1
|
Wang J, Bai S, Yang C, Qi X. Enantioselective Decarboxylative C(sp 3)-C(sp 3) Cross-Coupling of Aliphatic Redox-Active Esters with gem-Borazirconocene Alkanes. J Am Chem Soc 2024; 146:27070-27079. [PMID: 39288446 DOI: 10.1021/jacs.4c09245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Asymmetric decarboxylative cross-couplings of carboxylic acids are powerful methods for synthesizing chiral building blocks essential in medicinal chemistry and material science. Despite their potential, creating versatile chiral alkylboron derivatives through asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling from readily available primary aliphatic acids and mild organometallic reagents remains challenging. In this study, we present a visible light-induced Ni-catalyzed enantioconvergent C(sp3)-C(sp3) cross-coupling of unactivated primary aliphatic acid NHPI esters with gem-borazirconocene alkanes, producing a diverse array of valuable chiral alkylboron building blocks. The method boasts a broad substrate scope, high functional group tolerance, and the ability for late-stage modification of complex drug molecules and natural products with high enantioselectivity, showcasing its synthetic potential. Mechanistic investigations suggest a nickel-catalyzed enantioconvergent radical cross-coupling pathway, wherein the primary radical from a redox-active ester is generated through single-electron reduction with ZrIII species. This represents an unprecedented example of enantioselective radical C(sp3)-C(sp3) cross-coupling in the absence of photocatalysts.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Songlin Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Chao Yang
- Celluranics New Materials Co., No. 18-28, Tongjiang Road, Taixing Economic and Technological Development Zone, Taizhou City, Jiangsu 225400, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Li J, Wang Y, Wang Y, Zhai L, Huang J, Song L, You H, Chen FE. Desymmetrization of Inert meso-Diethers through Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents. Org Lett 2024; 26:5844-5849. [PMID: 38950387 DOI: 10.1021/acs.orglett.4c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
We have developed a highly regio-, diastereo-, and enantioselective Cu-catalyzed desymmetrization of inert meso-diethers using Grignard reagents. Moreover, previous inaccessible sterically hindered organometallic reagents are realized in the reaction with broad secondary alkyl Grignard reagents. Finally, detailed control experiments and density functional theory calculations revealed the desymmetrization of meso-diethers exploits a direct anti-SN2' pathway, in the absence of an in situ-generated allyl bromine intermediate. The following oxidative addition is the crucial rate-determining and enantioselectivity-determining step.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lianjie Zhai
- National Key Lab of Science and Technology on Combustion and Explosion, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Li J, Huang J, Wang Y, Liu Y, Zhu Y, You H, Chen FE. Copper-catalyzed asymmetric allylic substitution of racemic/ meso substrates. Chem Sci 2024; 15:8280-8294. [PMID: 38846404 PMCID: PMC11151816 DOI: 10.1039/d4sc02135e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
The synthesis of enantiomerically pure compounds is a pivotal subject in the field of chemistry, with enantioselective catalysis currently standing as the primary approach for delivering specific enantiomers. Among these strategies, Cu-catalyzed asymmetric allylic substitution (AAS) is significant and irreplaceable, especially when it comes to the use of non-stabilized nucleophiles (pK a > 25). Although Cu-catalyzed AAS of prochiral substrates has also been widely developed, methodologies involving racemic/meso substrates are highly desirable, as the substrates undergo dynamic processes to give single enantiomer products. Inspired by the pioneering work of the Alexakis, Feringa and Gennari groups, Cu-catalyzed AAS has been continuously employed in deracemization and desymmetrization processes for the synthesis of enantiomerically enriched products. In this review, we mainly focus on the developments of Cu-catalyzed AAS with racemic/meso substrates over the past two decades, providing an explicit outline of the ligands employed, the scope of nucleophiles, the underlying dynamic processes and their practical applications.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yuexin Liu
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yuxiang Zhu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
4
|
Miguélez R, Barrio P, González JM. Recent Advances in the Catalytic Synthesis of the Cyclopentene Core. CHEM REC 2023:e202300254. [PMID: 37821421 DOI: 10.1002/tcr.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Five-membered carbocycles are ubiquitously found in natural products, pharmaceuticals, and other classes of organic compounds. Within this category, cyclopentenes deserve special attention due to their prevalence as targets and as well as key intermediates for synthesizing more complex molecules. Herein, we offer an overview summarizing some significant recent advances in the catalytic assembly of this structural motif. A great variety of synthetic methodologies and strategies are covered, including transition metal-catalyzed or organocatalyzed processes. Both inter- and intramolecular transformations are documented. On this ground, our expertise in the application of C-H functionalization reactions oriented towards the formation of this ring and its subsequent selective functionalization is embedded.
Collapse
Affiliation(s)
- Rubén Miguélez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Pablo Barrio
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - José M González
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
5
|
Duran J, Mateos J, Moyano A, Companyó X. Catalytic asymmetric defluorinative allylation of silyl enol ethers. Chem Sci 2023; 14:7147-7153. [PMID: 37416711 PMCID: PMC10321495 DOI: 10.1039/d3sc01498c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
The stereocontrolled installation of alkyl fragments at the alpha position of ketones is a fundamental yet unresolved transformation in organic chemistry. Herein we report a new catalytic methodology able to construct α-allyl ketones via defluorinative allylation of silyl enol ethers in a regio-, diastereo- and enantioselective manner. The protocol leverages the unique features of the fluorine atom to simultaneously act as a leaving group and to activate the fluorophilic nucleophile via a Si-F interaction. A series of spectroscopic, electroanalytic and kinetic experiments demonstrate the crucial interplay of the Si-F interaction for successful reactivity and selectivity. The generality of the transformation is demonstrated by synthesising a wide set of structurally diverse α-allylated ketones bearing two contiguous stereocenters. Remarkably, the catalytic protocol is amenable for the allylation of biologically significant natural products.
Collapse
Affiliation(s)
- Jordi Duran
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona Carrer Martí i Franquès 1 08028 Barcelona Spain https://companyolab.com
| | - Javier Mateos
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona Carrer Martí i Franquès 1 08028 Barcelona Spain https://companyolab.com
| | - Albert Moyano
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona Carrer Martí i Franquès 1 08028 Barcelona Spain https://companyolab.com
| | - Xavier Companyó
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona Carrer Martí i Franquès 1 08028 Barcelona Spain https://companyolab.com
| |
Collapse
|
6
|
Zhao D, Xu B, Zhu C. Migratory allylic arylation of 1,n-enols enabled by nickel catalysis. Nat Commun 2023; 14:3308. [PMID: 37286547 DOI: 10.1038/s41467-023-38865-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Transition-metal-catalyzed allylic substitution reactions (Tsuji-Trost reactions) proceeding via a π-allyl metal intermediate have been demonstrated as a powerful tool in synthetic chemistry. Herein, we disclose an unprecedented π-allyl metal species migration, walking on the carbon chain involving 1,4-hydride shift as confirmed by deuterium labeling experiments. This migratory allylic arylation can be realized under dual catalysis of nickel and lanthanide triflate, a Lewis acid. Olefin migration has been observed to preferentially occur with the substrate of 1,n-enols (n ≥ 3). The robust nature of the allylic substitution strategy is reflected by a broad scope of substrates with the control of regio- and stereoselectivity. DFT studies suggest that π-allyl metal species migration consists of the sequential β-H elimination and migratory insertion, with diene not being allowed to release from the metal center before producing a new π-allyl nickel species.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China
| | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
7
|
Ruan LX, Sun B, Liu JM, Shi SL. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 2023; 379:662-670. [PMID: 36795811 DOI: 10.1126/science.ade0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Despite the importance of enantioenriched alcohols in medicinal chemistry, total synthesis, and materials science, the efficient and selective construction of enantioenriched tertiary alcohols bearing two contiguous stereocenters has remained a substantial challenge. We report a platform for their preparation through the enantioconvergent, nickel-catalyzed addition of organoboronates to racemic, nonactivated ketones. We prepared several important classes of α,β-chiral tertiary alcohols in a single step with high levels of diastereo- and enantioselectivity through a dynamic kinetic asymmetric addition of aryl and alkenyl nucleophiles. We applied this protocol to modify several profen drugs and to rapidly synthesize biologically relevant molecules. We expect this nickel-catalyzed, base-free ketone racemization process to be a widely applicable strategy for the development of dynamic kinetic processes.
Collapse
Affiliation(s)
- Lin-Xin Ruan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Ming Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Li J, Song X, Wang Y, Huang J, You H, Chen FE. Copper-catalyzed asymmetric allylic alkylation of racemic inert cyclic allylic ethers under batch and flow conditions. Chem Sci 2023; 14:4351-4356. [PMID: 37123175 PMCID: PMC10132103 DOI: 10.1039/d3sc00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
The Cu-catalyzed AAA reactions employing challenging racemic inert cyclic allylic ethers with sterically hindered Grignard reagents have been disclosed under batch and flow conditions.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Xiao Song
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Xu X, Shi Y, Wang D, Ding Y, Chen S, Zhang X. Cobalt(III)-Catalyzed and DMSO-Involved Allylation of 1,3-Dicarbonyl Compounds with Alkenes. J Org Chem 2022; 87:14352-14363. [PMID: 36263891 DOI: 10.1021/acs.joc.2c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cobalt(III)-catalyzed allylation of 1,3-dicarbonyl compounds has been reported with in situ generated allyl reagents from alkenes and dimethyl sulfoxide (DMSO). This novel protocol enables a high regio- and stereoselective access for a broad range of allyl 1,3-dicarbonyl compounds. In the transformation, DMSO plays the role of a C1 source, and it incorporates with alkenes to form the allyl reagent allylic methyl thioether. Moreover, a multiple-step pathway has been proposed to rationalize the mechanism study, which involves silver-mediated coupling, Co(III)-catalyzed π-allylation, and intermolecular nucleophilic substitution.
Collapse
Affiliation(s)
- Xuefeng Xu
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yue Shi
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Di Wang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yanhua Ding
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuyang Chen
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
10
|
Li J, Song X, Wu F, You H, Chen FE. Cu‐Catalyzed Asymmetric Allylic Alkylation of Racemic Cyclic Allyl Bromides with Organolithium Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Li
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Xiao Song
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Fusong Wu
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Hengzhi You
- Harbin Institute of Technology Shenzhen School of science Xili University Town, Building G, Room 608 518055 Shenzhen CHINA
| | - Fen-Er Chen
- Harbin Institute of Technology Shenzhen School of science CHINA
| |
Collapse
|
11
|
Chaves-Pouso A, Álvarez-Constantino AM, Fañanás-Mastral M. Enantio- and Diastereoselective Copper-Catalyzed Allylboration of Alkynes with Allylic gem-Dichlorides. Angew Chem Int Ed Engl 2022; 61:e202117696. [PMID: 35263483 PMCID: PMC9314970 DOI: 10.1002/anie.202117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/06/2022]
Abstract
Allylic gem-dichlorides are shown to be efficient substrates for catalytic asymmetric allylboration of alkynes. The method employs a chiral NHC-Cu catalyst capable of generating in a single step chiral skipped dienes bearing a Z-alkenyl chloride, a trisubstituted E-alkenyl boronate and a bis-allylic stereocenter with excellent levels of chemo-, regio- enantio- and diastereoselectivity. This high degree of functionalization makes these products versatile building blocks as illustrated with the synthesis of several optically active compounds. DFT calculations support the key presence of a metal cation bridge ligand-substrate interaction and account for the stereoselectivity outcome.
Collapse
Affiliation(s)
- Andrea Chaves-Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Niu S, Luo Y, Xu C, Liu J, Yang S, Fang X. Copper-Catalyzed Yne-Allylic Substitutions Using Stabilized Nucleophiles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shengtong Niu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
13
|
Jiang B, Shi S. Pd‐Catalyzed Cross‐Coupling of Alkylzirconocenes and Aryl Chlorides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Binyang Jiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
14
|
Chaves‐Pouso A, Álvarez‐Constantino AM, Fañanás‐Mastral M. Enantio‐ and Diastereoselective Copper‐Catalyzed Allylboration of Alkynes with Allylic
gem
‐Dichlorides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Chaves‐Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Andrés M. Álvarez‐Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás‐Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
15
|
Wang S, Zhang Q, Niu J, Guo X, Xiong T, Zhang Q. Copper‐Catalyzed Asymmetric Hydroallylation of Vinylsilanes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Simin Wang
- Northeast Normal University Department of Chemistry CHINA
| | - Qiao Zhang
- Northeast Normal University Department of Chemistry CHINA
| | - Junbo Niu
- Northeast Normal University Department of Chemistry CHINA
| | - Xiaobing Guo
- Northeast Normal University Department of Chemistry CHINA
| | - Tao Xiong
- Northeast Normal University Department of Chemistry Renmin ST. 5268 130024 ChangChun CHINA
| | - Qian Zhang
- Northeast Normal University Department of Chemistry CHINA
| |
Collapse
|
16
|
Kizhakkayil Mangadan AR, Liu J, Aponick A. Enantioselective Lactonization by π‐Acid‐Catalyzed Allylic Substitution: A Complement to π‐Allylmetal Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Arun Raj Kizhakkayil Mangadan
- Florida Center for Heterocyclic Compounds and Department of Chemistry University of Florida P.O. Box 117200 Gainesville FL 32611 USA
| | - Ji Liu
- Florida Center for Heterocyclic Compounds and Department of Chemistry University of Florida P.O. Box 117200 Gainesville FL 32611 USA
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds and Department of Chemistry University of Florida P.O. Box 117200 Gainesville FL 32611 USA
| |
Collapse
|
17
|
Kizhakkayil Mangadan AR, Liu J, Aponick A. Enantioselective Lactonization by π-Acid-Catalyzed Allylic Substitution: A Complement to π-Allylmetal Chemistry. Angew Chem Int Ed Engl 2021; 60:22224-22229. [PMID: 34423520 DOI: 10.1002/anie.202108336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 12/16/2022]
Abstract
Asymmetric allylic alkylation (AAA) is a powerful method for the formation of highly useful, non-racemic allylic compounds. Here we present a complementary enantioselective process that generates allylic lactones via π-acid catalysis. More specifically, a catalytic enantioselective dehydrative lactonization of allylic alcohols using a novel PdII -catalyst containing the imidazole-based P,N-ligand (S)-StackPhos is reported. The high-yielding reactions are operationally simple to perform with enantioselectivities up to 99 % ee. This strategy facilitates the replacement of a poor leaving group with what would ostensibly be a better leaving group in the product avoiding complications arising from racemization by equilibration.
Collapse
Affiliation(s)
- Arun Raj Kizhakkayil Mangadan
- Florida Center for Heterocyclic Compounds and, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Ji Liu
- Florida Center for Heterocyclic Compounds and, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds and, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA
| |
Collapse
|
18
|
Zhou H, Li ZL, Gu QS, Liu XY. Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp 3)–C Cross-Coupling Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
19
|
Fletcher SP, Goetzke FW. Additions to Racemates: A Strategy for Developing Asymmetric Cross-Coupling Reactions. Synlett 2021. [DOI: 10.1055/s-0040-1706033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractIn this Account, the authors describe their progress in developing catalytic asymmetric C(sp3)–C(sp3) and C(sp3)–C(sp2) cross-coupling reactions. Whereas most catalytic enantioselective transformations rely on prochiral or meso starting materials, strategies that use racemic starting materials are rare. Key features of these reactions are efficient mechanisms for deracemization. Here, the authors present copper-catalyzed alkylation and rhodium-catalyzed Suzuki–Miyaura-type arylation reactions, their underlying mechanisms, and their applications in complex-molecule syntheses.
Collapse
|
20
|
Mechanistic investigation of Rh(i)-catalysed asymmetric Suzuki–Miyaura coupling with racemic allyl halides. Nat Catal 2021. [DOI: 10.1038/s41929-021-00589-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Shi Y, Wu H, Huang G. Rhodium( i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Org Chem Front 2021. [DOI: 10.1039/d1qo00370d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DFT calculations were performed to investigate the rhodium(i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates.
Collapse
Affiliation(s)
- Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Hongli Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
22
|
Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen FE. Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
23
|
Némethová I, Šebesta R. Are Organozirconium Reagents Applicable in Current Organic Synthesis? SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe search for mild, user-friendly, easily accessible, and robust organometallic reagents is an important feature of organometallic chemistry. Ideally, new methodologies employing organometallics should be developed with respect to practical applications in syntheses of target compounds. In this short review, we investigate if organozirconium reagents can fulfill these criteria. Organozirconium compounds are typically generated via in situ hydrozirconation of alkenes or alkynes with the Schwartz reagent. Alkyl and alkenylzirconium reagents have proven to be convenient in conjugate additions, allylic substitutions, cross-coupling reactions, and additions to carbonyls or imines. Furthermore, the Schwartz reagent itself is a useful reducing agent for polar functional groups.1 Introduction2 Synthesis and Generation of the Schwartz Reagent3 Structure and Properties of Cp2Zr(H)Cl4 Reactivity of Organozirconium Reagents4.1 Asymmetric Conjugate Addition4.2 Asymmetric Allylic Alkylations4.3 Desymmetrization Reactions4.4 Cross-Coupling Reactions4.5 1,2-Additions5 Conclusions
Collapse
Affiliation(s)
| | - Radovan Šebesta
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry
| |
Collapse
|
24
|
Yin Z, Pang H, Guo X, Lin H, Muzzio M, Shen M, Wei K, Yu C, Williard P, Sun S. CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zhouyang Yin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Huan Pang
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Xuefeng Guo
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Honghong Lin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Michelle Muzzio
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Mengqi Shen
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Kecheng Wei
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Chao Yu
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Paul Williard
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Shouheng Sun
- Department of Chemistry Brown University Providence RI 02906 USA
| |
Collapse
|
25
|
Shao W, Besnard C, Guénée L, Mazet C. Ni-Catalyzed Regiodivergent and Stereoselective Hydroalkylation of Acyclic Branched Dienes with Unstabilized C(sp3) Nucleophiles. J Am Chem Soc 2020; 142:16486-16492. [DOI: 10.1021/jacs.0c08319] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Shao
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
26
|
Han JT, Lee JY, Yun J. Asymmetric synthesis of γ-chiral borylalkanes via sequential reduction/hydroboration using a single copper catalyst. Chem Sci 2020; 11:8961-8965. [PMID: 34123150 PMCID: PMC8163415 DOI: 10.1039/d0sc03759a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of γ-chiral borylalkanes through copper-catalyzed enantioselective SN2'-reduction of γ,γ-disubstituted allylic substrates and subsequent hydroboration was reported. A copper-DTBM-Segphos catalyst produced a range of γ-chiral alkylboronates from easily accessible allylic acetate or benzoate with high enantioselectivities up to 99% ee. Furthermore, selective organic transformations of the resulting γ-chiral alkylboronates generated the corresponding γ-chiral alcohol, arene and amine compounds.
Collapse
Affiliation(s)
- Jung Tae Han
- Department of Chemistry, Institute of Basic Science, Sungkyunkwan University Suwon 16419 Korea
| | - Jin Yong Lee
- Department of Chemistry, Institute of Basic Science, Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry, Institute of Basic Science, Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
27
|
Yin Z, Pang H, Guo X, Lin H, Muzzio M, Shen M, Wei K, Yu C, Williard P, Sun S. CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angew Chem Int Ed Engl 2020; 59:15933-15936. [DOI: 10.1002/anie.202006293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Zhouyang Yin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Huan Pang
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Xuefeng Guo
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Honghong Lin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Michelle Muzzio
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Mengqi Shen
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Kecheng Wei
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Chao Yu
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Paul Williard
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Shouheng Sun
- Department of Chemistry Brown University Providence RI 02906 USA
| |
Collapse
|
28
|
Yang C, Gao Y, Bai S, Jiang C, Qi X. Chemoselective Cross-Coupling of gem-Borazirconocene Alkanes with Aryl Halides. J Am Chem Soc 2020; 142:11506-11513. [PMID: 32496064 DOI: 10.1021/jacs.0c03821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct and chemoselective conversion of the carbon-metal bond of gem-dimetallic reagents enables rapid and sequential formation of multiple carbon-carbon and carbon-heteroatom bonds, thus representing a powerful method for efficiently increasing structural complexity. Herein, we report a visible-light-induced, nickel-catalyzed, chemoselective cross-coupling reaction between gem-borazirconocene alkanes and diverse aryl halides, affording a wide range of alkyl Bpin derivatives in high yields with excellent regioselectivity. This practical method features attractively simple reaction conditions and a broad substrate scope. Additionally, we systematically investigated a Bpin-directed chain walking process underlying the regioselectivity of alkylzirconocenes, thus uncovering the mechanism of the remote functionalization of internal olefins achieved with our method. Finally, DFT calculations indicate that the high regioselectivity of this reaction originates from the directing effect of the Bpin group.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yadong Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Songlin Bai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chao Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Paria S, Carletti E, Marcon M, Cherubini-Celli A, Mazzanti A, Rancan M, Dell'Amico L, Bonchio M, Companyó X. Light-Triggered Catalytic Asymmetric Allylic Benzylation with Photogenerated C-Nucleophiles. J Org Chem 2020; 85:4463-4474. [PMID: 32081000 PMCID: PMC7997570 DOI: 10.1021/acs.joc.0c00175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Herein
is reported the asymmetric allylic benzylation of Morita–Baylis–Hillman
(MBH) carbonates with 2-methylbenzophenone (MBP) derivatives as nonstabilized
photogenerated C-nucleophiles. The dual activation
of both reaction partners, chiral Lewis-base activation of the electrophile
and light activation of the nucleophile, enables the stereoselective
installation of benzyl groups at the allylic position to forge tertiary
and quaternary carbon centers.
Collapse
Affiliation(s)
- Suva Paria
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Edoardo Carletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Michela Marcon
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | | | - Andrea Mazzanti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Marzio Rancan
- ICMATE-CNR, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Xavier Companyó
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
30
|
Pareek M, Sunoj RB. Energetics of Dynamic Kinetic Asymmetric Transformation in Suzuki–Miyaura Coupling. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Monika Pareek
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
31
|
Gao Y, Yang C, Bai S, Liu X, Wu Q, Wang J, Jiang C, Qi X. Visible-Light-Induced Nickel-Catalyzed Cross-Coupling with Alkylzirconocenes from Unactivated Alkenes. Chem 2020. [DOI: 10.1016/j.chempr.2019.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Han JT, Kim ST, Baik MH, Yun J. Direct Stereoconvergent Allylation of Chiral Alkylcopper Nucleophiles with Racemic Allylic Phosphates. Chemistry 2020; 26:2592-2596. [PMID: 31788874 DOI: 10.1002/chem.201905361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 01/14/2023]
Abstract
Copper-catalyzed stereoconvergent allylation of chiral sp3 -hybridized carbon nucleophiles with a racemic mixture of acyclic secondary allylic phosphates is reported. In the presence of a copper-catalyst complexed with chiral BenzP* ligand, tandem coupling reaction of vinyl arenes, bis(pinacolato)diboron, and racemic allylic phosphates provided β-chiral alkylboronates possessing (E)-alkenyl moiety through a direct stereoconvergent allylic coupling with concomitant generation of a C(sp3 )-stereogenic center. A range of vinyl (hetero)arenes and secondary allylic phosphates bearing 1°, 2°, 3° alkyl and phenyl α-substituents were suitable for the reaction, forming products with high enantioselectivities up to 95 % ee. Density functional theory calculations were conducted in detail to elucidate the origin of the observed regioselectivity of borylcupration and stereoconvergent (E)-olefin formation from racemic allylic phosphates.
Collapse
Affiliation(s)
- Jung Tae Han
- Department of Chemistry, Sungkyunkwan University, Suwon, 16149, Korea
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jaesook Yun
- Department of Chemistry, Sungkyunkwan University, Suwon, 16149, Korea
| |
Collapse
|
33
|
Mateos J, Fuentes-Vara N, Fra L, Rivera-Chao E, Vázquez-Galiñanes N, Chaves-Pouso A, Fañanás-Mastral M. Transmetalation as Key Step in the Diastereo- and Enantioselective Synergistic Cu/Pd-Catalyzed Allylboration of Alkynes with Racemic Allylic Carbonates. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jaime Mateos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Noelia Fuentes-Vara
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura Fra
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Rivera-Chao
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nuria Vázquez-Galiñanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Andrea Chaves-Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
34
|
Némethová I, Vargová D, Mudráková B, Filo J, Šebesta R. Reductive alkylation of imines via asymmetric Cu-catalyzed addition of organozirconium reagents. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Recyclable Pd/C catalyzed one-step reduction of carbonyls to hydrocarbons under simple conditions without extra base. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Cheang DMJ, Armstrong RJ, Akhtar WM, Donohoe TJ. Enantioconvergent alkylation of ketones with racemic secondary alcohols via hydrogen borrowing catalysis. Chem Commun (Camb) 2020; 56:3543-3546. [DOI: 10.1039/d0cc00767f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An enantioconvergent hydrogen borrowing strategy enables the catalytic asymmetric alkylation of ketone enolates with unactivated, racemic secondary alcohols.
Collapse
|
37
|
Wang W, Yang J, Sun Y, Li Z, You C. Artificial ATP-Free in Vitro Synthetic Enzymatic Biosystems Facilitate Aldolase-Mediated C–C Bond Formation for Biomanufacturing. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiangang Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yuanxia Sun
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chun You
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
38
|
González J, Schäfer P, Fletcher SP. Highly Enantioselective Hiyama Cross-Coupling via Rh-Catalyzed Allylic Arylation of Racemic Allyl Chlorides. Organometallics 2019; 38:3991-3995. [PMID: 32055086 PMCID: PMC7009026 DOI: 10.1021/acs.organomet.9b00197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 01/17/2023]
Abstract
Highly enantioselective Hiyama cross-coupling reactions have been achieved through rhodium(I)-catalyzed dynamic kinetic asymmetric transformations between aryl siloxanes and cyclic racemic allyl halides. This process affords valuable enantiomerically enriched aryl-substituted cyclic allyl products and is compatible with heterocyclic allyl chloride electrophiles.
Collapse
Affiliation(s)
- Jesús González
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Philipp Schäfer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephen P. Fletcher
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
39
|
Jacques R, Hell AM, Pullin RD, Fletcher SP. Desymmetrization of meso-bisphosphates via rhodium catalyzed asymmetric allylic arylation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Lin LZ, Che YY, Bai PB, Feng C. Sulfinate-Engaged Nucleophilic Addition Induced Allylic Alkylation of Allenoates. Org Lett 2019; 21:7424-7429. [PMID: 31487185 DOI: 10.1021/acs.orglett.9b02728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategically novel Pd-catalyzed nucleophilic addition induced allylic alkylation reaction (NAAA) of allenoates has been successfully accomplished. By judiciously integrating ZnCl2-promoted Michael addition with Pd-catalyzed allylic alkylation, allenoates readily undergo allyl-sunfonylation at the internal double bond, thus providing a straightforward avenue for the rapid assembly of a host of structurally diversified α-allyl-β-sufonylbut-3-enoate derivatives. The success of this transformation profits from a delicate control of the reaction kinetic of each elementary step, thanks to the synergistic interaction of Pd/Zn bimetallic system, thus suppressing either direct allylic sulfonylation or premature quenching of therein in situ generated ester enolate intermediate. Furthermore, by expanding the scope of workable Michael acceptor beyond those previously required doubly activated ones, such as methylenemalononitrile, the present work substantially enriches the repertoire of NAAA reactions.
Collapse
Affiliation(s)
- Ling-Zhi Lin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Yuan-Yuan Che
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Peng-Bo Bai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Chao Feng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| |
Collapse
|
41
|
Goetzke FW, Mortimore M, Fletcher SP. Enantio‐ and Diastereoselective Suzuki–Miyaura Coupling with Racemic Bicycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- F. Wieland Goetzke
- Department of ChemistryChemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Mike Mortimore
- Vertex Pharmaceuticals (Europe) Ltd 86–88 Jubilee Avenue, Milton Park Abingdon Oxfordshire OX14 4RW UK
| | - Stephen P. Fletcher
- Department of ChemistryChemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
42
|
Goetzke FW, Mortimore M, Fletcher SP. Enantio- and Diastereoselective Suzuki-Miyaura Coupling with Racemic Bicycles. Angew Chem Int Ed Engl 2019; 58:12128-12132. [PMID: 31246358 PMCID: PMC6771587 DOI: 10.1002/anie.201906478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/17/2019] [Indexed: 01/08/2023]
Abstract
Herein, we describe a rhodium‐catalyzed enantio‐ and diastereoselective Suzuki–Miyaura cross‐coupling between racemic fused bicyclic allylic chlorides and boronic acids. The highly stereoselective transformation allows for the coupling of aryl, heteroaryl, and alkenyl boronic acids and gives access to functionalized bicyclic cyclopentenes, which can be converted into other five‐membered‐ring scaffolds with up to five contiguous stereocenters. Preliminary mechanistic studies suggest that these reactions occur with overall retention of the relative stereochemistry and are enantioconvergent for pseudo‐symmetric allylic chloride starting materials. In addition, a bicyclic allylic chloride starting material without pseudo‐symmetry undergoes a highly enantioselective regiodivergent reaction.
Collapse
Affiliation(s)
- F Wieland Goetzke
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Mike Mortimore
- Vertex Pharmaceuticals (Europe) Ltd, 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Stephen P Fletcher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
43
|
Lin JS, Li TT, Jiao GY, Gu QS, Cheng JT, Lv L, Liu XY. Chiral Brønsted Acid Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes and Asymmetric Hydroamination of Dienes. Angew Chem Int Ed Engl 2019; 58:7092-7096. [PMID: 30919531 DOI: 10.1002/anie.201900955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/19/2019] [Indexed: 12/31/2022]
Abstract
The first highly efficient and practical chiral Brønsted acid catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes and asymmetric hydroamination of unactivated dienes with both high E/Z selectivity and enantioselectivity are described herein. The transformation proceeds through a new catalytic asymmetric model involving a highly reactive π-allylic carbocationic intermediate, generated from racemic allenes or dienes through a proton transfer mediated by an activating/directing thiourea group. This method affords expedient access to structurally diverse enantioenriched, potentially bioactive alkenyl-containing aza-heterocycles and bicyclic aza-heterocycles.
Collapse
Affiliation(s)
- Jin-Shun Lin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China.,Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tao-Tao Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guan-Yuan Jiao
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiang-Tao Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ling Lv
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
44
|
Lin J, Li T, Jiao G, Gu Q, Cheng J, Lv L, Liu X. Chiral Brønsted Acid Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes and Asymmetric Hydroamination of Dienes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jin‐Shun Lin
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical BiologyGraduate School at ShenzhenTsinghua University Shenzhen 518055 China
- Department of ChemistryTsinghua University Beijing 100084 China
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen 518055 China
| | - Tao‐Tao Li
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen 518055 China
| | - Guan‐Yuan Jiao
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen 518055 China
| | - Qiang‐Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Jiang‐Tao Cheng
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen 518055 China
| | - Ling Lv
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen 518055 China
| | - Xin‐Yuan Liu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
45
|
Cheng BQ, Zhao SW, Song XD, Chu XQ, Rao W, Loh TP, Shen ZL. Lead-Mediated Highly Diastereoselective Allylation of Aldehydes with Cyclic Allylic Halides. J Org Chem 2019; 84:5348-5356. [DOI: 10.1021/acs.joc.9b00370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bu-Qing Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Wen Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xuan-Di Song
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
46
|
Ge Y, Cui X, Tan SM, Jiang H, Ren J, Lee N, Lee R, Tan C. Guanidine–Copper Complex Catalyzed Allylic Borylation for the Enantioconvergent Synthesis of Tertiary Cyclic Allylboronates. Angew Chem Int Ed Engl 2019; 58:2382-2386. [DOI: 10.1002/anie.201813490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yicen Ge
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Xi‐Yang Cui
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Siu Min Tan
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Huan Jiang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Jingyun Ren
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Nicholas Lee
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Richmond Lee
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
47
|
Ge Y, Cui XY, Tan SM, Jiang H, Ren J, Lee N, Lee R, Tan CH. Guanidine-Copper Complex Catalyzed Allylic Borylation for the Enantioconvergent Synthesis of Tertiary Cyclic Allylboronates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yicen Ge
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Xi-Yang Cui
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Siu Min Tan
- Singapore University of Technology and Design; 8 Somapah Road Singapore 487372 Singapore
| | - Huan Jiang
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Jingyun Ren
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Nicholas Lee
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Richmond Lee
- Singapore University of Technology and Design; 8 Somapah Road Singapore 487372 Singapore
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
48
|
Desymmetrization of meso-bisphosphates using copper catalysis and alkylzirconocene nucleophiles. Nat Commun 2019; 10:21. [PMID: 30604753 PMCID: PMC6318275 DOI: 10.1038/s41467-018-07871-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/30/2018] [Indexed: 01/30/2023] Open
Abstract
The desymmetrization of meso-compounds is a useful synthetic method, as illustrated by numerous applications of this strategy in natural product synthesis. Cu-catalyzed allylic desymmetrizations enable the enantioselective formation of carbon-carbon bonds, but these transformations are limited in substrate scope and by the use of highly reactive premade organometallic reagents at cryogenic temperatures. Here we show that diverse meso-bisphosphates in combination with alkylzirconium nucleophiles undergo highly regio-, diastereo- and enantio-selective Cu-catalyzed desymmetrization reactions. In addition, C2-symmetric chiral bisphosphates undergo stereospecific reactions and a racemic substrate undergoes a Cu-catalyzed kinetic resolution. The reaction tolerates functional groups incompatible with many common organometallic reagents and provides access to a broad range of functionalized carbo- and hetero-cyclic structures. The products bear up to three contiguous stereogenic centers, including quaternary centers and spirocyclic ring systems. We anticipate that the method will be a useful complement to existing catalytic enantioselective reactions.
Collapse
|
49
|
Payet A, Blondeau B, Behr JB, Vasse JL. Synthesis of 1,3-disubstituted cyclohexenes from dienylethers via sequential hydrozirconation/deoxygenative cyclisation. Org Biomol Chem 2019; 17:798-802. [DOI: 10.1039/c8ob02925c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of 1,3-disubstituted cyclohexenes from 3-methoxyhexa-1,5-dienes involving a sequential hydrozirconation/TMSOTf-mediated activation is described.
Collapse
Affiliation(s)
- Amandine Payet
- Institut de Chimie Moléculaire de Reims
- CNRS (UMR 7312) and Université de Reims Champagne Ardenne
- 51687 Reims Cedex 2
- France
| | - Benjamin Blondeau
- Institut de Chimie Moléculaire de Reims
- CNRS (UMR 7312) and Université de Reims Champagne Ardenne
- 51687 Reims Cedex 2
- France
| | - Jean-Bernard Behr
- Institut de Chimie Moléculaire de Reims
- CNRS (UMR 7312) and Université de Reims Champagne Ardenne
- 51687 Reims Cedex 2
- France
| | - Jean-Luc Vasse
- Institut de Chimie Moléculaire de Reims
- CNRS (UMR 7312) and Université de Reims Champagne Ardenne
- 51687 Reims Cedex 2
- France
| |
Collapse
|
50
|
Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem Rev 2018; 119:1855-1969. [PMID: 30582688 DOI: 10.1021/acs.chemrev.8b00506] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the origin and advancements of iridium-catalyzed asymmetric allylic substitution reactions during the past two decades. Since the first report in 1997, Ir-catalyzed asymmetric allylic substitution reactions have attracted intense attention due to their exceptionally high regio- and enantioselectivities. Ir-catalyzed asymmetric allylic substitution reactions have been significantly developed in recent years in many respects, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules. In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls , Universität Heidelberg , Im Neuenheimer Feld 270 , D-69120 Heidelberg , Germany
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|