1
|
Xue L, Spahn CMT, Schacherl M, Mahamid J. Structural insights into context-dependent inhibitory mechanisms of chloramphenicol in cells. Nat Struct Mol Biol 2024:10.1038/s41594-024-01441-0. [PMID: 39668257 DOI: 10.1038/s41594-024-01441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Ribosome-targeting antibiotics represent an important class of antimicrobial drugs. Chloramphenicol (Cm) is a well-studied ribosomal peptidyl transferase center (PTC) binder and growing evidence suggests that its inhibitory action depends on the sequence of the nascent peptide. How such selective inhibition on the molecular scale manifests on the cellular level remains unclear. Here, we use cryo-electron tomography to analyze the impact of Cm inside the bacterium Mycoplasma pneumoniae. By resolving the Cm-bound ribosomes to 3.0 Å, we elucidate Cm's coordination with natural nascent peptides and transfer RNAs in the PTC. We find that Cm leads to the accumulation of a number of translation elongation states, indicating ongoing futile accommodation cycles, and to extensive ribosome collisions. We, thus, suggest that, beyond its direct inhibition of protein synthesis, the action of Cm may involve the activation of cellular stress responses. This work exemplifies how in-cell structural biology can expand the understanding of mechanisms of action for extensively studied antibiotics.
Collapse
Affiliation(s)
- Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magdalena Schacherl
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
2
|
Makarov GI, Makarova TM. SecM leader peptide as an allosteric translation inhibitor: a molecular dynamics study. Biochim Biophys Acta Gen Subj 2024; 1868:130715. [PMID: 39332784 DOI: 10.1016/j.bbagen.2024.130715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The SecM leader peptide regulates translation of the SecA protein, being a part of the Sec translocase, that reversibly arrests the ribosome. In the present study the structure of the SecM complex with the E. coli A/A,P/P-ribosome was obtained by means of docking and molecular dynamics simulation methods. It has been established that binding of the SecM leader peptide in the nascent peptide exit tunnel leads to a turn of the aminoacylating proline residue away from the C-terminal SecM glycine residue, which is adverse to the peptidyltransferase reaction. Besides, the SecM binding leads to a disturbance of the A-tRNA contacts with the tip of the H38 helix of the 23S rRNA (the A-site finger, ASF) and ribosomal protein uL16. Allosteric interrelation between these events has been proved by a construction of networks of concerted changes in non-covalent interactions throughout the whole ribosome, whereupon the A1614 and A751 residues of the 23S rRNA in the exit tunnel that formed stacking interactions with the SecM residues during the MD simulations, were found to be the principal triggers, inducing crucial alterations in the A-tRNA binding. The allosteric signal from the SecM peptide to the ASF, according to our model, is transmitted through ribosomal protein uL22, and there is reason to believe that this sensor is used not only by the SecM leader peptide, but also by other peptides that cause translation arrest.
Collapse
Affiliation(s)
- G I Makarov
- South Ural State University, 454080 Chelyabinsk, Russia.
| | - T M Makarova
- South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
3
|
Song P, Tian E, Cai Z, Chen X, Chen S, Yu K, Bian H, He K, Jia G. Methyltransferase ATMETTL5 writes m 6A on 18S ribosomal RNA to regulate translation in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:571-587. [PMID: 39188077 DOI: 10.1111/nph.20034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
Aberrant RNA modifications can lead to dysregulated gene expression and impeded growth in plants. Ribosomal RNA (rRNA) constitutes a substantial portion of total RNA, while the precise functions and molecular mechanisms underlying rRNA modifications in plants remain largely elusive. Here, we elucidated the exclusive occurrence of the canonical RNA modification N6-methyladenosine (m6A) solely 18S rRNA, but not 25S rRNA. We identified a completely uncharacterized protein, ATMETTL5, as an Arabidopsis m6A methyltransferase responsible for installing m6A methylation at the 1771 site of the 18S rRNA. ATMETTL5 is ubiquitously expressed and localized in both nucleus and cytoplasm, mediating rRNA m6A methylation. Mechanistically, the loss of ATMETTL5-mediated methylation results in attenuated translation. Furthermore, we uncovered the role of ATMETTL5-mediated methylation in coordinating blue light-mediated hypocotyl growth by regulating the translation of blue light-related messenger RNAs (mRNAs), specifically HYH and PRR9. Our findings provide mechanistic insights into how rRNA modification regulates ribosome function in mRNA translation and the response to blue light, thereby advancing our understanding of the role of epigenetic modifications in precisely regulating mRNA translation in plants.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Enlin Tian
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xu Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shuyan Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kemiao Yu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hanxiao Bian
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kai He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
5
|
Welp LM, Sachsenberg T, Wulf A, Chernev A, Horokhovskyi Y, Neumann P, Pašen M, Siraj A, Raabe M, Johannsson S, Schmitzova J, Netz E, Pfeuffer J, He Y, Fritzemeier K, Delanghe B, Viner R, Vos SM, Cramer P, Ficner R, Liepe J, Kohlbacher O, Urlaub H. Chemical crosslinking extends and complements UV crosslinking in analysis of RNA/DNA nucleic acid-protein interaction sites by mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610268. [PMID: 39257782 PMCID: PMC11383681 DOI: 10.1101/2024.08.29.610268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
UV (ultra-violet) crosslinking with mass spectrometry (XL-MS) has been established for identifying RNA-and DNA-binding proteins along with their domains and amino acids involved. Here, we explore chemical XL-MS for RNA-protein, DNA-protein, and nucleotide-protein complexes in vitro and in vivo . We introduce a specialized nucleotide-protein-crosslink search engine, NuXL, for robust and fast identification of such crosslinks at amino acid resolution. Chemical XL-MS complements UV XL-MS by generating different crosslink species, increasing crosslinked protein yields in vivo almost four-fold and thus it expands the structural information accessible via XL-MS. Our workflow facilitates integrative structural modelling of nucleic acid-protein complexes and adds spatial information to the described RNA-binding properties of enzymes, for which crosslinking sites are often observed close to their cofactor-binding domains. In vivo UV and chemical XL-MS data from E. coli cells analysed by NuXL establish a comprehensive nucleic acid-protein crosslink inventory with crosslink sites at amino acid level for more than 1500 proteins. Our new workflow combined with the dedicated NuXL search engine identified RNA crosslinks that cover most RNA-binding proteins, with DNA and RNA crosslinks detected in transcriptional repressors and activators.
Collapse
|
6
|
Holvec S, Barchet C, Lechner A, Fréchin L, De Silva SNT, Hazemann I, Wolff P, von Loeffelholz O, Klaholz BP. The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA. Nat Struct Mol Biol 2024; 31:1251-1264. [PMID: 38844527 DOI: 10.1038/s41594-024-01274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/14/2024] [Indexed: 08/17/2024]
Abstract
The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2'-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U-A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.
Collapse
Affiliation(s)
- Samuel Holvec
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Charles Barchet
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - S Nimali T De Silva
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Philippe Wolff
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France.
- Centre National de la Recherche Scientifique UMR, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Bock LV, Igaev M, Grubmüller H. Single-particle Cryo-EM and molecular dynamics simulations: A perfect match. Curr Opin Struct Biol 2024; 86:102825. [PMID: 38723560 DOI: 10.1016/j.sbi.2024.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Knowledge of the structure and dynamics of biomolecules is key to understanding the mechanisms underlying their biological functions. Single-particle cryo-electron microscopy (cryo-EM) is a powerful structural biology technique to characterize complex biomolecular systems. Here, we review recent advances of how Molecular Dynamics (MD) simulations are being used to increase and enhance the information extracted from cryo-EM experiments. We will particularly focus on the physics underlying these experiments, how MD facilitates structure refinement, in particular for heterogeneous and non-isotropic resolution, and how thermodynamic and kinetic information can be extracted from cryo-EM data.
Collapse
Affiliation(s)
- Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany. https://twitter.com/Pogoscience
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany. https://twitter.com/maxotubule
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany.
| |
Collapse
|
9
|
Fang N, Wu L, Duan S, Li J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules 2024; 29:2058. [PMID: 38731549 PMCID: PMC11085428 DOI: 10.3390/molecules29092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Lingyun Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Shuyan Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| |
Collapse
|
10
|
McGrath KM, Russell SJ, Fer E, Garmendia E, Hosgel A, Baltrus DA, Kaçar B. Fitness benefits of a synonymous substitution in an ancient EF-Tu gene depend on the genetic background. J Bacteriol 2024; 206:e0032923. [PMID: 38289064 PMCID: PMC10882980 DOI: 10.1128/jb.00329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024] Open
Abstract
Synonymous mutations are changes to DNA sequence, which occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation elongation factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels as well as global polysome abundance on RNA transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.IMPORTANCEThis study explores the degree to which synonymous mutations in essential genes can influence adaptation in bacteria. An experimental system whereby an Escherichia coli strain harboring an engineered translation protein elongation factor-Tu (EF-Tu) was subjected to laboratory evolution. We find that a synonymous mutation acquired on the gene encoding for EF-Tu is conditionally beneficial for bacterial fitness. Our findings provide insight into the importance of the genetic background when a synonymous substitution is favored by natural selection and how such changes have the potential to impact evolution when critical cellular processes are involved.
Collapse
Affiliation(s)
- Kaitlyn M. McGrath
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Steven J. Russell
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evrim Fer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbial Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva Garmendia
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ali Hosgel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
12
|
Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat Commun 2023; 14:5582. [PMID: 37696823 PMCID: PMC10495418 DOI: 10.1038/s41467-023-40404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- New Mexico Consortium, Los Alamos, NM, 87545, USA.
| |
Collapse
|
13
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Chari A, Stark H. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. Annu Rev Biophys 2023; 52:391-411. [PMID: 37159297 DOI: 10.1146/annurev-biophys-111622-091300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.
Collapse
Affiliation(s)
- Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
15
|
Radford F, Rinehart J, Isaacs FJ. Mapping the in vivo fitness landscape of a tethered ribosome. SCIENCE ADVANCES 2023; 9:eade8934. [PMID: 37115918 PMCID: PMC10146877 DOI: 10.1126/sciadv.ade8934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fitness landscapes are models of the sequence space of a genetic element that map how each sequence corresponds to its activity and can be used to guide laboratory evolution. The ribosome is a macromolecular machine that is essential for protein synthesis in all organisms. Because of the prevalence of dominant lethal mutations, a comprehensive fitness landscape of the ribosomal peptidyl transfer center (PTC) has not yet been attained. Here, we develop a method to functionally map an orthogonal tethered ribosome (oRiboT), which permits complete mutagenesis of nucleotides located in the PTC and the resulting epistatic interactions. We found that most nucleotides studied showed flexibility to mutation, and identified epistatic interactions between them, which compensate for deleterious mutations. This work provides a basis for a deeper understanding of ribosome function and malleability and could be used to inform design of engineered ribosomes with applications to synthesize next-generation biomaterials and therapeutics.
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Corresponding author.
| |
Collapse
|
16
|
Li M, Tripathi-Giesgen I, Schulman BA, Baumeister W, Wilfling F. In situ snapshots along a mammalian selective autophagy pathway. Proc Natl Acad Sci U S A 2023; 120:e2221712120. [PMID: 36917659 PMCID: PMC10041112 DOI: 10.1073/pnas.2221712120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Selective macroautophagy (hereafter referred to as autophagy) describes a process in which cytosolic material is engulfed in a double membrane organelle called an autophagosome. Autophagosomes are carriers responsible for delivering their content to a lytic compartment for destruction. The cargo can be of diverse origin, ranging from macromolecular complexes to protein aggregates, organelles, and even invading pathogens. Each cargo is unique in composition and size, presenting different challenges to autophagosome biogenesis. Among the largest cargoes targeted by the autophagy machinery are intracellular bacteria, which can, in the case of Salmonella, range from 2 to 5 μm in length and 0.5 to 1.5 μm in width. How phagophores form and expand on such a large cargo remains mechanistically unclear. Here, we used HeLa cells infected with an auxotrophic Salmonella to study the process of phagophore biogenesis using in situ correlative cryo-ET. We show that host cells generate multiple phagophores at the site of damaged Salmonella-containing vacuoles (SCVs). The observed double membrane structures range from disk-shaped to expanded cup-shaped phagophores, which have a thin intermembrane lumen with a dilating rim region and expand using the SCV, the outer membrane of Salmonella, or existing phagophores as templates. Phagophore rims establish different forms of contact with the endoplasmic reticulum (ER) via structurally distinct molecular entities for membrane formation and expansion. Early omegasomes correlated with the marker Double-FYVE domain-Containing Protein 1 (DFCP1) are observed in close association with the ER without apparent membrane continuity. Our study provides insights into the formation of phagophores around one of the largest selective cargoes.
Collapse
Affiliation(s)
- Meijing Li
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Florian Wilfling
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, 60438Frankfurt a. M., Germany
| |
Collapse
|
17
|
Fromm SA, O'Connor KM, Purdy M, Bhatt PR, Loughran G, Atkins JF, Jomaa A, Mattei S. The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services. Nat Commun 2023; 14:1095. [PMID: 36841832 PMCID: PMC9968351 DOI: 10.1038/s41467-023-36742-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Our understanding of protein synthesis has been conceptualised around the structure and function of the bacterial ribosome. This complex macromolecular machine is the target of important antimicrobial drugs, an integral line of defence against infectious diseases. Here, we describe how open access to cryo-electron microscopy facilities combined with bespoke user support enabled structural determination of the translating ribosome from Escherichia coli at 1.55 Å resolution. The obtained structures allow for direct determination of the rRNA sequence to identify ribosome polymorphism sites in the E. coli strain used in this study and enable interpretation of the ribosomal active and peripheral sites at unprecedented resolution. This includes scarcely populated chimeric hybrid states of the ribosome engaged in several tRNA translocation steps resolved at ~2 Å resolution. The current map not only improves our understanding of protein synthesis but also allows for more precise structure-based drug design of antibiotics to tackle rising bacterial resistance.
Collapse
Affiliation(s)
- Simon A Fromm
- EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Kate M O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Michael Purdy
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland. .,MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Ahmad Jomaa
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA. .,Centre for Cell and Membrane Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
18
|
Wada A, Ueta M, Wada C. The Discovery of Ribosomal Protein bL31 from Escherichia coli: A Long Story Revisited. Int J Mol Sci 2023; 24:ijms24043445. [PMID: 36834855 PMCID: PMC9966373 DOI: 10.3390/ijms24043445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosomal protein bL31 in Escherichia coli was initially detected as a short form (62 amino acids) using Kaltschmidt and Wittmann's two-dimensional polyacrylamide gel electrophoresis (2D PAGE), but the intact form (70 amino acids) was subsequently identified by means of Wada's improved radical-free and highly reducing (RFHR) 2D PAGE, which was consistent with the analysis of its encoding gene rpmE. Ribosomes routinely prepared from the K12 wild-type strain contained both forms of bL31. ΔompT cells, which lack protease 7, only contained intact bL31, suggesting that protease 7 cleaves intact bL31 and generates short bL31 during ribosome preparation from wild-type cells. Intact bL31 was required for subunit association, and its eight cleaved C-terminal amino acids contributed to this function. 70S ribosomes protected bL31 from cleavage by protease 7, but free 50S did not. In vitro translation was assayed using three systems. The translational activities of wild-type and ΔrpmE ribosomes were 20% and 40% lower than those of ΔompT ribosomes, which contained one copy of intact bL31. The deletion of bL31 reduces cell growth. A structural analysis predicted that bL31 spans the 30S and 50S subunits, consistent with its functions in 70S association and translation. It is important to re-analyze in vitro translation with ribosomes containing only intact bL31.
Collapse
|
19
|
Ribosome Protein Composition Mediates Translation during the Escherichia coli Stationary Phase. Int J Mol Sci 2023; 24:ijms24043128. [PMID: 36834540 PMCID: PMC9959377 DOI: 10.3390/ijms24043128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial ribosomes contain over 50 ribosome core proteins (r-proteins). Tens of non-ribosomal proteins bind to ribosomes to promote various steps of translation or suppress protein synthesis during ribosome hibernation. This study sets out to determine how translation activity is regulated during the prolonged stationary phase. Here, we report the protein composition of ribosomes during the stationary phase. According to quantitative mass-spectrometry analysis, ribosome core proteins bL31B and bL36B are present during the late log and first days of the stationary phase and are replaced by corresponding A paralogs later in the prolonged stationary phase. Ribosome hibernation factors Rmf, Hpf, RaiA, and Sra are bound to the ribosomes during the onset and a few first days of the stationary phase when translation is strongly suppressed. In the prolonged stationary phase, a decrease in ribosome concentration is accompanied by an increase in translation and association of translation factors with simultaneous dissociation of ribosome hibernating factors. The dynamics of ribosome-associated proteins partially explain the changes in translation activity during the stationary phase.
Collapse
|
20
|
Vuillemot R, Mirzaei A, Harastani M, Hamitouche I, Fréchin L, Klaholz BP, Miyashita O, Tama F, Rouiller I, Jonic S. MDSPACE: Extracting Continuous Conformational Landscapes from Cryo-EM Single Particle Datasets Using 3D-to-2D Flexible Fitting based on Molecular Dynamics Simulation. J Mol Biol 2023; 435:167951. [PMID: 36638910 DOI: 10.1016/j.jmb.2023.167951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
This article presents an original approach for extracting atomic-resolution landscapes of continuous conformational variability of biomolecular complexes from cryo electron microscopy (cryo-EM) single particle images. This approach is based on a new 3D-to-2D flexible fitting method, which uses molecular dynamics (MD) simulation and is embedded in an iterative conformational-landscape refinement scheme. This new approach is referred to as MDSPACE, which stands for Molecular Dynamics simulation for Single Particle Analysis of Continuous Conformational hEterogeneity. The article describes the MDSPACE approach and shows its performance using synthetic and experimental datasets.
Collapse
Affiliation(s)
- Rémi Vuillemot
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France; Department of Biochemistry & Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Alex Mirzaei
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mohamad Harastani
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Ilyes Hamitouche
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC-UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC-UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Strasbourg, France
| | | | - Florence Tama
- RIKEN Center for Computational Science, Kobe, Japan; Institute of Transformative Biomolecules, Graduate School of Science, Nagoya University, Nagoya, Japan; Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
21
|
Yu S, Srebnik S, Dao Duc K. Geometric differences in the ribosome exit tunnel impact the escape of small nascent proteins. Biophys J 2023; 122:20-29. [PMID: 36463403 PMCID: PMC9822834 DOI: 10.1016/j.bpj.2022.11.2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The exit tunnel is the subcompartment of the ribosome that contains the nascent polypeptide chain and, as such, is involved in various vital functions, including regulation of translation and protein folding. As the geometry of the tunnel shows important differences across species, we focus on key geometrical features of eukaryote and prokaryote tunnels. We used a simple coarse-grained molecular dynamics model to study the role of the tunnel geometry in the post-translational escape of short proteins (short open reading frames [sORFs]) with lengths ranging from 6 to 56 amino acids. We found that the probability of escape for prokaryotes is one for all but the 12-mer chains. Moreover, proteins of this length have an extremely low escape probability in eukaryotes. A detailed examination of the associated single trajectories and energy profiles showed that these variations can be explained by the interplay between the protein configurational space and the confinement effects introduced by the constriction sites of the ribosome exit tunnel. For certain lengths, either one or both of the constriction sites can lead to the trapping of the protein in the "pocket" regions preceding these sites. As the distribution of existing sORFs indicates some bias in length that is consistent with our findings, we finally suggest that the constraints imposed by the tunnel geometry have impacted the evolution of sORFs.
Collapse
Affiliation(s)
- Shiqi Yu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simcha Srebnik
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Cooper HB, Krause KL, Gardner PP. Finding priority bacterial ribosomes for future structural and antimicrobial research based upon global RNA and protein sequence analysis. PeerJ 2023; 11:e14969. [PMID: 36974140 PMCID: PMC10039652 DOI: 10.7717/peerj.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Ribosome-targeting antibiotics comprise over half of antibiotics used in medicine, but our fundamental knowledge of their binding sites is derived primarily from ribosome structures of non-pathogenic species. These include Thermus thermophilus, Deinococcus radiodurans and the archaean Haloarcula marismortui, as well as the commensal and sometimes pathogenic organism, Escherichia coli. Advancements in electron cryomicroscopy have allowed for the determination of more ribosome structures from pathogenic bacteria, with each study highlighting species-specific differences that had not been observed in the non-pathogenic structures. These observed differences suggest that more novel ribosome structures, particularly from pathogens, are required for a more accurate understanding of the level of diversity of the entire bacterial ribosome, with the potential of leading to innovative advancements in antibiotic research. In this study, high accuracy covariance and hidden Markov models were used to annotate ribosomal RNA and protein sequences respectively from genomic sequence, allowing us to determine the underlying ribosomal sequence diversity using phylogenetic methods. This analysis provided evidence that the current non-pathogenic ribosome structures are not sufficient representatives of some pathogenic bacteria, such as Campylobacter pylori, or of whole phyla such as Bacteroidota (Bacteroidetes).
Collapse
Affiliation(s)
- Helena B. Cooper
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Paul P. Gardner
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
24
|
Rasmussen RA, Wang S, Camarillo JM, Sosnowski V, Cho BK, Goo Y, Lucks J, O’Halloran T. Zur and zinc increase expression of E. coli ribosomal protein L31 through RNA-mediated repression of the repressor L31p. Nucleic Acids Res 2022; 50:12739-12753. [PMID: 36533433 PMCID: PMC9825181 DOI: 10.1093/nar/gkac1086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can adapt in response to numerous stress conditions. One such stress condition is zinc depletion. The zinc-sensing transcription factor Zur regulates the way numerous bacterial species respond to severe changes in zinc availability. Under zinc sufficient conditions, Zn-loaded Zur (Zn2-Zur) is well-known to repress transcription of genes encoding zinc uptake transporters and paralogues of a few ribosomal proteins. Here, we report the discovery and mechanistic basis for the ability of Zur to up-regulate expression of the ribosomal protein L31 in response to zinc in E. coli. Through genetic mutations and reporter gene assays, we find that Zur achieves the up-regulation of L31 through a double repression cascade by which Zur first represses the transcription of L31p, a zinc-lacking paralogue of L31, which in turn represses the translation of L31. Mutational analyses show that translational repression by L31p requires an RNA hairpin structure within the l31 mRNA and involves the N-terminus of the L31p protein. This work uncovers a new genetic network that allows bacteria to respond to host-induced nutrient limiting conditions through a sophisticated ribosomal protein switching mechanism.
Collapse
Affiliation(s)
- Rebecca A Rasmussen
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
| | - Suning Wang
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jeannie M Camarillo
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
| | - Victoria Sosnowski
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
| | - Byoung-Kyu Cho
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
- Mass Spectrometry Technology Access Center, Washington University in St Louis, School of Medicine, USA
| | - Young Ah Goo
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
- Mass Spectrometry Technology Access Center, Washington University in St Louis, School of Medicine, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Thomas V O’Halloran
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
McGrath H, Černeková M, Kolář MH. Binding of the peptide deformylase on the ribosome surface modulates the exit tunnel interior. Biophys J 2022; 121:4443-4451. [PMID: 36335428 PMCID: PMC9748369 DOI: 10.1016/j.bpj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Proteosynthesis on ribosomes is regulated at many levels. Conformational changes of the ribosome, possibly induced by external factors, may transfer over large distances and contribute to the regulation. The molecular principles of this long-distance allostery within the ribosome remain poorly understood. Here, we use structural analysis and atomistic molecular dynamics simulations to investigate peptide deformylase (PDF), an enzyme that binds to the ribosome surface near the ribosomal protein uL22 during translation and chemically modifies the emerging nascent peptide. Our simulations of the entire ribosome-PDF complex reveal that the PDF undergoes a swaying motion on the ribosome surface at the submicrosecond timescale. We show that the PDF affects the conformational dynamics of parts of the ribosome over distances of more than 5 nm. Using a supervised-learning algorithm, we demonstrate that the exit tunnel is influenced by the presence or absence of PDF. Our findings suggest a possible effect of the PDF on the nascent peptide translocation through the ribosome exit tunnel.
Collapse
Affiliation(s)
- Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
26
|
Wang Y, Wang A, Mohanty U, Whitford PC. Precise Steric Features Control Aminoacyl-tRNA Accommodation on the Ribosome. J Phys Chem B 2022; 126:8447-8459. [PMID: 36251478 DOI: 10.1021/acs.jpcb.2c05513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein synthesis involves a complex series of large-scale conformational changes in the ribosome. While long-lived intermediate states of these processes can be characterized by experiments, computational methods can be used to identify the interactions that contribute to the rate-limiting free-energy barriers. To this end, we use a simplified energetic model to perform molecular dynamics (MD) simulations of aminoacyl-tRNA (aa-tRNA) accommodation on the ribosome. While numerous studies have probed the energetics of the early stages of accommodation, we focus on the final stage of accommodation, where the 3'-CCA tail of aa-tRNA enters the peptidyl transferase center (PTC). These simulations show how a distinct intermediate is induced by steric confinement of the tail, immediately before it completes accommodation. Multiple pathways for 3'-CCA tail accommodation can be quantitatively distinguished, where the tail enters the PTC by moving past a pocket enclosed by Helix 89, 90, and 92, or through an alternate route formed by Helix 93 and the P-site tRNA. C2573, located within Helix 90, is shown to provide the largest contribution to this late-accommodation steric barrier, such that sub-Å perturbations to this residue can alter the time scale of tail accommodation by nearly an order of magnitude. In terms of biological function, these calculations suggest how this late-stage sterically induced barrier may contribute to tRNA proofreading by the ribosome.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts02467, United States
| | - Ailun Wang
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| | - Udayan Mohanty
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts02467, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States.,Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| |
Collapse
|
27
|
Juette MF, Carelli JD, Rundlet EJ, Brown A, Shao S, Ferguson A, Wasserman MR, Holm M, Taunton J, Blanchard SC. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes. eLife 2022; 11:e81608. [PMID: 36264623 PMCID: PMC9584604 DOI: 10.7554/elife.81608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/03/2022] [Indexed: 12/11/2022] Open
Abstract
Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structurally unrelated cyclic peptides didemnin B and ternatin-4 bind to the eEF1A(GTP)-aa-tRNA ternary complex and inhibit translation but have different effects on protein synthesis in vitro and in vivo. Here, we employ single-molecule fluorescence imaging and cryogenic electron microscopy to determine how these natural products inhibit translational elongation on mammalian ribosomes. By binding to a common site on eEF1A, didemnin B and ternatin-4 trap eEF1A in an intermediate state of aa-tRNA selection, preventing eEF1A release and aa-tRNA accommodation on the ribosome. We also show that didemnin B and ternatin-4 exhibit distinct effects on the dynamics of aa-tRNA selection that inform on observed disparities in their inhibition efficacies and physiological impacts. These integrated findings underscore the value of dynamics measurements in assessing the mechanism of small-molecule inhibition and highlight potential of single-molecule methods to reveal how distinct natural products differentially impact the human translation mechanism.
Collapse
Affiliation(s)
- Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Jordan D Carelli
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Emily J Rundlet
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell MedicineNew YorkUnited States
| | - Alan Brown
- MRC-LMB, Francis Crick AvenueCambridgeUnited Kingdom
| | - Sichen Shao
- MRC-LMB, Francis Crick AvenueCambridgeUnited Kingdom
| | - Angelica Ferguson
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Michael R Wasserman
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Mikael Holm
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Jack Taunton
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| |
Collapse
|
28
|
Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL, Fischer K, Blanchard SC, Sanbonmatsu KY. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res 2022; 50:8302-8320. [PMID: 35808938 DOI: 10.1093/nar/gkac597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.
Collapse
Affiliation(s)
- Wataru Nishima
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Mikael Holm
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily J Rundlet
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jose L Alejo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kara Fischer
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
29
|
Kazan R, Bourgeois G, Lazennec-Schurdevin C, Larquet E, Mechulam Y, Coureux PD, Schmitt E. Role of aIF5B in archaeal translation initiation. Nucleic Acids Res 2022; 50:6532-6548. [PMID: 35694843 PMCID: PMC9226500 DOI: 10.1093/nar/gkac490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. In eukaryotes, the role of eIF5B in ribosomal subunit joining is established and structural data showing eIF5B bound to the full ribosome were obtained. To achieve its function, eIF5B collaborates with eIF1A. However, structural data illustrating how these two factors interact on the small ribosomal subunit have long been awaited. The role of the archaeal counterparts, aIF5B and aIF1A, remains to be extensively addressed. Here, we study the late steps of Pyrococcus abyssi translation initiation. Using in vitro reconstituted initiation complexes and light scattering, we show that aIF5B bound to GTP accelerates subunit joining without the need for GTP hydrolysis. We report the crystallographic structures of aIF5B bound to GDP and GTP and analyze domain movements associated to these two nucleotide states. Finally, we present the cryo-EM structure of an initiation complex containing 30S bound to mRNA, Met-tRNAiMet, aIF5B and aIF1A at 2.7 Å resolution. Structural data shows how archaeal 5B and 1A factors cooperate to induce a conformation of the initiator tRNA favorable to subunit joining. Archaeal and eukaryotic features of late steps of translation initiation are discussed.
Collapse
Affiliation(s)
- Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée, PMC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| |
Collapse
|
30
|
Abstract
Structure determination by cryo electron microscopy (cryo-EM) provides information on structural heterogeneity and ensembles at atomic resolution. To obtain cryo-EM images of macromolecules, the samples are first rapidly cooled down to cryogenic temperatures. To what extent the structural ensemble is perturbed during cooling is currently unknown. Here, to quantify the effects of cooling, we combined continuum model calculations of the temperature drop, molecular dynamics simulations of a ribosome complex before and during cooling with kinetic models. Our results suggest that three effects markedly contribute to the narrowing of the structural ensembles: thermal contraction, reduced thermal motion within local potential wells, and the equilibration into lower free-energy conformations by overcoming separating free-energy barriers. During cooling, barrier heights below 10 kJ/mol were found to be overcome, which is expected to reduce B-factors in ensembles imaged by cryo-EM. Our approach now enables the quantification of the heterogeneity of room-temperature ensembles from cryo-EM structures.
Collapse
Affiliation(s)
- Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
31
|
Fujita T, Yokoyama T, Shirouzu M, Taguchi H, Ito T, Iwasaki S. The landscape of translational stall sites in bacteria revealed by monosome and disome profiling. RNA (NEW YORK, N.Y.) 2022; 28:290-302. [PMID: 34906996 PMCID: PMC8848927 DOI: 10.1261/rna.078188.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/24/2021] [Indexed: 05/29/2023]
Abstract
Ribosome pauses are associated with various cotranslational events and determine the fate of mRNAs and proteins. Thus, the identification of precise pause sites across the transcriptome is desirable; however, the landscape of ribosome pauses in bacteria remains ambiguous. Here, we harness monosome and disome (or collided ribosome) profiling strategies to survey ribosome pause sites in Escherichia coli Compared to eukaryotes, ribosome collisions in bacteria showed remarkable differences: a low frequency of disomes at stop codons, collisions occurring immediately after 70S assembly on start codons, and shorter queues of ribosomes trailing upstream. The pause sites corresponded with the biochemical validation by integrated nascent chain profiling (iNP) to detect polypeptidyl-tRNA, an elongation intermediate. Moreover, the subset of those sites showed puromycin resistance, presenting slow peptidyl transfer. Among the identified sites, the ribosome pause at Asn586 of ycbZ was validated by biochemical reporter assay, tRNA sequencing (tRNA-seq), and cryo-electron microscopy (cryo-EM) experiments. Our results provide a useful resource for ribosome stalling sites in bacteria.
Collapse
Affiliation(s)
- Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Midori-ku, Yokohama 226-8503, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
32
|
Kolář MH, Nagy G, Kunkel J, Vaiana SM, Bock LV, Grubmüller H. Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel. Nucleic Acids Res 2022; 50:2258-2269. [PMID: 35150281 PMCID: PMC8887479 DOI: 10.1093/nar/gkac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.
Collapse
Affiliation(s)
- Michal H Kolář
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany
- Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Gabor Nagy
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany
| | - John Kunkel
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Sara M Vaiana
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Lars V Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany
| |
Collapse
|
33
|
Hiregange DG, Rivalta A, Bose T, Breiner-Goldstein E, Samiya S, Cimicata G, Kulakova L, Zimmerman E, Bashan A, Herzberg O, Yonath A. Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Nucleic Acids Res 2022; 50:1770-1782. [PMID: 35100413 PMCID: PMC8860606 DOI: 10.1093/nar/gkac046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is a disease caused by the protist Giardia lamblia. As no human vaccines have been approved so far against it, and resistance to current drugs is spreading, new strategies for combating giardiasis need to be developed. The G. lamblia ribosome may provide a promising therapeutic target due to its distinct sequence differences from ribosomes of most eukaryotes and prokaryotes. Here, we report the cryo-electron microscopy structure of the G. lamblia (WB strain) ribosome determined at 2.75 Å resolution. The ribosomal RNA is the shortest known among eukaryotes, and lacks nearly all the eukaryote-specific ribosomal RNA expansion segments. In contrast, the ribosomal proteins are typically eukaryotic with some species-specific insertions/extensions. Most typical inter-subunit bridges are maintained except for one missing contact site. Unique structural features are located mainly at the ribosome's periphery. These may be exploited as target sites for the design of new compounds that inhibit selectively the parasite's ribosomal activity.
Collapse
Affiliation(s)
- Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elinor Breiner-Goldstein
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarit Samiya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giuseppe Cimicata
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liudmila Kulakova
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20742-4454, USA
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20742-4454, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-4454, USA
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
34
|
Radford F, Elliott SD, Schepartz A, Isaacs FJ. Targeted editing and evolution of engineered ribosomes in vivo by filtered editing. Nat Commun 2022; 13:180. [PMID: 35013328 PMCID: PMC8748908 DOI: 10.1038/s41467-021-27836-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies introduce targeted chromosomal modifications in organisms yet are constrained by the inability to selectively modify repetitive genetic elements. Here we describe filtered editing, a genome editing method that embeds group 1 self-splicing introns into repetitive genetic elements to construct unique genetic addresses that can be selectively modified. We introduce intron-containing ribosomes into the E. coli genome and perform targeted modifications of these ribosomes using CRISPR/Cas9 and multiplex automated genome engineering. Self-splicing of introns post-transcription yields scarless RNA molecules, generating a complex library of targeted combinatorial variants. We use filtered editing to co-evolve the 16S rRNA to tune the ribosome's translational efficiency and the 23S rRNA to isolate antibiotic-resistant ribosome variants without interfering with native translation. This work sets the stage to engineer mutant ribosomes that polymerize abiological monomers with diverse chemistries and expands the scope of genome engineering for precise editing and evolution of repetitive DNA sequences.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- CRISPR-Cas Systems
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Exons
- Gene Editing/methods
- Genetic Engineering
- Genome, Bacterial
- Introns
- Mutagenesis, Site-Directed/methods
- Polymers/chemistry
- Protein Biosynthesis
- RNA Splicing
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Repetitive Sequences, Nucleic Acid
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Shane D Elliott
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
35
|
Zhang C, Zhao DX, Feng Y, Wang J, Yang ZZ. Energetics and J-coupling constants for Ala, Gly, and Val peptides demonstrated using ABEEM polarizable force field in vacuo and an aqueous solution. Phys Chem Chem Phys 2022; 24:4232-4250. [DOI: 10.1039/d1cp05676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an atom-bond electronegativity equalisation method at the σπ-level (ABEEM) polarisable force field (PFF) for peptides is presented. ABEEM PFF utilises a fluctuating charge model to explicitly describe...
Collapse
|
36
|
Chojnowski G, Simpkin AJ, Leonardo DA, Seifert-Davila W, Vivas-Ruiz DE, Keegan RM, Rigden DJ. findMySequence: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM. IUCRJ 2022; 9:86-97. [PMID: 35059213 PMCID: PMC8733886 DOI: 10.1107/s2052252521011088] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/22/2021] [Indexed: 05/15/2023]
Abstract
Although experimental protein-structure determination usually targets known proteins, chains of unknown sequence are often encountered. They can be purified from natural sources, appear as an unexpected fragment of a well characterized protein or appear as a contaminant. Regardless of the source of the problem, the unknown protein always requires characterization. Here, an automated pipeline is presented for the identification of protein sequences from cryo-EM reconstructions and crystallographic data. The method's application to characterize the crystal structure of an unknown protein purified from a snake venom is presented. It is also shown that the approach can be successfully applied to the identification of protein sequences and validation of sequence assignments in cryo-EM protein structures.
Collapse
Affiliation(s)
- Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Adam J. Simpkin
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Diego A. Leonardo
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | | | - Dan E. Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Avenida Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima, Peru
| | - Ronan M. Keegan
- Rutherford Appleton Laboratory, Research Complex at Harwell, UKRI-STFC, Didcot OX11 0FA, United Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
37
|
Chadani Y, Sugata N, Niwa T, Ito Y, Iwasaki S, Taguchi H. Nascent polypeptide within the exit tunnel stabilizes the ribosome to counteract risky translation. EMBO J 2021; 40:e108299. [PMID: 34672004 PMCID: PMC8634131 DOI: 10.15252/embj.2021108299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/26/2023] Open
Abstract
Continuous translation elongation, irrespective of amino acid sequences, is a prerequisite for living organisms to produce their proteomes. However, nascent polypeptide products bear an inherent risk of elongation abortion. For example, negatively charged sequences with occasional intermittent prolines, termed intrinsic ribosome destabilization (IRD) sequences, weaken the translating ribosomal complex, causing certain nascent chain sequences to prematurely terminate translation. Here, we show that most potential IRD sequences in the middle of open reading frames remain cryptic and do not interrupt translation, due to two features of the nascent polypeptide. Firstly, the nascent polypeptide itself spans the exit tunnel, and secondly, its bulky amino acid residues occupy the tunnel entrance region, thereby serving as a bridge and protecting the large and small ribosomal subunits from dissociation. Thus, nascent polypeptide products have an inbuilt ability to ensure elongation continuity.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Nobuyuki Sugata
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Tatsuya Niwa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yosuke Ito
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - Hideki Taguchi
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
38
|
Hirn M, Little A. Wavelet invariants for statistically robust multi-reference alignment. INFORMATION AND INFERENCE : A JOURNAL OF THE IMA 2021; 10:1287-1351. [PMID: 35070296 PMCID: PMC8782248 DOI: 10.1093/imaiai/iaaa016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose a nonlinear, wavelet-based signal representation that is translation invariant and robust to both additive noise and random dilations. Motivated by the multi-reference alignment problem and generalizations thereof, we analyze the statistical properties of this representation given a large number of independent corruptions of a target signal. We prove the nonlinear wavelet-based representation uniquely defines the power spectrum but allows for an unbiasing procedure that cannot be directly applied to the power spectrum. After unbiasing the representation to remove the effects of the additive noise and random dilations, we recover an approximation of the power spectrum by solving a convex optimization problem, and thus reduce to a phase retrieval problem. Extensive numerical experiments demonstrate the statistical robustness of this approximation procedure.
Collapse
Affiliation(s)
- Matthew Hirn
- Department of Computational Mathematics, Science and Engineering, Department of Mathematics and Center for Quantum Computing, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Anna Little
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
39
|
Sarma H, Upadhyaya M, Gogoi B, Phukan M, Kashyap P, Das B, Devi R, Sharma HK. Cardiovascular Drugs: an Insight of In Silico Drug Design Tools. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Paleskava A, Maksimova EM, Vinogradova DS, Kasatsky PS, Kirillov SV, Konevega AL. Differential Contribution of Protein Factors and 70S Ribosome to Elongation. Int J Mol Sci 2021; 22:9614. [PMID: 34502523 PMCID: PMC8431766 DOI: 10.3390/ijms22179614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The growth of the polypeptide chain occurs due to the fast and coordinated work of the ribosome and protein elongation factors, EF-Tu and EF-G. However, the exact contribution of each of these components in the overall balance of translation kinetics remains not fully understood. We created an in vitro translation system Escherichia coli replacing either elongation factor with heterologous thermophilic protein from Thermus thermophilus. The rates of the A-site binding and decoding reactions decreased an order of magnitude in the presence of thermophilic EF-Tu, indicating that the kinetics of aminoacyl-tRNA delivery depends on the properties of the elongation factor. On the contrary, thermophilic EF-G demonstrated the same translocation kinetics as a mesophilic protein. Effects of translocation inhibitors (spectinomycin, hygromycin B, viomycin and streptomycin) were also similar for both proteins. Thus, the process of translocation largely relies on the interaction of tRNAs and the ribosome and can be efficiently catalysed by thermophilic EF-G even at suboptimal temperatures.
Collapse
Affiliation(s)
- Alena Paleskava
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Elena M. Maksimova
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
| | - Daria S. Vinogradova
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
| | - Pavel S. Kasatsky
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
| | - Stanislav V. Kirillov
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
| | - Andrey L. Konevega
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
41
|
Structures of tmRNA and SmpB as they transit through the ribosome. Nat Commun 2021; 12:4909. [PMID: 34389707 PMCID: PMC8363625 DOI: 10.1038/s41467-021-24881-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation.
Collapse
|
42
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
43
|
Beckert B, Leroy EC, Sothiselvam S, Bock LV, Svetlov MS, Graf M, Arenz S, Abdelshahid M, Seip B, Grubmüller H, Mankin AS, Innis CA, Vázquez-Laslop N, Wilson DN. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat Commun 2021; 12:4466. [PMID: 34294725 PMCID: PMC8298421 DOI: 10.1038/s41467-021-24674-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.
Collapse
Affiliation(s)
- Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Elodie C Leroy
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France
| | | | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Graf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Stefan Arenz
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Maha Abdelshahid
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Britta Seip
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - C Axel Innis
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France.
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
44
|
Makarova TM, Makarov GI. Investigation of Allosteric Effect of 2,8-Dimethylation of A2503 in E. coli 23S rRNA by Molecular-Dynamics Simulations. BIOCHEMISTRY (MOSCOW) 2021; 85:1458-1467. [PMID: 33280585 DOI: 10.1134/s0006297920110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ribosome is a molecular machine that synthesizes all cellular proteins. It also is a target of about half of the clinically used antibiotics. Adaptive chemical modification of ribosomal RNAs residues is one of the ways to provide resistance to certain antibiotics. A curious example of such modification is 2,8-dimethylation of A2503 in 23S rRNA, which induces resistance to phenols, linkosamides, oxazolidinones, pleuromutilins, and certain macrolides. In this article the effect of 2,8-dimethylation of A2503 on conformation and mobility of RNA residues of the 70S E. coli ribosome was investigated employing molecular dynamics simulations method. Significant alterations were detected both in the immediate environment of the 2503 23S rRNA residue and in the nucleotides located deeper in the nascent peptide exit tunnel (NPET), which are known to be involved in signal transmission from the antibiotics bound in the NPET to the peptidyl transferase center. These alterations shift the ribosome towards the A/A, P/P-state from the conformationally different state - P/P, E/E one in our case. The obtained results allow us to conclude that the effect of m2m8A2503 modification involves additional stabilization of the A/A, P/P-state favoring the peptidyl transferase reaction (PTR) contrary to antibiotics that inhibit PTR.
Collapse
Affiliation(s)
- T M Makarova
- South Ural State University, Chelyabinsk, 454080, Russia.
| | - G I Makarov
- South Ural State University, Chelyabinsk, 454080, Russia
| |
Collapse
|
45
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
46
|
Crowe-McAuliffe C, Murina V, Turnbull KJ, Kasari M, Mohamad M, Polte C, Takada H, Vaitkevicius K, Johansson J, Ignatova Z, Atkinson GC, O'Neill AJ, Hauryliuk V, Wilson DN. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nat Commun 2021; 12:3577. [PMID: 34117249 PMCID: PMC8196190 DOI: 10.1038/s41467-021-23753-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Target protection proteins confer resistance to the host organism by directly binding to the antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms.
Collapse
Affiliation(s)
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Kathryn Jane Turnbull
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Marje Kasari
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Merianne Mohamad
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christine Polte
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karolis Vaitkevicius
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Alex J O'Neill
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
- University of Tartu, Institute of Technology, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
47
|
Chwastyk M, Cieplak M. Nascent Folding of Proteins Across the Three Domains of Life. Front Mol Biosci 2021; 8:692230. [PMID: 34164435 PMCID: PMC8215155 DOI: 10.3389/fmolb.2021.692230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
We study the nascent behavior of three model coarse-grained proteins in six rigid all-atom structures representing ribosomes that come from three domains of life. The synthesis of the proteins is implemented as a growth process. The geometry of the exit tunnel is quantified and shown to differ between the domains of life: both in volume and the size of constriction sites. This results in different characteristic times of capture within the tunnel and various probabilities of the escape. One of the proteins studied is the bacterial YibK which is knotted in its native state. A fraction of the trajectories results in knotting and the probability of doing so is largest for the bacterial ribosomes. Relaxing the condition of the rigidness of the ribosomes should result in a better avoidance of trapping and better proper folding.
Collapse
Affiliation(s)
- Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
48
|
Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat Biotechnol 2021; 39:1278-1291. [PMID: 33986546 DOI: 10.1038/s41587-021-00915-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/06/2021] [Indexed: 01/23/2023]
Abstract
Nanopore RNA sequencing shows promise as a method for discriminating and identifying different RNA modifications in native RNA. Expanding on the ability of nanopore sequencing to detect N6-methyladenosine, we show that other modifications, in particular pseudouridine (Ψ) and 2'-O-methylation (Nm), also result in characteristic base-calling 'error' signatures in the nanopore data. Focusing on Ψ modification sites, we detected known and uncovered previously unreported Ψ sites in mRNAs, non-coding RNAs and rRNAs, including a Pus4-dependent Ψ modification in yeast mitochondrial rRNA. To explore the dynamics of pseudouridylation, we treated yeast cells with oxidative, cold and heat stresses and detected heat-sensitive Ψ-modified sites in small nuclear RNAs, small nucleolar RNAs and mRNAs. Finally, we developed a software, nanoRMS, that estimates per-site modification stoichiometries by identifying single-molecule reads with altered current intensity and trace profiles. This work demonstrates that Nm and Ψ RNA modifications can be detected in cellular RNAs and that their modification stoichiometry can be quantified by nanopore sequencing of native RNA.
Collapse
|
49
|
Jana S, Datta PP. In silico analysis of bacterial translation factors reveal distinct translation event specific pI values. BMC Genomics 2021; 22:220. [PMID: 33781198 PMCID: PMC8008671 DOI: 10.1186/s12864-021-07472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Protein synthesis is a cellular process that takes place through the successive translation events within the ribosome by the event-specific protein factors, namely, initiation, elongation, release, and recycling factors. In this regard, we asked the question about how similar are those translation factors to each other from a wide variety of bacteria? Hence, we did a thorough in silico study of the translation factors from 495 bacterial sp., and 4262 amino acid sequences by theoretically measuring their pI and MW values that are two determining factors for distinguishing individual proteins in 2D gel electrophoresis in experimental procedures. Then we analyzed the output from various angles. Results Our study revealed the fact that it’s not all same, or all random, but there are distinct orders and the pI values of translation factors are translation event specific. We found that the translation initiation factors are mainly basic, whereas, elongation and release factors that interact with the inter-subunit space of the intact 70S ribosome during translation are strictly acidic across bacterial sp. These acidic elongation factors and release factors contain higher frequencies of glutamic acids. However, among all the translation factors, the translation initiation factor 2 (IF2) and ribosome recycling factor (RRF) showed variable pI values that are linked to the order of phylogeny. Conclusions From the results of our study, we conclude that among all the bacterial translation factors, elongation and release factors are more conserved in terms of their pI values in comparison to initiation and recycling factors. Acidic properties of these factors are independent of habitat, nature, and phylogeny of the bacterial species. Furthermore, irrespective of the different shapes, sizes, and functions of the elongation and release factors, possession of the strictly acidic pI values of these translation factors all over the domain Bacteria indicates that the acidic nature of these factors is a necessary criterion, perhaps to interact into the partially enclosed rRNA rich inter-subunit space of the translating 70S ribosome. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07472-x.
Collapse
Affiliation(s)
- Soma Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, PIN 741246, India
| | - Partha P Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, PIN 741246, India.
| |
Collapse
|
50
|
Makarov GI, Reshetnikova RV. Investigation of radezolid interaction with non-canonical chloramphenicol binding site by molecular dynamics simulations. J Mol Graph Model 2021; 105:107902. [PMID: 33798835 DOI: 10.1016/j.jmgm.2021.107902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Radezolid is a promising antibiotic of oxazolidinone family, which is able to overcome effect of some linezolid resistance mechanisms of bacterial ribosomes. The structure of the radezolid complex with ribosomes was never published but, by analogy with linezolid, it is considered to prevent the binding of aminoacyl-tRNA to the A-site of the ribosome large subunit. However, as with linezolid, it can be assumed that radezolid binds to the alternative binding site existing in the A,A/P,P-ribosome. In the present article we have investigated this issue by molecular dynamics simulations and proposed the structure of the radezolid complex with a E. coli ribosome, which is consistent with available data of biochemical investigations of radezolid action.
Collapse
Affiliation(s)
- G I Makarov
- South Ural State University, 454080, Chelyabinsk, Russia.
| | | |
Collapse
|