraham R. Paired single-cell host profiling with multiplex-tagged bacterial mutants reveals intracellular virulence-immune networks. Proc Natl Acad Sci U S A 2023; 120:e2218812120. [PMID: 37399397 PMCID: PMC10334762 DOI: 10.1073/pnas.2218812120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/24/2023] [Indexed: 07/05/2023] Open
Abstract
Encounters between host cells and intracellular bacterial pathogens lead to complex phenotypes that determine the outcome of infection. Single-cell RNA sequencing (scRNA-seq) is increasingly used to study the host factors underlying diverse cellular phenotypes but has limited capacity to analyze the role of bacterial factors. Here, we developed scPAIR-seq, a single-cell approach to analyze infection with a pooled library of multiplex-tagged, barcoded bacterial mutants. Infected host cells and barcodes of intracellular bacterial mutants are both captured by scRNA-seq to functionally analyze mutant-dependent changes in host transcriptomes. We applied scPAIR-seq to macrophages infected with a library of Salmonella Typhimurium secretion system effector mutants. We analyzed redundancy between effectors and mutant-specific unique fingerprints and mapped the global virulence network of each individual effector by its impact on host immune pathways. ScPAIR-seq is a powerful tool to untangle bacterial virulence strategies and their complex interplay with host defense strategies that drive infection outcome.
Collapse
Affiliation(s)
- Ori Heyman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Dror Yehezkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Neta Blumberger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Gili Rosenberg
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Dotan Hoffman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
35
|
Roy S, Wang B, Tian Y, Yin Q. Crystal structures reveal nucleotide-induced conformational changes in G motifs and distal regions in guanylate-binding protein 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546747. [PMID: 37425906 PMCID: PMC10327160 DOI: 10.1101/2023.06.28.546747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Guanylate-binding proteins (GBPs) are interferon-inducible GTPases that confer protective immunity against a variety of intracellular pathogens including bacteria, viruses, and protozoan parasites. GBP2 is one of the two highly inducible GBPs, yet the precise mechanisms underlying the activation and regulation of GBP2, in particular the nucleotide-induced conformational changes in GBP2, remain poorly understood. In this study, we elucidate the structural dynamics of GBP2 upon nucleotide binding through crystallographic analysis. GBP2 dimerizes upon GTP hydrolysis and returns to monomer state once GTP is hydrolyzed to GDP. By determining the crystal structures of GBP2 G domain (GBP2GD) in complex with GDP and nucleotide-free full-length GBP2, we unveil distinct conformational states adopted by the nucleotide-binding pocket and distal regions of the protein. Our findings demonstrate that the binding of GDP induces a distinct closed conformation both in the G motifs and the distal regions in the G domain. The conformational changes in the G domain are further transmitted to the C-terminal helical domain, leading to large-scale conformational rearrangements. Through comparative analysis, we identify subtle but critical differences in the nucleotide-bound states of GBP2, providing insights into the molecular basis of its dimer-monomer transition and enzymatic activity. Overall, our study expands the understanding of the nucleotide-induced conformational changes in GBP2, shedding light on the structural dynamics governing its functional versatility. These findings pave the way for future investigations aimed at elucidating the precise molecular mechanisms underlying GBP2's role in the immune response and may facilitate the development of targeted therapeutic strategies against intracellular pathogens.
Collapse
Affiliation(s)
- Sayantan Roy
- Department of Biological Science, Florida State University
| | - Bing Wang
- Department of Biological Science, Florida State University
| | - Yuan Tian
- Department of Biological Science, Florida State University
| | - Qian Yin
- Department of Biological Science, Florida State University
- Institute of Molecular Biophysics, Florida State University
| |
Collapse
|
36
|
Yi YS. Regulatory Roles of Flavonoids in Caspase-11 Non-Canonical Inflammasome-Mediated Inflammatory Responses and Diseases. Int J Mol Sci 2023; 24:10402. [PMID: 37373549 DOI: 10.3390/ijms241210402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammasomes are multiprotein complexes that activate inflammatory responses by inducing pyroptosis and secretion of pro-inflammatory cytokines. Along with many previous studies on inflammatory responses and diseases induced by canonical inflammasomes, an increasing number of studies have demonstrated that non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 inflammasomes, are emerging key players in inflammatory responses and various diseases. Flavonoids are natural bioactive compounds found in plants, fruits, vegetables, and teas and have pharmacological properties in a wide range of human diseases. Many studies have successfully demonstrated that flavonoids play an anti-inflammatory role and ameliorate many inflammatory diseases by inhibiting canonical inflammasomes. Others have demonstrated the anti-inflammatory roles of flavonoids in inflammatory responses and various diseases, with a new mechanism by which flavonoids inhibit non-canonical inflammasomes. This review discusses recent studies that have investigated the anti-inflammatory roles and pharmacological properties of flavonoids in inflammatory responses and diseases induced by non-canonical inflammasomes and further provides insight into developing flavonoid-based therapeutics as potential nutraceuticals against human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
37
|
Buijze H, Brinkmann V, Hurwitz R, Dorhoi A, Kaufmann SHE, Pei G. Human GBP1 Is Involved in the Repair of Damaged Phagosomes/Endolysosomes. Int J Mol Sci 2023; 24:ijms24119701. [PMID: 37298652 DOI: 10.3390/ijms24119701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Mouse guanylate-binding proteins (mGBPs) are recruited to various invasive pathogens, thereby conferring cell-autonomous immunity against these pathogens. However, whether and how human GBPs (hGBPs) target M. tuberculosis (Mtb) and L. monocytogenes (Lm) remains unclear. Here, we describe hGBPs association with intracellular Mtb and Lm, which was dependent on the ability of bacteria to induce disruption of phagosomal membranes. hGBP1 formed puncta structures which were recruited to ruptured endolysosomes. Furthermore, both GTP-binding and isoprenylation of hGBP1 were required for its puncta formation. hGBP1 was required for the recovery of endolysosomal integrity. In vitro lipid-binding assays demonstrated direct binding of hGBP1 to PI4P. Upon endolysosomal damage, hGBP1 was targeted to PI4P and PI(3,4)P2-positive endolysosomes in cells. Finally, live-cell imaging demonstrated that hGBP1 was recruited to damaged endolysosomes, and consequently mediated endolysosomal repair. In summary, we uncover a novel interferon-inducible mechanism in which hGBP1 contributes to the repair of damaged phagosomes/endolysosomes.
Collapse
Affiliation(s)
- Hellen Buijze
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Facility, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
- Emeritus Group of Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany
| |
Collapse
|
38
|
Sunna S, Bowen C, Zeng H, Rayaprolu S, Kumar P, Bagchi P, Dammer EB, Guo Q, Duong DM, Bitarafan S, Natu A, Wood L, Seyfried NT, Rangaraju S. Cellular Proteomic Profiling Using Proximity Labeling by TurboID-NES in Microglial and Neuronal Cell Lines. Mol Cell Proteomics 2023; 22:100546. [PMID: 37061046 PMCID: PMC10205547 DOI: 10.1016/j.mcpro.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Different brain cell types play distinct roles in brain development and disease. Molecular characterization of cell-specific mechanisms using cell type-specific approaches at the protein (proteomic) level can provide biological and therapeutic insights. To overcome the barriers of conventional isolation-based methods for cell type-specific proteomics, in vivo proteomic labeling with proximity-dependent biotinylation of cytosolic proteins using biotin ligase TurboID, coupled with mass spectrometry (MS) of labeled proteins, emerged as a powerful strategy for cell type-specific proteomics in the native state of cells without the need for cellular isolation. To complement in vivo proximity labeling approaches, in vitro studies are needed to ensure that cellular proteomes using the TurboID approach are representative of the whole-cell proteome and capture cellular responses to stimuli without disruption of cellular processes. To address this, we generated murine neuroblastoma (N2A) and microglial (BV2) lines stably expressing cytosolic TurboID to biotinylate the cellular proteome for downstream purification and analysis using MS. TurboID-mediated biotinylation captured 59% of BV2 and 65% of N2A proteomes under homeostatic conditions. TurboID labeled endolysosome, translation, vesicle, and signaling proteins in BV2 microglia and synaptic, neuron projection, and microtubule proteins in N2A neurons. TurboID expression and biotinylation minimally impacted homeostatic cellular proteomes of BV2 and N2A cells and did not affect lipopolysaccharide-mediated cytokine production or resting cellular respiration in BV2 cells. MS analysis of the microglial biotin-labeled proteins captured the impact of lipopolysaccharide treatment (>500 differentially abundant proteins) including increased canonical proinflammatory proteins (Il1a, Irg1, and Oasl1) and decreased anti-inflammatory proteins (Arg1 and Mgl2).
Collapse
Affiliation(s)
- Sydney Sunna
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Christine Bowen
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Hollis Zeng
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Sruti Rayaprolu
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Prateek Kumar
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Qi Guo
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Duc M Duong
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Aditya Natu
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Levi Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA.
| | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
39
|
Barnett KC, Li S, Liang K, Ting JPY. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell 2023; 186:2288-2312. [PMID: 37236155 PMCID: PMC10228754 DOI: 10.1016/j.cell.2023.04.025] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sirui Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
Liu Y, Lei YX, Li JW, Ma YZ, Wang XY, Meng FH, Wu YJ, Wang N, Liang J, Zhao CQ, Yang Y, Chen GX, Yu SX. G Protein-Coupled Receptor 120 Mediates Host Defense against Clostridium perfringens Infection through Regulating NOD-like Receptor Family Pyrin Domain-Containing 3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7119-7130. [PMID: 37115810 DOI: 10.1021/acs.jafc.3c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clostridium perfringens is a major cause of infectious foodborne disease, frequently associated with the consumption of raw and undercooked food. Despite intensive studies on clarifying C. perfringens pathogenesis, the molecular mechanisms of host-pathogen interactions remain poorly understood. In soft tissue and mucosal infection models, Gpr120-/- mice, G protein-coupled receptor 120 (GPR120), are more susceptible to C. perfringens infection. Gpr120 deficiency leads to a low survival rate (30 and 10%, p < 0.01), more bacterial loads in the muscle (2.26 × 108 ± 2.08 × 108 CFUs/g, p < 0.01), duodenum (2.80 × 107 ± 1.61 × 107 CFUs/g, p < 0.01), cecum (2.50 × 108 ± 2.05 × 108 CFUs/g, p < 0.01), and MLN (1.23 × 106 ± 8.06 × 105 CFUs/g, p < 0.01), less IL-18 production in the muscle (8.54 × 103 ± 1.20 × 103 pg/g, p < 0.01), duodenum (3.34 × 103 ± 2.46 × 102 pg/g, p < 0.01), and cecum (3.81 × 103 ± 5.29 × 102 pg/g, p < 0.01), and severe organ injury. Obviously, GPR120 facilitates IL-18 production and pathogen control via potassium efflux-dependent NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling. Mechanistically, GPR120 interaction with NLRP3 potentiates the NLRP3 inflammasome assembly. Thus, this study uncovers a novel role of GPR120 in host protection and reveals that GPR120 may be a potential therapeutic target for limiting pathogen infection.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Animal Husbandry Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot 010031, China
| | - Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jian-Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Ze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Jing Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Cai-Quan Zhao
- College of Biological Science and Technology, Bao Tou Teachers' College, Baotou 014030, China
| | - Yang Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Guang-Xin Chen
- Institutes of Biomedical Sciences, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
41
|
Ma H, Hu T, Tao W, Tong J, Han Z, Herndler-Brandstetter D, Wei Z, Liu R, Zhou T, Liu Q, Xu X, Zhang K, Zhou R, Cho JH, Li HB, Huang H, Flavell RA, Zhu S. A lncRNA from an inflammatory bowel disease risk locus maintains intestinal host-commensal homeostasis. Cell Res 2023; 33:372-388. [PMID: 37055591 PMCID: PMC10156687 DOI: 10.1038/s41422-023-00790-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/10/2023] [Indexed: 04/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are known to have complex, genetically influenced etiologies, involving dysfunctional interactions between the intestinal immune system and the microbiome. Here, we characterized how the RNA transcript from an IBD-associated long non-coding RNA locus ("CARINH-Colitis Associated IRF1 antisense Regulator of Intestinal Homeostasis") protects against IBD. We show that CARINH and its neighboring gene coding for the transcription factor IRF1 together form a feedforward loop in host myeloid cells. The loop activation is sustained by microbial factors, and functions to maintain the intestinal host-commensal homeostasis via the induction of the anti-inflammatory factor IL-18BP and anti-microbial factors called guanylate-binding proteins (GBPs). Extending these mechanistic insights back to humans, we demonstrate that the function of the CARINH/IRF1 loop is conserved between mice and humans. Genetically, the T allele of rs2188962, the most probable causal variant of IBD within the CARINH locus from the human genetics study, impairs the inducible expression of the CARINH/IRF1 loop and thus increases genetic predisposition to IBD. Our study thus illustrates how an IBD-associated lncRNA maintains intestinal homeostasis and protects the host against colitis.
Collapse
Affiliation(s)
- Hongdi Ma
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Taidou Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiyu Tong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zili Han
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tingyue Zhou
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuyuan Liu
- The Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuemei Xu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongbin Zhou
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Judy H Cho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- School of Data Science, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| |
Collapse
|
42
|
Dickinson M, Kutsch M, Sistemich L, Hernandez D, Piro A, Needham D, Lesser C, Herrmann C, Coers J. LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance caspase-4 activation both in cellulo and in vitro. Proc Natl Acad Sci U S A 2023; 120:e2216028120. [PMID: 37023136 PMCID: PMC10104521 DOI: 10.1073/pnas.2216028120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/26/2023] [Indexed: 04/07/2023] Open
Abstract
The gamma-interferon (IFNγ)-inducible guanylate-binding proteins (GBPs) promote host defense against gram-negative cytosolic bacteria in part through the induction of an inflammatory cell death pathway called pyroptosis. To activate pyroptosis, GBPs facilitate sensing of the gram-negative bacterial outer membrane component lipopolysaccharide (LPS) by the noncanonical caspase-4 inflammasome. There are seven human GBP paralogs, and it is unclear how each GBP contributes to LPS sensing and pyroptosis induction. GBP1 forms a multimeric microcapsule on the surface of cytosolic bacteria through direct interactions with LPS. The GBP1 microcapsule recruits caspase-4 to bacteria, a process deemed essential for caspase-4 activation. In contrast to GBP1, closely related paralog GBP2 is unable to bind bacteria on its own but requires GBP1 for direct bacterial binding. Unexpectedly, we find that GBP2 overexpression can restore gram-negative-induced pyroptosis in GBP1KO cells, without GBP2 binding to the bacterial surface. A mutant of GBP1 that lacks the triple arginine motif required for microcapsule formation also rescues pyroptosis in GBP1KO cells, showing that binding to bacteria is dispensable for GBPs to promote pyroptosis. Instead, we find that GBP2, like GBP1, directly binds and aggregates "free" LPS through protein polymerization. We demonstrate that supplementation of either recombinant polymerized GBP1 or GBP2 to an in vitro reaction is sufficient to enhance LPS-induced caspase-4 activation. This provides a revised mechanistic framework for noncanonical inflammasome activation where GBP1 or GBP2 assembles cytosol-contaminating LPS into a protein-LPS interface for caspase-4 activation as part of a coordinated host response to gram-negative bacterial infections.
Collapse
Affiliation(s)
- Mary S. Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Linda Sistemich
- Department of Physical Chemistry I, Ruhr-University Bochum, 44801Bochum, Germany
| | - Dulcemaria Hernandez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Anthony S. Piro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC27708
| | - Cammie F. Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA02139
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr-University Bochum, 44801Bochum, Germany
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
- Department of Immunology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
43
|
Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis. Antioxid Redox Signal 2023; 38:550-580. [PMID: 36053716 PMCID: PMC10025850 DOI: 10.1089/ars.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
Significance: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial membrane-permeability transition (MPT)-derived necrosis, has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases. Recent Advances: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular contexts. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis. Critical Issues: The dual roles of autophagy, either pro-survival or pro-death characteristics, intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship. Future Directions: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied. Antioxid. Redox Signal. 38, 550-580.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| |
Collapse
|
44
|
Ganesan S, Alvarez NN, Steiner S, Fowler KM, Corona AK, Roy CR. Syntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection. mBio 2023; 14:e0354522. [PMID: 36728431 PMCID: PMC9972978 DOI: 10.1128/mbio.03545-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023] Open
Abstract
There is a limited understanding of host defense mechanisms targeting intracellular pathogens that proliferate in a lysosome. Coxiella burnetii is a model bacterial pathogen capable of replicating in the hydrolytic and acidic environment of the lysosome. It has been shown that gamma interferon (IFNγ)-stimulated host cells restrict C. burnetii replication by a mechanism that involves host IDO1 depletion of tryptophan. Host cells deficient in IDO1 activity, however, retain the ability to restrict C. burnetii replication when stimulated with IFNγ, which suggests additional mechanisms of host defense. This study identified syntaxin 11 (STX11) as a host protein that contributes to IFNγ-mediated suppression of C. burnetii replication. STX11 is a SNARE protein; SNARE proteins are proteins that mediate fusion of host vesicles with specific subcellular organelles. Depletion of STX11 using either small interfering RNA (siRNA)- or CRISPR-based approaches enhanced C. burnetii replication intracellularly. Stable expression of STX11 reduced C. burnetii replication in epithelial cells and macrophages, which indicates that this STX11-dependent cell-autonomous response is operational in multiple cell types and can function independently of other IFNγ-induced factors. Fluorescently tagged STX11 localized to the Coxiella-containing vacuole (CCV), and STX11 restriction was found to involve an interaction with STX8. Thus, STX11 regulates a vesicle fusion pathway that limits replication of this intracellular pathogen in a lysosome-derived organelle. IMPORTANCE Cell intrinsic defense mechanisms are used by eukaryotic cells to restrict the replication and dissemination of pathogens. This study identified a human protein called syntaxin 11 (STX11) as a host restriction factor that inhibits the intracellular replication of Coxiella burnetii. Syntaxins regulate the delivery of cargo inside vesicles by promoting specific membrane fusion events between donor and acceptor vesicles. Data presented here demonstrate that STX11 regulates an immunological defense pathway that controls replication of pathogens in lysosome-derived organelles, which provides new insight into the function of this SNARE protein.
Collapse
Affiliation(s)
- Sandhya Ganesan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Natalie N. Alvarez
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen M. Fowler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abigail K. Corona
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Chang MX. Emerging mechanisms and functions of inflammasome complexes in teleost fish. Front Immunol 2023; 14:1065181. [PMID: 36875130 PMCID: PMC9978379 DOI: 10.3389/fimmu.2023.1065181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Inflammasomes are multiprotein complexes, which are assembled in response to a diverse range of exogenous pathogens and endogenous danger signals, leading to produce pro-inflammatory cytokines and induce pyroptotic cell death. Inflammasome components have been identified in teleost fish. Previous reviews have highlighted the conservation of inflammasome components in evolution, inflammasome function in zebrafish infectious and non-infectious models, and the mechanism that induce pyroptosis in fish. The activation of inflammasome involves the canonical and noncanonical pathways, which can play critical roles in the control of various inflammatory and metabolic diseases. The canonical inflammasomes activate caspase-1, and their signaling is initiated by cytosolic pattern recognition receptors. However the noncanonical inflammasomes activate inflammatory caspase upon sensing of cytosolic lipopolysaccharide from Gram-negative bacteria. In this review, we summarize the mechanisms of activation of canonical and noncanonical inflammasomes in teleost fish, with a particular focus on inflammasome complexes in response to bacterial infection. Furthermore, the functions of inflammasome-associated effectors, specific regulatory mechanisms of teleost inflammasomes and functional roles of inflammasomes in innate immune responses are also reviewed. The knowledge of inflammasome activation and pathogen clearance in teleost fish will shed new light on new molecular targets for treatment of inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of InSciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
46
|
Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation 2023; 46:56-87. [PMID: 36006570 PMCID: PMC9403980 DOI: 10.1007/s10753-022-01730-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1β and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aβ) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.
Collapse
|
47
|
Mariappan V, Adikari S, Shanmugam L, Easow JM, Balakrishna Pillai A. Differential expression of interferon inducible protein: Guanylate binding protein (GBP1 & GBP2) in severe dengue. Free Radic Biol Med 2023; 194:131-146. [PMID: 36460216 DOI: 10.1016/j.freeradbiomed.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Dengue virus is reported to activate endothelial cells (EC), but the precise cause for severe dengue (SD) is not known. Guanylate binding proteins (GBPs) are IFN-inducible proteins secreted by ECs and are involved in the anti-oxidant and anti-viral response. The involvement of GBPs in the pathogenesis of dengue remains under explored. In the present study, we quantified the mRNA and protein levels of GBP1 and 2 during acute, defervescence and convalescent phase in SD-10, dengue without warning sign-15 and dengue with warning sign-25 compared to other febrile illnesses-10 and healthy controls-8 using RT-PCR and ELISA respectively. Lipid peroxidation in plasma samples were measured using the Kei Satoh method. Protein and DNA oxidation were determined by ELISA. The efficacy of the proteins in predicting disease severity was done by Support Vector Machine (SVM) model. A significant (P ≤ 0.01) decrease in the levels of mRNA and protein of both GBP1 and GBP2 was observed during defervescence in both SD and DWW cases. The levels were significantly (P ≤ 0.05) tapered off in SD cases from acute till critical phases compared to other study groups. DNA, protein and lipid oxidation markers showed an increasing trend in SD (P ≤ 0.01). Both GBP1 & 2 were found to be negatively associated plasma leakage and oxidative stress markers. EC's activated with SD serum showed a reduced expression of GBP 1 and 2. Nevertheless, the SVM model revealed that plasma levels of proteins along with clinical symptoms could predict the disease outcomes with higher precision. This is the first study reporting a downregulated expression of GBP1 & 2 and their association with oxidative stress and plasma leakage in dengue cases. This suggests the importance of GBPs in regulating disease manifestation. However, further investigations are required to ascertain its role as a biomarker or therapeutic target in dengue infection.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI) (Formerly Central Inter-Disciplinary Research Facility-CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Shalinda Adikari
- Department of Information System and Analytics, National University of Singapore (NUS), Singapore, 117 417, Republic of Singapore
| | - Lokesh Shanmugam
- ICMR-National Institute of Epidemiology (ICMR-NIE), Ayapakkam, Chennai, 600 070, India; Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Joshy M Easow
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI) (Formerly Central Inter-Disciplinary Research Facility-CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| |
Collapse
|
48
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
49
|
Zhang Y, Liao Y, Hang Q, Sun D, Liu Y. GBP2 acts as a member of the interferon signalling pathway in lupus nephritis. BMC Immunol 2022; 23:44. [PMID: 36115937 PMCID: PMC9482746 DOI: 10.1186/s12865-022-00520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Lupus nephritis (LN) is a common and serious clinical manifestation of systemic lupus erythematosus. However, the pathogenesis of LN is not fully understood. The currently available treatments do not cure the disease and appear to have a variety of side effects in the long term. The purpose of this study was to search for key molecules involved in the LN immune response through bioinformatics techniques to provide a reference for LN-specific targeted therapy. The GSE112943 dataset was downloaded from the Gene Expression Omnibus database, and 20 of the samples were selected for analysis. In total, 2330 differentially expressed genes were screened. These genes were intersected with a list of immune genes obtained from the IMMPORT immune database to obtain 128 differentially expressed immune-related genes. Enrichment analysis showed that most of these genes were enriched in the interferon signalling pathway. Gene set enrichment analysis revealed that the sample was significantly enriched for expression of the interferon signalling pathway. Further analysis of the core gene cluster showed that nine genes, GBP2, VCAM1, ADAR, IFITM1, BST2, MX2, IRF5, OAS1 and TRIM22, were involved in the interferon signalling pathway. According to our analysis, the guanylate binding protein 2 (GBP2), interferon regulatory factor 5 and 2′-5′-oligoadenylate synthetase 1 (OAS1) genes are involved in three interferon signalling pathways. At present, we do not know whether GBP2 is associated with LN. Therefore, this study focused on the relationship between GBP2 and LN pathogenesis. We speculate that GBP2 may play a role in the pathogenesis of LN as a member of the interferon signalling pathway. Further immunohistochemical results showed that the expression of GBP2 was increased in the renal tissues of LN patients compared with the control group, confirming this conjecture. In conclusion, GBP2 is a member of the interferon signalling pathway that may have implications for the pathogenesis of LN and serves as a potential biomarker for LN.
Collapse
|
50
|
Gao J, Hu X, Xu C, Guo M, Li S, Yang F, Pan X, Zhou F, Jin Y, Bai F, Cheng Z, Wu Z, Chen S, Huang X, Wu W. Neutrophil-mediated delivery of the combination of colistin and azithromycin for the treatment of bacterial infection. iScience 2022; 25:105035. [PMID: 36117992 PMCID: PMC9474925 DOI: 10.1016/j.isci.2022.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Novel treatment strategies are in urgent need to deal with the rapid development of antibiotic-resistant superbugs. Combination therapies and targeted drug delivery have been exploited to promote treatment efficacies. In this study, we loaded neutrophils with azithromycin and colistin to combine the advantages of antibiotic combinations, targeted delivery, and immunomodulatory effect of azithromycin to treat infections caused by Gram-negative pathogens. Delivery of colistin into neutrophils was mediated by fusogenic liposome, while azithromycin was directly taken up by neutrophils. Neutrophils loaded with the drugs maintained the abilitity to generate reactive oxygen species and migrate. In vitro assays demonstrated enhanced bactericidal activity against multidrug-resistant pathogens and reduced inflammatory cytokine production by the drug-loaded neutrophils. A single intravenous administration of the drug-loaded neutrophils effectively protected mice from Pseudomonas aeruginosa infection in an acute pneumonia model. This study provides a potential effective therapeutic approach for the treatment of bacterial infections. Neutrophils are loaded with colistin and azithromycin in vitro The loaded drugs enhance the bactericidal effect and reduce the inflammatory response Drug-loaded neutrophils conferred effective protection against bacterial infection
Collapse
Affiliation(s)
- Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fangyu Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|