1
|
Schlappa J, Ghiringhelli G, Van Kuiken BE, Teichmann M, Miedema PS, Delitz JT, Gerasimova N, Molodtsov S, Adriano L, Baranasic B, Broers C, Carley R, Gessler P, Ghodrati N, Hickin D, Hoang LP, Izquierdo M, Mercadier L, Mercurio G, Parchenko S, Stupar M, Yin Z, Martinelli L, Merzoni G, Peng YY, Reuss T, Sreekantan Nair Lalithambika S, Techert S, Laarmann T, Huotari S, Schroeter C, Langer B, Giessel T, Buchheim J, Gwalt G, Sokolov A, Siewert F, Buechner R, Vaz da Cruz V, Eckert S, Liu CY, Sohrt C, Weniger C, Pietzsch A, Neppl S, Senf F, Scherz A, Föhlisch A. The Heisenberg-RIXS instrument at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:29-45. [PMID: 39705248 PMCID: PMC11708868 DOI: 10.1107/s1600577524010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024]
Abstract
Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL. The Heisenberg RIXS instrument is designed for RIXS experiments in the soft X-ray range with energy resolution approaching the Fourier and the Heisenberg limits. It is based on a spherical grating with variable line spacing and a position-sensitive 2D detector. Initially, two gratings were installed to adequately cover the whole photon energy range. With optimized spot size on the sample and small pixel detector the energy resolution can be better than 40 meV (90 meV) at any photon energy below 1000 eV with the high-resolution (high-transmission) grating. At the SCS instrument of the European XFEL the spectrometer can be easily positioned thanks to air pads on a high-quality floor, allowing the scattering angle to be continuously adjusted over the 65-145° range. It can be coupled to two different sample interaction chambers, one for liquid jets and one for solids, each state-of-the-art equipped and compatible for optical laser pumping in collinear geometry. The measured performances, in terms of energy resolution and count rate on the detector, closely match design expectations. The Heisenberg RIXS instrument has been open to public users since the summer of 2022.
Collapse
Affiliation(s)
| | - Giacomo Ghiringhelli
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32I-20133MilanoItaly
- CNR-SPIN, Dipartimento di FisicaPolitecnico di MilanoI-20133MilanoItaly
| | | | | | | | | | | | - Serguei Molodtsov
- European XFELHolzkoppel 4Schenefeld22869Germany
- Institute of Experimental PhysicsTU Bergakademie FreibergLeipziger Str. 2309599FreibergGermany
- Center for Efficient High Temperature Processes and Materials Conversion (ZeHS)TU Bergakademie FreibergWinklerstrasse 509599FreibergGermany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhong Yin
- European XFELHolzkoppel 4Schenefeld22869Germany
| | - Leonardo Martinelli
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32I-20133MilanoItaly
| | - Giacomo Merzoni
- European XFELHolzkoppel 4Schenefeld22869Germany
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32I-20133MilanoItaly
| | - Ying Ying Peng
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32I-20133MilanoItaly
| | - Torben Reuss
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
| | - Sreeju Sreekantan Nair Lalithambika
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
- Institute of X-ray Physics, Göttingen University, Friedrich Hund Platz 1, 37077Göttingen, Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
- Institute of X-ray Physics, Göttingen University, Friedrich Hund Platz 1, 37077Göttingen, Germany
| | - Tim Laarmann
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
- The Hamburg Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Simo Huotari
- Department of PhysicsUniversity of HelsinkiPO Box 64FI-00014HelsinkiFinland
| | | | | | | | - Jana Buchheim
- Department Optics and Beamlines, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489Berlin, Germany
| | - Grzegorz Gwalt
- Department Optics and Beamlines, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489Berlin, Germany
| | - Andrey Sokolov
- Department Optics and Beamlines, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489Berlin, Germany
| | - Frank Siewert
- Department Optics and Beamlines, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489Berlin, Germany
| | - Robby Buechner
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Vinicius Vaz da Cruz
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Sebastian Eckert
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Chun-Yu Liu
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
- University of PotsdamInstitute of Physics and AstronomyKarl-Liebknecht-Straße 24/2514476PotsdamGermany
| | - Christian Sohrt
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Christian Weniger
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Annette Pietzsch
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Stefan Neppl
- University of PotsdamInstitute of Physics and AstronomyKarl-Liebknecht-Straße 24/2514476PotsdamGermany
| | - Friedmar Senf
- University of PotsdamInstitute of Physics and AstronomyKarl-Liebknecht-Straße 24/2514476PotsdamGermany
| | | | - Alexander Föhlisch
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
- University of PotsdamInstitute of Physics and AstronomyKarl-Liebknecht-Straße 24/2514476PotsdamGermany
| |
Collapse
|
2
|
Nimmrich A, Govind N, Khalil M. Capturing Coupled Structural and Electronic Motions During Excited-State Intramolecular Proton Transfer via Computational Multiedge Resonant Inelastic X-ray Scattering. J Phys Chem Lett 2024; 15:12652-12662. [PMID: 39688340 DOI: 10.1021/acs.jpclett.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Proton transfer processes form the foundation of many chemical processes. In excited-state intramolecular proton transfer (ESIPT) processes, ultrafast proton transfer is impulsively initiated through light. Here, we explore time-dependent coupled atomic and electronic motions during and following ESIPT through computational time-resolved resonant inelastic X-ray scattering (RIXS). Excited-state ab initio molecular dynamics simulations combined with time-dependent density functional theory calculations were performed for a model ESIPT system, 10-hydroxybenzo[h]quinoline, to obtain transient RIXS signatures. The RIXS spectra at both the nitrogen and oxygen K-edges were computed to resolve the electronic and atomic structural dynamics from both the proton donor and acceptor perspective. The results demonstrate that RIXS provides unprecedented details of the local electronic structure, the coupling between different core and valence excited electronic states, and the reorganization of the electronic structure coupled to the proton transfer process. We also develop a spectroscopic ruler correlating spectral shifts of a RIXS peak to the proton transfer distance during ESIPT. This work highlights the exciting potential of time-resolved RIXS experiments at newly commissioned soft X-ray free electron laser facilities for measuring coupled electronic and structural changes during ultrafast chemical processes.
Collapse
Affiliation(s)
- Amke Nimmrich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Penfold TJ, Curchod BFE. Exploring the Influence of Approximations for Simulating Valence Excited X-ray Spectra. J Phys Chem A 2024; 128:10826-10836. [PMID: 39630609 DOI: 10.1021/acs.jpca.4c06150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
First-principles simulations of excited-state X-ray spectra are becoming increasingly important to interpret the wealth of electronic and geometric information contained within femtosecond X-ray absorption spectra recorded at X-ray Free Electron Lasers (X-FELs). However, because the transition dipole matrix elements must be calculated between two excited states (i.e., the valence excited state and the final core excited state arising from the initial valence excited state) of very different energies, this can be challenging and time-consuming to compute. Herein using two molecules, protonated formaldimine and cyclobutanone, we assess the ability of n-electron valence-state perturbation theory (NEVPT2), equation-of-motion coupled-cluster theory (EOM-CCSD), linear-response time-dependent density functional theory (LR-TDDFT) and the maximum overlap method (MOM) to describe excited state X-ray spectra. Our study focuses in particular on the behavior of these methods away from the Franck-Condon geometry and in the vicinity of important topological features of excited-state potential energy surfaces, namely, conical intersections. We demonstrate that the primary feature of excited-state X-ray spectra is associated with the core electron filling the hole created by the initial valence excitation, a process that all of the methods can capture. Higher energy states are generally weaker, but importantly much more sensitive to the nature of the reference electronic wave function. As molecular structures evolve away from the Franck-Condon geometry, changes in the spectral shape closely follow the underlying valence excitation, highlighting the importance of accurately describing the initial valence excitation to simulate the excited-state X-ray absorption spectra.
Collapse
Affiliation(s)
- Thomas J Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon-Tyne NE1 7RU, United Kingdom
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
4
|
Zhang ZY, Restaino L, Sen A, Winghart MO, Coates MR, Odelius M, Kowalewski M, Nibbering ETJ, Rouzée A. Ultrafast Mapping of Electronic and Nuclear Structure in the Photo Dissociation of Nitrogen Dioxide. J Phys Chem Lett 2024; 15:12025-12033. [PMID: 39588803 PMCID: PMC11626503 DOI: 10.1021/acs.jpclett.4c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
We investigate the photoinduced dissociation reaction of NO2 → NO + O upon electronic excitation of the X̃2A1 (D0) to the Ã2B2 (D1) state by femtosecond X-ray absorption spectroscopy at the nitrogen K-edge. We obtain key insight into the chemical bond breaking event and its associated electronic structural dynamics. Calculations of the photoinduced reaction allow to assign the transient absorption features at time scales of 10-50 fs to wave packet motions in the excited D1 and ground D0 states, followed by the formation of the NO photoproduct with a 255 ± 23 fs time constant. Our analysis shows that there is no direct correlation between the 1s core levels and the electronic ground and excited states transition energies and the bond elongation of NO2, while en route to dissociation toward the NO + O photoproducts, in the transient nitrogen K-edge spectra. However, simulations predict that for a sufficiently short UV pump pulse, the early wave packet dynamics in the D1 electronic excited state occurring within the first 35 fs along the bending and symmetric stretching modes can be directly mapped in the transient X-ray absorption spectra.
Collapse
Affiliation(s)
- Zhuang-Yan Zhang
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| | - Lorenzo Restaino
- Department
of Physics, Stockholm University, AlbaNova
University Center, 106 91 Stockholm, Sweden
| | - Arnab Sen
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| | - Marc-Oliver Winghart
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| | - Michael R. Coates
- Department
of Physics, Stockholm University, AlbaNova
University Center, 106 91 Stockholm, Sweden
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, 106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department
of Physics, Stockholm University, AlbaNova
University Center, 106 91 Stockholm, Sweden
| | - Erik T. J. Nibbering
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| | - Arnaud Rouzée
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| |
Collapse
|
5
|
Bergmann U. Stimulated X-ray emission spectroscopy. PHOTOSYNTHESIS RESEARCH 2024; 162:371-384. [PMID: 38619702 DOI: 10.1007/s11120-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 04/16/2024]
Abstract
We describe an emerging hard X-ray spectroscopy technique, stimulated X-ray emission spectroscopy (S-XES). S-XES has the potential to characterize the electronic structure of 3d transition metal complexes with spectral information currently not reachable and might lead to the development of new ultrafast X-ray sources with properties beyond the state of the art. S-XES has become possible with the emergence of X-ray free-electron lasers (XFELs) that provide intense femtosecond X-ray pulses that can be employed to generate a population inversion of core-hole excited states resulting in stimulated X-ray emission. We describe the instrumentation, the various types of S-XES, the potential applications, the experimental challenges, and the feasibility of applying S-XES to characterize dilute systems, including the Mn4Ca cluster in the oxygen evolving complex of photosystem II.
Collapse
Affiliation(s)
- Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Hutchison CM, Perrett S, van Thor JJ. XFEL Beamline Optical Instrumentation for Ultrafast Science. J Phys Chem B 2024; 128:8855-8868. [PMID: 39087627 PMCID: PMC11421085 DOI: 10.1021/acs.jpcb.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Free electron lasers operating in the soft and hard X-ray regime provide capabilities for ultrafast science in many areas, including X-ray spectroscopy, diffractive imaging, solution and material scattering, and X-ray crystallography. Ultrafast time-resolved applications in the picosecond, femtosecond, and attosecond regimes are often possible using single-shot experimental configurations. Aside from X-ray pump and X-ray probe measurements, all other types of ultrafast experiments require the synchronized operation of pulsed laser excitation for resonant or nonresonant pumping. This Perspective focuses on the opportunities for the optical control of structural dynamics by applying techniques from nonlinear spectroscopy to ultrafast X-ray experiments. This typically requires the synthesis of two or more optical pulses with full control of pulse and interpulse parameters. To this end, full characterization of the femtosecond optical pulses is also highly desirable. It has recently been shown that two-color and two-pulse femtosecond excitation of fluorescent protein crystals allowed a Tannor-Rice coherent control experiment, performed under characterized conditions. Pulse shaping and the ability to synthesize multicolor and multipulse conditions are highly desirable and would enable XFEL facilities to offer capabilities for structural dynamics. This Perspective will give a summary of examples of the types of experiments that could be achieved, and it will additionally summarize the laser, pulse shaping, and characterization that would be recommended as standard equipment for time-resolved XFEL beamlines, with an emphasis on ultrafast time-resolved serial femtosecond crystallography.
Collapse
Affiliation(s)
- Christopher
D. M. Hutchison
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Samuel Perrett
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Jasper J. van Thor
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
7
|
Agåker M, Söderström J, Baumann TM, Englund CJ, Kjellsson L, Boll R, De Fanis A, Dold S, Mazza T, Montaño J, Münnich A, Mullins T, Ovcharenko Y, Rennhack N, Schmidt P, Senfftleben B, Turcato M, Usenko S, Meyer M, Nordgren J, Rubensson JE. A 1D imaging soft X-ray spectrometer for the small quantum systems instrument at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1264-1275. [PMID: 39078692 PMCID: PMC11371048 DOI: 10.1107/s1600577524005988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
A 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump-probe measurements and in investigations of propagation effects and other nonlinear phenomena.
Collapse
Affiliation(s)
- Marcus Agåker
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
- MAX IV Laboratory, Lund University, Box 118, 221 00Lund, Sweden
| | - Johan Söderström
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
| | | | - Carl-Johan Englund
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
| | - Ludvig Kjellsson
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
- MAX IV Laboratory, Lund University, Box 118, 221 00Lund, Sweden
- European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | | | - Simon Dold
- European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | | | | | | | | | - Nils Rennhack
- European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | | | | | | | - Sergey Usenko
- European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Joseph Nordgren
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
| | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
| |
Collapse
|
8
|
Yang Z, Zhang X, Geng H, Chen J, Feng C, Liu B, Li B. Development and commissioning of a broadband online X-ray spectrometer for the SXFEL Facility. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1373-1381. [PMID: 39073992 PMCID: PMC11371040 DOI: 10.1107/s1600577524005812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024]
Abstract
A broadband online X-ray spectrometer has been designed and commissioned at the SUD beamline of the Shanghai Soft X-ray Free-Electron Laser Facility, which can deliver both SASE and seeded FEL pulses to user experiments, spanning the photon energy range of 50-620 eV. The resolving powers of the spectrometer calibrated via online measurement at 92 eV and 249 eV are ∼20000 and ∼15000, respectively, and the absolute photon energy is characterized by an electron time-of-flight spectrometer. The high energy resolution provided by the spectrometer can differentiate the fine structure in the FEL spectrum, to determine its pulse length.
Collapse
Affiliation(s)
- Zhicheng Yang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Ximing Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204People’s Republic of China
| | - Heping Geng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204People’s Republic of China
| | - Jiahua Chen
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204People’s Republic of China
| | - Chao Feng
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204People’s Republic of China
| | - Bo Liu
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204People’s Republic of China
| | - Bin Li
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204People’s Republic of China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210People’s Republic of China
| |
Collapse
|
9
|
Freibert A, Mendive-Tapia D, Vendrell O, Huse N. A fully dynamical description of time-resolved resonant inelastic X-ray scattering of pyrazine. Phys Chem Chem Phys 2024; 26:22572-22581. [PMID: 39150720 DOI: 10.1039/d4cp00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Recent advancements in ultrashort and intense X-ray sources have enabled the utilisation of resonant inelastic X-ray scattering (RIXS) as a probing technique for monitoring photoinduced dynamics in molecular systems. To account for dynamic phenomena like non-adiabatic transitions across the relevant electronic state manifold, a time-dependent framework is crucial. Here, we introduce a fully time-dependent approach for calculating transient RIXS spectra using wavepacket dynamics simulations, alongside an explicit treatment of the X-ray probe pulse that surpasses Kramers-Heisenberg-Dirac constraints. Our analysis of pyrazine at the nitrogen K-edge underscores the importance of considering nuclear motion effects in all electronic states involved in the transient RIXS process. As a result, we propose a numerically exact approach to computationally support and predict cutting-edge time-resolved RIXS experiments.
Collapse
Affiliation(s)
- Antonia Freibert
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - David Mendive-Tapia
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - Nils Huse
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| |
Collapse
|
10
|
Morgunov A, Tran HK, Meitei OR, Chien YC, Van Voorhis T. MP2-Based Composite Extrapolation Schemes Can Predict Core-Ionization Energies for First-Row Elements with Coupled-Cluster Level Accuracy. J Phys Chem A 2024; 128:6989-6998. [PMID: 39121455 DOI: 10.1021/acs.jpca.4c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) measures core-electron binding energies (CEBEs) to reveal element-specific insights into the chemical environment and bonding. Accurate theoretical CEBE prediction aids XPS interpretation but requires proper modeling of orbital relaxation and electron correlation upon core-ionization. This work systematically investigates basis set selection for extrapolation to the complete basis set limit of CEBEs from ΔMP2 and ΔCC energies across 94 K-edges in diverse organic molecules. We demonstrate that an alternative composite scheme using ΔMP2 in a large basis corrected by ΔCC-ΔMP2 difference in a small basis can quantitatively recover optimally extrapolated ΔCC CEBEs within 0.02 eV. Unlike ΔCC, MP2 calculations do not suffer from convergence issues and are computationally cheaper, and thus, the composite ΔMP2/ΔCC scheme balances accuracy and cost, overcoming limitations of solely using either method. We conclude by providing a comprehensive analysis of the choice of small and large basis sets for the composite schemes and provide practical recommendations for highly accurate (within 0.10-0.15 eV MAE) ab initio prediction of XPS data.
Collapse
Affiliation(s)
- Anton Morgunov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry K Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Oinam Romesh Meitei
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yu-Che Chien
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Troß J, Arias-Martinez JE, Carter-Fenk K, Cole-Filipiak NC, Schrader P, McCaslin LM, Head-Gordon M, Ramasesha K. Femtosecond Core-Level Spectroscopy Reveals Involvement of Triplet States in the Gas-Phase Photodissociation of Fe(CO) 5. J Am Chem Soc 2024; 146:22711-22723. [PMID: 39092878 DOI: 10.1021/jacs.4c07523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Excitation of iron pentacarbonyl [Fe(CO)5], a prototypical photocatalyst, at 266 nm causes the sequential loss of two CO ligands in the gas phase, creating catalytically active, unsaturated iron carbonyls. Despite numerous studies, major aspects of its ultrafast photochemistry remain unresolved because the early excited-state dynamics have so far eluded spectroscopic observation. This has led to the long-held assumption that ultrafast dissociation of gas-phase Fe(CO)5 proceeds exclusively on the singlet manifold. Herein, we present a combined experimental-theoretical study employing ultrafast extreme ultraviolet transient absorption spectroscopy near the Fe M2,3-edge, which features spectral evolution on 100 fs and 3 ps time scales, alongside high-level electronic structure theory, which enables characterization of the molecular geometries and electronic states involved in the ultrafast photodissociation of Fe(CO)5. We assign the 100 fs evolution to spectroscopic signatures associated with intertwined structural and electronic dynamics on the singlet metal-centered states during the first CO loss and the 3 ps evolution to the competing dissociation of Fe(CO)4 along the lowest singlet and triplet surfaces to form Fe(CO)3. Calculations of transient spectra in both singlet and triplet states as well as spin-orbit coupling constants along key structural pathways provide evidence for intersystem crossing to the triplet ground state of Fe(CO)4. Thus, our work presents the first spectroscopic detection of transient excited states during ultrafast photodissociation of gas-phase Fe(CO)5 and challenges the long-standing assumption that triplet states do not play a role in the ultrafast dynamics.
Collapse
Affiliation(s)
- Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
12
|
Ge G, Zhang JR, Wang SY, Wei M, Ji Y, Duan S, Ueda K, Hua W. Mapping Hydrogen Positions along the Proton Transfer Pathway in an Organic Crystal by Computational X-ray Spectra. J Phys Chem Lett 2024; 15:6051-6061. [PMID: 38819966 DOI: 10.1021/acs.jpclett.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Understanding proton transfer (PT) dynamics in condensed phases is crucial in chemistry. We computed a 2D map of N 1s X-ray photoelectron/absorption spectroscopy (XPS/XAS) for an organic donor-acceptor salt crystal against two varying N-H distances to track proton motions. Our results provide a continuous spectroscopic mapping of O-H···N↔O-··· H+-N processes via hydrogen bonds at both nitrogens, demonstrating the sensitivity of N 1s transient XPS/XAS to hydrogen positions and PT. By reducing the O-H length at N1 by only 0.2 Å, we achieved excellent theory-experiment agreement in both XPS and XAS. Our study highlights the challenge in refining proton positions in experimental crystal structures by periodic geometry optimizations and proposes an alternative scaled snapshot protocol as a more effective approach. This work provides valuable insights into X-ray spectra for correlated PT dynamics in complex crystals, benefiting future experimental studies.
Collapse
Affiliation(s)
- Guoyan Ge
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Minrui Wei
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Kiyoshi Ueda
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
13
|
Gaba NP, de Moura CEV, Majumder R, Sokolov AY. Simulating transient X-ray photoelectron spectra of Fe(CO) 5 and its photodissociation products with multireference algebraic diagrammatic construction theory. Phys Chem Chem Phys 2024; 26:15927-15938. [PMID: 38805029 DOI: 10.1039/d4cp00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate simulations of transient X-ray photoelectron spectra (XPS) provide unique opportunities to bridge the gap between theory and experiment in understanding the photoactivated dynamics in molecules and materials. However, simulating X-ray photoelectron spectra along a photochemical reaction pathway is challenging as it requires accurate description of electronic structure incorporating core-hole screening, orbital relaxation, electron correlation, and spin-orbit coupling in excited states or at nonequilibrium ground-state geometries. In this work, we employ the recently developed multireference algebraic diagrammatic construction theory (MR-ADC) to investigate the core-ionized states and X-ray photoelectron spectra of Fe(CO)5 and its photodissociation products (Fe(CO)4, Fe(CO)3) following excitation with 266 nm light. The simulated transient Fe 3p and CO 3σ XPS spectra incorporating spin-orbit coupling and high-order electron correlation effects are shown to be in a good agreement with the experimental measurements by Leitner et al. [J. Chem. Phys., 2018, 149, 044307]. Our calculations suggest that core-hole screening, spin-orbit coupling, and ligand-field splitting effects are similarly important in reproducing the experimentally observed chemical shifts in transient Fe 3p XPS spectra of iron carbonyl complexes. Our results also demonstrate that the MR-ADC methods can be very useful in interpreting the transient XPS spectra of transition metal compounds.
Collapse
Affiliation(s)
- Nicholas P Gaba
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Carlos E V de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
14
|
Jay RM, Coates MR, Zhao H, Winghart MO, Han P, Wang RP, Harich J, Banerjee A, Wikmark H, Fondell M, Nibbering ETJ, Odelius M, Huse N, Wernet P. Photochemical Formation and Electronic Structure of an Alkane σ-Complex from Time-Resolved Optical and X-ray Absorption Spectroscopy. J Am Chem Soc 2024; 146:14000-14011. [PMID: 38713061 PMCID: PMC11117182 DOI: 10.1021/jacs.4c02077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
C-H bond activation reactions with transition metals typically proceed via the formation of alkane σ-complexes, where an alkane C-H σ-bond binds to the metal. Due to the weak nature of metal-alkane bonds, σ-complexes are challenging to characterize experimentally. Here, we establish the complete pathways of photochemical formation of the model σ-complex Cr(CO)5-alkane from Cr(CO)6 in octane solution and characterize the nature of its metal-ligand bonding interactions. Using femtosecond optical absorption spectroscopy, we find photoinduced CO dissociation from Cr(CO)6 to occur within the 100 fs time resolution of the experiment. Rapid geminate recombination by a fraction of molecules is found to occur with a time constant of 150 fs. The formation of bare Cr(CO)5 in its singlet ground state is followed by complexation of an octane molecule from solution with a time constant of 8.2 ps. Picosecond X-ray absorption spectroscopy at the Cr L-edge and O K-edge provides unique information on the electronic structure of the Cr(CO)5-alkane σ-complex from both the metal and ligand perspectives. Based on clear experimental observables, we find substantial destabilization of the lowest unoccupied molecular orbital upon coordination of the C-H bond to the undercoordinated Cr center in the Cr(CO)5-alkane σ-complex, and we define this as a general, orbital-based descriptor of the metal-alkane bond. Our study demonstrates the value of combining optical and X-ray spectroscopic methods as complementary tools to study the stability and reactivity of alkane σ-complexes in their role as the decisive intermediates in C-H bond activation reactions.
Collapse
Affiliation(s)
- Raphael M. Jay
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Michael R. Coates
- Department
of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Huan Zhao
- Center
for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Marc-Oliver Winghart
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Peng Han
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Ru-Pan Wang
- Center
for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Jessica Harich
- Center
for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Ambar Banerjee
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Hampus Wikmark
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Erik T. J. Nibbering
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Michael Odelius
- Department
of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Nils Huse
- Center
for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Philippe Wernet
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
15
|
Barlow K, Phelps R, Eng J, Katayama T, Sutcliffe E, Coletta M, Brechin EK, Penfold TJ, Johansson JO. Tracking nuclear motion in single-molecule magnets using femtosecond X-ray absorption spectroscopy. Nat Commun 2024; 15:4043. [PMID: 38744877 PMCID: PMC11094174 DOI: 10.1038/s41467-024-48411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The development of new data storage solutions is crucial for emerging digital technologies. Recently, all-optical magnetic switching has been achieved in dielectrics, proving to be faster than traditional methods. Despite this, single-molecule magnets (SMMs), which are an important class of magnetic materials due to their nanometre size, remain underexplored for ultrafast photomagnetic switching. Herein, we report femtosecond time-resolved K-edge X-ray absorption spectroscopy (TR-XAS) on a Mn(III)-based trinuclear SMM. Exploiting the elemental specificity of XAS, we directly track nuclear dynamics around the metal ions and show that the ultrafast dynamics upon excitation of a crystal-field transition are dominated by a magnetically active Jahn-Teller mode. Our results, supported by simulations, reveal minute bond length changes from 0.01 to 0.05 Å demonstrating the sensitivity of the method. These geometrical changes are discussed in terms of magneto-structural relationships and consequently our results illustrate the importance of TR-XAS for the emerging area of ultrafast molecular magnetism.
Collapse
Affiliation(s)
- Kyle Barlow
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Ryan Phelps
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Erica Sutcliffe
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Marco Coletta
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - J Olof Johansson
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| |
Collapse
|
16
|
Wang T, Zhang Z, Yan W, Jiang S, Li S, Zhuang J, Xie H, Li G, Jiang L. Spectroscopic Characterization of Highly Excited Neutral Chromium Tricarbonyl. J Phys Chem A 2024; 128:3321-3328. [PMID: 38634151 DOI: 10.1021/acs.jpca.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Spectroscopic characterization of highly excited neutral transition-metal complexes is important for understanding the multifaceted reaction mechanisms between metals and ligands. In this work, the reactions of neutral chromium atoms with carbon monoxide were probed by size-specific infrared spectroscopy. Interestingly, Cr(CO)3 was found to have an unprecedented 7A2″ septet excited state rather than the singlet ground state. A combination of experiment and theory shows that the gas-phase formation of this highly excited Cr(CO)3 is facile both thermodynamically and kinetically. Electronic structure and bonding analyses indicate that the valence electrons of Cr atoms in the septet Cr(CO)3 are in a relatively stable configuration, which facilitate the highly excited structure and the planar geometric shape (D3h symmetry). The observed septet Cr(CO)3 affords a paradigm for exploring the structure, properties, and formation mechanism of a large variety of excited neutral compounds.
Collapse
Affiliation(s)
- Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangdong Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxing Zhuang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
17
|
Freibert A, Mendive-Tapia D, Huse N, Vendrell O. Time-Dependent Resonant Inelastic X-ray Scattering of Pyrazine at the Nitrogen K-Edge: A Quantum Dynamics Approach. J Chem Theory Comput 2024; 20:2167-2180. [PMID: 38315564 PMCID: PMC10938531 DOI: 10.1021/acs.jctc.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
We calculate resonant inelastic X-ray scattering spectra of pyrazine at the nitrogen K-edge in the time domain including wavepacket dynamics in both the valence and core-excited state manifolds. Upon resonant excitation, we observe ultrafast non-adiabatic population transfer between core-excited states within the core-hole lifetime, leading to molecular symmetry distortions. Importantly, our time-domain approach inherently contains the ability to manipulate the dynamics of this process by detuning the excitation energy, which effectively shortens the scattering duration. We also explore the impact of pulsed incident X-ray radiation, which provides a foundation for state-of-the-art time-resolved experiments with coherent pulsed light sources.
Collapse
Affiliation(s)
- Antonia Freibert
- Department
of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - David Mendive-Tapia
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Nils Huse
- Department
of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Oriol Vendrell
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Banerjee A, Jay RM, Leitner T, Wang RP, Harich J, Stefanuik R, Coates MR, Beale EV, Kabanova V, Kahraman A, Wach A, Ozerov D, Arrell C, Milne C, Johnson PJM, Cirelli C, Bacellar C, Huse N, Odelius M, Wernet P. Accessing metal-specific orbital interactions in C-H activation with resonant inelastic X-ray scattering. Chem Sci 2024; 15:2398-2409. [PMID: 38362433 PMCID: PMC10866335 DOI: 10.1039/d3sc04388f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024] Open
Abstract
Photochemically prepared transition-metal complexes are known to be effective at cleaving the strong C-H bonds of organic molecules in room temperature solutions. There is also ample theoretical evidence that the two-way, metal to ligand (MLCT) and ligand to metal (LMCT), charge-transfer between an incoming alkane C-H group and the transition metal is the decisive interaction in the C-H activation reaction. What is missing, however, are experimental methods to directly probe these interactions in order to reveal what determines reactivity of intermediates and the rate of the reaction. Here, using quantum chemical simulations we predict and propose future time-resolved valence-to-core resonant inelastic X-ray scattering (VtC-RIXS) experiments at the transition metal L-edge as a method to provide a full account of the evolution of metal-alkane interactions during transition-metal mediated C-H activation reactions. For the model system cyclopentadienyl rhodium dicarbonyl (CpRh(CO)2), we demonstrate, by simulating the VtC-RIXS signatures of key intermediates in the C-H activation pathway, how the Rh-centered valence-excited states accessible through VtC-RIXS directly reflect changes in donation and back-donation between the alkane C-H group and the transition metal as the reaction proceeds via those intermediates. We benchmark and validate our quantum chemical simulations against experimental steady-state measurements of CpRh(CO)2 and Rh(acac)(CO)2 (where acac is acetylacetonate). Our study constitutes the first step towards establishing VtC-RIXS as a new experimental observable for probing reactivity of C-H activation reactions. More generally, the study further motivates the use of time-resolved VtC-RIXS to follow the valence electronic structure evolution along photochemical, photoinitiated and photocatalytic reactions with transition metal complexes.
Collapse
Affiliation(s)
- Ambar Banerjee
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Raphael M Jay
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Torsten Leitner
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Ru-Pan Wang
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Jessica Harich
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Robert Stefanuik
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Michael R Coates
- Department of Physics, Stockholm University, AlbaNova University Center 106 91 Stockholm Sweden
| | - Emma V Beale
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | | | | | - Anna Wach
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
- Institute of Nuclear Physics, Polish Academy of Sciences PL-31342 Krakow Poland
| | - Dmitry Ozerov
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | | | | | | | | | | | - Nils Huse
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center 106 91 Stockholm Sweden
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| |
Collapse
|
19
|
Xue C, Guo Z, Liu H, Chen J, Tong Y, Fan J, Jiang H, Liu Z, Zhang X, Tai R. Design and first-round commissioning result of the SASE beamline at the Shanghai Soft X-ray FEL facility. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:177-185. [PMID: 37971956 PMCID: PMC10833434 DOI: 10.1107/s1600577523009438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The Shanghai Soft X-ray Free-Electron Laser (SXFEL) is the first X-ray free-electron laser facility in China. The SASE beamline, which consists of a pink-beam branch and a mono-beam branch, is one of the two beamlines in the Phase-I construction. The pink-beam branch opened for users in 2023 after successful first-round beamline commissioning. In this paper, the design of the beamline is presented and the performance of the pink-beam branch is reported. The measured energy-resolving power of the online spectrometer is over 6000 @ 400 eV. The focusing spot size of the pink beam is less than 3 µm in both the horizontal and vertical at the endstation.
Collapse
Affiliation(s)
- Chaofan Xue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai 201204, People’s Republic of China
| | - Zhi Guo
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai 201204, People’s Republic of China
| | - Haigang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai 201204, People’s Republic of China
| | - Jiahua Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai 201204, People’s Republic of China
| | - Yajun Tong
- ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Jiadong Fan
- ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Huaidong Jiang
- ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhi Liu
- ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Ximing Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai 201204, People’s Republic of China
| | - Renzhong Tai
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai 201204, People’s Republic of China
| |
Collapse
|
20
|
Garratt D, Matthews M, Marangos J. Toward ultrafast soft x-ray spectroscopy of organic photovoltaic devices. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:010901. [PMID: 38250136 PMCID: PMC10799687 DOI: 10.1063/4.0000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Novel ultrafast x-ray sources based on high harmonic generation and at x-ray free electron lasers are opening up new opportunities to resolve complex ultrafast processes in condensed phase systems with exceptional temporal resolution and atomic site specificity. In this perspective, we present techniques for resolving charge localization, transfer, and separation processes in organic semiconductors and organic photovoltaic devices with time-resolved soft x-ray spectroscopy. We review recent results in ultrafast soft x-ray spectroscopy of these systems and discuss routes to overcome the technical challenges in performing time-resolved x-ray experiments on photosensitive materials with poor thermal conductivity and low pump intensity thresholds for nonlinear effects.
Collapse
|
21
|
Nagamori K, Haze M, Okuda Y, Yamasaki K, Kohguchi H. Primary and Secondary Processes in the Ultraviolet Photodissociation of CpCo(CO) 2 (Cyclopentadienylcobalt Dicarbonyl). J Phys Chem A 2023; 127:9921-9931. [PMID: 37972309 DOI: 10.1021/acs.jpca.3c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We investigated the photodissociation dynamics of CpCo(CO)2 (cyclopentadienylcobalt dicarbonyl) in metal-to-ligand charge transfer (MLCT) bands. By employing DFT calculations, the absorption band (210-240 nm) was characterized as a charge transfer from the Co center to the Cp (cyclopentadienyl, C5H5) ligand. Ion imaging was utilized to analyze the CO fragments and coordinatively unsaturated complexes (CpCoCO, CpCo, and CoC3H3) across the entire MLCT band. Measuring the production yields of individual unsaturated complexes as a function of photolysis wavelength by considering wavelength dependence indicated the involvement of several photochemical pathways: the first photodissociation and sequential dissociation of CpCo(CO)2, and the second photodissociation of unsaturated intermediates within the pulse duration of the photolysis laser. The recoil velocity shifts of CpCo and CoC3H3 were attributed to the onset of the sequential dissociation of CpCoCO. Evidence for the second photodissociation of CpCoCO was obtained through the matching of linear momenta between the CO(v = 0, 1) and CpCo fragments. The DFT calculations performed to determine the electronic structures and potential energy curves for photoinduced CO loss in CpCo(CO)2 and CpCoCO supported our interpretation of the experimental results. This study presents a practical approach to selectively detecting specific processes among the mixture of products and intermediates when photolyzing transition-metal carbonyls, as their concurrent generation is unavoidable in laser-based experiments.
Collapse
Affiliation(s)
- Keigo Nagamori
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misato Haze
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yuuka Okuda
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Katsuyoshi Yamasaki
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiroshi Kohguchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
22
|
Watson L, Pope T, Jay RM, Banerjee A, Wernet P, Penfold TJ. A Δ-learning strategy for interpretation of spectroscopic observables. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:064101. [PMID: 37941993 PMCID: PMC10629969 DOI: 10.1063/4.0000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Accurate computations of experimental observables are essential for interpreting the high information content held within x-ray spectra. However, for complicated systems this can be difficult, a challenge compounded when dynamics becomes important owing to the large number of calculations required to capture the time-evolving observable. While machine learning architectures have been shown to represent a promising approach for rapidly predicting spectral lineshapes, achieving simultaneously accurate and sufficiently comprehensive training data is challenging. Herein, we introduce Δ-learning for x-ray spectroscopy. Instead of directly learning the structure-spectrum relationship, the Δ-model learns the structure dependent difference between a higher and lower level of theory. Consequently, once developed these models can be used to translate spectral shapes obtained from lower levels of theory to mimic those corresponding to higher levels of theory. Ultimately, this achieves accurate simulations with a much reduced computational burden as only the lower level of theory is computed, while the model can instantaneously transform this to a spectrum equivalent to a higher level of theory. Our present model, demonstrated herein, learns the difference between TDDFT(BLYP) and TDDFT(B3LYP) spectra. Its effectiveness is illustrated using simulations of Rh L3-edge spectra tracking the C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex.
Collapse
Affiliation(s)
- Luke Watson
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Thomas Pope
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Raphael M. Jay
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Ambar Banerjee
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
23
|
Wang SY, Zhang JR, Guo M, Hua W. Interpreting the Cu-O 2 Antibonding Nature in Two Cu-O 2 Complexes from Cu L-Edge X-ray Absorption Spectra. Inorg Chem 2023; 62:17115-17125. [PMID: 37828769 DOI: 10.1021/acs.inorgchem.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cu-O2 structures play important roles in bioinorganic chemistry and enzyme catalysis, where the bonding between the Cu and O2 parts serves as a fundamental research concern. Here, we performed a multiconfigurational study on the copper L2,3-edge X-ray absorption spectra (XAS) of two copper enzyme model complexes to gain a better understanding of the antibonding nature from the clearly interpreted structure-spectroscopy relation. We obtained spectra in good agreement with the experiments by using the restricted active space second-order perturbation theory (RASPT2) method, which facilitated reliable chemical analysis. Spectral feature interpretations were supported by computing the spin-orbit natural transition orbitals. All major features were assigned to be mainly from Cu 2p to antibonding orbitals between Cu 3d and O2 π*, Cu 3d-πO-O* (type A), and a few also to mixed antibonding/bonding orbitals between Cu 3d and O2 π, Cu 3d ± πO-O (type M). Our calculations provided a clear illustration of the interactions between Cu 3d and O2 π*/π orbitals that are carried in the metal L-edge XAS.
Collapse
Affiliation(s)
- Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Meiyuan Guo
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 75105, Sweden
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
24
|
Dohn AO, Markmann V, Nimmrich A, Haldrup K, Møller KB, Nielsen MM. Eliminating finite-size effects on the calculation of x-ray scattering from molecular dynamics simulations. J Chem Phys 2023; 159:124115. [PMID: 38127395 DOI: 10.1063/5.0164365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 12/23/2023] Open
Abstract
Structural studies using x-ray scattering methods for investigating molecules in solution are shifting focus toward describing the role and effects of the surrounding solvent. However, forward models based on molecular dynamics (MD) simulations to simulate structure factors and x-ray scattering from interatomic distributions such as radial distribution functions (RDFs) face limitations imposed by simulations, particularly at low values of the scattering vector q. In this work, we show how the value of the structure factor at q = 0 calculated from RDFs sampled from finite MD simulations is effectively dependent on the size of the simulation cell. To eliminate this error, we derive a new scheme to renormalize the sampled RDFs based on a model of the excluded volume of the particle-pairs they were sampled from, to emulate sampling from an infinite system. We compare this new correction method to two previous RDF-correction methods, developed for Kirkwood-Buff theory applications. We present a quantitative test to assess the reliability of the simulated low-q scattering signal and show that our RDF-correction successfully recovers the correct q = 0 limit for neat water. We investigate the effect of MD-sampling time on the RDF-corrections, before advancing to a molecular example system, comprised of a transition metal complex solvated in a series of water cells with varying densities. We show that our correction recovers the correct q = 0 behavior for all densities. Furthermore, we employ a simple continuum scattering model to dissect the total scattering signal from the solvent-solvent structural correlations in a solute-solvent model system to find two distinct contributions: a non-local density-contribution from the finite, fixed cell size in NVT simulations, and a local contribution from the solvent shell. We show how the second contribution can be approximated without also including the finite-size contribution. Finally, we provide a "best-practices"-checklist for experimentalists planning to incorporate explicit solvation MD simulations in future work, offering guidance for improving the accuracy and reliability of structural studies using x-ray scattering methods in solution.
Collapse
Affiliation(s)
- A O Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
- Science Institute and Faculty of Physical Sciences, VR-III, University of Iceland, Reykjavík 107, Iceland
| | - V Markmann
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - A Nimmrich
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - K Haldrup
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - K B Møller
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - M M Nielsen
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
25
|
Jay RM, Banerjee A, Leitner T, Wang RP, Harich J, Stefanuik R, Wikmark H, Coates MR, Beale EV, Kabanova V, Kahraman A, Wach A, Ozerov D, Arrell C, Johnson PJM, Borca CN, Cirelli C, Bacellar C, Milne C, Huse N, Smolentsev G, Huthwelker T, Odelius M, Wernet P. Tracking C-H activation with orbital resolution. Science 2023; 380:955-960. [PMID: 37262165 DOI: 10.1126/science.adf8042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
Transition metal reactivity toward carbon-hydrogen (C-H) bonds hinges on the interplay of electron donation and withdrawal at the metal center. Manipulating this reactivity in a controlled way is difficult because the hypothesized metal-alkane charge-transfer interactions are challenging to access experimentally. Using time-resolved x-ray spectroscopy, we track the charge-transfer interactions during C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex. Changes in oxidation state as well as valence-orbital energies and character emerge in the data on a femtosecond to nanosecond timescale. The x-ray spectroscopic signatures reflect how alkane-to-metal donation determines metal-alkane complex stability and how metal-to-alkane back-donation facilitates C-H bond cleavage by oxidative addition. The ability to dissect charge-transfer interactions on an orbital level provides opportunities for manipulating C-H reactivity at transition metals.
Collapse
Affiliation(s)
- Raphael M Jay
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Ambar Banerjee
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Torsten Leitner
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Ru-Pan Wang
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Jessica Harich
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Robert Stefanuik
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Hampus Wikmark
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Michael R Coates
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Emma V Beale
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | - Anna Wach
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Dmitry Ozerov
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | - Nils Huse
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | | | | | - Michael Odelius
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| |
Collapse
|
26
|
Reuss T, Nair Lalithambika SS, David C, Döring F, Jooss C, Risch M, Techert S. Advancements in Liquid Jet Technology and X-ray Spectroscopy for Understanding Energy Conversion Materials during Operation. Acc Chem Res 2023; 56:203-214. [PMID: 36636991 PMCID: PMC9910040 DOI: 10.1021/acs.accounts.2c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ConspectusWater splitting is intensively studied for sustainable and effective energy storage in green/alternative energy harvesting-storage-release cycles. In this work, we present our recent developments for combining liquid jet microtechnology with different types of soft X-ray spectroscopy at high-flux X-ray sources, in particular developed for studying the oxygen evolution reaction (OER). We are particularly interested in the development of in situ photon-in/photon-out techniques, such as in situ resonant inelastic X-ray scattering (RIXS) techniques at high-repetition-frequency X-ray sources, pointing toward operando capabilities. The pilot catalytic systems we use are perovskites having the general structure ABO3 with lanthanides or group II elements at the A sites and transition metals at the B sites. Depending on the chemical substitutions of ABO3, their catalytic activity for OER can be tuned by varying the composition.In this work, we present our in situ RIXS studies of the manganese L-edge of perovskites during OER. We have developed various X-ray spectroscopy approaches like transmission zone plate-, reflection zone plate-, and grating-based emission spectroscopy techniques. Combined with tunable incident X-ray energies, we yield complementary information about changing (inverse) X-ray absorption features of the perovskites, allowing us to deduce element- and oxidation-state-specific chemical monitoring of the catalyst. Adding liquid jet technology, we monitor element- and oxidation-state-specific interactions of the catalyst with water adsorbate during OER. By comparing the different technical spectroscopy approaches combined with high-repetition-frequency experiments at synchrotrons and free-electron lasers, we conclude that the combination of liquid jet with low-resolution zone-plate-based X-ray spectroscopy is sufficient for element- and oxidation-state-specific chemical monitoring during OER and easy to handle.For an in-depth study of OER mechanisms, however, including the characterization of catalyst-water adsorbate in terms of their charge transfer properties and especially valence intermediates formed during OER, high-resolution spectroscopy tools based on a combination of liquid jets with gratings bear bigger potential since they allow resolution of otherwise-overlapping X-ray spectroscopy transitions. Common for all of these experimental approaches is the conclusion that without the versatile developments of liquid jets and liquid beam technologies, elaborate experiments such as high-repetition experiments at high-flux X-ray sources (like synchrotrons or free-electron lasers) would hardly be possible. Such experiments allow sample refreshment for every single X-ray shot for repetition frequencies of up to 5 MHz, so that it is possible (a) to study X-ray-radiation-sensitive samples and also (b) to utilize novel types of flux-hungry X-ray spectroscopy tools like photon-in/photon-out X-ray spectroscopy to study the OER.
Collapse
Affiliation(s)
- Torben Reuss
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Christian David
- Paul
Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Florian Döring
- Paul
Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Christian Jooss
- Institute
of Material Physics, Göttingen University, Friedrich Hund Platz 1, 37077 Göttingen, Germany
| | - Marcel Risch
- Institute
of Material Physics, Göttingen University, Friedrich Hund Platz 1, 37077 Göttingen, Germany
| | - Simone Techert
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany,Institute
for X-ray Physics, Göttingen University, Friedrich Hund Platz 1, 37077 Göttingen, Germany,
| |
Collapse
|
27
|
Dorn M, East NR, Förster C, Kitzmann WR, Moll J, Reichenauer F, Reuter T, Stein L, Heinze K. d-d and charge transfer photochemistry of 3d metal complexes. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:707-788. [DOI: 10.1016/b978-0-12-823144-9.00063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Soley M, Videla PE, Nibbering ETJ, Batista VS. Ultrafast Charge Relocation Dynamics in Enol-Keto Tautomerization Monitored with a Local Soft-X-ray Probe. J Phys Chem Lett 2022; 13:8254-8263. [PMID: 36018775 PMCID: PMC9465716 DOI: 10.1021/acs.jpclett.2c02037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Proton-coupled electron transfer (PCET) is the underlying mechanism governing important reactions ranging from water splitting in photosynthesis to oxygen reduction in hydrogen fuel cells. The interplay of proton and electronic charge distribution motions can vary from sequential to concerted schemes, with elementary steps occurring on ultrafast time scales. We demonstrate with a simulation study that femtosecond soft-X-ray spectroscopy provides key insights into the PCET mechanism of a photoinduced intramolecular enol* → keto* tautomerization reaction. A full quantum treatment of the electronic and nuclear dynamics of 2-(2'-hydroxyphenyl)benzothiazole upon electronic excitation reveals how spectral signatures of local excitations from core to frontier orbitals display the distinctly different stages of charge relocation for the H atom, donating, and accepting sites. Our findings indicate that ultraviolet/X-ray pump-probe spectroscopy provides a unique way to probe ultrafast electronic structure rearrangements in photoinduced chemical reactions essential to understanding the mechanism of PCET.
Collapse
Affiliation(s)
- Micheline
B. Soley
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
- Yale
Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States
| | - Pablo E. Videla
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
- Energy
Sciences Institute, Yale University, P.O. Box 27394, West Haven, Connecticut 06516-7394, United States
| | - Erik T. J. Nibbering
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Victor S. Batista
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
- Yale
Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States
- Energy
Sciences Institute, Yale University, P.O. Box 27394, West Haven, Connecticut 06516-7394, United States
| |
Collapse
|
29
|
Huang Z, Kayanattil M, Hayes SA, Miller RJD. Picosecond infrared laser driven sample delivery for simultaneous liquid-phase and gas-phase electron diffraction studies. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:054301. [PMID: 36124204 PMCID: PMC9482465 DOI: 10.1063/4.0000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Here, we report on a new approach based on laser driven molecular beams that provides simultaneously nanoscale liquid droplets and gas-phase sample delivery for femtosecond electron diffraction studies. The method relies on Picosecond InfraRed Laser (PIRL) excitation of vibrational modes to strongly drive phase transitions under energy confinement by a mechanism referred to as Desorption by Impulsive Vibrational Excitation (DIVE). This approach is demonstrated using glycerol as the medium with selective excitation of the OH stretch region for energy deposition. The resulting plume was imaged with both an ultrafast electron gun and a pulsed bright-field optical microscope to characterize the sample source simultaneously under the same conditions with time synchronization equivalent to sub-micrometer spatial resolution in imaging the plume dynamics. The ablation front gives the expected isolated gas phase, whereas the trailing edge of the plume is found to consist of nanoscale liquid droplets to thin films depending on the excitation conditions. Thus, it is possible by adjusting the timing to go continuously from probing gas phase to solution phase dynamics in a single experiment with 100% hit rates and very low sample consumption (<100 nl per diffraction image). This approach will be particularly interesting for biomolecules that are susceptible to denaturation in turbulent flow, whereas PIRL-DIVE has been shown to inject molecules as large as proteins into the gas phase fully intact. This method opens the door as a general approach to atomically resolving solution phase chemistry as well as conformational dynamics of large molecular systems and allow separation of the solvent coordinate on the dynamics of interest.
Collapse
Affiliation(s)
- Zhipeng Huang
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Meghanad Kayanattil
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Stuart A. Hayes
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| |
Collapse
|
30
|
Chitturi SR, Burdet NG, Nashed Y, Ratner D, Mishra A, Lane TJ, Seaberg M, Esposito V, Yoon CH, Dunne M, Turner JJ. A machine learning photon detection algorithm for coherent x-ray ultrafast fluctuation analysis. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:054302. [PMID: 36276194 PMCID: PMC9583189 DOI: 10.1063/4.0000161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
X-ray free electron laser experiments have brought unique capabilities and opened new directions in research, such as creating new states of matter or directly measuring atomic motion. One such area is the ability to use finely spaced sets of coherent x-ray pulses to be compared after scattering from a dynamic system at different times. This enables the study of fluctuations in many-body quantum systems at the level of the ultrafast pulse durations, but this method has been limited to a select number of examples and required complex and advanced analytical tools. By applying a new methodology to this problem, we have made qualitative advances in three separate areas that will likely also find application to new fields. As compared to the "droplet-type" models, which typically are used to estimate the photon distributions on pixelated detectors to obtain the coherent x-ray speckle patterns, our algorithm achieves an order of magnitude speedup on CPU hardware and two orders of magnitude improvement on GPU hardware. We also find that it retains accuracy in low-contrast conditions, which is the typical regime for many experiments in structural dynamics. Finally, it can predict photon distributions in high average-intensity applications, a regime which up until now has not been accessible. Our artificial intelligence-assisted algorithm will enable a wider adoption of x-ray coherence spectroscopies, by both automating previously challenging analyses and enabling new experiments that were not otherwise feasible without the developments described in this work.
Collapse
Affiliation(s)
| | - Nicolas G. Burdet
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Youssef Nashed
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Daniel Ratner
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Aashwin Mishra
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. J. Lane
- Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Vincent Esposito
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Chun Hong Yoon
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mike Dunne
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | |
Collapse
|
31
|
Mascarenhas EJ, Fondell M, Büchner R, Eckert S, Vaz da Cruz V, Föhlisch A. Photo-induced ligand substitution of Cr(CO) 6 in 1-pentanol probed by time resolved X-ray absorption spectroscopy. Phys Chem Chem Phys 2022; 24:17979-17985. [PMID: 35737440 PMCID: PMC9348521 DOI: 10.1039/d1cp05834g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
Cr(CO)6 was investigated by X-ray absorption spectroscopy. The spectral signature at the metal edge provides information about the back-bonding of the metal in this class of complexes. Among the processes it participates in is ligand substitution in which a carbonyl ligand is ejected through excitation to a metal to ligand charge transfer (MLCT) band. The unsaturated carbonyl Cr(CO)5 is stabilized by solution media in square pyramidal geometry and further reacts with the solvent. Multi-site-specific probing after photoexcitation was used to investigate the ligand substitution photoreaction process which is a common first step in catalytic processes involving metal carbonyls. The data were analysed with the aid of TD-DFT computations for different models of photoproducts and signatures for ligand rearrangement after substitution were found. The rearrangement was found to occur in about 790 ps in agreement with former studies of the photoreaction.
Collapse
Affiliation(s)
- Eric J Mascarenhas
- Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Mattis Fondell
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Robby Büchner
- Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Sebastian Eckert
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Vinícius Vaz da Cruz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| |
Collapse
|
32
|
Turner JJ, George MW, Poliakoff M, Perutz RN. Photochemistry of transition metal carbonyls. Chem Soc Rev 2022; 51:5300-5329. [PMID: 35708003 DOI: 10.1039/d1cs00826a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this Tutorial Review is to outline the fundamental photochemistry of metal carbonyls, and to show how the advances in technology have increased our understanding of the detailed mechanisms, particularly how relatively simple experiments can provide deep understanding of complex problems. We recall some important early experiments that demonstrate the key principles underlying current research, concentrating on the binary carbonyls and selected substituted metal carbonyls. At each stage, we illustrate with examples from recent applications. This review first considers the detection of photochemical intermediates in three environments: glasses and matrices; gas phase; solution. It is followed by an examination of the theory underpinning these observations. In the final two sections, we briefly address applications to the characterization and behaviour of complexes with very labile ligands such as N2, H2 and alkanes, concentrating on key mechanistic points, and also describe some principles and examples of photocatalysis.
Collapse
Affiliation(s)
- James J Turner
- School of Chemistry University of Nottingham, NG7 2RD, UK.
| | | | | | - Robin N Perutz
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
33
|
Uemura Y, Ismail ASM, Park SH, Kwon S, Kim M, Elnaggar H, Frati F, Wadati H, Hirata Y, Zhang Y, Yamagami K, Yamamoto S, Matsuda I, Halisdemir U, Koster G, Milne C, Ammann M, Weckhuysen BM, de Groot FMF. Hole Dynamics in Photoexcited Hematite Studied with Femtosecond Oxygen K-edge X-ray Absorption Spectroscopy. J Phys Chem Lett 2022; 13:4207-4214. [PMID: 35512383 PMCID: PMC9125685 DOI: 10.1021/acs.jpclett.2c00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/05/2022] [Indexed: 05/21/2023]
Abstract
Hematite (α-Fe2O3) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.
Collapse
Affiliation(s)
- Yohei Uemura
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
- Laboratory
of Environmental Chemistry, Energy and Environment Research Division, Paul Scherrer Institut, Villigen, 5232, Switzerland
- European
XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Ahmed S. M. Ismail
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hebatalla Elnaggar
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Federica Frati
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Hiroki Wadati
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate
School of Material Science, University of
Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Yasuyuki Hirata
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Yujun Zhang
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Kohei Yamagami
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Susumu Yamamoto
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Iwao Matsuda
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Ufuk Halisdemir
- Faculty
of
Science and Technology and MESA + Institute for Nanotechnology, University of Twente, P.O. Box 2171, Enschede, 7500 AE, The Netherlands
| | - Gertjan Koster
- Faculty
of
Science and Technology and MESA + Institute for Nanotechnology, University of Twente, P.O. Box 2171, Enschede, 7500 AE, The Netherlands
| | - Christopher Milne
- European
XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
- SwissFEL, Paul
Scherrer Institut, Villigen, 5232, Switzerland
| | - Markus Ammann
- Laboratory
of Environmental Chemistry, Energy and Environment Research Division, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Frank M. F. de Groot
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
34
|
Banerjee A, Coates MR, Kowalewski M, Wikmark H, Jay RM, Wernet P, Odelius M. Photoinduced bond oscillations in ironpentacarbonyl give delayed synchronous bursts of carbonmonoxide release. Nat Commun 2022; 13:1337. [PMID: 35288563 PMCID: PMC8921231 DOI: 10.1038/s41467-022-28997-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Early excited state dynamics in the photodissociation of transition metal carbonyls determines the chemical nature of short-lived catalytically active reaction intermediates. However, time-resolved experiments have not yet revealed mechanistic details in the sub-picosecond regime. Hence, in this study the photoexcitation of ironpentacarbonyl Fe(CO)5 is simulated with semi-classical excited state molecular dynamics. We find that the bright metal-to-ligand charge-transfer (MLCT) transition induces synchronous Fe-C oscillations in the trigonal bipyramidal complex leading to periodically reoccurring release of predominantly axial CO. Metaphorically the photoactivated Fe(CO)5 acts as a CO geyser, as a result of dynamics in the potential energy landscape of the axial Fe-C distances and non-adiabatic transitions between manifolds of bound MLCT and dissociative metal-centered (MC) excited states. The predominant release of axial CO ligands and delayed release of equatorial CO ligands are explained in a unified mechanism based on the σ*(Fe-C) anti-bonding character of the receiving orbital in the dissociative MC states. The photodissociation of transition metal carbonyls is involved in catalysis and synthetic processes. Here the authors, using semi-classical excited state molecular dynamics, observe details of the early stage dynamics in the photodissociation of Fe(CO)5, including synchronous bursts of CO at periodic intervals of 90 femtoseconds.
Collapse
|
35
|
Kunnus K, Guo M, Biasin E, Larsen CB, Titus CJ, Lee SJ, Nordlund D, Cordones AA, Uhlig J, Gaffney KJ. Quantifying the Steric Effect on Metal-Ligand Bonding in Fe Carbene Photosensitizers with Fe 2p3d Resonant Inelastic X-ray Scattering. Inorg Chem 2022; 61:1961-1972. [PMID: 35029978 DOI: 10.1021/acs.inorgchem.1c03124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the electronic structure and chemical bonding of transition metal complexes is important for improving the function of molecular photosensitizers and catalysts. We have utilized X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) at the Fe L3 edge to investigate the electronic structure of two Fe N-heterocyclic carbene complexes with similar chemical structures but different steric effects and contrasting excited-state dynamics: [Fe(bmip)2]2+ and [Fe(btbip)2]2+, bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)pyridine and btbip = 2,6-bis(3-tert-butyl-imidazole-1-ylidene)pyridine. In combination with charge transfer multiplet and ab initio calculations, we quantified how changes in Fe-carbene bond length due to steric effects modify the metal-ligand bonding, including σ/π donation and π back-donation. We find that σ donation is significantly stronger in [Fe(bmip)2]2+, whereas the π back-donation is similar in both complexes. The resulting stronger ligand field and nephelauxetic effect in [Fe(bmip)2]2+ lead to approximately 1 eV destabilization of the quintet metal-centered 5T2g excited state compared to [Fe(btbip)2]2+, providing an explanation for the absence of a photoinduced 5T2g population and a longer metal-to-ligand charge-transfer excited-state lifetime in [Fe(bmip)2]2+. This work demonstrates how combined modeling of XAS and RIXS spectra can be utilized to understand the electronic structure of transition metal complexes governed by correlated electrons and donation/back-donation interactions.
Collapse
Affiliation(s)
- Kristjan Kunnus
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States.,Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu EE-50411, Estonia
| | - Meiyuan Guo
- Department of Chemistry, Lund University, Lund SE-22100, Sweden
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Christopher B Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Charles J Titus
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Sang Jun Lee
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dennis Nordlund
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Jens Uhlig
- Department of Chemistry, Lund University, Lund SE-22100, Sweden
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
36
|
Thon R, Chin W, Chamma D, Jonusas M, Galaup JP, Crépin C. Vibrational dynamics of iron pentacarbonyl in cryogenic matrices. J Chem Phys 2022; 156:024301. [PMID: 35032984 DOI: 10.1063/5.0073080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron pentacarbonyl is a textbook example of fluxionality. We trap the molecule in cryogenic matrices to study the vibrational dynamics of CO stretching modes involved in the fluxional rearrangement. The infrared spectrum in Ar and N2 is composed of about ten narrow bands in the spectral range of interest, indicating the population of various lattice sites and a lowering of the molecular symmetry in the trapping sites. The vibrational dynamics is explored by means of infrared stimulated photon echoes at the femtosecond scale. Vibrational dephasing and population relaxation times are obtained. The non-linear signals exhibit strong oscillations useful to disentangle the site composition of the absorption spectrum. The population relaxation involves at least two characteristic times. An evolution of the photon echo signals with the waiting time is observed. The behavior of all the signals can be reproduced within a simple model that describes the population relaxation occurring in two steps: relaxation of v = 1 (population time T1 < 100 ps) and return to v = 0 (recovery time > 1 ns). These two steps explain the evolution of the oscillations with the waiting time in the photon echo signals. These results discard fluxional rearrangement on the time scale of hundreds of ps in our samples. Dephasing times are of the same order of magnitude as T1: dephasing processes due to the matrix environment are rather inefficient. The photon echo experiments also reveal that intermolecular resonant vibrational energy transfers between guest molecules occur at the hundreds of ps time scale in concentrated samples (guest/host > 104).
Collapse
Affiliation(s)
- Raphaël Thon
- Institut des Sciences Moléculaires d'Orsay, UMR8214, CNRS-Université Paris-Saclay, F-91405 Orsay, France
| | - Wutharath Chin
- Institut des Sciences Moléculaires d'Orsay, UMR8214, CNRS-Université Paris-Saclay, F-91405 Orsay, France
| | - Didier Chamma
- Institut des Sciences Moléculaires d'Orsay, UMR8214, CNRS-Université Paris-Saclay, F-91405 Orsay, France
| | - Mindaugas Jonusas
- Institut des Sciences Moléculaires d'Orsay, UMR8214, CNRS-Université Paris-Saclay, F-91405 Orsay, France
| | - Jean-Pierre Galaup
- Institut des Sciences Moléculaires d'Orsay, UMR8214, CNRS-Université Paris-Saclay, F-91405 Orsay, France
| | - Claudine Crépin
- Institut des Sciences Moléculaires d'Orsay, UMR8214, CNRS-Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
37
|
Liekhus-Schmaltz C, Fox ZW, Andersen A, Kjaer KS, Alonso-Mori R, Biasin E, Carlstad J, Chollet M, Gaynor JD, Glownia JM, Hong K, Kroll T, Lee JH, Poulter BI, Reinhard M, Sokaras D, Zhang Y, Doumy G, March AM, Southworth SH, Mukamel S, Cordones AA, Schoenlein RW, Govind N, Khalil M. Femtosecond X-ray Spectroscopy Directly Quantifies Transient Excited-State Mixed Valency. J Phys Chem Lett 2022; 13:378-386. [PMID: 34985900 DOI: 10.1021/acs.jpclett.1c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an ∼60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.
Collapse
Affiliation(s)
| | - Zachary W Fox
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kasper S Kjaer
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Julia Carlstad
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - James D Gaynor
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kiryong Hong
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Marco Reinhard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yu Zhang
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 94025, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 94025, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert W Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
38
|
Jay RM, Kunnus K, Wernet P, Gaffney KJ. Capturing Atom-Specific Electronic Structural Dynamics of Transition-Metal Complexes with Ultrafast Soft X-Ray Spectroscopy. Annu Rev Phys Chem 2022; 73:187-208. [DOI: 10.1146/annurev-physchem-082820-020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3 d metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal–ligand covalency—the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3 d metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstrate femtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal–ligand covalency. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Raphael M. Jay
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kristjan Kunnus
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California, USA
| |
Collapse
|
39
|
Higley DJ, Ogasawara H, Zohar S, Dakovski GL. Using photoelectron spectroscopy to measure resonant inelastic X-ray scattering: a computational investigation. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:202-213. [PMID: 34985437 PMCID: PMC8733969 DOI: 10.1107/s1600577521011917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Resonant inelastic X-ray scattering (RIXS) has become an important scientific tool. Nonetheless, conventional high-resolution (few hundred meV or less) RIXS measurements, especially in the soft X-ray range, require low-throughput grating spectrometers, which limits measurement accuracy. Here, the performance of a different method for measuring RIXS, i.e. photoelectron spectrometry for analysis of X-rays (PAX), is computationally investigated. This method transforms the X-ray measurement problem of RIXS to an electron measurement problem, enabling use of high-throughput, compact electron spectrometers. X-rays to be measured are incident on a converter material and the energy distribution of the resultant photoelectrons, the PAX spectrum, is measured with an electron spectrometer. A deconvolution algorithm for analysis of such PAX data is proposed. It is shown that the deconvolution algorithm works well on data recorded with ∼0.5 eV resolution. Additional simulations show the potential of PAX for estimation of RIXS features with smaller widths. For simulations using the 3d levels of Ag as a converter material, and with 105 simulated detected electrons, it is estimated that features with a few hundred meV width can be accurately estimated in a model RIXS spectrum. For simulations using a sharp Fermi edge to encode RIXS spectra, it is estimated that one can accurately distinguish 100 meV FWHM peaks separated by 45 meV with 105 simulated detected electrons that were photoemitted from within 0.4 eV of the Fermi level.
Collapse
Affiliation(s)
- Daniel J. Higley
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sioan Zohar
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Georgi L. Dakovski
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
40
|
Kim Y, Ma R, Lee J, Harich J, Nam D, Kim S, Kim M, Ochmann M, Eom I, Huse N, Lee JH, Kim TK. Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy. J Phys Chem Lett 2021; 12:12165-12172. [PMID: 34914396 DOI: 10.1021/acs.jpclett.1c02400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)3]2+ (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L3-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (3MC) which exhibits a lifetime of about 300 ps. Time-dependent density functional theory relates ligand methylation to a lower ligand field strength that stabilizes the 3MC state. A quarter of the 3MLCT population appears to be trapped which may be attributed to intramolecular vibrational relaxation or further electron transfer to the solvent. Our results demonstrate that small changes in the ligand field allow control of the photophysical properties. Moreover, this study underscores the high information content of femtosecond L-edge spectroscopy as a probe of valence charge density and spin-state in 4d transition metals.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Junho Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | | | | | - Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
41
|
Huang M, Li C, Evangelista FA. Theoretical Calculation of Core-Excited States along Dissociative Pathways beyond Second-Order Perturbation Theory. J Chem Theory Comput 2021; 18:219-233. [PMID: 34964628 DOI: 10.1021/acs.jctc.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We extend the multireference driven similarity renormalization (MR-DSRG) method to compute core-excited states by combining it with a GASSCF treatment of orbital relaxation and static electron correlation effects. We consider MR-DSRG treatments of dynamical correlation truncated at the level of perturbation theory (DSRG-MRPT2/3) and iterative linearized approximations with one- and two-body operators [MR-LDSRG(2)] in combination with a spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects. This approach is calibrated and tested on a series of 16 core-excited states of five closed- and open-shell diatomic molecules containing first-row elements (C, N, and O). All GASSCF-MR-DSRG theories show excellent agreement with experimental adiabatic transitions energies, with mean absolute errors ranging between 0.17 and 0.35 eV, even for the challenging partially doubly excited states of the N2+ molecule. The vibrational structure of all these transitions, obtained from using a full potential energy scan, shows a mean absolute error as low as 25 meV for DSRG-MRPT2 and 12/13 meV for DSRG-MRPT3 and MR-LDSRG(2). We generally find that a treatment of dynamical correlation that goes beyond the second-order level in perturbation theory improves the accuracy of the potential energy surface, especially in the bond-dissociation region.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States.,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
42
|
Polly R, Schacherl B, Rothe J, Vitova T. Relativistic Multiconfigurational Ab Initio Calculation of Uranyl 3d4f Resonant Inelastic X-ray Scattering. Inorg Chem 2021; 60:18764-18776. [PMID: 34818001 PMCID: PMC8693175 DOI: 10.1021/acs.inorgchem.1c02364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/27/2022]
Abstract
We applied relativistic multiconfigurational all-electron ab initio calculations including the spin-orbit interaction to calculate the 3d4f resonant inelastic X-ray scattering (RIXS) map (3d3/2 → 5f5/2 U M4 absorption edge and 4f5/2 → 3d3/2 U Mβ emission) of uranyl (UO22+). The calculated data are in excellent agreement with experimental results and allow a detailed understanding of the observed features and an unambiguous assignment of all involved intermediate and final states. The energies corresponding to the maxima of the resonant emission and the non-resonant (normal) emission were determined with high accuracy, and the corresponding X-ray absorption near edge structure spectra extracted at these two positions were simulated and agree well with the measured data. With the high quality of our theoretical data, we show that the cause of the splitting of the three main peaks in emission is due to the fine structure splitting of the 4f orbitals induced through the trans di-oxo bonds in uranyl and that we are able to obtain direct information about the energy differences between the 5f and 4f orbitals: Δ5f δ/ϕ - 4f δ/ϕ, Δ5f π* - 4f π, and Δ5f σ* - 4f σ from the 3d4f RIXS map. RIXS maps contain a wealth of information, and ab initio calculations facilitate an understanding of their complex structure in a clear and transparent way. With these calculations, we show that the multiconfigurational protocol, which is nowadays applied as a standard tool to study the X-ray spectra of transition metal complexes, can be extended to the calculation of RIXS maps of systems containing actinides.
Collapse
Affiliation(s)
- Robert Polly
- Karlsruher Institut für Technologie
(KIT), Institut für Nukleare Entsorgung
(INE), Campus Nord, Postfach
3640, 76021 Karlsruhe, Germany
| | - Bianca Schacherl
- Karlsruher Institut für Technologie
(KIT), Institut für Nukleare Entsorgung
(INE), Campus Nord, Postfach
3640, 76021 Karlsruhe, Germany
| | - Jörg Rothe
- Karlsruher Institut für Technologie
(KIT), Institut für Nukleare Entsorgung
(INE), Campus Nord, Postfach
3640, 76021 Karlsruhe, Germany
| | - Tonya Vitova
- Karlsruher Institut für Technologie
(KIT), Institut für Nukleare Entsorgung
(INE), Campus Nord, Postfach
3640, 76021 Karlsruhe, Germany
| |
Collapse
|
43
|
Gessner N, Bäck AK, Knorr J, Nagel C, Marquetand P, Schatzschneider U, González L, Nuernberger P. Ultrafast photochemistry of a molybdenum carbonyl-nitrosyl complex with a triazacyclononane coligand. Phys Chem Chem Phys 2021; 23:24187-24199. [PMID: 34679150 DOI: 10.1039/d1cp03514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal complexes capable of releasing small molecules such as carbon monoxide and nitric oxide upon photoactivation are versatile tools in various fields of chemistry and biology. In this work, we report on the ultrafast photochemistry of [Mo(CO)2(NO)(iPr3tacn)]PF6 (iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclononane), which was characterized under continuous illumination and with femtosecond UV-pump/UV-probe and UV-pump/MIR-probe spectroscopy, as well as with stationary calculations. The experimental and theoretical results demonstrate that while the photodissociation of one of the two CO ligands upon UV excitation can be inferred both on an ultrafast timescale as well as under exposure times of several minutes, no evidence of NO release is observed under the same conditions. The binding mode of the diatomic ligands is impacted by the electronic excitation, and transient intermediates are observed on a timescale of tens of picoseconds before CO is released from the coordination sphere. Furthermore, based on calculated potential energy scans, we suggest that photolysis of NO could be possible after a subsequent excitation of an electronically excited state with a second laser pulse, or by accessing low-lying excited states that otherwise cannot be directly excited by light.
Collapse
Affiliation(s)
- Niklas Gessner
- a Physikalische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany; Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Anna K Bäck
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090 Wien, Austria
| | - Johannes Knorr
- Physikalische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany; Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090 Wien, Austria
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090 Wien, Austria
| | - Patrick Nuernberger
- a Physikalische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany; Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
44
|
Linguerri R, Olsson E, Nyman G, Hochlaf M, Eland JHD, Feifel R. Unimolecular Double Photoionization-Induced Processes in Iron Pentacarbonyl. Inorg Chem 2021; 60:17966-17975. [PMID: 34699196 PMCID: PMC8653154 DOI: 10.1021/acs.inorgchem.1c02533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The dissociations
of nascent Fe(CO)5++ ions
created by 40.81 eV photoionization of iron pentacarbonyl have been
examined using threefold and fourfold electron–ion coincidence
measurements. The energies and forms of the ions have been explored
by high-level calculations, revealing several new structures. The
most stable form of Fe(CO)5++ has a quite different
geometry from that of the neutral molecule. The dissociation pattern
can be modeled as a sequence of CO evaporations followed by two-body
charge separations. Each Fe(CO)n++ (n = 1–4) dication is stable in a restricted
energy range; as its internal energy increases, it first ejects a
neutral CO, then loses CO+ by charge separation at higher
energy. In the initial stages, charge-retaining CO evaporations dominate
over charge separation, but the latter become more competitive as
the number of residual CO ligands decreases. At energies where ionization
is mainly from the CO ligands, new Fe–C and C–C bonds
are created by a mechanism which might be relevant to catalysis by
Fe. Dissociations of nascent Fe(CO)5++ ions by sequential CO evaporations, leading (in restricted
energy
ranges) to stable Fe(CO)n++ (n = 1−4) dicationic species. At energies
where ionization is mainly from the CO ligands, new Fe−C and
C−C bonds are created by a mechanism which might be relevant
to catalysis by Fe.
Collapse
Affiliation(s)
- Roberto Linguerri
- COSYS/LISIS, Université Gustave Eiffel, 5 Bd Descartes, 77454, Champs sur Marne, France
| | - Emelie Olsson
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58 Gothenburg, Sweden
| | - Gunnar Nyman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Majdi Hochlaf
- COSYS/LISIS, Université Gustave Eiffel, 5 Bd Descartes, 77454, Champs sur Marne, France
| | - John H D Eland
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QZ Oxford, U.K
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58 Gothenburg, Sweden
| |
Collapse
|
45
|
Jay RM, Eckert S, Van Kuiken BE, Ochmann M, Hantschmann M, Cordones AA, Cho H, Hong K, Ma R, Lee JH, Dakovski GL, Turner JJ, Minitti MP, Quevedo W, Pietzsch A, Beye M, Kim TK, Schoenlein RW, Wernet P, Föhlisch A, Huse N. Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. J Phys Chem Lett 2021; 12:6676-6683. [PMID: 34260255 PMCID: PMC8312498 DOI: 10.1021/acs.jpclett.1c01401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 06/11/2023]
Abstract
We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.
Collapse
Affiliation(s)
- Raphael M. Jay
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | | | - Miguel Ochmann
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| | - Markus Hantschmann
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Amy A. Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Hana Cho
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Rory Ma
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Georgi L. Dakovski
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Joshua J. Turner
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
- Stanford Institute for Materials and Energy Sciences,
Stanford University, Stanford, California 94305,
United States
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Martin Beye
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei
University, Seoul 03722, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Philippe Wernet
- Department of Physics and Astronomy,
Uppsala University, 75120 Uppsala,
Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Nils Huse
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| |
Collapse
|
46
|
Jana S, Muralidhar S, Åkerman J, Schüßler-Langeheine C, Pontius N. Using the photoinduced L 3 resonance shift in Fe and Ni as time reference for ultrafast experiments at low flux soft x-ray sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:044304. [PMID: 34395721 PMCID: PMC8357444 DOI: 10.1063/4.0000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
We study the optical-pump induced ultrafast transient change of x-ray absorption at L 3 absorption resonances of the transition metals Ni and Fe in the Fe0.5Ni0.5 alloy. We find the effect for both elements to occur simultaneously on a femtosecond timescale. This effect may hence be used as a handy cross correlation scheme, providing a time-zero reference for ultrafast optical-pump soft x-ray-probe measurement. The method benefits from a relatively simple experimental setup as the sample itself acts as time-reference tool. In particular, this technique works with low flux ultrafast soft x-ray sources. The measurements are compared to the cross correlation method introduced in an earlier publication.
Collapse
Affiliation(s)
- Somnath Jana
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Shreyas Muralidhar
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Johan Åkerman
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | | | - Niko Pontius
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| |
Collapse
|
47
|
Wolf TJA, Paul AC, Folkestad SD, Myhre RH, Cryan JP, Berrah N, Bucksbaum PH, Coriani S, Coslovich G, Feifel R, Martinez TJ, Moeller SP, Mucke M, Obaid R, Plekan O, Squibb RJ, Koch H, Gühr M. Transient resonant Auger-Meitner spectra of photoexcited thymine. Faraday Discuss 2021; 228:555-570. [PMID: 33566045 DOI: 10.1039/d0fd00112k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the first investigation of excited state dynamics by resonant Auger-Meitner spectroscopy (also known as resonant Auger spectroscopy) using the nucleobase thymine as an example. Thymine is photoexcited in the UV and probed with X-ray photon energies at and below the oxygen K-edge. After initial photoexcitation to a ππ* excited state, thymine is known to undergo internal conversion to an nπ* excited state with a strong resonance at the oxygen K-edge, red-shifted from the ground state π* resonances of thymine (see our previous study Wolf, et al., Nat. Commun., 2017, 8, 29). We resolve and compare the Auger-Meitner electron spectra associated both with the excited state and ground state resonances, and distinguish participator and spectator decay contributions. Furthermore, we observe simultaneously with the decay of the nπ* state signatures the appearance of additional resonant Auger-Meitner contributions at photon energies between the nπ* state and the ground state resonances. We assign these contributions to population transfer from the nπ* state to a ππ* triplet state via intersystem crossing on the picosecond timescale based on simulations of the X-ray absorption spectra in the vibrationally hot triplet state. Moreover, we identify signatures from the initially excited ππ* singlet state which we have not observed in our previous study.
Collapse
Affiliation(s)
- Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Alexander C Paul
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sarai D Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Rolf H Myhre
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Nora Berrah
- Department of Physics, University of Connecticut Storrs, 2152 Hillside Road, Storrs, CT 06269, USA
| | - Phil H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. and Departments of Physics and Applied Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
| | - Sonia Coriani
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway and DTU Chemistry, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Giacomo Coslovich
- Linac Coherent Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58 Gothenburg, Sweden
| | - Todd J Martinez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. and Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| | - Stefan P Moeller
- Linac Coherent Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Melanie Mucke
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Razib Obaid
- Department of Physics, University of Connecticut Storrs, 2152 Hillside Road, Storrs, CT 06269, USA
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Richard J Squibb
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58 Gothenburg, Sweden
| | - Henrik Koch
- Scuola Normale Superiore, I-56126 Pisa, Italy.
| | - Markus Gühr
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Straßze 24/25, DE-14476 Potsdam, Germany.
| |
Collapse
|
48
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X-ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021; 60:10112-10121. [PMID: 33497500 PMCID: PMC8252016 DOI: 10.1002/anie.202015669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/07/2022]
Abstract
The ability of resonant X-ray emission spectroscopy (XES) to recover physical oxidation state information, which may often be ambiguous in conventional X-ray spectroscopy, is demonstrated. By combining Kβ XES with resonant excitation in the XAS pre-edge region, resonant Kβ XES (or 1s3p RXES) data are obtained, which probe the 3dn+1 final-state configuration. Comparison of the non-resonant and resonant XES for a series of high-spin ferrous and ferric complexes shows that oxidation state assignments that were previously unclear are now easily made. The present study spans iron tetrachlorides, iron sulfur clusters, and the MoFe protein of nitrogenase. While 1s3p RXES studies have previously been reported, to our knowledge, 1s3p RXES has not been previously utilized to resolve questions of metal valency in highly covalent systems. As such, the approach presented herein provides chemists with means to more rigorously and quantitatively address challenging electronic-structure questions.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Anselm W. Hahn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | | | - Justin T. Henthorn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Jeremy McGale
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|
49
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X‐ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Anselm W. Hahn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | | | - Justin T. Henthorn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Jeremy McGale
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
50
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|